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Feedback and closed-loop circuits exist in just about every part
of the nervous system. It is curious, therefore, that for decades
neuroscientists have been probing the nervous system in an open-
loop manner to understand it. Instead of the linear, reduction-
istic “stimulate → record response” approach, a more modern
approach is taking hold: closed-loop neuroscience. It respects
the inherent “loopiness” of neural circuits, and the fact that
the nervous system is embodied, and embedded in an environ-
ment. Through active sensing, behaving animals can influence
their environment in ways that alter subsequent sensory inputs.
Therefore, loops abound not only in the nervous system itself,
but through its dynamic interactions with the world. By interpos-
ing our own technology in some of these loops, we can achieve
unprecedented control over the system being studied and explore
the functional consequences. This Research Topic, “Closing the
Loop Around Neural Systems,” presents a diverse set of recent
methodological, scientific and theoretical advances from neu-
roscientists and neuroengineers who are pioneering closed-loop
neuroscience.

As shown here, cutting-edge researchers are taking advantage
of real-time or “on-line” processing of large streams of neural
data. This has become feasible thanks to advances in computer
processing power, in electronics such as microprocessors and
field-programmable gate arrays (FPGAs), and in specialized and
open-source software. These advances have enabled a wide variety
of new neuroscience approaches to understanding, modulating,
and interfacing with the nervous system—approaches in which
the variables being monitored can influence the experiment in
progress, just as active sensing can influence an animal’s next
input.

Our call for submissions to this Frontiers in Neural Circuits
Research Topic yielded an overwhelming response, indicating
that closing the loop around neural systems is an exciting and
rapidly expanding field. Perhaps this is because of the diversity
of ways in which “closed-loops” can be interpreted and imple-
mented. This Research Topic presents seven Methods articles,
16 Original Research articles, and seven Reviews, Mini-Reviews,
and Perspectives, for a total of 30 accepted papers published in
Frontiers in Neural Circuits between April 2012 and October
2013. A map showing the locations of all the contributors1 reveals

1See: https://mapsengine.google.com/map/edit?mid=zDBeK_5W8FVs.knb4_
z5h9NpQ

that most are in the USA and Europe, although researchers in
Russia, Japan, and Israel are also represented.

Several articles describe or review new technologies that
increase the options for closed-loop neuroscience. Two papers
by Bareket-Keren and Hanein (2013) and Robinson et al. (2013)
review the latest in carbon nanotube and nanowire multi-
electrode arrays (MEAs) for neural interfacing. Franke et al.
(2012) review high-density MEAs with many electrodes and real-
time spike sorting. Müller et al. (2013) present sophisticated
hardware and software for very fast (sub-millisecond) closed-
loop recording and stimulation of cultured networks using their
CMOS array with 11,011 electrodes. Newman et al. (2013)
created an application programming interface (API) for their
open-source NeuroRighter electrophysiology system that greatly
enhances its ability to carry out closed-loop experiments in which
recorded signals trigger electrical stimulation or other hardware.
Five examples of closed loop experiments in vitro and in vivo are
described.

A number of articles present advances using acute or cul-
tured networks in vitro. Bonifazi et al. (2013) present EU Brain
Bow project efforts in progress, to create and study bi-directional
neural interfaces. Their work includes both patterned dissociated
cultures and their responses to laser ablation, and a whole-brain
in vitro preparation and its response to focal ischemia. The goal is
to develop the closed-loop prostheses of the future. Tessadori et al.
(2012) present their Hybrain2 software for real-time control of
hybrid neural-robotic systems, consisting in this case of a virtual
wheeled robot interfaced to a living hippocampal network on an
MEA. Brewer et al. (2013) reconstructed a hippocampal trisynap-
tic loop in vitro on an MEA with small tunnels for neurites to grow
through. Pimashkin et al. (2013) used an adaptively enhanced
learning protocol to study learning in dissociated hippocampal
networks on MEAs.

Others studied the nervous systems of intact or semi-intact
animals with closed-loop approaches. Nishimura et al. (2013)
restored arm movements in a spinal cord-injured non-human
primate (NHP) with an artificial cortico-spinal connection and
an artificial musculo-spinal connection. This system allows voli-
tional control and boosting of weak, residual muscle activity.
Opris et al. (2012) enhanced performance on a delayed match-to-
sample task in NHPs using cortical microstimulation contingent
on recordings that predict incorrect responses. Dhingra et al.
(2013) studied the role of the vagal mechanosensory feedback
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loop for respiration in a perfused in situ brainstem preparation
of a mouse model for Rett syndrome. To help map the brain’s
feedback loops, Beier et al. (2013) demonstrate in the mouse a
new transsynaptic retrograde tracer, based on the vesicular stom-
atitis virus with a rabies virus coat. Egelhaaf et al. (2012) provide a
comprehensive review of work on insect vision, emphasizing the
importance of active sensing for interpreting optic flow to opti-
mize flying. Ejaz et al. (2013) present closed-loop experiments to
study fly visual circuits in which recorded neural responses con-
trol a fast turntable on which the fly is mounted. Gollisch and
Herz (2012) review how the locust auditory system, salamander
retina, and the monkey visual cortex have been used to efficiently
explore a large parameter space of iso-response curves, via on-line
analysis of incoming data to generate the next stimuli.

The “Model-in-the-loop” paradigm is a powerful approach
to understanding complex neural network dynamics. Brookings
et al. (2012) interfaced an excised crab stomatogastric ganglion
(STG) to a dynamic clamp model neuron to help determine the
relative contributions of intrinsic and network properties of STG
neurons to network function. Hsiao et al. (2013) interfaced a den-
tate gyrus-CA1 model to an acute hippocampal slice preparation
on an MEA, with the goal of developing cognitive prostheses that
could someday replace damaged brain regions.

Theoretical advances are described in several modeling and
simulation papers. Witt et al. (2013) modeled the ability of
closed-loop optogenetic stimulation to control communication
between neural populations by altering their phase relationships.
DiMattina and Zhang (2013) reviewed the use of feedback to
optimize stimuli continuously during an experiment, for real-
time model estimation. Hanuschkin et al. (2013) modeled the
sensory-motor loop by which birds learn to produce stereotyped
songs. Skocik and Kozhevnikov (2013) demonstrate a system
for real-time audio feedback to study birdsong learning. Little
and Sommer (2013) optimized exploration strategies in embod-
ied agents based on information-theoretic analysis. Manoonpong
et al. (2013) demonstrate the value of adaptive forward mod-
els in developing a legged robot locomotion controller. Molkov
et al. (2013) modeled the roles of local (brainstem) and dis-
tal (lungs) feedback in mammalian respiratory circuits. Wallach
(2013) reviews the concept and implementation of a response
clamp, in which closed-loop control of a selected neural response
variable is used to uncover network properties in cultured
networks.

On the clinical side, Afshar et al. (2013) describe and test a new
platform for closed-loop deep brain stimulation (DBS). This is
the beginning of “smart neuromodulators” that tune themselves
to provide optimal benefit to those suffering from, for exam-
ple, epilepsy or Parkinson’s disease. Beverlin and Netoff (2013)
present theoretical analysis of a model neural network, aimed at
closed-loop seizure control with just such a smart DBS device.
Fernandez-Vargas et al. (2013) explored closed-loop optimization
of a flickering light display as part of a visually-evoked potential
(VEP) brain-computer interface that could be used by locked-in
patients to communicate. Walter et al. (2012, 2013) explored tran-
scranial cortical magnetic stimulation (TMS) in a motor task in
3 paralyzed stroke patients wearing a mechatronic hand orthosis.
TMS was triggered by recorded brain states that were processed

in real time for spectral estimation and to deal with stimulation
artifacts.

The diversity of methods, experiments, tools, and analyses in
this Research Topic suggests that many more areas of neuroscience
research would benefit from adopting a closed-loop perspective.
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