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Goal-directed decision making in biological systems is broadly based on associations
between conditional and unconditional stimuli. This can be further classified as classical
conditioning (correlation-based learning) and operant conditioning (reward-based learning).
A number of computational and experimental studies have well established the role of
the basal ganglia in reward-based learning, where as the cerebellum plays an important
role in developing specific conditioned responses. Although viewed as distinct learning
systems, recent animal experiments point toward their complementary role in behavioral
learning, and also show the existence of substantial two-way communication between
these two brain structures. Based on this notion of co-operative learning, in this paper
we hypothesize that the basal ganglia and cerebellar learning systems work in parallel
and interact with each other. We envision that such an interaction is influenced by
reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the
overall goal directed behavior. Using a recurrent neural network actor-critic model of the
basal ganglia and a feed-forward correlation-based learning model of the cerebellum,
we demonstrate that the RMHP rule can effectively balance the outcomes of the two
learning systems. This is tested using simulated environments of increasing complexity
with a four-wheeled robot in a foraging task in both static and dynamic configurations.
Although modeled with a simplified level of biological abstraction, we clearly demonstrate
that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster
learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this
paper we provide a computational model for adaptive combination of the basal ganglia
and cerebellum learning systems by way of neuromodulated plasticity for goal-directed
decision making in biological and bio-mimetic organisms.
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1. INTRODUCTION
Associative learning by way of conditioning, forms the main
behavioral paradigm that drives goal-directed decision making in
biological organisms. Typically, this can be further classified into
two classes, namely, classical conditioning (or correlation-based
learning) (Pavlov, 1927) and operant conditioning (or reinforce-
ment learning) (Skinner, 1938). In general, classical conditioning
is driven by associations between an early occurring conditional
stimulus (CS) and a late occurring unconditional stimulus (US),
which lead to conditioned responses (CR) or unconditioned
responses (UR) in the organism (Clark and Squire, 1998; Freeman
and Steinmetz, 2011). The CS here acts as a predictor signal such
that, after repeated pairing of the two stimuli, the behavior of the
organism is driven by the CR (adaptive reflex action) at the occur-
rence of the predictive CS, much before the US arrives. The overall
behavior is guided on the sole basis of stimulus-response (S-R)

associations or correlations, without any explicit feedback in the
form of rewards or punishments from the environment. In con-
trast to such classically conditioned reflexive behavior acquisition,
operant conditioning provides an organism with adaptive control
over the environment with the help of explicit positive or nega-
tive reinforcements (evaluative feedback) given for corresponding
actions. Over sufficient time, this enables the organism to respond
with good behaviors, while avoiding bad or negative behaviors. As
such within the computational learning framework, this is usually
termed reinforcement learning (RL) (Sutton and Barto, 1998).

At a behavioral level, although the two conditioning paradigms
of associative learning appear to be distinct from each other,
they seem to occur in combination as suggested from several
animal behavioral studies (Rescorla and Solomon, 1967; Dayan
and Balleine, 2002; Barnard, 2004). Behavioral studies with rab-
bits (Lovibond, 1983) demonstrate that the strength of operant
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responses can be influenced by simultaneous presentation of clas-
sically conditioned stimuli. This was further elaborated upon in
the behavior of fruit flies (Drosophila), where both classical and
operant conditioning predictors influence the behavior at the
same time and in turn improve the learned responses (Brembs
and Heisenberg, 2000). On a neuronal level, this relates to the
interaction between the reward modulated action selection at
the basal ganglia and the correlation based delay conditioning at
the cerebellum. Although the classical notion has been to regard
the basal ganglia and the cerebellum to be primarily responsible
for motor control, increasing evidence points toward their role
in non-motor specific cognitive tasks like goal-directed decision
making (Middleton and Strick, 1994; Doya, 1999). Interestingly,
recent experimental studies (Neychev et al., 2008; Bostan et al.,
2010) show that the the basal ganglia and cerebellum not only
form multi-synaptic loops with the cerebral cortex, but, two-way
communication between the structures exist via the thalamus
Figure 1A) along with substantial disynaptic projections to the
cerebellar cortex from the subthalamic nucleus (STN) of the basal
ganglia and from the dentate nucleus (cerebellar output stage) to
the striatum (basal ganglia input stage) (Hoshi et al., 2005). This
suggests that the two structures are not separate performing dis-
tinct functional operations (Doya, 2000a), but are linked together
forming an integrated functional network. Such integrated behav-
ior is further illustrated in the timing and error prediction studies
of Dreher and Grafman (2002) showing that the activation of
the cerebellum and basal ganglia are not specific to switching
attention, as previously believed, because both these regions were
activated during switching between tasks as well as during the
simultaneous maintenance of two tasks.

Based on these compelling evidences we formulate the neural
combined learning hypothesis, which proposes that goal-directed
decision making occurs with a parallel adaptive combination
(balancing) of the two learning systems (Figure 1B) to guide
the final action selection. As evident from experimental studies
(Haber and Calzavara, 2009), the thalamus potentially plays a
critical role in integrating the neural signals from the two sub-
networks while having the ability to modulate behavior through
dopaminergic projections from the ventral tagmental area (VTA)

(García-Cabezas et al., 2007; Varela, 2014). The motor thalamic
(Mthal) relay nuclei, specifically the VA-VL (ventral anterior and
ventral lateral) regions receive projections from the basal gan-
glia (inputs from the globas pallidus) as well as the cerebellum
(inputs from the dentate nucleus) (Jones et al., 1985; Percheron
et al., 1996). This can be further segregated with the ventral ante-
rior and the anterior region of the ventrolateral nucleus (VLa)
receiving major inputs from the globus pallidus internus (GPi),
while the posterior region of the ventrolateral nucleus (VLp)
receives primary inputs from the cerebellum (Bosch-Bouju et al.,
2013). Recent studies using molecular markers were able to dis-
tinguish the VA and VL nuclei in rats (Kuramoto et al., 2009),
which had hitherto been difficult and were considered as a sin-
gle overlapping area as the VA-VL complex. Interestingly, despite
apparent anatomical segregation of information in the basal gan-
glia and cerebellar territories, similar ranges of firing rate and
movement related activity are observed in the Mthal neurons
across all regions (Anderson and Turner, 1991). Furthermore,
some experimental studies based on triple labeling techniques
found zones of overlapping projections, as well as interdigitating
foci of pallidal and cerebellar labels, particularly in border regions
of the VLa (Sakai et al., 2000). In light of these evidences, it is
plausible that the basal ganglia and cerebellar circuitries not only
form an integrated functional network, but their individual out-
puts are combined together by a subset of the VLa neurons which
in turn project to the supplementary and pre-supplementary
motor cortical areas (Akkal et al., 2007) responsible for goal-
directed movements. We envision that such a combined learning
mechanism may be driven by reward modulated heterosynaptic
plasticity (neuromodulation by way of dopaminergic projections)
at the thalamus.

In this study, input correlation learning (ICO)in the form of
a differential Hebbian learner (Porr and Wörgötter, 2006), was
implemented as an example of delay conditioning in the cerebel-
lum, while a reservoir network (Jaeger and Haas, 2004) based con-
tinuous actor-critic learner (Doya, 2000b) was implemented as an
example of reward based conditioning in the basal ganglia. Taking
advantage of the individual learning mechanisms, the combined
framework can learn the appropriate goal-directed control policy

FIGURE 1 | (A) Pictorial representation of the anatomical reciprocal
connections between the basal ganglia, thalamus, and cerebellum. Green
arrows depict the cortico-striatal reward learning circuitry via the thalamus.
Blue arrows depict the cortico-cerebellar recurrent loops for classically
conditioned reflexive behaviors. Adapted and modified from Doya (2000a).
(B) Combinatorial learning framework with parallel combination of ICO

learning and actor-critic reinforcement learning. Individual learning
mechanisms adapt their weights independently and then their final weighted
outputs (Oico and Oac ) are combined into Ocom using a reward modulated
heterosynaptic plasticity rule (dotted arrows represent plastic synapses).
Ocom controls the agent behavior (policy) while sensory feedback from the
agent is sent back to both the learning mechanisms in parallel.
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for an agent1 in a fast and robust manner outperforming the
singular implementation of the individual components.

Although there have been a number of studies which have
applied the two different conditioning concepts for studying self-
organizing behavior in artificial agents and robots, they have
mostly been applied separately to generate specific goal-directed
behaviors (Morimoto and Doya, 2001; Verschure and Mintz,
2001; Hofstoetter et al., 2002; Prescott et al., 2006; Manoonpong
et al., 2007; Soltoggio et al., 2013). In our previous work
(Manoonpong et al., 2013) we motivated a combined approach
of the two learning concepts on a purely algorithmic level with-
out any adaptive combination between the two. To the best of our
knowledge, in this paper we present for the first time a biologically
plausible approach to model an adaptive combination of the cere-
bellar and basal ganglia learning systems, where they indirectly
interact through sensory feedback. In this manner they work as a
single functional unit to guide the behavior of artificial agents. We
test our neural combined learning hypothesis within the frame-
work of goal-directed decision making using a simulated wheeled
robot situated in environments of increasing complexity designed
as part of static and dynamic foraging tasks (Sul et al., 2011).
Our results clearly show that the proposed mechanism enables
the artificial agent to successfully learn the task in the different
environments with changing levels of interaction between the two
learning systems. Although we take a simplified approach of sim-
ulated robot based goal-directed learning, we believe our model
covers a reasonable level of biological abstraction that can help
us understand better, the closed-loop interactions between these
two neural subsystems as evident from experimental studies and
also provide a computational model of such combined learning
behavior which has hitherto been missing.

We now give a brief introduction to the neural substrates of
the cerebellum and the basal ganglia with regards to classical
and operant conditioning. Using a broad high-level view of the
anatomical connections of these two brain structures, we moti-
vate how goal-directed behavior is influenced by the respective

1Agent here refers to any artificial or biological organism situated in a given
environment.

structures and their associated neuronal connections. The indi-
vidual computational models with implementation details of
the two interacting learning systems are then presented in
the Materials and Methods Section followed by results and
discussion.

1.1. CLASSICAL CONDITIONING IN THE CEREBELLUM
The role of the Cerebellum and its associated circuitry in the
acquisition and retention of anticipatory responses (sensory
predictions) with Pavlovian delay conditioning has been well
established (Christian and Thompson, 2003; Thompson and
Steinmetz, 2009). Although most of the classical conditioning
studies are primarily based on eye-blink conditioning (Yeo and
Hesslow, 1998), recent experimental studies have established
the essential role of the cerebellum in learning and memory
of goal-directed behavioral responses (Burguiere et al., 2010).
In Figure 2A a highly simplified control structure of the major
cerebellar pathways and their relative function is indicated. The
Inferior Olive relays the US signal to the cerebellar cortex through
the climbing fibers and then induces plasticity at the synap-
tic junctions of the mossy fibers carrying the CS information
(Herreros and Verschure, 2013). Repeated CS-US pairings gradu-
ally lead (through synaptic consolidation) to the acquisition of
the CR with a drop in the firing activity of the Purkinje cells
(output from the cerebellar cortex). The cerebral cortex projects
to the lateral cerebellum via pontine nuclei relays (Allen and
Tsukahara, 1974; Lisberger and Thach, 2013; Proville et al., 2014)
which in turn have projections back to the cerebral cortex through
relays in the thalamus (ventro-lateral nucleus), thus projecting
the conditioned responses from the cerebellum to the motor
cortical areas (Stepniewska et al., 1994; Sakai et al., 2000). In
essence, the cerebellar action modulates or controls the motor
activity of the animal which produces changes in its goal ori-
ented behavior. The goal oriented behaviors can typically involve
both attraction toward or avoidance of specific actions (generally
referred to as adaptive reflexes) involving both sensory predic-
tions and motor control, toward which the cerebellum makes a
major contribution. It is also important to note that although
numerous experimental and computational studies demonstrate

FIGURE 2 | (A) Schema of the cerebellar controller with the reflexive
pathways and anatomical projections leading the acquisition of reflexive
behaviors. CS, conditioned stimulus; US, unconditioned stimuli; CR,
conditioned response; UR, unconditioned response. (B) (right) Schematic
representation of the neural architecture of the basal ganglia circuitry

showing the layout of the various internal connections. (left) Shows the
simplified circuit diagram with the main components as modeled in this
paper using the reservoir actor-critic framework. C, Cortex; S, striatum; DA,
dopamine system; R, reward; T, thalamus. Adapted and modified from
Wörgötter and Porr (2005).
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the function of the Cerebellum in classical conditioning or cor-
relation learning (Kim and Thompson, 1997; Woodruff-Pak and
Disterhoft, 2008), a possible role of the Cerebellum toward super-
vised learning (SL) has also been widely suggested (Doya, 1999;
Kawato et al., 2011). Typically within the paradigm of SL a train-
ing or instructive signal acts as a reference toward which the
output of a network (movements) is compared, such that the
error generated acts as the driver signal to induce plasticity within
the network in order to find the correct mapping between the
sensory input stimuli and the desired outputs (Knudsen, 1994).
Using the classical conditioning paradigm, it has been suggested
that the instructive signal that supervises the learning is the input
activity associated with the US. As such, the SL model of the
cerebellum considers that the climbing fibers from the inferior
olive provide the error signal (instructive activity) for the Purkinje
cells. Coincident inputs from the inferior olive and the granule
cells lead to plasticity at the granule-to-Purkinje synapses (Doya,
2000a). Although there have been experimental studies to vali-
date the SL description of the cerebellum (Kitazawa et al., 1998),
it has been largely directed toward considering the cerebellum
as an internal model of the body and the environment (Kawato,
1999). Furthermore, Krupa et al. (1993) observed that even when
the red nucleus (relay between motor cortex and cerebellum) was
inactivated learning proceeded with no CR being expressed. Thus,
this demonstrates that no error signal based on the behavior was
needed for learning to occur. Instead, the powerful climbing fiber
activity evoked by the US, acting as a template, could cause the
connection strengths of sensory inputs that are consistently corre-
lated with it to increase. Subsequently , after sufficient repetition,
the activity of these sensory inputs alone would drive the UR
pathway. As such, in this work we directly consider correlation
learning as the basis of classical conditioning in the cerebellum
without taking into consideration SL mechanisms and do not
explicitly consider the US relay from the inferior olive as an error
signal.

1.2. REWARD LEARNING IN THE BASAL GANGLIA
In contrast to the role of the cerebellum in classical conditioning,
the basal ganglia and its associated circuitry possess the necessary
anatomical features (neural substrates) required for a reward-
based learning mechanism (Schultz and Dickinson, 2000). In
Figure 2B we depict the main anatomical connections of the cor-
tical basal ganglia circuitry. It is comprised of the striatum (con-
sisting of most of the caudate and the putamen, and of the nucleus
accumbens), the internal (medial) and external (lateral) segments
of the globus pallidus (GPi and GPe respectively), the subthalamic
nucleus (STN), the ventral tegmental area (VTA) and the sub-
stantia nigra pars compacta (SNc) and pars reticulata (SNr). The
input stage of the basal ganglia is the striatum connected via direct
cortical projections. Previous studies have not only recognized
the striatum as a critical structure in the learning of stimulus-
response behaviors, but also established it as the major location
which projects to as well as receives efferent connections from
(via direct and indirect multi-synaptic pathways) the dopaminer-
gic system (Joel and Weiner, 2000; Kreitzer and Malenka, 2008).
The processing of rewarding stimuli is primarily modulated by
the dopamine neurons (DA system in Figure 2B) of the VTA and

SNc with numerous experimental studies (Schultz and Dickinson,
2000) demonstrating, that changes in dopamine neurons encode
the prediction error in appetitive learning scenarios, and associa-
tive learning in general (Puig and Mille, 2012). Figure 2B—right
shows the idealized reciprocal architecture of the striatal and
dopaminergic circuitry. Here sensory stimuli arrive as input from
the cortex to the striatal network. Excitatory as well as inhibitory
synapses project from the striatum to the DA system which in
turn uses the changes in the activity of DA neurons to modu-
late the activity in the striatum. Such DA activity also acts as
the neuromodulatory signal to the thalamus which receives indi-
rect connections from the striatum, via the GPi, SNr and VTA
(Varela, 2014). Computational modeling of such dopamine mod-
ulated reward learning behavior is particularly well reflected by
the Temporal Difference (TD) algorithm (Sutton, 1988; Suri and
Schultz, 2001), as well as in the action selection based computa-
tional models of the basal ganglia (Gurney et al., 2001; Humphries
et al., 2006). In the context of basal ganglia modeling, Actor-Critic
models (explained further in the next section) of TD learning
(Houk et al., 1995; Joel et al., 2002) have been extensively used.
They create a functional separation between two sub-networks
of the critic (modeling striatal and dopaminergic activity) and
the actor (modeling striatal to motor thalamus projections). The
TD learning rule uses the prediction error (TD error) between
two subsequent predictions of the net weighted sum of future
rewards based on current input and actions, to modulate critic
weights via long-term synaptic plasticity. The same prediction
error signal (dopaminergic projections) is also used to modulate
the synaptic weights at the actor; output from which controls the
the actions taken by the agent. Typically, here the mechanism of
action selection, can be regarded as the neuromodulation process
occurring at the striatum, which then reaches the motor thalamic
regions via projections from the output stages of the basal ganglia,
namely GPi/GPe and SNr (Gurney et al., 2001; Houk et al., 2007)
(Figure 2B).

2. MATERIALS AND METHODS
2.1. COMBINATORIAL LEARNING WITH REWARD MODULATED

HETEROSYNAPTIC PLASTICITY
According to the neural combined learning hypothesis for suc-
cessful goal-directed decision making, the underlying neural
machinery of animals combines basal ganglia and cerebellar
learning systems output, induced with a reward modulated bal-
ancing (neuromodulation) between the two, at the thalamus to
achieve net sensory-motor adaptation. Thus, here we develop
a system for the parallel combination of the input correlation-
based learner (ICO) and the reward-based learner (actor-critic) as
depicted in Figure 1B. The system works as a dual learner where
the individual learning mechanisms run in parallel to guide the
behavior of the agent. Both systems adapt their synaptic weights
independently (as per their local synaptic modification rules)
while receiving the same sensory feedback from the agent (envi-
ronmental stimuli) in parallel. The final action that drives the
agent is calculated as a weighted sum (Figure 3 red circle) of the
individual learning components. This can be described as follows:

ocom(t) = ξicooico(t)+ ξacoac(t) (1)

Frontiers in Neural Circuits www.frontiersin.org October 2014 | Volume 8 | Article 126 | 4

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Dasgupta et al. Neuromodulated adaptive neural combinatorial learning

FIGURE 3 | Schematic wiring diagram of the combined learning neural

circuit. It consists of the reservoir actor-critic RL based on TD learning
(left) and the input correlation learning (ICO) (right) models. The critic here is
reminiscent of the cortico striatal connections modulated by dopaminergic
neural activity (TD error). The actor represents the neuromodulation process
at the striatum, which reaches the motor thalamus by projections from
GPi/GPe and SNr. The ICO learning system is constructed in a manner similar

to Figure 2A, with the inferior olive being represented by the differential
Hebbian (d/dt) system that uses the US reflex signal to modulate the synaptic
connections in the cerebellum. Explicit nucleo-olivary inhibitory connections
were not modeled here. The red circle represents the communication
junction which act as the integrator of the outputs from the two networks,
being directly modulated by the reward signal R to control the overall action
of the agent. (further details in text).

where, oico(t) and oac(t) are the t time step outputs of the
input correlation-based learner and the actor-critic reinforcement
learner, respectively. ocom(t) represents the t time step combined
action. The key parameters here that govern the learning behavior
are the synaptic weights of the output neuron projection from the
individual components (ξico and ξac). These govern the degree of
influence of the two learning systems, on the net action of the
agent. Previously, a simple and straight forward approach was
undertaken in Manoonpong et al. (2013), where an equal contri-
bution (ξico = ξac = 0.5) of ICO and actor-critic RL for control-
ling an agent was considered. Although this can lead to successful
solutions in certain goal-directed problems, it is sub-optimal due
to the lack of any adaptive balancing mechanism. Intuitively for
associative learning problems with immediate rewards the ICO
system learns quickly as compared to distal reward based goal-
directed problems where, the ICO learner can provide guidance
to the actor-critic learner. In particular depending on the type of

problem, the right balance between the two learners needs to be
achieved in an adaptive manner.

While there is evidence on the direct communication (Bostan
et al., 2010) or combination of the subcortical loops from the
cerebellum and the basal ganglia (Houk et al., 2007), a compu-
tational mechanism underlying this combination has not been
presented, so far. Here we propose for the first time, an adaptive
combination mechanism of the two components, modeled in the
form of a reward modulated heterosynaptic plasticity (RMHP)
rule, which learns the individual synaptic weights (ξico and ξac)
for the projections from these two components. It is plausi-
ble that such a combination occurs at the VA-VL region of the
motor thalamic nuclei which has both pallido-thalamic (basal
ganglia) and cerebello-thalamic projections (Sakai et al., 2000).
Furthermore, a few previous experimental studies (Desiraju and
Purpura, 1969; Allen and Tsukahara, 1974) suggested that the
individual neurons of the VL (nearly 20%) integrate signals from
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the basal ganglia and the cerebellum along with some weak
cerebral inputs2. Based on biological evidence of dopaminergic
projections at the thalamus from the basal ganglia circuit (García-
Cabezas et al., 2007; Varela, 2014) as well as cerebellar projections
to the thalamic ventro-latral nucleus (Bosch-Bouju et al., 2013)
(see Figures 42–47 in Lisberger and Thach, 2013) we consider here
that such dopaminergic projections act as the neuromodulatory
signal and triggers the heterosynaptic plasticity (Ishikawa et al.,
2013). A large number of such heterosynaptic plasticity mecha-
nisms contribute toward a variety of neural processes involving
associative learning and development of neural circuits in general
(Bailey et al., 2000; Chistiakova and Volgushev, 2009). Although
there is currently no direct experimental evidence of heterosy-
naptic plasticity at thalamic nuclei, it is highly plausible that such
interactions could occur on synaptic afferents as observed in the
amygdala and the hippocampus (Vitureira et al., 2012). Here, we
use the instantaneous reward signal as the modulatory input in
order to induce heterosynaptic changes at the thalamic junction.
Similar approach have also been used in some previous theo-
retical models of reward modulated plasticity (Legenstein et al.,
2008; Hoerzer et al., 2012). Although the dopaminergic projec-
tions from the VTA to the Mthal are primarily believed to encode
a reward prediction error (RPE) signal (Schultz and Dickinson,
2000), there exists considerable diversity in the VTA neuron types
with a subset of these dopaminergic neurons directly respond-
ing to rewards (Cohen et al., 2012). Similar variability has also
been observed in the single DA neuron recordings from memory
guided sacadic tasks performed with primates (Takikawa et al.,
2004). This suggests that although most dopaminergic neurons
respond to a reward predicting conditional simuli, some may not
strictly follow the canonical RPE coding (Cohen et al., 2012). It
is important to note that, within this model, it is equally possible
to use the reward prediction error (TD error, Equation 12) and
still learn the synaptic weights of the two components in a stable
manner, however with a negligibly slower weight convergence due
to continuous weight changes (see Supplementary Figure 1).

Based on this RMHP plasticity rule the ICO and actor-critic
RL weights are learned at each time step as follows :

�ξico(t) = ηr(t)[oico(t)− ōico(t)]oac(t), (2)

�ξac(t) = ηr(t)[oac(t)− ōac(t)]oico(t). (3)

Here r(t) is the current time step reward signal received by the
agent, while ōico(t) and ōac(t) denote the low-pass filtered version
of the output from the ICO learner and the actor-critic learner,
respectively. They are calculated as:

ōico(t) = 0.9ōico(t − 1)+ 0.1oico(t),

ōac(t) = 0.9ōac(t − 1)+ 0.1oac(t). (4)

The plasticity model used here is based on the assumption that the
net policy performance (agent’s behavior) is influenced by a single

2It is also plausible that integration of activity arising in basal ganglia and
cerebellum might take place in the thalamus nuclei other than the VL-VA,
since pallidal as well as cerebellar fibers are known histologically to terminate
not only in the VL-VA but also in other structures (Mehler, 1971).

global neuromodulatory signal. This relates to the dopaminer-
gic projections to the ventra-lateral nucleus in the thalamus as
well as connections from the amygdala which can carry reward
related signals that influence over all action selection. The RMHP
learning rule correlates three factors: (1) the reward signal, (2)
the deviations of the ICO and actor-critic learner outputs from
their mean values, and (3) the actual ICO and actor-critic out-
puts. The correlations are used to adjust their respective synaptic
weights (ξico and ξac). Intuitively here the heterosynaptic plastic-
ity rule can be also viewed as a homeostatic mechanism (Vitureira
et al., 2012). Such that, the equation 2 tells the system to increase
the ICO learners weights (ξico) when the ICO output is coinci-
dent with the positive reward, while the third factor (oac) tells
the system to increase ξico more (or less) when the actor-critic
learner weights (ξac) are large (or small), and vice versa for
Equation 3. This ensures that overall the ratio of weight change
of the two learning components occurs at largely the same rate.
Additionally in order to prevent uncontrolled divergence in the
learned weights, homeostatic synaptic normalization is carried
out specifically as follows:

ξico(t) = ξico(t)

ξico(t)+ ξac(t)
,

ξac(t) = ξac(t)

ξico(t)+ ξac(t)
. (5)

This ensures that the synaptic weights always add up to one and
0 < ξico, ξac < 1. In general this plasticity rule occurs on a very
slow time scale which is governed by the learning rate parameter
η. Typically convergence and stabilization of weights are achieved
by setting η much smaller compared to the learning rate of the
two individual learning systems (ICO and actor-critic). To get a
more detailed view of the implementation of the adaptive com-
binatorial learning mechanism, interested readers should refer to
algorithm 2 in the Supplementary Material.

2.2. INPUT CORRELATION MODEL OF CEREBELLAR LEARNING
In order to model classical conditioning of adaptive motor
reflexes3in the cerebellum, we use a model-free, correlation based,
predictive control learning rule called input correlation learning
(ICO) (Porr and Wörgötter, 2006). ICO learning provides a fast
and stable mechanism in order to acquire and generate sensory
predictions for adaptive responses based solely on the correla-
tions between incoming stimuli. The ICO learning rule (Figure 3
Right) takes the form of an unsupervised synaptic modification
mechanism using the cross-correlation between the incoming
predictive input stimuli (predictive here means that the signals
occur early) and a single reflex signal (late occurring). As depicted
in Figure 3 right, cortical perceptual input in the form of pre-
dictive signals (CS) represents the mossy fiber projections to the
cerebellum microcircuit, while the Climbing fiber projections
from the inferior olive that modulates the synaptic weights in the

3The reflex signal is typically a default response to an unwanted situation. This
acts as the unconditional stimulus occurring later in time, than the predictive
conditional stimulus.
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deep cerebellar nucleus are depicted in a simplified form with the
differential region (d/dt).

The goal of the ICO mechanism is to behave as a forward
model system (Porr and Wörgötter, 2006) that uses the sensory
CS to predict the occurrence of the innate reflex signal (external
predefined feedback signaling unwanted scenarios), thus letting
the agent to react in an anticipatory manner to avoid the basic
reflex altogether. Based on a differential Hebbian learning rule
(Kolodziejski et al., 2008) the synaptic weights in the ICO scheme
are modified using heterosynaptic interactions of the incoming
inputs, depending on their order of occurrence. In general, the
plastic synapses of the predictive inputs get strengthened if they
precede the reflex signal and are weakened if their order of occur-
rence is reversed. As a result, the ICO learning rule drives the
behavior depending on the timing of correlated neural signals.
This can be formally represented as,

oico(t) = ρ0x0(t)+
K∑

j= 1

ρj(t)xj(t). (6)

Here, oico represents the output neuron activation of the ICO
system driven by the superposition of the plastic K-dimensional
predictive inputs xj(t) = x1(t), x2(t), . . . , xK (t)4 (differentially
modified) and the fixed innate reflex signal x0(t). The synaptic
strength of the reflex signal is represented by ρ0 and is fixed to
the constant value of 1.0 in order to signal innate response to the
agent. Using the cross-correlations between the input signals, our
differential Hebbian learning rule modifies synaptic connections
as follows:

�ρj(t) = μxj(t)
d

dt
x0(t). (7)

Here, μ defines the learning rate and is typically set to a small
value to allow slow growth of synaptic weights with convergence
occurring once the reflex signal xo = 0 (Porr and Wörgötter,
2006). Thus, ICO learning allows the agent to predict the primary
reflex and successfully generate early, adaptive actions. However,
no explicit feedback of goodness of behavior is provided to the
agent and thus only an anticipatory response can be learned
without the explicit notion of how well the action allows reach-
ing a desired (rewarding) goal location. As depicted in Figure 3,
the output from the ICO learner is directly fed into the RMHP
unit envisioned to be part of the ventro-lateral thalamic nucleus
(Akkal et al., 2007; Bosch-Bouju et al., 2013).

2.3. ACTOR-CRITIC RESERVOIR MODEL OF BASAL-GANGLIA LEARNING
TD learning (Sutton, 1988; Suri and Schultz, 2001), in the frame-
work of actor-critic reinforcement learning (Joel et al., 2002;
Wörgötter and Porr, 2005), is the most established computational
model of the basal ganglia. As explained in the previous section,
the TD learning technique is particularly well suited for replicat-
ing or understanding how reward related information is formed
and transferred by the mid-brain dopaminergic activity.

4This x(t) is different from the neural state activation vector x(t) of
Equation 9.

The model consists of two sub-networks, namely, the adaptive
critic (Figure 3 left, bottom) and the actor (Figure 3 left, above).
The critic is adaptive in the sense that it learns to predict the
weighted sum of future rewards taking into account the current
incoming sensory stimuli and the actions (behaviors) performed
by the agent within a particular environment. The difference
between the predicted “value” of sum of future rewards and the
actual measure acts as the temporal difference (TD) prediction
error signal that provides an evaluative feedback (or reinforce-
ment signal) to drive the actor. Eventually the actor learns to
perform the proper set of actions (policy5 ) that maximize the
weighted sum of future rewards as computed by the critic. The
evaluative feedback (TD error signal) in general acts as a mea-
sure of goodness of behavior that, overtime, lets the agent learn to
anticipate reinforcing events. Within this computational frame-
work, the TD prediction error signal and learning at the critic are
analogous to the dopaminergic (DA) activity and the DA depen-
dent long term synaptic plasticity in the striatum (Figure 2B),
while the remaining parts of striatal circuitry can be envisioned
as the actor which uses the TD modulated activity to generate
actions, which drives the agent’s behavior.

Inspired by the reservoir computing framework (Maass et al.,
2002; Jaeger and Haas, 2004), here we use a chaotic random recur-
rent neural network (RNN) (Sussillo and Abbott, 2009; Rajan
et al., 2010) as the adaptive critic (cortico-striatal circuitry and the
DA system) connected to a feed-forward neural network, serving
the purpose of the part of striatum that performs action selection
(Gurney et al., 2001) and then relays it to the motor thalamus via
projections from the globus pallidus and substantia nigra. This
provides an effective framework to model a continuous actor-
critic reinforcement learning scheme, which is particularly suited
for goal-directed learning in continuous state-action problems,
while at the same time maintaining a reasonable level of biologi-
cal abstraction (Fremaux et al., 2013). Here, the reservoir network
can be envisioned as analogous to the cortex and its inher-
ent recurrent connectivity structure, and the readout neurons
serving as the striatum, with plastic projections from the recur-
rent layer, as the modifiable cortico-striatal connections (Hinaut
and Dominey, 2013). The reservoir network is constructed as a
generic network model of N recurrently connected neurons with
high sparsity (refer to Supplementary Material for details) and
fixed synaptic connectivity. The connections within the recurrent
layer are drawn randomly in order to generate a sparsely con-
nected network of inhibitory and excitatory synapses. A subset
of the reservoir neurons receive input connections (fixed synaptic
strengths) as external driving signals and has an additional out-
put layer of neurons that learns to produce a desired response
based on synaptic modification of weights from the reservoir
to output neurons. The input connections along with the large
recurrently connected reservoir network represents the main cor-
tical microcircuit-to-striatum connections, while the output layer
neural activity can be envisioned as striatal neuronal responses.
In this case, the reservoir critic provides an input (sensory stim-
uli) driven dynamic network with a large repertoire of signals

5In reinforcement learning, policy refers to the set of actions performed by an
agent that maximizes it’s average future reward.

Frontiers in Neural Circuits www.frontiersin.org October 2014 | Volume 8 | Article 126 | 7

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Dasgupta et al. Neuromodulated adaptive neural combinatorial learning

that is used to predict the value function v (average sum of
future rewards). v(t) approximates the accumulated sum of the
future rewards r(t) with a given discount factor γ (0 ≤ γ < 1)6 as
follows:

v(t) =
∞∑

i= 1

γ i− 1r(t + i). (8)

In our model, the membrane potential at the soma (at time t)
of the reservoir neurons, resulting from the incoming excitatory
and inhibitory synaptic inputs, is given by the N dimensional
vector of neuron state activation’s, x(t) = x1(t), x2(t), . . . , xN (t).
The input to the reservoir network, consisting of the agent’s states
(sensory input stimuli from the cerebral cortex), is represented
by the K dimensional vector u(t) = u1(t), u2(t), . . . , uK (t). The
recurrent neural activity within the dynamic reservoir varies as a
function of its previous state activation and the current driving
input stimuli. The recurrent network dynamics is given by,

τ ẋ(t) = −x(t)+ gWsysz(t)+Winu(t)+ b, (9)

v̂(t) = tanh(Woutz(t)), (10)

zi(t) = tanh(αxi(t)+ β). (11)

The parameters Win and Wsys denote the input to reservoir
synaptic weights and the recurrent connection weights within the
reservoir, respectively. The parameter g (Sompolinsky et al., 1988)
acts as the scaling factor for the recurrent connection weights
allowing different dynamic regimes from stable to chaotic being
present in the reservoir. Similar to Sussillo and Abbott (2009) we
select g such that the network exhibits chaotic dynamics as spon-
taneous behavior before learning and maintains stable dynamics
after learning, with the help of feedback connections and neu-
ronal activation homeostasis via intrinsic plasticity (Triesch, 2005;
Dasgupta et al., 2013a). The RNN does not explicitly model action
potentials, but describes neuronal firing rates, where in, the con-
tinuous variable zi is the instantaneous firing rate of the reservoir
neurons and is calculated as a non-linear saturating function of
the state activation xi (Equation 11). The output layer consists of
a single neuron whose firing rate v̂(t) is calculated at time t based
on equation 10, as a non-linear transformation of the weighted
projections of the internal reservoir neuron firing rates z(t). Here
the parameter Wout denotes the N × K dimensional reservoir to
output connection synaptic weights. Each unit in the network also
receives a constant bias signal bi, represented in equation 9 as the
N dimensional vector b. The overall time scale of the RNN and
the leak rates of individual reservoir neurons are controlled by
the parameter τ .

Based on the TD learning principle, the primary goal of the
reservoir critic is to predict v(t) such that the TD error δ is min-
imized over time. At each time point t, δ is computed from the
current (v̂(t)) and previous (v̂(t − 1)) value function predictions
(reservoir output), and the current reward signal r(t), as
follows:

6The discount factor helps assigning decreasing value to rewards further away
in the past as compared to the current reward.

δ(t) = r(t)+ γ v̂(t)− v̂(t − 1). (12)

The output weights Wout are calculated using the recursive least
squares (RLS) algorithm (Haykin, 2002) at each time step, while
the sensory stimuli u(t) are being fed into the reservoir. Wout

are calculated such that the overall TD-error (δ) is minimized.
We implement the online RLS algorithm using a fixed forgetting
factor (λRLS < 1) as given in Algorithm 1.

As proposed in Triesch (2005) and Dasgupta et al. (2013a) we
implement a generic intrinsic plasticity mechanism based on the
Weibull distribution for unsupervised adaptation of the reservoir
neuron non-linearity using a stochastic decent algorithm to adapt
the scale α and shape parameters β of the saturating function in
Equation 11. This allows the reservoir to homoeostatically main-
tain a stable firing rate while at the same time it drives the neuron
activities to a non-chaotic regime. It is also important to note that
one of the primary assumptions of the basic TD learning rule is a
Markovian one, which considers future sensory cues and rewards
depending only on the current sensory cue without any memory
component. The use of a reservoir critic (due to the inherent fad-
ing temporal memory of recurrent networks Lazar et al., 2007)
breaks this assumption. As a result, such design principle extends
our model to problems with short term dependence of immedi-
ate sensory stimuli on the preceding history of stimuli and reward
(see Figure 4 for a simulated example of local temporal memory
in reservoir neurons).

The actor (Figure 3 left above) is designed as a single stochastic
neuron, such that for a one dimensional action generation the
output (Oac) is given as:

Algorithm 1: Online RLS algorithm for learning reservoir to output

neuron weights.

Initialize: Wout = 0, exponential forgetting factor (λRLS) is set to a
value less than 1 (we use 0.85) and the auto-correlation matrix ρ is
initialized as ρ(0) = I/β, where I is unit matrix and β is a small
constant.

Repeat: At time step t
Step 1: For each input signal u(t), the reservoir neural firing rate vector
z(t) and network output v̂(t) are calculated using equation 11 and
equation 10.

Step 2: Online error e(t) calculated as:
e(t)← δ(t)

Step 3: Gain vector K(t) is updated as:
K(t)← ρ(t−1)z(t)

λRLS+zT (t)ρ(t−1)z(t)

Step 4: Update the auto-correlation matrix ρ(t)
ρ(t)← 1

λRLS

[
ρ(t − 1)− K(t)zT (t)ρ(t − 1)

]

Step 5: Update the instantaneous output weights Wout(t)
Wout(t)←Wout(t − 1)+ K(t)e(t)

Step 6: t ← t + 1

Until: The maximum number of time steps is reached.
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FIGURE 4 | Fading temporal memory in recurrent neurons of

dynamic reservoir. The recurrent network (100 neurons) was driven
by a brief 100 ms pulse and a fixed auxiliary input of magnitude 0.3
(not shown here). Spontaneous dynamics then unfolds in the system
based on Equation 9. The lower right panel plots the activity of 5

randomly selected recurrent neurons. It can be clearly observed that
the driving input signal clamps the activity of the network at 200 ms
however different neurons decay with varying timescale. As a result
the network exhibits considerable fading memory of the brief
incoming input stimuli.

oac(t) = ε(t)+
K∑

i= 1

wi(t)ui(t), (13)

where K denotes the dimension (total number) of sensory stimuli
(u(t)) to the agent being controlled. The parameter wi denotes the
synaptic weights for the different sensory inputs projecting to the
actor neuron. Stochastic noise is added to the actor via ε(t), which
is the exploration quantity updated at every time step. This acts as
a noise term, such that initially exploration is high, and the agent
needs to navigate the environment more if the expected cumu-
lative future reward v(t) is sub-optimal. However, as the agent
learns to successfully predict the maximum cumulative reward
(value function) over time, and the net exploration is decreased.
As a result ε(t) gradually tends toward zero as the agent starts to
learn the desired behavior (correct policy). Using Gaussian white
noise σ (zero mean and standard deviation one) bounded by the
minimum and maximum limits of the value function (vmin and
vmax), the exploration term is modulated as follows:

ε(t) = �σ (t) · min
[

0.5,max

(
0,

vmax − v̂(t)

vmax − vmin

)]
. (14)

Here, � is a constant scale factor selected empirically (see
Supplementary Material for details). The actor learns to produce
the correct policy, by an online adaptation (Figure 3 left above)
of its synaptic weights wi at each time step as follows:

�wi(t) = τaδ(t)ui(t)ε(t), (15)

where τa is the learning rate such that 0 < τa < 1. Instead of
using direct reward r(t) to update the input to actor neuron

synaptic weights, using the TD-error (i.e., error of an internal
reward) allows the agent to learn successful behavior, even in
cases of delayed reward scenarios (reward is not given uniformly
for each time step but is delivered as a constant value after a set
of actions were performed to reach a specific goal). In general,
once the agent learns the correct behavior, the exploration term
(ε(t)) should become zero, as a result of which no further weight
change (Equation 15) occurs and oac(t) represents the desired
action policy, without any additional noise component.

3. RESULTS
In order to test the performance of our bio-inspired adaptive
combinatorial learning mechanism, and validate the interac-
tion through sensory feedback, between reward-based learning
(basal ganglia) and correlation-based learning (cerebellum) sys-
tems, we employ a simulated, goal-directed decision making
scenario of foraging behavior. This is carried out within a sim-
plified paradigm of a four-wheeled robot navigating an enclosed
environment, with gradually increasing task complexity.

3.1. ROBOT MODEL
The simulated wheeled robot NIMM4 (Figure 5) consists of a
simple body design with four wheels whose collective degree of
rotation controls the steering and the over all direction of motion.
It is provided with two front infrared sensors (IR1 and IR2) which
can be used to detect obstacles to its left or right side, respectively.
Two relative orientation sensors (μG and μB) are also provided,
which can continuously measure the angle of deviation of the
robot with respect to the green (positive) and blue (negative)
food sources. They are calibrated to take values in the interval
[−180◦, 180◦] with the angle of deviation μG,B = 0o when the
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respective goal is directly in front of the robot, μG,B is positive
when the goal locations are to the right of the robot and negative
for the opposite case. In addition NIMM4 also consists of two rel-
ative position sensors (DG,B) that can calculate it’s relative straight
line distance to a goal, taking values in the interval [0, 1], with the

FIGURE 5 | Simulated mobile robot system for goal-directed behavior

task. (Top) The mobile robot NIMM4 with different types of sensors. The
relative orientation sensor μ is used as state information for the robot.
(Bottom) Variation of the relative orientation μG to the green goal. the front
left and right infrared sensors IR1 and IR2 are used to detect obstacles in
front of the robot. Direction control for the robot is maintained using the
quantity Usteering calculated by the individual learning components (ICO and
actor-critic) and then fed to the robot wheels to generate forward motion or
steering behavior. Sensors DG and DB measure straight line distance to the
goal locations.

respective sensor reading tending to zero, as the robot gets closer
to the goal location and vice versa.

3.2. EXPERIMENTAL SETUP
The experimental setup (Figure 6) consists of a bounded envi-
ronment with two different food sources (desired vs punishing)
located at fixed positions. The primary task of the robot is to
navigate the environment such that, eventually, it should learn
to steer toward the food source that leads to positive reinforce-
ments (green spherical ball in Figures 6A–C) while avoiding the
goal location that provides negative reinforcements or punish-
ments (blue spherical ball), within a specific time interval. The
main task is designed as a continuous state-action problem with a
distal reward setup (Reinforcement zone in Figure 6), such that
the robot starts at a fixed spatial location with random initial
orientation ([−60◦, 60◦]) and receives the positive or negative
reinforcement signal only within a radius of specific distance
(DG,B = 0.2) from the two goal locations. Within this boundary,
for the green goal it receives a continuous reward of +1 at every
time step and a continuous punishment of −1 in case of the blue
goal, respectively. At other locations along the environment no
reinforcement signal is given to the robot.

The experiments are further divided into three different sce-
narios of, foraging without an obstacle (case I), with single
obstacle (case II) and a dynamic foraging scenario (case III),
demonstrating different degrees of reward modulated adaptation
between the two learning systems in different environments. In
all scenarios, the robot can continuously sense its angle of devi-
ation to the two goals with μG,B always active. This acts as a
Markov decision process (MDP) such that, the next sensory state
of the robot depends on the sensory information for the current
state of the robot and the action it performed, and is condition-
ally independent of all the previous sensory states and actions.
Detecting the obstacle results in negative reinforcement (contin-
uous −1 signal) triggered by the front infrared sensors (IR1,2 >

1.0). Furthermore, hitting the boundary wall in the arena results

FIGURE 6 | Three different scenarios for the goal-directed foraging

task. (A) Environmental setup without an obstacle case. Green and Blue
objects represent the two food sources with positive and negative
rewards, respectively. The red dotted circle indicates the region where
the turning reflex response (from the ICO learner) kicks in. The robot is
started from and reset to the same position, with random orientation at
the beginning of each trial episode. (B) Environmental setup with an
obstacle. In addition to the previous setup, a large obstacle is place in

the middle of the environment. The robot needs to learn to successfully
avoid it and reach the rewarding food source. Collisions with the obstacle
(triggered by IR1 and IR2) generate negative rewards (−1 signal) to the
robot. (C) Environmental setup with dynamic switching of the two
objects. It is an extended version of the first scenario. After every 50
trials the reward zones are switched such that the robot has to
dynamically adjust to the new positively reinforced location (food) and
learn a new trajectory from the starting location.
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in a negative reinforcement signal (−1), with the robot being reset
to the original starting location. Although the robot is provided
with relative distance sensors, sensory stimuli (state information)
is provided using only the angle of deviation sensors and the
infrared sensors. The reinforcement zone (distance of DG,B =
0.2) is also used as the zone of reflex to trigger a reflex signal for
the ICO learner. Fifty runs were carried out for each setup in all
cases. Each run consisted of a maximum of 150 trials. The robot
was reset if the maximum simulation time of 15 s was reached, or
if it reaches one of the goal locations or if it hits a boundary wall,
which ever occurs earlier.

3.3. CEREBELLAR SYSTEM: ICO LEARNING SETUP
The cerebellar system in the form of ICO learning (Figure 3 right)
was setup as follows: μG,B were used as predictive signals (CS).
Two independent reflex signals (x0,B and x0,G, see equation 6)
were configured with one for blue food source and the other for
the green food source (US). The setup was designed following the
principles of delayed conditioning experiments, where, an overlap
between the CS and the US stimuli needs to exist in order for the
learning to take place. The reflex signal was designed (measured
in terms of the relative orientation sensors of the robot) to elicit a
turn toward a specific goal once the robot comes within the reflex
zone (inside the dotted circle in Figures 6B,C). Irrespective of the
kind of goal (desired or undesired) the reflex signal drives the
robot toward it with a turn proportional to the deviations defined
by μG,B i.e., large deviations cause sharper turns. The green and
the blue ball were placed such that there was no overlap between
the reflex areas, hence only one reflex signal per goal, got triggered
at a time. In other words, the goal of the ICO learner is simply to
learn to steer toward a food location without any knowledge of
it’s worth. This is representative of an adaptive reflexive behav-
ior as observed in rodent foraging studies where in the behavior
is guided without explicit rewards, but just driven by condition-
ing between the CS-US stimuli, such that the robot or animal
learns to favor certain spots in the environments without any
knowledge of their worth. The weights of the ICO learner ρμG

and ρμB (Equation 6) with respect to the green and blue goals
were initialized to 0.0. If the positive derivative of the reflex signal
becomes greater than a predefined threshold, the weights change
and otherwise they remain static, i.e., a higher change in ρμG in
comparison to ρμB would mean that the robot gets drawn toward
the green goal more.

3.4. BASAL GANGLIA SYSTEM: RESERVOIR ACTOR-CRITIC SETUP
The basal ganglia system in the form of a reservoir based actor-
critic learner was setup such that, the inputs to the critic and
actor networks (Figure 3 left) consisted of the two relative ori-
entation sensor data μG and μB and the front left and right
infrared sensors (IR1 and IR2) of the robot (Figure 4). Although
the robot also contains relative distance sensors, these were not
used as state information inputs. This makes the task less trivial,
such that sufficient but not complete information was provided
to the actor-critic RL network. The reservoir network for the
critic consisted of N = 100 neurons and one output neuron that
estimates the value function v(t) (Equation 10). Reservoir input
weights Win were drawn from an uniform distribution [−0.5, 0.5]

while the reservoir recurrent weights Wsys were drawn from a
Gaussian distribution of mean 0 and standard deviation g2/N
(see Equation 9). Here g acts as the scaling factor for Wsys, and
it was designed such that there is only 10% internal connec-
tivity in Wsys with a scaling factor of 1.2. The reward signal
r(t) (Equation 12) was set to +1 when the robot comes close
(reflex/reinforcement zone) to the green ball and to −1 when it
comes close to the blue ball. A negative reward of −1 was also
given for any collisions with the boundary walls or obstacle. At
all other locations within the environment, the robot receives
no explicit reward signal. Thus, the setup is designed keeping a
delayed reward scenario in mind, such that earlier actions lead
to a positive or negative reward, only when the robot enters the
respective reinforcement/reflex zone. The synaptic weights of the
actor with respect to the two orientation sensors (wμG and wμB

) were initialized to 0.0, while the weights with respect to the
infrared sensors (wIR1 and wIR2 ) were initialized to 0.5 (equa-
tion 13). After learning, a high value of wμG and a low value
of wμB would drive the robot toward the green goal location
and away from the blue goal. The weights of the infrared sensor
inputs effectively control the turning behavior of the robot when
encountered with an obstacle (higher wIR1 —right turn, higher
wIR2 —left turn). The parameters of the adaptive combinatorial
network are summarized in the Supplementary Tables 1–3.

3.5. CASE I: FORAGING WITHOUT OBSTACLE
In the simplest foraging scenario the robot was placed in an envi-
ronment with two possible food sources (green and blue) and
without any obstacle in between (Figure 6A). In this case the
green food source provided positive reward while the blue food
source provided negative reward. The goal of the combined learn-
ing mechanism was to make the robot successfully steer toward
the desired food source. Figure 7A shows simulation snapshots
of the behavior of the robot as it explores the environment. As
observed from the trajectory of the robot, initially it performed a
lot of exploratory behavior and randomly moved around in the
environment, but eventually it learned to move solely toward the
green goal. This can be further analyzed looking at the develop-
ment of the synaptic weights of the different learning components
as depicted in Figure 8. As observed in Figure 8C due to the sim-
ple correlation mechanism of the ICO learner (cerebellar system),
the ICO weights adapt relatively faster as compared to the actor.
Due to random explorations (Figure 9B) in the beginning, in the
event of the blue goal being visited more frequently, reflexive pull
toward blue goal - ρμB is greater than toward the green goal -
ρμG . However, after sufficient explorations, as the robot starts
reaching the green goal more frequently, ρμG also starts devel-
oping. This is counteracted by the actor weights (basal ganglia
system), where in, there is a higher increase in wμG (orientation
sensor input representing angle of deviation from green goal) as
compared to wμB (orientation sensor input representing angle of
deviation from blue goal). This is caused as result of the increased
positive rewards received from the green goal (Figure 9A) that
causes the TD-error to modulate the actor weights (equation 15)
accordingly. At the same time no significant change is seen in the
infrared sensor input weights (Figure 8B), due to the fact that in
this scenario, the infrared sensors get triggered only on collisions
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FIGURE 7 | Simulation snapshots of the robot learning for the three

cases taken at specific epochs of time. (A) Snapshots of the learning
behavior for the static foraging task without obstacles. (B) Snapshots of the
learning behavior for the static foraging task with a single obstacle.
(C) Snapshots of the learning behavior for the dynamic foraging task. Panel

learned 1—represents the learned behavior for the initial task of reaching the
green goal. After 50 trials, the reward stimulus was changes and the new
desired (positively reinforced) location was the blue goal. Panel learned
2—represents the learned behavior after dynamic switching of reward
signals.

with the boundary wall and remain dormant otherwise. Recall
that the infrared sensor weights were initialized to 0.5.

Over time as the robot moves more toward the desired food
source, the ICO weights also stabilize with the reflex toward the
green goal being much stronger. This also leads to a reduction
of the exploration noise (Figure 9B), and the actor weights even-
tually converge to a stable value (Figures 8A,B). Here, the slow
RMHP rule performs a balancing act between the two learning
systems with initial higher weight of the actor-critic learner and
then a switch toward the ICO system, once the individual learn-
ing rules have converged. Figure 9C shows the development of
the value function (v(t)) at each trial, as estimated by the critic.
As observed initially the critic underestimates the total value
due to high explorations and random navigation in the envi-
ronment. However, as the different learning rules converge, the
value function starts to reflect the total accumulated reward with

stabilization after 25 trials (each trials consisted of approximately
1000 time steps).

This is also clearly observed from the change of the orien-
tation sensor readings shown in Figure 9D. Although there is
considerable change in the sensor readings initially, after learn-
ing, the orientation sensor toward the green goal (μG) records
positive angle, while the orientation from the blue goal μB

records considerably lower negative angles. This indicates that
the robot learns to move stably toward the positively rewarded
food source and away from the oppositely rewarded blue food
source. Although this is the simplest foraging scenario, the
development of the RMHP weights ξico and ξac (Figure 8D)
depicts the adaptive combination of the basal gangliar and
cerebellar learning systems for goal-directed behavior control.
Here the cerebellar system (namely ICO) acts as a fast adap-
tive reflex learner that guides and shapes the behavior of the
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FIGURE 8 | Synaptic weight change curves for the static foraging tasks

without obstacle and with single obstacle. (A) Change in the synaptic
weights for actor-critic RL learner. Here wμG corresponds to the input weights
of the orientation sensor toward the green goal and wμB corresponds to the
input weights of the orientation sensor toward the blue goal. (B) Change in
the weights of the two infrared sensor inputs of the actor. wIR1 is the left IR
sensor weight, wIR2 is the right IR sensor weights. (C) Change in the synaptic
weights of the ICO learner. ρμG is the CS stimulus weight for the orientation
sensor toward green, ρμB the CS stimulus weight for the orientation sensor

toward blue. (D) Learning curve of the RMHP combined learning mechanism
showing the change in the weights of the ICO network output (depicted in
red). ξico is weight of the ICO network output. ξac is weight of the actor-critic
RL network output (depicted in black). (E–H) Show the change in the weights
corresponding to the single obstacle static foraging task. In all the plots the
gray shaded region marks the region of convergence for the respective
synaptic weights. Three different timescales exist in the system, with the
ICO learning being the fastest, actor-critic RL being intermediate and the
adaptive combined learning being the slowest. (see text for more details.)
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FIGURE 9 | Temporal development of key parameters of the actor-critic

RL network, in the no obstacle foraging task. (A) Development of the
reward signal (r) over time. Initially the robot receives a mix of positive and
negative rewards due to random explorations. Upon successfully learning the
task, the robot is steered toward the green goal every time, receiving only
positive rewards. (B) Development of the exploration noise (ε) for the actor.
During learning there is a high noise in the system (pink shaded region),
which causes the the synaptic weights of the actor to change continuously.
Once the robot starts reaching the green goal more often the TD error from
the critic decreases leading to a decrease in exploration noise (gray shaded
region), which in turn causes the weights to stabilize (Figure 7). (C) Average
estimated value (v) as predicted by the reservoir critic is plotted for each trial.
The maximum estimated value is reached after about 18 trials after which the

exploration steadily decreases and the value function prediction also reaches
near convergence at 25 trials (1 trial approximates 1000 time steps). The thick
black line represents the average value calculated over 50 runs of the
experiment with standard deviation given by the shaded region. (D) Plots of
the two orientation sensor readings (in degrees) for the green (μG ) and the
blue (μB) goals, averaged over 50 runs. During initial exploration the angle of
the deviation of the robot from the two goals changes randomly. However,
after convergence of the learning rules, the orientation sensor readings
stabilize with small positive angle of deviation toward the green goal and
large negative deviation from the blue goal. This shows that post learning,
the robot steers more toward the green goal and away from the blue goal.
Here the thick lines represent average values and the shaded regions
represent standard deviation.

reward-based learning system. Although both the individual sys-
tems eventually converge to provide the correct weights toward
the green goal, the higher strength of the ICO component (ξico)
leads to a good trajectory irrespective of the starting orien-
tation of the robot. This is further illustrated in the simula-
tion video showing three different scenarios of only ICO, only
actor-critic and the combined learning cases, see Supplementary
Movie 1.

3.6. CASE II: FORAGING WITH SINGLE OBSTACLE
In order to evaluate the efficacy of the two learning systems
and their cooperative behavior, the robot was now placed in a
slightly modified environment (Figure 6B). As in the previous
case, the robot still starts from a fixed location with initial ran-
dom orientations. However, it now has to overcome an obstacle
placed directly in front (field of view), in order to reach the
rewarding food source (green goal). Collisions with the obstacle,
during learning, resulted in negative rewards (−1) triggered by
the front left (IR1) and right (IR2) infrared sensors. This influ-
enced the actor-critic learner to modulate the actor weights via

TD-error and generate turning behavior around the obstacles. In
parallel, the ICO system, still learns only a default reflexive behav-
ior of getting attracted toward either of the food sources by a
magnitude proportional to its proximity to them (same as case
I), irrespective of the associated rewards. As observed from the
simulation snapshots in Figure 7B, after initial random explo-
ration, the robot learns the correct trajectory to navigate around
the obstacle and reach the green goal. From the synaptic weight
development curves for the actor neuron (Figure 8E) it is clearly
observed that although initially there is a competition between
wμG and wμB , after sufficient exploration, as the robot gets more
positive rewards by moving to the green food source, the wμG

weight becomes larger in magnitude and eventually stabilizes.
Concurrently in Figure 8F, it can be observed that unlike the

previous case the left infrared sensor input weight wIR1 gets con-
siderably higher as compared to wIR2 . This is indicative of the
robot learning the correct behavior of turning right in order
to avoid the obstacle and reach the green goal. However, inter-
estingly, as opposed to the simple case (no obstacle) the ICO
learner tries to pull the robot more toward the blue goal, as seen
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from the weight development of ρμG and ρμB in Figure 8G. This
behavior can be attributed to the fact that, as the robot reaches
the blue object in the beginning, the fast ICO learner provides
high weights for a reflexive pull toward the blue as opposed to
the green goal. As learning proceeds and the robot learns to
move toward the desired location (driven by the actor-critic sys-
tem), the ρμG weight also increases, however it still continues
to favor the blue goal. As a result in order to learn the correct
behavior the combined learning systems needs to favor the actor-
critic mechanism more as compared to the naive reflexives from
the ICO. This is clearly observed from the balancing between
the two as depicted in the ξico and ξac weights in Figure 8H.
Following the stabilization of the individual learning system
weights, the combined learner provides much higher weighting
of the actor-critic RL system. Thus, in this scenario, due to the
added complexity of an obstacle, one sees that the reward modu-
lated plasticity (RMHP rule) learns to balance the two interacting
learning systems, such that the robot still performs the correct
decisions overtime (see the simulation run from Supplementary
Movie 2).

3.7. CASE III: DYNAMIC FORAGING (REVERSAL LEARNING)
A number of modeling as well as experimental studies of deci-
sion making (Sugrue et al., 2004) have considered the behavioral
effects of associative learning mechanisms on dynamic forag-
ing tasks as compared to static ones. Thus, in order to test the
robustness of our learning model, we changed the original setup
(Figure 6C), such that, initially a positive reward (+1) is given
for the green object and a negative reward (−1) for the blue
one. This enables the robot to learn moving toward the green
object while avoiding the blue object. However, after every 50 tri-
als the sign of the rewards was switched such that now the blue
object received positive reward, and the green goal the oppo-
site. As a result the learning system needs to quickly adapt to
the new situation and learn to navigate to the correct target. As
observed in the Figure 10B initially the robot performs random
explorations receiving a mixture of positive and negative rewards,
however after sufficient trials, the robot reaches a stable configu-
ration (exploration drops to zero) and receives positive rewards
concurrently (Figure 10A). This corresponds to the previous case
of learning to move toward the green goal. As the rewards were
switched, the robot then obtained negative reward when it moved
to the green object. As a consequence, the exploration gradu-
ally increased again; thereby the robot also exhibited random
movements. After successive trials, a new stable configuration
was reached with the exploration dropping to zero and now the
robot received more positive rewards, however for the other target
(blue object). This is depicted with more clarity, in the simulation
snapshots in Figure 7C (beginning—random explorations, learn
1—reaching green goal, learn 2—reaching blue goal).

In order to understand how the combined learning mechanism
handles this dynamic switching, in Figure 11 we plot the synaptic
weight developments of the different components.

Initially the robot behavior is shaped by the ICO weights
(Figure 11B) which learn to steer the robot to the desired loca-
tion, such that the reflex toward green object (ρμG ) is stronger
than that toward the blue object (ρμB ). Furthermore, as the robot

FIGURE 10 | Temporal development of the reward and exploration

noise for the dynamic foraging task. (A) Change in the reward signal (r)
over time. Between 3× 104 time steps and 5× 104 time steps the robot
learns the initial task of reaching the green goal, receiving positive rewards
(+1), successively. However, after 50 trials (approximately 5× 104 to
5.5× 104 time steps) the reward signals were changed, causing the robot
to receive negative rewards (−1) as it drives to the green goal. After around
10× 104 time steps as the robot learns to steer correctly toward the new
desired location (blue goal), it successively receives positive rewards.
(B) Change in the exploration noise (ε) over time. There is random
exploration in the beginning of the task and after switching the reward
signals (pink shaded regions), followed by stabilization and decrease in
exploratory noise once the robot learns the correct behavior (gray shaded
region). In both plots the thick dashed line (black) marks the point of reward
switch.

receives more positive rewards, the basal ganglia system starts
influencing it’s behavior by steadily increasing the actor weights
toward the green object (Figure 11A, wμG , wIR1 > wμB , wIR2 ).
This eventually causes the exploration noise (ε) to decrease to
zero and the robot learns a stable trajectory toward the desired
food source. This corresponds to the initial stable region of the
synaptic weights between 2 × 104 and 6 × 104 time steps in
Figures 11A–C. Interestingly the adaptive RMHP rule tries to
balance the influence from the two learning systems with even-
tual higher weighting of the ICO learner. This is similar to the
behavior observed in the no obstacle static scenario (Figure 8D).
After 50 trials (5 × 104 time steps), the reward signs were
inverted which causes the exploration noise to increase. As a
result the synaptic weights try to adapt once again and influ-
ence the behavior of the robot,now toward the blue object. In
this scenario although the actor weights eventually converge to
the correct configuration of wμB greater than wμG , the cerebellar
reflexive behavior remains biased toward the green object (pre-
viously learned stable trajectory). This can be explained from
the fact that the cerebellar or ICO learner has no knowledge of
the type of reinforcement received from the food sources, and
just naively tries to attract the robot to a goal when it is close
enough (within the zone of reflex) to it. As a result of this behav-
ior, the RMHP rule tries to balance the contributions of both
learning mechanisms (Figure 11D), by increasing the strength of
the actor-critic RL component as compared to the ICO learner

Frontiers in Neural Circuits www.frontiersin.org October 2014 | Volume 8 | Article 126 | 15

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Dasgupta et al. Neuromodulated adaptive neural combinatorial learning

FIGURE 11 | Synaptic weight change curves for the dynamic foraging

task. (A) Change in the synaptic weights for actor-critic RL learner. Here
wμG corresponds to the input weights of the orientation sensor toward
the green food source (spherical object) and wμB corresponds to the
input weights of the orientation sensor toward the blue. (B) Change in
the synaptic weights of the ICO learner. ρμG —the CS stimulus weight
for the orientation sensor toward green, ρμB the CS stimulus weight for
the orientation sensor toward blue. (C) Change in the weights of the
two infrared sensor inputs to the actor. wIR1 —left IR sensor weight,
wIR2 —right IR sensor weights. Modulation of the IR sensor weights
initially and during the periods 7× 104 - 9× 104 time steps can be
attributed to the high degree of exploration during this time, where in the
robot has considerable collisions with the boundary walls triggering these
sensors (see Figure 7C). (D) Learning curve of the RMHP combined
learning mechanism showing the change in the weights of the individual

components. ξico—weight of the ICO network output (depicted in red),
ξac—weight of the actor-critic RL network output (depicted in black). Here
the ICO weights converge initially for the first part of the task, however
fail to re-adapt upon change of reward signals. This is counter balanced
by the correct evolution of the actor weights. As a result although initially
the combinatorial learner places higher weight for the ICO network, after
task switch, due to change in reinforcements the actor-critic RL system
receives higher weights and drives the actual behavior of the robot. The
inlaid plots show a magnified view of the two synaptic weights between
9.5× 104 - 10× 104. The plots show that the weights do not change in
a fixed continuous manner, but increase/decrease in a step like formation
corresponding to the specific points of reward activation (Figure 10A). In
all the plots the gray shaded region mark the region of convergence for
the respective synaptic weights, and the thick dashed line (black) marks
the point of reward switch. (see text for more details).

component (ξac > ξico). This lets the robot, now learn the oppo-
site behavior of stable navigation toward the blue food source,
causing the exploration noise to decrease once again. Thus,
through the adaptive combination of the different learning sys-
tems, modulated by the RMHP mechanism, the robot was able to
deal with dynamic changes in environment and complete the for-
aging task successfully (see the simulation run in Supplementary
Movie 3).

Furthermore, as observed from the rate of success on the
dynamic foraging task (Figure 12A), the RMHP based adaptive
combinatorial learning mechanism clearly outperforms the indi-
vidual systems (only ICO or only actor-critic RL). Here the rate
of success was calculated as the percentage of times the robot was
able to successfully complete the first task of learning to reach the
green food source (green colored bars), and then after switching

of the rewards signals, the percentage of times it successfully
reached the blue food source (blue colored bars). Furthermore,
in order to test the influence of the RMHP rule, we tested the
combined learning with both, equal weightage to ICO and actor-
critic systems as well as a plasticity induced weighting for the two
individual learning components. It was observed that although
for the initial static case of learning to reach the green goal the
combined learning mechanism with equal weights works well,
the performance drops considerably, after the reward signals were
switched, and re-adaptation was required. Such a performance
was also observed in our previous work (Manoonpong et al.,
2013) using a simple combined learning model of feed-forward
actor-critic (radial basis function) and ICO learning. However,
in this work we show that the combination of a recurrent neu-
ral network actor-critic with ICO learning, using the RMHP
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FIGURE 12 | Comparison of performance of RMHP modulated

adaptive comninatorial learning system for the dynamic

foraging task. (A) Percentage of success measured over 50
experiments. (B) Average learning time (trials needed to
successfully complete the task, calculated over 50 experiments

(error bars indicate standard deviation with 98% confidence
intervals). In both cases the green bars represent the performance
for the initial task of learning to reach the green goal, while
blue bars represent the performance in the subsequent task after
dynamic switching of reward signals.

rule, was able to re-adapt the synaptic weights and combine
the two systems effectively. The learned behavior greatly out-
performs the previous case and shows a high success rate for
both, the initial navigation to green goal location and succes-
sively to the blue goal location, after switching of reinforcement
signals.

In Figure 12B, we plot the average time taken to learn the
first and second part of the dynamic foraging task. The learning
time was calculated as the number of trials required on suc-
cessful completion of the task (i.e., successively reaching green
or blue goal/food source location) averaged over 50 runs of the
experiment. The combined learning mechanism with RMHP,
successfully learns the task in less trials, as compared to the
individual learning systems. However there was a significant
increase in the learning time after the switching of reward sig-
nals. This can be attributed to the fact that after exploration
goes to zero initially, a stable configuration is reached, the robot
needs to perform more random explorations in order to change
the strength of the synaptic connections considerably such that
the opposite action of steering to the blue goal can be learned.
Furthermore, as expected from the relatively fast learning rate of
the ICO system, it was able to learn the tasks much quicker as
compared to the actor-critic system, however its individual per-
formance was less reliable than the actor-critic system as observed
from the success rate (Figure 12A). Taken together, our model
of RMHP induced combination mechanism provides a much
more stable and fast decision making system as compared to
the individual systems or a simple naive parallel combination of
the two.

4. DISCUSSION
Numerous animal behavioral studies (Lovibond, 1983; Brembs
and Heisenberg, 2000; Barnard, 2004) have pointed to an
interactive role of classical and operant conditioning in guiding
the decision making process for goal-directed learning. Typically
a number of these psychology experiments reveal compelling
evidence that both birds and mammals, can effectively learn to
perform sophisticated tasks when trained using a combination of
these mechanisms (Staddon, 1983; Shettleworth, 2009; Pierce and
Cheney, 2013). The feeding behavior of Aplysia have also been
used as model systems in order to compare classical and oper-
ant conditioning at the cellular level (Brembs et al., 2004; Baxter
and Byrne, 2006) and also study how predictive memory can be
acquired by the neuronal correlates of the two learning paradigms
(Brembs et al., 2002).

In case of the mamalian brain recent experimental evidence
(Neychev et al., 2008; Bostan et al., 2010) point toward the
existence of direct communication and interactive combination
between the neural substrates of reward learning and delay con-
ditioning learning systems, namely the basal ganglia and the
cerebellum. However, the exact mechanism by which these two
neural systems interact is still largely unknown. Few experimen-
tal studies suggest that such a communication could exists via
the thalamus (Sakai et al., 2000), through which reciprocal con-
nections from these two areas connect with the cortical areas
in the brain (see Figure 1) (McFarland and Haber, 2002; Akkal
et al., 2007). As such, in this paper we make the hypothesis (neu-
ral combined learning) that such a combination is driven by
a reward modulated heterosynaptic plasticity (Legenstein et al.,
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2008; Hoerzer et al., 2012), triggered by dopaminergic projec-
tions (García-Cabezas et al., 2007; Varela, 2014) existing at the
thalamus that dynamically combines the output from the two
areas and drives the overall goal directed behavior of an organ-
ism. It is important to note that, it is also possible that thalamic
projections carrying basal-ganglia and cerebellar inputs could
eventually converge onto a single pyramidal cell via relay neu-
rons at the motor cortex. Furthermore, as the motor and frontal
cortical regions together with the striatum, have been observed
to receive particularly dense dopaminergic projections from the
mid brain areas (VTA) (Hosp et al., 2011), it is plausible that the
proposed neuromodulatory heterosynaptic plasticity could also
occur directly at the cortex (Ni et al., 2014). We model the classi-
cal delay conditioning paradigm observed in the cerebellum with
the help of input correlation learning (Porr and Wörgötter, 2006),
while reward based learning modulated by prediction errors, is
modeled using a temporal difference model of actor-critic learn-
ing. Using a simple robot model, and three different scenarios of
increasing complexity for a foraging task, we demonstrate that
the neural combinatorial learning mechanism can effectively and
robustly enable the robot to move toward a desired food source
while learning to avoid a negatively rewarded, undesired food
source while being considerably robust to dynamic changes in the
environmental setup.

Although there have been a few robot studies, trying to model
basal ganglia behavior (Gurney et al., 2004; Prescott et al., 2006)
and cerebellar learning for classical conditioning (Verschure and
Mintz, 2001; Hofstoetter et al., 2002), to the best of our knowl-
edge they have only been applied individually. In this study, for
the first time, we show how such a combined mechanism can be
implemented using a wheeled robot that leads to a more efficient
decision making strategy. Although designed with a simplified
level of biological abstraction, our model sheds light toward the
way basal gangliar and cerebellar structures in the brain indirectly
interact with each other through sensory feedback. Furthermore,
our model of the critic based on a reservoir network, takes into
account the strong reciprocal recurrent connections in the cor-
tex that provide input to the striatal system (this is analogous
to the output layer in our model) while being modulated by
dopaminergic neural activity (TD-error). Such reservoir models
of the basal ganglia system have also been previously imple-
mented in the context of learning language accusation (Hinaut
and Dominey, 2013) or for modeling the experimentally observed
varying timescales of neural activity of domapinergic neurons
(Bernacchia et al., 2011). Specifically in this work, the reser-
voir also provides a fading memory of incoming sensory stimuli
(Dasgupta et al., 2014) that can enable the robot to deal with
partially observable state space problems as shown previously in
Dasgupta et al. (2013b). As a result such a recurrently connected
network typically outperforms non-linear feed-forward models
of the critic (Morimoto and Doya, 1998). Although beyond the
scope of the current article, our work with the reservoir based
critic sheds new insights in to how large recurrent networks can
be trained in a non-supervised manner using reward modula-
tion and a simple recursive least squares algorithm, which has
hitherto been a difficult problem, with only few simple mod-
els existing that work on synthetic data (Hoerzer et al., 2012)

or require supervised components (Koprinkova-Hristova et al.,
2010).

In the context of goal directed behavior, one may also draw
similarity of the basic reflexive mechanism learned by the cerebel-
lum (Yeo and Hesslow, 1998) to innate or intrinsic motivations in
biological organisms, in contrast to more extrinsic motivations
(in the form of reinforcing evaluative feedbacks) provided by
the striatal dopaminergic system of the basal ganglia (Boedecker
et al., 2013). Our hypothesis is that in order for an organism
to make decisions in a dynamic environment, where in, certain
behaviors result in basic reflexes (based on CS—US conditioning)
while others lead to specific rewards or punishments, it needs a
mechanism that can effectively combine these, in order to accom-
plish the desired goal. Our neuromodulation scheme, namely, the
RMHP rule provides such an adaptive combination that guides
the behavior of the robot over time in order to achieve stable
goal directed objectives. Particularly, our RMHP based combined
learning model provides evidence that cooperation between rein-
forcement learning and correlation learning systems can enable
agents to perform fast and stable reversal learning (adaptation to
dynamic changes in the environment). Such combination mech-
anisms could be crucial in dealing with navigation scenarios
involving contrasting or competing goals, with gradual or sudden
changes to environmental conditions. Furthermore, this could
also point toward possible adaptation or mal-adaptation between
the basal ganglia and cerebellum in case of neurological move-
ment disorders like dystonia (Neychev et al., 2008) which typically
involve both these brain structures.

Over all our computational model based on the combinato-
rial learning hypothesis shows that indeed the learning systems
of the basal ganglia and the cerebellum can adaptively balance
the output of each other in order to deal with changes in envi-
ronment, reward conditions, and dynamic modulation of pre-
learned decisions. Although here we modeled a novel reward
modulation between the two systems, no direct feedback (inter-
action) between the cerebellum and basal ganglia was provided.
In the future we plan to include such direct communication
between the two in the form of inhibitory feedback, as evident
from recent experimental studies (Bostan et al., 2010). However,
in its current form, we envision such an adaptive combinatorial
learning approach to have wide impact on bio-mimetic agents,
in order to provide better solutions of decision making problems
in both static and dynamic situations, as well as show how the
neuromodulation of executive circuits in the brain can effectively
balance output from different areas. While our combined learn-
ing model verifies that the adaptive combination of the learning
systems of the basal ganglia and the cerebellum leads to effective
goal-directed behavior control in an artificial system, it would
be interesting to further investigate this combination in biolog-
ical systems, particularly in terms of the underlying neuronal
correlates. As observed by Williams and Williams (1969) in a
pigeon pecking at an illuminated key in a Skinner box, their
results suggest that the desired key-pecking behavior CR may
be shaped (autoshaping) by not only operant conditioning but
also by classical conditioning; since imposing an omission sched-
ule on the key-light, key-peck association did little to revoke the
conditional pecking response. Hence, it seems that the existing
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occasional pairing of the key-light CS with the food US are ade-
quate to drive the pecking behavior (CR), which thus emerge
from classical conditioning. Based on these principles, several ani-
mal behavioral studies have observed similar autoshaping effects
even in rodents (Cleland and Davey, 1983; Meyer et al., 2014),
where, multiple sources of information (e.g., colored lights or
sound (conditioned stimuli), food (reward or unconditioned
stimuli), and response levers or keys shape and guide the ani-
mal responses over time toward desired behaviors. Although both
the basal ganglia (Winstanley et al., 2005) and the cerebellum
(Klopf, 1988) have been studied with regards to such behaviors,
it has been largely carried out separately. However, our results
on artificial systems indicate that their combined learning pro-
duces more efficient goal directed behaviors, specially in reversal
learning (dynamic foraging) scenarios. As such, future neuro-
biological (combining lesion and tracing studies) and animal
psychology experiments could investigate classical conditioning
(correlation-based learning) in the cerebellum , operant condi-
tioning (reward-based learning) in the basal ganglia and their
combination for goal-directed behavior control in animals like
rodents or birds. Furthermore, although we specifically investi-
gated goal-directed behaviors in this study, there is wide spread
evidence of habit learning (Yin and Knowlton, 2006) and motor-
skill learning (Salmon and Butters, 1995) in both these brain
structures and their implications on neurodenerative diseases like
parkinson (Redgrave et al., 2010). Future experimental studies
based on this combined learning hypothesis could investigate how
the such a combination and interaction between the two learn-
ing systems influence goal directed decisions making vs habitual
behaviors and the effect on neurodegenrative diseases by possible
imbalances between them (de Wit et al., 2011).
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