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“Invariant object recognition” refers to the ability to recognize objects across variation
in their appearance on the retina. This ability is central to visual perception, yet its
developmental origins are poorly understood. Traditionally, nonhuman primates, rats,
and pigeons have been the most commonly used animal models for studying invariant
object recognition. Although these animals have many advantages as model systems,
they are not well suited for studying the emergence of invariant object recognition in
the newborn brain. Here, we argue that newly hatched chicks (Gallus gallus) are an
ideal model system for studying the emergence of invariant object recognition. Using an
automated controlled-rearing approach, we show that chicks can build a viewpoint-invariant
representation of the first object they see in their life. This invariant representation can be
built from highly impoverished visual input (three images of an object separated by 15◦
azimuth rotations) and cannot be accounted for by low-level retina-like or V1-like neuronal
representations.These results indicate that newborn neural circuits begin building invariant
object representations at the onset of vision and argue for an increased focus on chicks as
an animal model for studying invariant object recognition.
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INTRODUCTION
Humans and other animals can recognize objects despite tremen-
dous variation in how objects appear on the retina (due to changes
in viewpoint, size, lighting, and so forth). This ability—known as
“invariant object recognition”—has been studied extensively in
adult animals, but its developmental origins are poorly under-
stood. We have not yet characterized the initial state of object
recognition (i.e., the state of object recognition at the onset of
vision), nor do we understand how this initial state changes as a
function of specific visual experiences.

Researchers have long recognized that studies of newborns are
essential for characterizing the initial state of visual cognition;
however, methodological constraints have hindered our ability
to study invariant object recognition in newborn humans. First,
human infants cannot ethically be raised in controlled environ-
ments from birth. Consequently, researchers have been unable
to study how specific visual experiences shape the initial state of
invariant object recognition. Second, it is typically possible to col-
lect just a small number of test trials from each newborn human.
As a result, researchers have been unable to measure newborns’
first visual object representations with high precision.

Here, we describe an automated controlled-rearing approach
with a newborn1 animal model—the domestic chick (Gallus
gallus)—that overcomes these two limitations.

NEWLY HATCHED CHICKS AS A NEWBORN ANIMAL MODEL
Animal models provide a critical tool in the investigation of visual
processing machinery. To date, nonhuman primates have been the

1The term “newborn” is used to refer to an animal at the beginning of the post-
embryonic phase of their life cycle.

model of choice for studying invariant object recognition because
their visual systems closely mirror our own. Studies of primates
have revealed many important characteristics about object recog-
nition, including the nature of its underlying computations and
the architecture of its neural substrates (reviewed by DiCarlo et al.,
2012; see also Yamins et al., 2014). There is also growing evidence
that rats and pigeons may be promising animal models for study-
ing object recognition because they, too, have invariant object
recognition abilities (Zoccolan et al., 2009; Soto et al., 2012; Tafa-
zoli et al., 2012; Wasserman and Biederman, 2012; Alemi-Neissi
et al., 2013). These animal models enable experimental techniques
that are difficult to perform with primates. For instance, rat stud-
ies allow the application of a wide range of techniques including
molecular and histological approaches, two-photon imaging, and
large-scale recordings from multiple brain areas. However, while
primates, rodents, and pigeons have many advantages as model
systems, these animals are not well suited for studying the initial
state of object recognition because they cannot be raised in strictly
controlled environments from birth2.

These three animal models all require parental care. Thus,
after birth or hatching, the newborns must be raised in envi-
ronments that contain a caregiver. Experience with this caregiver

2Rats and mice can be reared in darkness. However, dark rearing prevents complete
microcircuit maturation in the visual cortex (Ko et al., 2014), produces abnormal-
ities in local cortical connectivity (Ishikawa et al., 2014), and alters the long-term
development of GABAergic transmission (Morales et al., 2002). Further, rats and
mice cannot be raised from birth in controlled, lighted environments (i.e., environ-
ments devoid of objects and agents). In contrast, chicks can be raised in controlled,
lighted environments immediately after hatching. Thus, with chicks, it is possible to
examine how patterned visual input drives the emergence of object recognition at
the beginning of the post-embryonic phase of the animal’s life cycle.
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could significantly shape the newborn’s object recognition mech-
anisms by providing clues about which retinal image changes are
identity-preserving transformations and which are not. Indeed,
studies of monkeys and humans show that object recognition
machinery changes rapidly in response to statistical redundan-
cies in the organism’s environment (e.g., Wallis and Bulthoff,
2001; Cox et al., 2005), with significant neuronal rewiring occur-
ring in as little as one hour of experience with an altered
visual world (Li and DiCarlo, 2008, 2010). There is also exten-
sive behavioral evidence that primates begin encoding statis-
tical redundancies soon after birth (e.g., Saffran et al., 1996;
Kirkham et al., 2002; Bulf et al., 2011). These findings allow
for the possibility that even early emerging object recognition
abilities (e.g., abilities emerging days, weeks, or months after
birth) are learned from experience with objects early in postnatal
life.

Analyzing the initial state of invariant object recognition there-
fore requires a newborn animal model with two characteristics:
(1) the animal can develop invariant object recognition abilities
and (2) the animal’s visual environment can be strictly controlled
immediately after the post-embryonic phase of their life cycle (i.e.,
to prevent learning from visual object experiences). Chicks meet
both of these criteria. First, newly hatched chicks develop invari-
ant object recognition abilities rapidly (Wood, 2013, 2014a). For
example, chicks can build a viewpoint-invariant representation of
the first object they see in their life (Wood, 2013, 2014a). Chicks
also have other advanced object recognition abilities, including the
ability to bind color and shape features into integrated color-shape
units at the onset of vision (Wood, 2014b). Second, chicks can
be raised from birth in environments devoid of objects and care-
givers (Vallortigara, 2012; Wood, 2013). Unlike newborn primates,
rodents, and pigeons, newly hatched chicks do not require parental
care and are immediately able to explore their environment.

In addition, chicks imprint to objects seen soon after hatch-
ing (e.g., Bateson, 2000; Horn, 2004). Chicks develop a strong
attachment to their imprinted objects, and will attempt to spend
most of their time with the objects. This imprinting behavior can
be used to test chicks’ object recognition abilities without train-
ing (Regolin and Vallortigara, 1995; Bolhuis, 1999; Wood, 2013).
Imprinting in chicks is also subject to a critical period (Lorenz,
1937). Once the critical period ends, the chick can be presented
with over one hundred test trials without significantly changing
the chick’s representation of their imprinted object (e.g., Wood,
2013, 2014a,b). This makes it possible to measure each chick’s first
visual object representation with high precision.

Notably, studies of chicks can also inform human visual
development because birds and mammals use similar neural
mechanisms. At a macro-level, avian and mammalian brains
share the same large-scale organizational principles: both are
modular, small-world networks with a connective core of hub
nodes that includes prefrontal-like and hippocampal structures
(Shanahan et al., 2013). Further, avian and mammalian brains
have homologous cortical-like cells and circuits for processing
sensory information (Jarvis et al., 2005; Wang et al., 2010; Dugas-
Ford et al., 2012; Karten, 2013). Although these neural circuits
are organized differently in birds and mammals (nuclear vs. lay-
ered organization, respectively), they share many similarities in

terms of cell morphology, the connectivity pattern of the input
and output neurons, gene expression, and function (Saini and
Leppelsack, 1981; Karten and Shimizu, 1989; Karten, 1991, 1997;
Butler, 1994; Medina and Reiner, 2000; Reiner et al., 2005). For
instance, in chicken neural circuitry, sensory inputs are organized
in a radial columnar manner, with lamina specific cell morpholo-
gies, recurrent axonal loops, and re-entrant pathways, typical
of layers 2–5a of mammalian neocortex (reviewed by Karten,
2013). Similarly, long descending telencephalic efferents in chick-
ens contribute to the recurrent axonal connections within the
column, akin to layers 5b and 6 of the mammalian neocortex.
The avian visual wulst also has circuitry and physiological prop-
erties that are similar to the mammalian visual cortex (Karten,
1969, 2013). For example, like the cat and monkey visual cortex,
the visual wulst includes precise retinotopic organization, selec-
tivity for orientation, and selectivity for direction of movement
(Pettigrew and Konishi, 1976). Together, these studies indicate
that birds and mammals use homologous neural circuits to pro-
cess visual information. Thus, controlled-rearing experiments
with chicks can be used to inform the development of vision in
humans.

Finally, while chickens have less advanced visual systems than
humans, this should not be seen as a problem. When attempting
to understand a particular phenomenon, it is often valuable to use
the simplest system that demonstrates the properties of interest.
Pioneering research in neuroscience and genetics has relied heavily
on this strategy—for example, researchers have used Aplysia to
study the physiological basis of memory storage in neurons (e.g.,
Kandel, 2007), C. elegans to study the mechanisms of molecular
and developmental biology (e.g., Brenner, 1974), and Drosophila
to study the mechanisms of genetics (e.g., Bellen et al., 2010). In
a similar vein, the study of newly hatched chicks can offer an
important window onto the emergence of high-level visual abilities
like invariant object recognition.

AN AUTOMATED CONTROLLED-REARING APPROACH FOR STUDYING
INVARIANT OBJECT RECOGNITION
Historically, newborn subjects’ behavior has been quantified
through direct observation by trained researchers. While direct
observation has revealed many important insights about human
development, this approach has limitations: researchers can only
observe a small number of subjects simultaneously, and there are
constraints on the resolution of these observations.

Recent technological advances in automated image-based
tracking provide a solution to these limitations by allowing
researchers to collect large amounts of precise and accurate behav-
ioral data (Dell et al., 2014). Further, image-based tracking uses a
digital recording of the animal’s behavior, which maintains an
objective view of events. This increases the repeatability of analy-
ses, while allowing subjects to be tracked with high spatiotemporal
resolution. Finally, and perhaps most importantly, automated
approaches eliminate the possibility of experimenter bias (e.g.,
bias that may occur when coding the subject’s behavior, presenting
stimuli to the subject, or deciding whether to include the subject
in the final analysis).

To study the initial state of invariant object recognition, we
used an automated controlled-rearing approach. This complete
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data controlled-rearing technique allows researchers to raise newly
hatched chicks for several weeks within controlled-rearing cham-
bers (for details see Wood, 2013). We use the term complete data
because the chambers track and record all of the chicks’ behavior
(9 samples/second, 24 h/day, 7 days/week), providing a complete
digital record of each subject’s behavior across their lifespan. This
technique produces hundreds of hours of data for each subject,
allowing researchers to measure chicks’ emerging visual-cognitive
abilities with high precision.

Importantly, our controlled-rearing chambers also make it pos-
sible to control all of the chicks’ visual object experiences. The
chambers contain no real-world (solid, bounded) objects, and
object stimuli are presented to the chick by projecting virtual
objects onto two display walls situated on opposite sides of the
chamber. Thus, the chicks’ visual object experiences are limited to
the virtual objects presented on the display walls.

THE PRESENT EXPERIMENT
The current study builds on a previous study that examined
whether newly hatched chicks can build invariant object repre-
sentations at the onset of vision (Wood, 2013). In this previous
study, chicks were raised for one week in controlled-rearing cham-
bers that contained a single virtual object that could only be
seen from a limited 60◦ viewpoint range. In their second week
of life, we then measured whether chicks could recognize the
virtual object across a variety of novel viewpoints. The major-
ity of subjects successfully recognized the object across the novel
viewpoints, which shows that chicks can build a viewpoint-
invariant representation of the first object they see in their
life.

The present study extends this finding in three ways. First,
we significantly reduced the amount of visual object input avail-
able to the subjects. In Wood (2013), the chicks were shown a
virtual object that moved smoothly over time through a 60◦ view-
point range at 24 images/second, whereas in the present study, the
chicks were shown a virtual object that moved abruptly over time
through a 30◦ viewpoint range at 1 image/second (see Figure 1).
Thus, compared with Wood (2013), the chicks in the present study
observed a smaller number of unique images of the object (3
unique images vs. 72 unique images), a smaller range of movement
(30◦ viewpoint range vs. 60◦ viewpoint range), and unnatural
(abrupt) vs. natural (smooth) object motion. The abrupt object
motion was unnatural because it caused the object’s features to
move large distances across the retina instantaneously, breaking
the spatiotemporal contiguity of the images. The present study
therefore provided a particularly strong test of whether chicks can
build invariant object representations from impoverished visual
input.

Second, we tested chicks’ object recognition abilities across
a systematically varying recognition space. Each chick’s object
recognition abilities were tested across 27 different viewpoint
ranges; the viewpoint ranges canvassed a uniform recognition
space in which the object was rotated −60◦ to +60◦ in the azimuth
direction and −60◦ to +60◦ in the elevation direction (in 15◦
increments; see Figure 4). Thus, we were able to examine whether
chicks’ recognition performance varied as a function of the object’s
degree of rotation.

FIGURE 1 |The three unique images of Object 1 and Object 2

presented to the chicks during the input phase. Four chicks were
presented with Object 1 and six chicks were presented with Object 2.
Object 2 served as the unfamiliar object for the chicks that were imprinted
to Object 1, and vice versa. The three images changed at a rate of 1
image/second, causing the virtual object to rotate abruptly back and forth
through a 30◦ viewpoint range. Chicks never observed the virtual object (or
any other object) from another viewpoint during the input phase.

Third, we investigated whether chicks’ recognition abilities
could be explained by some low-level features of the test anima-
tions, by quantifying the similarity between the input images and
the test images. We quantified image similarity in terms of both
pixel-like similarity and V1-like similarity, akin to previous studies
that tested object recognition in adult rats (Zoccolan et al., 2009;
Tafazoli et al., 2012).

EXPERIMENT
METHODS
Subjects
Ten chicks of unknown sex were tested. No subjects were
excluded from the analyses. Fertilized eggs were incubated in
darkness in an OVA-Easy incubator (Brinsea Products Inc.,
Titusville, FL, USA). We maintained the temperature and humid-
ity at 99.6◦F and 45%, respectively, for the first 19 days
of incubation. On day 19 of incubation, the humidity was
increased to 60%. The eggs were incubated in darkness to
ensure that no visual input would reach the chicks through
their shells. After hatching, we moved the chicks from the
incubator room to the controlled-rearing chambers in com-
plete darkness. Each chick was raised singly within its own
chamber.

Controlled-rearing chambers
The controlled-rearing chambers measured 66 cm (length)×42 cm
(width) × 69 cm (height). The floors of the chambers con-
sisted of black wire mesh suspended 1′′ over a black surface
by transparent, plexiglass beams. Object stimuli were presented
to the subjects by projecting virtual objects onto two display
walls (19′′ LCD monitors with 1440 × 900 pixel resolution) sit-
uated on opposite sides of the chambers. The other two walls of
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the chambers were white, high-density plastic. We used matte
(non-reflective) materials for both the walls and the floor to
avoid incidental illumination. The chambers contained no rigid,
bounded objects other than the virtual objects presented on the
display walls. See Figure 1 in Wood (2013) for a picture of the
chambers.

Food and water were provided ad libitum within transpar-
ent, rectangular troughs in the ground (66 cm length × 2.5 cm
width × 2.7 cm height). Grain was used as food because grain does
not behave like a rigid, bounded object (i.e., grain does not main-
tain a solid, bounded shape). All care of the chicks was performed
in darkness with the aid of night vision goggles.

The controlled-rearing chambers recorded all of the chicks’
behavior (24 h/day, 7 days/week) with high precision (9 sam-
ples/second) via micro-cameras (1.5 cm diameter) embedded in
the ceilings of the chambers and automated image-based tracking
software (Ethovision XT, Noldus Information Technology, Lees-
burg, VA, USA). This software calculated the amount of time each
chick spent within zones (22 cm × 42 cm) next to each display
wall. In total, 3,360 h of video footage (14 days × 24 h/day × 10
subjects) were collected and analyzed for the present study.

Input phase
During the input phase (the first week of life), chicks were raised
in environments that contained a single virtual object. Four chicks
were presented with Object 1 and six chicks were presented with
Object 2 (see Figure 1). The object animations contained just
three unique images of the object: a front view and two side views
with ±15◦ azimuth rotations. The images changed at a rate of
1 image/second. From a human adult’s perspective, the objects
appeared to undergo apparent motion, rocking back and forth
through a 30◦ viewpoint range along a frontoparallel vertical axis.
The virtual object was displayed on a uniform white background,
and appeared for an equal amount of time on the left and right
display walls. The object switched walls every 2 h, following a
1-minute period of darkness (Figure 2).

Test phase
During the test phase (the second week of life), we examined
whether each chick had built a viewpoint-invariant representation
of their imprinted object by using an automated two-alternative
forced choice testing procedure. On each test trial, the imprinted
object was shown on one display wall and an unfamiliar object
was shown on the other display wall. We then measured the
amount of time chicks spent in proximity to each object. If
chicks successfully recognized their imprinted object, then they
should have spent a greater proportion of time in proximity to
the imprinted object compared to the unfamiliar object. The
imprinted object was shown from 81 different test viewpoints,
consisting of all possible combinations of 9 azimuth rotations
(−60◦, −45◦, −30◦, −15◦, 0◦, +15◦, +30◦, +45◦, +60◦)
and 9 elevation rotations (−60◦, −45◦, −30◦, −15◦, 0◦, +15◦,
+30◦, +45◦, +60◦). To equate the direction of object motion
across the input and test phases, the 81 viewpoints were orga-
nized into 27 different viewpoint ranges, each containing three
images. Like the input object animation, each of the 27 test ani-
mations showed the imprinted object rotating back and forth

±15◦ along the azimuth rotation axis. Figure 4 shows how
the 81 individual viewpoints were organized into the 27 test
animations.

The unfamiliar object was similar to the imprinted object in
terms of its size, color, motion speed, and motion trajectory.
Further, on all of the test trials, the unfamiliar object was pre-
sented from the same frontal viewpoint range as the imprinted
object from the input phase. Presenting the unfamiliar object from
this frontal viewpoint range maximized the similarity between the
unfamiliar object and the imprinting stimulus. Thus, to recognize
their imprinted object, chicks needed to generalize across large,
novel, and complex changes in the object’s appearance on the
retina. The test trials lasted 17 min and were separated from one
another by 32 min rest periods. During the rest periods, we pro-
jected the animation from the input phase onto one display wall
and a white screen onto the other display wall. The test trials and
rest periods were separated by 1 min periods of darkness. On each
day of the test phase, chicks were presented with each viewpoint
range one time, for a total of 27 test trials per day. Thus, each chick
received 189 test trials over the course of the experiment. The 27
viewpoint ranges were presented in a randomized order during
each day of the test phase.

RESULTS
Overall performance
To test whether performance was significantly above chance, we
used intercept-only mixed effects models (also called “multilevel

FIGURE 2 | A schematic showing how the virtual objects were

presented on the two display walls during the input phase (top) and

the test phase (bottom). During the input phase, chicks observed a single
virtual object rotating abruptly back and forth through a 30◦ viewpoint
range. During the test phase, chicks were presented with regularly
scheduled test trials. During the test trials, the imprinted object was shown
on one display wall and an unfamiliar object was shown on the other
display wall. The imprinted object was shown from a variety of novel
viewpoints, whereas the unfamiliar object was always shown from the
same frontal viewpoint range as the imprinted object during the input
phase. This maximized the pixel-level and V1-level similarity between the
unfamiliar object and the imprinting stimulus. Thus, to recognize their
imprinted object, chicks needed to generalize across large, novel, and
complex changes in the object’s appearance on the retina.
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models”). Since we collected multiple observations from each sub-
ject, it was necessary to use an analysis that can account for the
nested structure of the data (Aarts et al., 2014). The mixed effects
models were performed using R (www.r-project.org). First, we
computed the number of test trials in which chicks preferred their
imprinted object over the unfamiliar object. The chick was rated
to have preferred their imprinted object on a trial if their object
preference score was greater than 50%. The object preference score
was calculated with the formula:

Object Preference Score = Time by Imprinted Object

Time by Imprinted Object + Time by Unfamiliar Object

Accordingly, test trials were scored as “correct” when subjects
spent a greater proportion of time with their imprinted object,
and “incorrect” when they spent a greater proportion of time
with the unfamiliar object. Chicks spent more time with their
imprinted object on 59% (SEM = 3%) of the test trials (see
Figure 3).

We used a mixed effects logistic regression model (R package
lme4) to test whether performance was significantly greater than
chance. We fitted the model with test trial outcome (binary: correct
or incorrect) as the dependent variable, an intercept as the fixed
effect, and a random intercept for the subject-effect. The fixed
effect intercept was positive and significant [b = 0.394, z = 2.857,
p = 0.004], which indicates that chicks’ recognition performance
was significantly greater than 50% (chance performance). Chicks’
recognition performance was also significantly above chance when
the analysis did not include the test trials where the imprinted
object was shown from the familiar viewpoint range [b = 0.365,
z = 2.636, p = 0.008].

Second, we confirmed these results with a similar analysis
on the object preference scores (i.e., the proportion of time
chicks spent with the imprinted object compared to the unfa-
miliar object). Because the significance of the intercept indicates
whether the intercept is significantly different than 0, we sub-
tracted 50% from each object preference score. Thus, the adjusted
object preference scores ranged from −50 to +50%, with an
adjusted object preference score of 0 indicating equal time spent
with the imprinted object and unfamiliar object. We fitted a
linear mixed effects model (R package nlme) with the adjusted
object preference score as the dependent variable, an intercept
as the fixed effect, and a random intercept for the subject-
effect. Again, the fixed effect intercept was positive and significant
[b = 0.072, t(1878) = 3.015, p = 0.003], which provides further
evidence that chicks’ recognition performance was significantly
higher than 50% (chance performance). Chicks’ recognition per-
formance was also significantly above chance when the analysis did
not include the test trials where the imprinted object was shown
from the familiar viewpoint range [b = 0.068, t(1808) = 2.828,
p = 0.005].

With this controlled-rearing method we were able to collect a
large number of test trials from each chick. Thus, we were able
to examine whether each subject was able to build a viewpoint-
invariant representation of their imprinted object. To do so, we
computed whether each subject’s performance across the test tri-
als exceeded chance level (using one-tailed binomial tests). Six of

the 10 subjects successfully built an invariant object representation
[ps ≤ 0.05]3. When the analysis did not include the familiar view-
point range from the input phase, 5 of the 10 chicks performed
significantly above chance (see Figure 3). Thus, many of the
chicks successfully built an invariant object representation that
generalized across novel viewpoints.

To ensure that all of the chicks successfully imprinted to
the virtual object (i.e., developed an attachment to the object),
we examined whether the chicks showed a preference for the
imprinted object during the rest periods in the test phase. All
10 subjects spent the majority of the rest periods in proximity to
the imprinting stimulus [mean = 88% of trials; SEM = 2%; one-
tailed binomial tests, all p < 10−9]. Thus, it is possible to imprint
to an object but fail to build a viewpoint-invariant representation
of that object (see also Wood, 2013).

Correlations of object recognition performance across subjects
As shown in Figure 3, there was substantial variation in chicks’
recognition abilities. To examine whether chicks’ recognition abil-
ities were correlated with one another, we measured the correlation
in performance across the viewpoint ranges for each pair of chicks.
Specifically, we computed the percentage of time spent with the
imprinted object for each viewpoint range for each chick. The
correlations in performance between all pairs of chicks are shown
in Figure 5. Performance was highly correlated across the sub-
jects: out of the 45 subject pairs, 44 were positively correlated
and only 1 pair was negatively correlated. Overall, the aver-
age correlation between subjects was r = 0.35 (SEM = 0.03).
These correlation values were significantly different from 0 (no
correlation), t(44) = 8.72, p < 0.001. Despite the substantial
range of variation in performance across subjects, the chicks’
recognition abilities were nevertheless highly correlated with one
another.

Analysis of change in performance over time
To examine whether recognition performance changed over the
course of the test phase, we calculated the percentage of time
chicks spent in proximity to the imprinted object versus the unfa-
miliar object as a function of test day. The results are shown
in Figure 6. Performance remained stable across the test phase
[one-way ANOVA, F(6) = 0.224, p = 0.968]. Chicks’ recognition
behavior was spontaneous and robust, and cannot be explained
by learning taking place across the test phase. Chicks immedi-
ately achieved their maximal performance and did not significantly
improve thereafter.

Analysis of viewpoint effects
To test whether recognition performance varied as a function
of the degree of viewpoint change, we calculated chicks’ mean
object preference scores for each of the elevation viewpoint change
magnitudes (i.e., ±60◦, ±45◦, ±30◦, ±15◦, 0◦). The correlation
between the magnitude of viewpoint change and performance did
not approach significance [r = −0.06, p = 0.93]. Thus, when
chicks first begin to recognize objects, their performance does not
decline with larger changes in viewpoint.

3Four of the 10 subjects performed significantly higher than chance level after a
Bonferroni correction for 10 independent tests [10 subjects; p < 0.005].
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FIGURE 3 | Recognition performance for the overall group (top) and the

individual subjects (bottom). The dark gray bars denote the percentage of
correct trials, and the light gray bars denote the proportion of time subjects
spent with the imprinted object. These graphs do not include the test trials in
which the imprinted object was shown from the familiar viewpoint range from

the input phase. The subjects are ordered by performance. The red dashed
lines show chance performance (50%). P -values denote the statistical
difference between the number of correct and incorrect trials as computed
through mixed effects models (top graph) and one-tailed binomial tests
(bottom graph).

In general, however, chicks’ recognition performance was lower
when the object was presented from negative elevation rotations
(see Figure 4). When the object was presented from negative ele-
vation rotations, a smaller portion of the object was visible to
the subject (see Figure 4). Thus, chicks’ recognition performance
(i.e., the percentage of time spent with the imprinted object ver-
sus unfamiliar object) was positively correlated with the number of
foreground (object) pixels that were visible on the screen [r = 0.41,
p < 0.01]. One possible explanation for this effect is that the nega-
tive elevation rotations occluded discriminative features that were
used to recognize the object. For instance, a recent study with adult
rats who were trained to distinguish between these same two vir-
tual objects showed that rats built sub-features of objects that were
smaller than the entire object (Alemi-Neissi et al., 2013). When
these sub-features were occluded with “bubble masks” (Gosselin
and Schyns, 2001), rats’ recognition abilities declined. It would be
interesting for future studies to use this bubble masking approach
with chicks to characterize the specific features used to recognize
objects at the onset of vision.

Analysis of object stimuli and performance
Did chicks need high-level (invariant) object representations to
succeed in this experiment? Previous studies have shown that

chicks do not use overall brightness as a low-level cue to distin-
guish between these two virtual objects (Wood, 2014a), and that
chicks’ early emerging invariant object recognition abilities can-
not be explained by retina-like (pixel-wise) representations when
recognition is tested across more extreme azimuth and elevation
rotations (Wood, 2013).

To extend these previous analyses, we quantified the simi-
larity between the input animations and the test animations in
two ways. First, we computed the amount of image variation
between the input animations and the test animations from a
retina-like (pixel-level) perspective. For each animation, we (1)
measured the brightness level of each pixel in each of the three
unique object images, (2) compared each image from the test
animation to each image from the input animation (i.e., by com-
paring the brightness level of each corresponding pixel across
the images and taking the absolute difference), and (3) calcu-
lated the average pixel-level difference between the three unique
images from the input and test animations (i.e., the first test image
was compared to the first, second, and third input image; the
second test image was compared to the first, second, and third
input image; and the third test image was compared to the first,
second, and third input image). Recognition performance (i.e.,
the object preference scores) did not vary as a function of the
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FIGURE 4 | (Top) The test viewpoints shown during the test phase. The
viewpoint range shown during the input phase is indicated by the blue
boxes. (Bottom) Chicks’ average percentage of correct trials across the
27 viewpoint ranges. Chance performance was 50%. Each subject
received seven test trials for each viewpoint range. Thus, each viewpoint

cell in the figure reflects the data from 28 test trials for Object 1 (7 test
trials × 4 subjects) and 42 test trials for Object 2 (7 test trials × 6
subjects), for a total of 1,890 test trials across all viewpoint ranges. The
color scale reflects the full range of possible performance values
(0–100%).

pixel-level difference between the input animations and test ani-
mations [linear regression: b = −7.08 × 10−8, t(52) = −1.29,
p = 0.20].

Second, we computed the amount of image variation between
the input animations and the test animations from a V1-level
perspective. To do so, we used a Gabor measure of similarity
with the Gabor jet model: a multi-scale, multi-orientation model
of V1 complex-cell filtering developed by Lades et al. (1993).

The general parameters and implementation followed those used
by Xu and Biederman (2010), which can be downloaded at
http://geon.usc.edu/GWTgrid_simple.m. For each unique image
in each animation, we measured the magnitude of activation
values that the image produced in a set of 40 Gabor jets (8 ori-
entations × 5 scales). We measured the dissimilarity between two
images by computing one minus the correlation between their
Gabor jet activation values. Thus, the dissimilarity between two
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FIGURE 5 | A similarity matrix showing the correlation in performance

for each pair of subjects. The order of the subjects in the matrix is
determined by a hierarchical cluster analysis. The cells are color-coded by

correlation value: green values = positive correlation in performance; red
values = negative correlation in performance. The color scale reflects the full
range of possible correlation values.

images could range from 0 (perfect positive correlation) to 2 (per-
fect negative correlation). Finally, we calculated the average Gabor
jet dissimilarity across all three unique images of the animations
(i.e., the first test image was compared to the first, second, and
third input image; the second test image was compared to the first,
second, and third input image; and the third test image was com-
pared to the first, second, and third input image). Recognition
performance (i.e., the object preference scores) did not vary as a
function of Gabor jet dissimilarity between the input animations
and test animations [linear regression: b = −0.11, t(52) = −1.04,
p = 0.30].

Additionally, to confirm that chicks’ recognition performance
could not be explained by retina–like or V1–like representa-
tions, we tested whether models based on pixel-level or V1-level
representations could successfully predict object identity in this
experiment. Specifically, we generated a pixel-level model and a
V1-level model that predicted object identity based on the image
differences between the test animations and the input animation.
For each viewpoint range, we measured (1) the difference between
the test animation of the imprinted object and the input animation
of the imprinted object (within-object difference), and (2) the dif-
ference between the test animation of the unfamiliar object and the
input animation of the imprinted object (between-object differ-
ence; see Figure 7). If the within-object difference was smaller than

the between-object difference, then the model was “correct” for
that viewpoint range. Conversely, if the between-object difference
was smaller than the within-object difference, then the model was
“incorrect” for that viewpoint range. The retina-like (pixel-level)

FIGURE 6 | Change in chicks’ object recognition performance over

time. The graph illustrates group mean performance over the full set of
viewpoint ranges shown during the 7 day test phase, computed for the
first, second, third, etc., day of testing. Chance performance was 50%.
Chicks’ recognition performance did not change significantly across the
course of the test phase.
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FIGURE 7 |The average pixel-level and V1-level differences between the

three unique images of each test animation and the three unique images

of the input animation (i.e., the first test image was compared to the

first, second, and third input image; the second test image was

compared to the first, second, and third input image; and the third test

image was compared to the first, second, and third input image). The
orange bars show the between-object differences (i.e., the difference
between the test animation of the unfamiliar object and the input animation
of the imprinted object). The blue bars (ordered by similarity) show the

within-object differences (i.e., the difference between the test animation of
the imprinted object and the input animation of the imprinted object). The top
graphs show the differences as measured at the pixel-level, and the bottom
graphs show the differences as measured at the V1-level (using Gabor jet
magnitudes). Overall, the within-object difference was less than the
between-object difference on only 20% (pixel-level) and 28% (V1-level) of the
viewpoint ranges (chance performance = 50%). Thus, neither pixel-level nor
V1-level representations can be used to reliably predict object identity in this
experiment.

model was correct on only 20% of the viewpoint ranges, while the
V1-level (Gabor jet) model was correct on only 28% of the view-
point ranges. Unlike the chicks’ recognition performance, which
was significantly above chance (50%) levels, both low-level models
performed significantly below chance levels [pixel-level intercept-
only logistic regression: b = −1.36, z = −4.04, p < 0.0001;
V1-level intercept-only logistic regression: b = −0.96, z = −3.15,
p = 0.002].

To compare the models’ performance to the chicks’ perfor-
mance, we computed the average percentage of time chicks spent
with the imprinted object versus the unfamiliar object for each
viewpoint range. If chicks spent more time, on average, with the
imprinted object than the unfamiliar object, then the chicks were
“correct”for that viewpoint range. Conversely, if chicks spent more
time with the unfamiliar object than the imprinted object, then
the chicks were “incorrect” for that viewpoint range. For each
model and for the chicks, there were 54 conditions (27 viewpoint
ranges × 2 imprinted objects). The chicks were correct on 35

conditions and incorrect on 19 conditions. The pixel-level model
was correct on 11 conditions and incorrect on 43 conditions. The
V1-level model was correct on 15 conditions and incorrect on
39 conditions. Chi-square tests comparing the number of correct
and incorrect conditions for the chicks and the models found sig-
nificant differences between chicks’ recognition performance and
both models’ recognition performance [pixel-level model versus
chick performance: X2(1, N = 108) = 21.81, p < 10−5; V1-
level model versus chick performance: X2(1, N = 108) = 14.90,
p < 10−3].

Overall, the within-object difference was greater than the
between-object difference, both at the pixel-level and V1-levels.
Thus, in principle, chicks could have succeeded in this experiment
by preferring the test animation that was the most different from
the input animation (i.e., a novelty preference). To test this possi-
bility, we analyzed the test trials in which the imprinted object was
presented from the familiar viewpoint range from the input phase.
If chicks had a novelty preference, then they should have avoided
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FIGURE 8 | Average recognition performance for the present study and

for Experiment 1 from Wood (2013). The same two virtual objects were
used in both studies. In the present study, the virtual objects moved
abruptly over time through a 30◦ viewpoint range at 1 image/second,
whereas in Wood (2013), the virtual objects moved smoothly over time
through a 60◦ viewpoint range at 24 images/second. Thus, compared with
Wood (2013), the chicks in the present study observed a smaller number of
unique images of the object (three unique images vs. 72 unique images), a
smaller range of movement (30◦ viewpoint range vs. 60◦ viewpoint range),
and unnatural (abrupt) vs. natural (smooth) object motion. Performance was
significantly above chance in both studies; however, recognition
performance was significantly higher in Wood (2013) than in the present
study. Together, these studies show that it is possible to impair chicks’
object recognition abilities by presenting highly impoverished visual object
input at the onset of vision.

the imprinted object on the trials in which the test animation of
the imprinted object was identical to the input animation of the
imprinted object. Contrary to this prediction, chicks spent signif-
icantly more time with the imprinted object than the unfamiliar
object when the imprinted object was presented from the famil-
iar viewpoint range [logistic mixed effects regression: b = 1.514,
z = 2.794, p = 0.005; linear mixed effects regression: b = 0.180,
t(60) = 3.062, p = 0.003]. Thus, chicks did not simply have a
preference for the novel animation in this experiment.

Together, these analyses indicate that chicks build invari-
ant object representations that cannot be explained by low-
level retina-like (pixel-wise) or V1-like neuronal representations.
Rather, chicks build selective and tolerant object representations,
akin to those found in higher levels of the visual system.

Comparison to prior studies
The virtual objects used in this study were the same as those used
in Wood (2013). However, in the current study, each imprinting
and test animation only contained three unique images show-
ing the objects rotating abruptly at a rate of 1 image/second,
while in Wood (2013), the virtual objects moved smoothly over
time through a 60◦ viewpoint range at 24 images/second. To
test whether the impoverished visual stimuli used in the cur-
rent experiment impaired chicks’ object recognition abilities, we
compared performance in the current study to chicks’ perfor-
mance in Wood (2013). Figure 8 shows the mean recognition
performance from both studies. A one-way ANOVA showed that
performance was significantly higher in Wood (2013) than in
the current study [F(1) = 4.239, p = 0.05]. Thus, experience
with smooth, continuous object motion over a larger viewpoint
range appears to facilitate the development of invariant object
recognition. However, additional studies are needed to determine

the relative importance of each of these factors (i.e., the number of
unique object images, the type of object movement, and the size
of the viewpoint range) on chicks’ ability to build invariant object
representations.

GENERAL DISCUSSION
In this study, we examined whether newly hatched chicks can build
invariant object representations from highly impoverished visual
input (i.e., three images of a single virtual object separated by 15◦
azimuth rotations). Impressively, many of the chicks successfully
built an invariant object representation soon after hatching, which
shows that experience with a rich visual world filled with diverse
objects is not necessary for developing invariant object recog-
nition. This finding opens up largely unexplored experimental
avenues for probing the initial state of invariant object recogni-
tion and charting how that initial state changes as a function of
specific visual experiences.

Implications of our findings and comparison with previous studies
We have previously reported invariant object recognition in newly
hatched chicks (Wood, 2013, 2014a); the present study extends this
previous research in five ways. First, these results provide an exis-
tence proof that newly hatched chicks can build invariant object
representations from extremely impoverished visual input. In pre-
vious studies (Wood, 2013, 2014a), chicks were shown objects that
moved smoothly over time (24 frames/second), thereby present-
ing large numbers of unique and gradually changing images of the
objects. Conversely, in the present study, the object animations
were far more sparse (i.e., there were only three unique images of
the object), which interrupted the natural temporal stability of the
visual object input (i.e., the objects did not change smoothly over
time). Thus, the chicks never observed their imprinted object (or
any other object) move with smooth, continuous motion. Never-
theless, some of the chicks were able to build an invariant object
representation from this impoverished input. For these subjects,
three unique images of an object were sufficient input to build an
invariant object representation.

Second, these results suggest that it is possible to impair invari-
ant object recognition in newly hatched chicks by presenting
abnormally patterned visual input. Although group performance
was above chance, performance was significantly lower com-
pared to previous experiments in which the virtual object moved
smoothly over time and rotated through a larger viewpoint range
(Wood, 2013; see Figure 8 for comparison of performance between
studies). Thus, newborn visual systems appear to operate best over
a specific type of patterned visual input. It would be interesting
for future studies to characterize the nature of this ‘optimal space’
of visual object input.

Third, these results indicate that invariant object recognition
in newly hatched chicks is not subject to the well-documented
“viewpoint effect” observed in studies of human adults (i.e.,
larger viewpoint changes lead to greater costs in object recog-
nition performance; Tarr et al., 1998; Hayward and Williams,
2000). We tested chicks on a wide range of viewpoints, consisting
of systematic 15◦ changes in azimuth and elevation rotations.
This allowed us to test whether objects presented from larger
viewpoint changes are more difficult to recognize than objects

Frontiers in Neural Circuits www.frontiersin.org February 2015 | Volume 9 | Article 7 | 10

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Wood and Wood Emergence of invariant object recognition

presented from smaller viewpoint changes. We found no sig-
nificant differences in chicks’ recognition abilities across the
larger versus smaller viewpoint changes. Chicks were able to
build invariant object representations that generalized beyond
the imprinted viewpoint range, but the degree of generaliza-
tion did not vary as a function of the degree of viewpoint
change.

Fourth, we demonstrated that chicks’ object recognition abil-
ities cannot be explained by low-level retina-like or V1-like
neuronal representations. Prior experiments have confirmed that
chicks’ object recognition abilities could not be explained by
overall brightness (Wood, 2014a) or retina-like (pixel-wise) sim-
ilarity (Wood, 2013, 2014a). Here, we performed additional
analyses using simulated Gabor jet activation to measure the
V1-like similarity between the input animations and the test
animations. We found that chicks’ recognition performance did
not vary as a function of the V1-like similarity between the
input and test animations. Further, we found that neither a
model using pixel-like representations nor a model using V1-like
representations was able to successfully predict object iden-
tity in this experiment (Figure 7). These results indicate that
chicks build selective and tolerant object representations, akin to
those found in higher-level cortical visual areas (DiCarlo et al.,
2012).

Finally, our results provide evidence that invariant object
recognition emerges in a consistent manner across different new-
born subjects. The chicks’ patterns of recognition performance
across the individual viewpoints were strongly correlated with
one another (Figure 5). This suggests that there are constraints
on the development of invariant object recognition in new-
born visual systems. However, the data also revealed substantial
variation in chicks’ object recognition abilities (see Figure 3).
Despite being raised in identical visual environments, some chicks
were able to recognize their imprinted object robustly across the
novel viewpoints, whereas other chicks were not. Future studies
could use this controlled-rearing method to further examine both
the nature of the constraints on early emerging object recogni-
tion abilities and the sources of the individual variation across
subjects.

In summary, the present study provides additional evi-
dence that the domestic chick is a promising animal model
for studying the emergence of invariant object recognition in
a newborn visual system (see also Wood, 2013, 2014a). We
have shown how a fully automated controlled-rearing tech-
nique can be used to study the initial state of invariant
object recognition in newly hatched chicks with high preci-
sion. Thus far, our approach indicates that newborn neural
circuits are surprisingly powerful, capable of building invariant
object representations from impoverished input at the onset of
vision.
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