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In recent years, a number of studies have explored the possible use of rats as models

of high-level visual functions. One central question at the root of such an investigation is

to understand whether rat object vision relies on the processing of visual shape features

or, rather, on lower-order image properties (e.g., overall brightness). In a recent study,

we have shown that rats are capable of extracting multiple features of an object that

are diagnostic of its identity, at least when those features are, structure-wise, distinct

enough to be parsed by the rat visual system. In the present study, we have assessed

the impact of object structure on rat perceptual strategy. We trained rats to discriminate

between two structurally similar objects, and compared their recognition strategies with

those reported in our previous study. We found that, under conditions of lower stimulus

discriminability, rat visual discrimination strategy becomes more view-dependent and

subject-dependent. Rats were still able to recognize the target objects, in a way that

was largely tolerant (i.e., invariant) to object transformation; however, the larger structural

and pixel-wise similarity affected the way objects were processed. Compared to the

findings of our previous study, the patterns of diagnostic features were: (i) smaller and

more scattered; (ii) only partially preserved across object views; and (iii) only partially

reproducible across rats. On the other hand, rats were still found to adopt a multi-featural

processing strategy and to make use of part of the optimal discriminatory information

afforded by the two objects. Our findings suggest that, as in humans, rat invariant

recognition can flexibly rely on either view-invariant representations of distinctive object

features or view-specific object representations, acquired through learning.

Keywords: object recognition, rodent vision, invariance, perceptual strategy, view-invariant, view-dependent

Introduction

Over the past few years, rat vision has become the subject of intensive investigation (Zoccolan et al.,
2009, 2010;Meier et al., 2011; Tafazoli et al., 2012; Vermaercke andOp de Beeck, 2012; Alemi-Neissi
et al., 2013; Brooks et al., 2013; Meier and Reinagel, 2013; Reinagel, 2013a,b; Wallace et al., 2013;
Vermaercke et al., 2014; Vinken et al., 2014), because of the experimental advantages that rodent
species might offer as models to study visual functions (see Zoccolan, 2015 for a review). Recent
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studies have found that rats are capable of invariant (a.k.a.
transformation-tolerant) recognition, i.e., they can recognize
visual objects in spite of substantial variation in their appearance
(Zoccolan et al., 2009). This ability has been found to rely on
the spontaneously perceived similarity between novel and previ-
ously learned views of an object, as well as on the gradual, explicit
learning of each newly encountered view (Tafazoli et al., 2012).
This suggests that rats achieve invariant object recognition by
combining the automatic tolerance afforded by partially invari-
ant representations of distinctive object features with the more
complete invariance acquired by learning and storing multiple,
view-specific object representations.

This account is in agreement with the large body of experi-
mental and theoretical work on human visual object recognition.
Following a decade of debate about whether human object vision
is better accounted for by view-invariant (structural descrip-
tion) or view-based theories (Biederman and Gerhardstein, 1995;
Tarr and Bülthoff, 1995; Hayward and Tarr, 1997; Hayward,
2003), most investigators now agree that view-invariant feature
detectors and view-specific object representations can be both
employed by the visual system (under different circumstances) to
achieve invariant recognition (Tarr and Bülthoff, 1998; Lawson,
1999; Hayward, 2003). In fact, it has been shown that humans
display view-invariant recognition of familiar objects, but have
a view-dependent performance in recognition tasks involving
novel objects or unfamiliar object views (Edelman and Bülthoff,
1992; Spetch et al., 2001). Nonetheless, even novel objects or
object views can be recognized in a view-invariant manner, if they
contain distinctive features that remain “diagnostic” of object
identity despite (e.g.) rotation in the image plane (Tarr et al., 1997;
Lawson, 1999; Spetch et al., 2001; Wilson and Farah, 2003). More
in general, it has been proposed that recognition ranges from
view-invariant to view-dependent, depending on how demand-
ing is the object discrimination task (Newell, 1998; Hayward
and Williams, 2000; Vuong and Tarr, 2006). Several studies sug-
gest that the same argument applies to the recognition strategies
of other species, e.g., monkeys (Logothetis et al., 1994; Logo-
thetis and Pauls, 1995; Wang et al., 2005; Nielsen et al., 2008;
Yamashita et al., 2010) and pigeons (Wasserman et al., 1996;
Spetch et al., 2001; Spetch and Friedman, 2003; Gibson et al.,
2007), although a number of differences with human recognition
(in addition to commonalities) has also been found (e.g., see Soto
and Wasserman, 2014 for a review).

While performance-based studies (as many of those men-
tioned above) can assess to what extent object recognition, in a
given task, is transformation-tolerant, the question of what object
features are selected to recognize an object, and whether the same
features are relied upon, across different object views, as preferen-
tial markers of object identity can be more directly addressed by
the use of classification image methods (Nielsen et al., 2006, 2008;
Vermaercke and Op de Beeck, 2012; Alemi-Neissi et al., 2013). In
a recent study, we have used one of such approaches (the Bubbles
method; Gosselin and Schyns, 2001) to show that the diagnostic
visual features underlying rat discrimination of two multi-lobed
visual objects (see Figure 1A, left panels) remained remarkably
stable across a variety of transformations—translation, scaling,
in-plane and in-depth rotation. This result, while consistent with

a view-invariant representation of diagnostic object features, does
not rule out the possibility that, under more challenging condi-
tions (e.g., discrimination of very similar objects), rat recognition
may becomemore view-dependent. The goal of the present study
was to test this hypothesis and provide a quantitative compar-
ison between the recognition strategies used by rats under two
different levels of object discriminability.

We trained a group of rats to discriminate a new pair of
multi-lobed objects (see Figure 1B, left panels), presented across
a range of sizes, positions, in-depth rotations and in-plane rota-
tions. Compared to the object pair used in our previous study
(shown in Figure 1A, left panels), these new objects were more
similar to one another at the pixel level and were made of less
distinctive structural parts. The recognition strategies underly-
ing discrimination of this new object pair was uncovered using
the Bubbles method, and the results were compared with those
reported in our previous study. New analyses of the previous set
of data were also performed, so as to thoroughly quantify the
influence of stimulus structure on object recognition strategy.

Our results show that, in contrast to what we observed
under conditions of high stimulus discriminability, where rats
relied on a largely view-invariant, multi-featural recognition
strategy, discrimination of structurally similar objects led to a
more view-dependent and subject-dependent, albeit still multi-
featural, object processing strategy.

Materials and Methods

With the exception of the visual stimuli and some of the data
analyses, the materials and methods used in this study are the
same as those used in Alemi-Neissi et al. (2013). As such, we pro-
vide here a short description only and we invite the reader to refer
to our previous study for a complete account.

Subjects
Six adult male Long Evans rats (Charles River Laboratories) were
tested in a visual object discrimination task. Animals were 8
weeks old at their arrival and weighted approximately 250 g. They
typically grew to over 600 g over the course of the study. Rats had
free access to food but were water-deprived during the days they
underwent behavioral training, that is, they were dispensed with
1 h of water pro die after each experimental session, and received
an amount of 4–8ml of pear juice as reward during the training.
Note that, out of these six rats, only three reached the criterion
performance to be admitted to the main experimental phases
(i.e., 70% correct discrimination of the default views of the tar-
get objects shown in Figure 1B). Therefore, only three out of six
rats were included in the analyses shown throughout the article.

All animal procedures were conducted in accordance with
the National Institutes of Health, International, and Institutional
Standards for the Care and Use of Animals in Research and after
consulting with a veterinarian.

Experimental Rig
Each rat was trained in an operant box, equipped with: (1) a
21.5′′ LCD monitor for presentation of the visual stimuli; (2) an
array of three feeding needles, connected to three touch sensors
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FIGURE 1 | Visual objects, behavioral task and the Bubbles method.

(A) Default views of the two objects that rats were trained to discriminate in

Alemi-Neissi et al. (2013). In the present study, these objects are referred to

as Object 1 and 2 and, collectively, as Stimulus Set 1. The panel on the right

shows to what extent these views of the objects overlapped, when

superimposed. (B) Default views of the two objects that rats were trained to

discriminate during Phase I of the present study. These objects are referred

to as Object 3 and 4 and, collectively, as Stimulus Set 2. The panel on the

right shows to what extent these views of the objects overlapped, when

superimposed. (C) Schematic of the object discrimination task. Rats were

trained in an operant box that was equipped with an LCD monitor for

stimulus presentation and an array of three sensors. The animals learned to

trigger the presentation of a visual object by licking the central sensor, and to

associate the identity of each object to a specific reward port/sensor (right

port for Object 3 and left port for Object 4). (D) A sample of the transformed

object views used during Phase II of the study. Transformations included: (1)

size changes; (2) azimuth in-depth rotations; (3) horizontal position shifts; and

(4) in-plane rotations. Azimuth rotated and horizontally shifted objects were

also scaled down to a size of 30◦ of visual angle; in-plane rotated objects

were scaled down to a size of 32.5◦ of visual angle. Note that each

transformation axis was sampled more densely than shown in the

figure—sizes were sampled in 2.5◦ steps; azimuth rotations in 5◦ steps;

position shifts in 4.5◦ steps; and in-plane rotations in 9◦ steps. The red

frames highlight the subsets of object views that were tested in bubbles

trials. (E) Illustration of the Bubbles method, which consists in generating an

opaque mask (fully black area) punctured by a number of randomly located

windows (i.e., the bubbles; shown as semi-transparent, circular openings)

and then overlapping the mask to the image of a visual object, so that only

parts of the object is visible through the mask. (F) Examples of the different

degrees of occlusion that can be achieved by varying the number of bubbles

in the masks. (G) An example of possible trials’ sequence at the end of

experimental Phase I. The object default views were presented both

unmasked and masked in randomly interleaved trials (named, respectively,

regular and bubbles trials). (H) An example of possible trials’ sequence

during experimental Phase II. The animals were presented with interleaved

regular and bubbles trials. The former included all possible unmasked object

views to which the rats had been exposed up to that point (i.e., size changes

and azimuth rotations in this example), whereas the latter included masked

views of the most recently trained transformation (i.e., −40◦ azimuth rotated

objects).

for initiation of behavioral trials and collection of responses; and
(3) two computer-controlled syringe pumps for automatic liquid
reward delivery on the left-side and right-side feeding needles
(see Alemi-Neissi et al., 2013 for further details). Rats learned to
insert their head through a 4-cm diameter opening in the front
wall of each box, so as to face the stimulus display and inter-
act with the sensors’ array. Constraining the head within such a
viewing hole allowed its position to be largely reproducible across
behavioral trials and very stable during stimulus presentation (see
Alemi-Neissi et al., 2013 for a quantification), thus guaranteeing
a tight control over the retinal size of the stimuli.

Visual Stimuli
The rats were trained to discriminate a pair of four-lobed visual
objects that were transformed along a variety of dimensions (see
below). Since the results of this study are compared with those
of our previous study (Alemi-Neissi et al., 2013), where a dif-
ferent pair of objects was used, we have adopted the following
naming convention to label individual objects, objects pairs, rats
and groups of rats. We refer to the group of rats tested in our
previous work as “group 1” (including rats numbered from 1 to
6), and to the pair of objects used in that study as “Stimulus Set
1,” containing Objects 1 and 2 (shown in Figure 1A, left panels).
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Conversely, we refer to the group of rats tested in the present
study as “group 2” (including rats numbered from 7 to 9, given
that only three animals succeeded in the discrimination task; see
Section Subjects), and to the pair of objects used in this study as
“Stimulus Set 2,” containing Objects 3 and 4 (shown in Figure 1B,
left panels).

For both stimulus sets, the objects were renderings of three-
dimensional models that were built using the ray tracer POV-
Ray (http://www.povray.org/). Objects were rendered in a white,
bright opaque hue against a black background. Each object’s
default size was 35◦ of visual angle (longest image dimension),
and their default position was the center of the monitor.

Compared to Stimulus Set 1, the objects in Stimulus Set 2 were
designed to be substantially more similar at the structural level.
As such, the constituent parts of Objects 3 and 4 (i.e., three small
ellipsoidal lobes attached to a large elliptical lobe; see Figure 1B,
left panels) had a similar size, position, aspect ratio and overall
layout. By contrast, the objects in Stimulus Set 1 were structurally
quite dissimilar (see Figure 1A, left panels). Object 1 was made
of a large, elliptical top lobe, attached to two smaller, overlap-
ping bottom lobes, while Object 2 was composed of three elon-
gated lobes that were approximately equally sized and equally
spaced (radially). As a consequence, the overlap between Object
3 and 4 was larger than the overlap between Object 1 and 2
(see Figures 1A,B, rightmost panel), resulting in an overall larger
pixel-wise similarity between the objects of Stimulus Set 2, as
compared to Stimulus Set 1, across all tested views (see Results
and Table 1 for details).

Experimental Design
Phase I: Diagnostic Features Underlying Recognition

of the Default Object Views
Rats were initially trained to discriminate the two default views
of Objects 3 and 4 (Figure 1B, left panels). The animals learned:
(1) to lick the central sensor, so as to trigger the presentation
of one of the objects on the stimulus display; and (2) to lick
either the right or left sensor, so as to report the identity of
the currently presented object (see Figure 1C). Successful dis-
crimination led to delivery of reward through the correspond-
ing reward port/sensor, while failure to discriminate resulted
in a time out period. The stimulus presentation time ranged
between 2.5 and 4 s (see Alemi-Neissi et al., 2013 for further
details).

TABLE 1 | Normalized Euclidean distance between matching views of the

objects within each Stimulus Set.

Default Size Azimuth Azimuth Positions In-plane

left right rotations

Object 1 and 2

(Stim. Set 1)

0.28 0.16 0.2 0.23 0.24 0.26

Object 2 and 3

(Stim. Set 2)

0.2 0.11 0.16 0.19 0.17 0.19

The normalized, pixel-wise Euclidean distance between matching views the two objects

in each stimulus set was computed for all the conditions tested with the bubbles masks.

Once a rat achieved ≥70% correct discrimination of the
default object views (which typically required 3–12 weeks of
training), a classification image method, known as the Bubbles
(Gosselin and Schyns, 2001), was applied to identify what visual
features were critical for the accomplishment of the task. This
method consists in superimposing on a visual stimulus an opaque
mask, containing a number of circular, semi-transparent open-
ings, or bubbles (Figure 1E). An observer will be able to identify
the stimulus only if the visual features that are diagnostic of its
identity remain visible through the bubbles. This will allow infer-
ring what image regions produced a positive (or, conversely, a
negative) behavioral outcome.

In our implementation of the Bubbles method (see
Alemi-Neissi et al., 2013, for details), the bubbles’ size was
fixed to 2◦ of visual angle, while their number was randomly
chosen, in each trial, between 10 and 90, in steps of 20 (see
examples in Figure 1F). This typically reduced the performance
from∼65–75% correct obtained in unmasked trials to∼55–60%
(see Figure 2A). Trials in which the default object views were
shown unmasked (referred to as “regular trials”) were randomly
interleaved with trials in which they were masked (referred to as
“bubbles trials,” see Figure 1G). The fraction of bubbles trials in
a daily session varied between 0.4 and 0.75. To obtain enough
statistical power to extract the diagnostic features underlying rat
recognition, at least 3000 bubbles trials per object were collected.

Phase II: Diagnostic Features Underlying Recognition

of the Transformed Object Views
The animals were subsequently trained to tolerate variations in
the appearance of the target objects along four different trans-
formation axes (see Figure 1D), in the following order: (1) size
variations, ranging from 35 to 15◦ visual angle; (2) azimuth rota-
tions (i.e., in-depth rotations about the objects’ vertical axis),
ranging from−60 to 60◦; (3) horizontal position changes, ranging

FIGURE 2 | Critical features underlying recognition of the default

object views. (A) Rat group average performance at discriminating the

default object views was significantly lower in bubbles trials (light gray bar) than

in regular trials (dark gray bar; p < 0.01; one-tailed, paired t-test), although

both performances were significantly larger than expected by chance

(∗p < 0.05, ∗∗p < 0.01; one-tailed, unpaired t-test). Error bars: SEM. (B) For

each rat, the saliency maps resulting from processing the bubbles trials

collected for the default object views are shown as grayscale masks

superimposed on the images of the objects. The brightness of each pixel

indicates how likely was, for an object view, to be correctly identified when that

pixel was visible through the masks. Significantly salient and anti-salient object

regions (i.e., regions that were, respectively, significantly positively or

significantly negatively correlated with the correct identification of an object;

p < 0.05; permutation test) are shown, respectively, in red and cyan.
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from −18 to +18◦ visual angle; and (4) in-plane rotations, rang-
ing from −45 to +45◦. Each transformation was trained using
an adaptive staircase procedure that is fully described in Alemi-
Neissi et al. (2013) and Zoccolan et al. (2009). Once an animal had
learnt to tolerate a wide range of variation along a given transfor-
mation axis (the extremes of each axis are shown in Figure 1D),
one or more views along that axis were chosen, for each object, so
that: (1) they were different enough from the default views of the
two objects; and (2) most rats recognized them with a 60–70%
correct performance (see Figure 3). These views (referred to as
“bubbles views” in the following) were those selected for applica-
tion of the Bubbles method and are highlighted by red frames in
Figure 1D. Rats were then presented with randomly interleaved
regular trials (in which unmasked objects could be shown across
all the transformation axes trained up to that point) and bubbles
trials (in which bubbles masks were superimposed to the bubbles
views chosen from the most recently trained transformation; see
an example of trial sequence in Figure 1H). As for the default
object views, a minimum of 3000 bubbles trials was collected for
each of the bubbles views. Note that, in general, for each rat, only
some of the seven selected bubbles views could actually be tested,
due to across-rat variation in life span and fluency in the invariant
recognition task (see Alemi-Neissi et al., 2013, for details).

FIGURE 3 | Rat average recognition performance over the four

dimensions along which the objects were transformed. Gray and black

symbols show performances in, respectively, regular and bubbles trials that

were collected during the same sessions of Experimental Phase II (i.e., in

interleaved regular and bubbles trials, as shown in Figure 1H). Panels A–D

show the performances obtained, respectively, for size changes (A), azimuth

rotations (B), translations (C) and in-plane rotations (D). Solid and open

diamonds indicate performances that were, respectively, significantly and

non-significantly higher than chance (p < 0.05; one-tailed, unpaired t-test).

Open circles refer to conditions (i.e., object views) for which less than 3 rats

were tested with the Bubbles method (in this case, the significance of the

performance was not tested). The rectangular frames refer to conditions in

which the performance in regular trials was significantly larger than in bubbles

trials (p < 0.05, one-tailed, paired t-test; again, only conditions for which all

three rats were tested, in both regular and bubbles trials, were tested for

significance). Error bars: SEM.

All experimental protocols were implemented using the free-
ware, open-source software package MWorks (http://mworks-
project.org/). An ad-hoc plugin was developed in C++ to allow
MWorks building bubbles masks and presenting them superim-
posed on the images of the visual objects.

Data Analysis
Computation of the Saliency Maps
A detailed description of themethod for the extraction of the crit-
ical visual features underlying rat recognition of a given object
view and the assessment of their statistical significance can be
found in Alemi-Neissi et al. (2013). Briefly, this method consisted
in two steps.

First, saliency maps were obtained that measured the correla-
tion between the transparency values of each pixel in the bubbles
masks and the behavioral responses. Throughout the article, these
saliency maps are shown as grayscale masks superimposed to the
images of the corresponding object views, with bright/dark pixels
indicating regions that are salient/anti-salient, i.e., likely/unlikely
to lead to correct identification of an object view, when visible
through the bubbles masks (e.g., see Figures 2, 4). For a clearer
visualization, the saliency values in each map were normalized
by subtracting their minimum value, and then dividing by their
maximum value.

As a second step, we computed which pixels, in a saliencymap,
had a statistically significant correlation with the behavior. To
this aim, we performed a permutation test, in which the behav-
ioral outcomes of bubbles trials were randomly shuffled (see
Alemi-Neissi et al., 2013, for details). This yielded a null distri-
bution of saliency values that was used to compute which values,
in each saliency map, were significantly higher (or lower) than
what obtained by chance (p < 0.05), and, therefore, which pix-
els, in the image, could be considered as significantly salient (or
anti-salient). Throughout the article, significantly salient regions
of an object view are shown in red, whereas anti-salient regions
are shown in cyan (e.g., see Figures 2, 4).

Group average saliency maps and significant salient and anti-
salient regions were obtained using the same approach, but after
pooling the bubbles trials obtained for a given object view across
all available rats (see Figure 12).

Ideal Observer Analysis
Rats’ average saliency maps, as well as the maps obtained for
individual rats, were compared to the saliency maps obtained by
simulating a linear ideal observer (Gosselin and Schyns, 2001;
Gibson et al., 2005; Vermaercke and Op de Beeck, 2012). Since
this method is fully described in Alemi-Neissi et al. (2013), we
provide here only a short, qualitative description.

Given a bubble-masked input image, the simulated observer
classified it as being either Object 1 or 2, based on which of the
eight views of each object (the templates), to which the mask
could have been applied (shown by the red frames in Figure 1D),
matched more closely the input image. The template matching
was linear, since it consisted in computing a normalized dot
product between each input images and each template. To bet-
ter match rat retinal resolution, each input image was low pass-
filtered, so that its spatial frequency content did not exceed 1
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FIGURE 4 | Critical features underlying recognition of the

transformed object views. For each rat, the saliency maps that were

obtained for each transformed view of Object 3 and 4 are shown. Red

and cyan patches refer, respectively, to significantly salient and anti-salient

regions (as in Figure 2B). The yellow arrows in (A,B) point to the salient

feature located at the intersection between the two upper lobes of Object

4. This feature was repeatedly selected by both rats, either throughout all

(rat 7) or the first three (rat 8) object views. The green arrows in (B,C)

point at the salient feature located on the noise-like lobe of Object 4,

which become fully visible only for the azimuth rotated view to the left,

thereby affording the possibility to be used as a distinctive feature (as it

happens for rat 8 and 9).

cycle per degree (i.e., the maximal resolving power of Long-Evans
rats, Keller et al., 2000; Prusky et al., 2002). Finally, to lower
the performance of the ideal observer and bring it close to rat
performance, Gaussian noise (std = 0.5 of the image grayscale)
was independently added to each pixel of the input images.
Saliency maps and significant salient and anti-salient regions for
the ideal observer were obtained as described above for the rats
(see previous section).

Each rat saliency map (either individual or group aver-
aged) was compared to the corresponding map obtained for the
ideal observer by computing their Pearson correlation coeffi-
cient. The significance of the correlation was assessed by run-
ning a permutation test, in which the behavioral outcomes
of the bubbles trials were randomly shuffled for both the
rat and the ideal observer, so as to obtain a null distribu-
tion of correlation values, against which the statistical test was

carried out at p < 0.05 (see Alemi-Neissi et al., 2013 for
details).

Euclidean Distance between Matching Views of the

Objects within Each Stimulus Sets
To compare how similar were the objects belonging to a given
stimulus set, we proceeded as follows. First, low pass-filtered ver-
sions of all the object views were produced, so that the spatial
frequency content did not exceed the maximal retinal resolu-
tion of Long-Evans rats (i.e., 1 cycle per degree of visual angle).
Then, we computed, within each stimulus set, the superposition
of all the transformed views of both objects, and a crop rectangle
was defined for each stimulus set as the minimal rectangle con-
taining the resulting superposition. Next, a cropped version of
each image (e.g., view) of the objects belonging to a given stim-
ulus set was produced using the corresponding crop rectangle.
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The cropping was required to minimize the effect of uninfor-
mative black pixels surrounding the object views on the distance
computations. Finally, the pixel-wise Euclidean distance between
the cropped images of matching views of the two objects within
a stimulus set was computed. This distance was then normal-
ized to the maximal possible distance in the image space, which
is the square root of the number of pixels (see Table 1). This
allowed a fair comparison of object similarity between the two
stimulus sets.

All data analyses were performed in Matlab (http://www.
mathworks.com).

Results

The goal of this study was to assess the influence of the structural
similarity of the discriminanda on the adoption, by rats, of a view-
based or a view-invariant recognition strategy. A group of rats
(referred to as “group 2” throughout the article) was trained in an
object recognition task that required the animals to discriminate
two structurally (and visually) similar objects (i.e., Object 3 and 4,
belonging to Stimulus Set 2, shown in Figure 1B, left panels). The
results obtained from this group of rats were compared to those
previously reported in a former study (Alemi-Neissi et al., 2013),
where another group of rats (referred to as “group 1”) underwent
the same training, but with objects that were more dissimilar
at the structural level (i.e., Object 1 and 2, belonging to Stimu-
lus Set 1, shown in Figure 1A, left panels). As in Alemi-Neissi
et al. (2013), a classification image method, known as the Bub-
bles (Gosselin and Schyns, 2001), was applied to a subset of the
trained object views to infer rat recognition strategy, and assess
its reproducibility across views, as well as its consistency across
subjects.

Critical Features Underlying Recognition of the
Default Object Views
During the initial experimental phase, the 6 rats of group 2 were
trained to discriminate the default views of the objects belonging
to Stimulus Set 2 (shown in Figure 1B, left panels). The train-
ing typically lasted 3–12 weeks before the animals achieved a
criterion of ≥70% correct discrimination performance. Differ-
ently from the rats of group 1 (i.e., rats numbered from 1 to
6; see below and Alemi-Neissi et al., 2013 for details), only half
of the animals (referred to as rat 7, 8, and 9 in the following)
reached the criterion and were able to maintain it in the subse-
quent experimental phases. Once the criterion was reached, reg-
ular trials (i.e., trials in which the objects were shown unmasked)
started to be randomly interleaved with bubbles trials (i.e., tri-
als in which the objects were partially occluded by the bubbles
masks; see Material and Methods for details and Figures 1E–H).
By occluding parts of the visual objects, the bubbles masks made
it harder for the rats to succeed in the discrimination task. In
our experiments, we adjusted the number of the semi-transparent
openings (the bubbles) in each mask, so as to bring each rat per-
formance in bubbles trials to be∼10% lower than in regular trials.
For the rats tested in this study (i.e., group 2, tested with Stim-
ulus Set 2), the average recognition performance of the default
views dropped from ∼70% in regular trials to ∼55% correct in

bubbles trials (Figure 2A). The comparison with the rats tested
in our previous study (i.e., group 1, tested with Stimulus Set 1),
where the average recognition performance dropped from∼75%
correct in regular trials to∼65% correct in bubbles trials (see Fig-
ure 3A in Alemi-Neissi et al., 2013), indicates that, as expected
because of our stimulus design, objects in Stimulus Set 2 were
harder to discriminate, especially when occluded by the bubbles
masks.

The visual features underlying rat recognition strategy were
extracted by measuring the correlation between bubbles masks’
transparency values and rat behavioral responses (see Alemi-
Neissi et al., 2013 for details). This yielded saliency maps, where
the brightness of each pixel indicated the likelihood, for an object,
to be correctly identified when that pixel was visible. Through-
out the article, such saliency maps are displayed as grayscale
masks superimposed on the images of the corresponding object
views (see Figures 2B, 4, 12). Saliency map values that were sig-
nificantly higher or lower than expected by chance (p < 0.05,
permutation test; see Materials and Methods) defined, respec-
tively, significantly salient and anti-salient regions in the images
of the object views (shown, respectively, as red and cyan patches
in Figures 2B, 4, 12). These regions are those objects’ parts that,
when visible through the masks, likely led, respectively, to correct
identification and misidentification of the object views.

Contrarily to what found for Stimulus Set 1 (see Figure 3B in
Alemi-Neissi et al., 2013), a larger inter-subject variability was
observed in the saliency patterns obtained for the default views
of the objects in Stimulus Set 2 (Figure 2B). In the case of Object
3, one or both the upper lobes were selected as salient features by
all three rats of group 2. However, for rat 8, one of the features,
the rightmost one, did not cover the upper right lobe. Rather, it
was located slightly below it, at the margin of the central, largest
lobe. This lobe, in turn, was mostly significantly salient for rat 9,
but it was anti-salient for rat 7 (while, for the other two rats, anti-
salient regions were located along the lower/right margin). In the
case of Object 4, the top part of the central lobe was salient for
two rats, in the guise of seven small, scattered patches for rat 7,
and one single spot for rat 8. Interestingly, this spot, as well as
one of the salient patches of rat 7, was located right at the curved-
edge intersection between the central lobe and the top (smaller)
lobes. On the other hand, for rat 9, this same part of the central
lobe was anti-salient, along with the upper-right lobe. Similarly,
the upper-right lobe was anti-salient for rat 7, while rat 8 showed
spots of anti-saliency toward the right and the left margins of the
object.

To summarize, although a few salient and anti-salient features
were preserved across some of the rats (e.g., the top lobes of
Object 3 and the small salient spot at the junction of Object 4’s
top and central lobes), a substantial inter-subject diversity was
observed in terms of location, number, and size of the salient
and anti-salient regions. This is indicative of the larger variety of
perceptual strategies used by rats, when tested with structurally
similar objects (such as the ones belonging to Stimulus Set 2), as
compared to what we found using more dissimilar objects (such
are those belonging to Stimulus Set 1, tested in Alemi-Neissi
et al., 2013). These preliminary, qualitative observations will be
quantified in the next sections.
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Critical Features Underlying Recognition of the
Transformed Object Views
After being trained with the default views of Objects 3 and 4 and
tested with bubble-masked versions of these views, the rats were
further trained to recognize the objects in spite of transforma-
tions along four different variation axes: size, in-depth azimuth
rotation, horizontal position and in-plane rotation. The tested
ranges of variation are shown in Figure 1D, along with the views
that, for each transformation axis, had been selected for appli-
cation of the Bubbles method (referred to as “bubbles views” in
the following; see red frames). The four transformation axes were
trained sequentially, so that the amount of variation each rat had
to tolerate increased gradually. In fact, the animals were con-
fronted, at any given time during training/testing, with object
views that were randomly sampled across all the variation axes
tested up to that point (regular trials).

Similarly to what found for Stimulus Set 1 (see Figure 4 in
Alemi-Neissi et al., 2013), also in the case of Stimulus Set 2, rat
average recognition performance was significantly larger than
chance for most of the tested object transformations, typically
ranging from∼70 to∼80% correct and dropping below 70% cor-
rect only at the extremes of transformation axes, especially in the
case of size changes and azimuth rotations (Figure 3, gray lines;
see legend for details). Thus, in spite of their structural similar-
ity, Objects 3 and 4 remained discriminable for the rats across
a broad spectrum of image variation. On the other hand, the
application of the bubbles masks resulted in a decrement of the
recognition performance (see black diamonds) that was larger
than the one observed in the case of Stimulus Set 1 (compare to
Figure 4 in Alemi-Neissi et al., 2013). The average performance
on bubbles trials ranged between 55 and 60% correct and was
significantly below the performance observed in regular trials in
the case of the translated object views (p < 0.05, one-tailed,
paired t-test; see rectangular frames in Figure 3C), although it
was still significantly above chance for all those transformations
in which all three rats were tested (p < 0.05, one-tailed, unpaired
t-test, see filled black diamonds; for the conditions tested with
only 2 rats, significance was not assessed, see open circles). This
suggests that, for rats, it was challenging to discriminate struc-
turally similar objects, especially when shape information was
degraded by reducing the size of the objects (see Figure 3A) or
rotating/shifting them of large amounts (see Figures 3C,D), and
simultaneously adding the semi-transparent bubbles masks.

Bubbles trials were analyzed as described in the previous sec-
tion (see also Materials and Methods) to obtain saliency maps
with highlighted significantly salient and anti-salient regions for
each of the selected bubbles views (see Figure 4). A qualitative
comparison between these saliency patterns and those previously
obtained for the objects of Stimulus Set 1 (see Figure 6 in Alemi-
Neissi et al., 2013) allows appreciating how rat recognition strat-
egy depends on the structural complexity and visual similarity of
the discriminanda.

Both Object 3 and 4 in Stimulus Set 2, just like Object 1 and
2 in Stimulus Set 1, were made of ellipsoidal structural parts (or
lobes; see Figures 1A,B, left panels). However, in the case of Stim-
ulus Set 2, such parts were less protruded and, more importantly,
matching lobes in the two objects had a similar size, position and

aspect ratio. Hence, they were less diagnostic of object identity,
compared to the lobes of Objects 1 and 2, resulting in a larger
similarity between the objects of Stimulus Set 2, as compared to
Stimulus Set 1, across all tested views (see Table 1 for details).
Consistent with this observation, we found a general tendency,
for the diagnostic features of Object 3 and 4, to be distributed
(often in a quite scattered way) over a region of the objects (i.e.,
top or bottom half) encompassing multiple lobes, rather than
being precisely (and reproducibly) located in specific lobes (or
lobes’ sub-regions), as previously found for Objects 1 and 2 (see
Alemi-Neissi et al., 2013). Nonetheless, we could still find, albeit
less systematically as compared to Stimulus Set 1, a tendency to
select (and, to some extent, “track” throughout different transfor-
mations) discrete object features (see yellow arrows in Figure 4

and the description below).
For rat 7, the salient features were located in the upper region

of Object 3 for all tested conditions (Figure 4A, upper row),
although, in the case of the default view, they were smaller,
more scattered and mixed with anti-salient patches, which only
remained as smaller spots in the azimuth-rotated views. The
anti-salient regions covered preferentially the central and lower
parts. A somewhat reversed pattern was observed for Object 4
(Figure 4A, lower row): the central/bottom region was largely
salient across all tested views, starting with a combination of
small patches in the default view, which reduced to a few small
spots in the size-transformed condition, and finally merged into
a big salient region for most of the remaining transformations.
Interestingly, the salient spot located right at the intersection
between the central lobe and the top lobes (see yellow arrows)
was observed not only in the case of the default view (see previous
section), but, systematically, across all tested conditions, either as
a discrete feature or merging with the bigger salient patch.

Similarly to rat 7, rat 8 displayed a preference for the upper
region of Object 3 in all tested conditions (Figure 4B, upper row).
The anti-salient features generally covered the lower lobe, but
extended to the central part of the object in three conditions (size
transformed and horizontally shifted views) and to the upper-
right lobe in one condition (horizontally shifted to the left). It
was again the central part of Object 4 its most salient region
(Figure 4B, lower row), but the salient patches remained small,
few and scattered, and always mixed with anti-salient spots.
Noticeably, also for rat 8, the intersection between the central
lobe and the top lobes contained a small, significantly salient spot
in the case of the default, azimuth-rotated and size-transformed
views (see yellow arrows). This spot was also salient for the hori-
zontally shifted views, although it did not cross the threshold for
significance.

Compared to the previous two rats, rat 9 displayed, at the
beginning (i.e., for the default views), a strategy that was more
consistent with the selection of the discrete, constituent elements
of the objects, rather than wide regions encompassing multiple
lobes. For instance, the salient patches obtained for the default
view of Object 3 (Figure 4C, upper row) matched closely the cen-
tral lobe and the two upper lobes of the object. Although these
discrete features did not remain salient for all the tested trans-
formations, they were preserved in several of the subsequently
tested views. In the case of Object 4 (Figure 4C, lower row), a
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more variegate combination of salient features (often mixed with
anti-salient spots) was found across the tested views, covering
both upper and lower regions of the object, although discrete
lobes were still occasionally selected as salient features. One of
these lobes was the bottom one (with a nose-like shape), which
emerged as a salient feature in one condition (the azimuth rotated
view to the left; see green arrow), i.e., when it became more pro-
truded, as compared to all other views, and, therefore, more likely
to be parsed by the rat visual system. This was observed also for
rat 8 (Figure 4B, lower row, green arrow), although the salient
spot was smaller.

To summarize, when facing objects that were hard to discrimi-
nate (as in the case of Stimulus Set 2), rats appeared to rely on a set
of object features that was only partially preserved across trans-
formations. While the overall object regions (i.e., either top or
bottom half) containing either the salient or anti-salient patches
tended to be preserved across different views, the size, number,
and location of these patches varied substantially across con-
ditions and rats. This result is in contrast with what found in
our previous study for Object 1 and 2, where the salient fea-
tures tended to be reproducibly located in specific positions of
the objects’ structural parts (e.g., the tips of the elongated lobes
defining Object 2). In other words, rats tested with Stimulus Set
2, differently from those tested with Stimulus Set 1, did not show a
strong, view-invariant preference for well-defined structural ele-
ments of the objects. These qualitative observations are quanti-
fied in the next sections, starting with the reproducibility of the
patterns of salient features across object views.

Is Rat Invariant Recognition more Consistent
with a View-Invariant or a View-Based
Processing Strategy?
To quantify to what extent rat recognition of Objects 3 and 4
was consistent with a view-invariant visual processing strategy,
we measured the overlap between the patterns of salient features
obtained for all possible pairs of object views produced by affine
transformations (i.e., all tested object views with the exclusion
of in-depth azimuth rotations). This overlap was computed after
reversing (i.e., “undoing”) the transformations that originated a
pair of object views, so as to perfectly align one view on top of the
other (e.g., in the case of the comparison between the default and
the horizontally translated views shown in Figure 5A, the latter
was shifted back to the center of the screen and scaled back to 35◦,
so as to perfectly overlap with the default view; see second row
of Figure 5A, right panel). This procedure yielded aligned over-
lap values between pairs of salient features’ patterns, which could
be compared to those obtained for Objects 1 and 2 in Alemi-
Neissi et al. (2013). Consistently with our previous study, we also
computed, for each pair of views, raw overlap values, which quan-
tified the amount of overlap between the salient features’ patterns
of two object views within the stimulus display (i.e., in abso-
lute screen coordinates; see second row of Figure 5A, left panel).
When plotted one against the other (Figure 5B), the aligned and
the raw overlaps measured whether rat recognition was more
consistent with a view-invariant strategy (in which the same set
of object-centered features is relied upon and “tracked” across
different views) or a screen-centered strategy (i.e., a low-level

strategy, where one or more image patches exist, at specific loca-
tions within the stimulus display, that remain diagnostic of object
identity in spite of view changes, thus affording a trivial solution
to the invariant recognition task).

Following Nielsen et al. (2006), both the aligned and raw
overlaps were computed as the ratio between overlapping area
and overall area of the significantly salient regions of the two
object views under comparison (e.g., as the ratio between the
orange area and the sum of the red, yellow, and orange areas in
Figure 5A, second row). As done in our previous study (Alemi-
Neissi et al., 2013) and in Nielsen et al. (2006), the significance of
each individual raw and aligned overlap was assessed at p = 0.05
through a permutation test (1000 permutation loops), in which
the salient regions of each object view in a pair were randomly
shifted within the minimum bounding box enclosing each view
(see Figure 5A, bottom row and Alemi-Neissi et al., 2013, for
details).

As shown by the scatter plot in Figure 5B, for about 62% of
the tested view pairs (i.e., in 37 out of 60 cases), the aligned over-
lap was larger than the raw overlap. Although this proportion
was much higher for the objects belonging to Stimulus Set 1,
as assessed in our previous study (i.e., about 92% of view pairs
had a larger aligned overlap; see Figure 8B in Alemi-Neissi et al.,
2013), Figure 5B shows that, also for Stimulus Set 2, a trivial,
screen-centered strategy could not explain rat recognition behav-
ior. This conclusion was confirmed by the fact that, for both
objects belonging to Stimulus Set 2, the average aligned over-
lap values were significantly higher than the raw values (Object
3: aligned 0.09 ± 0.02 vs. raw 0.04 ± 0.02, p < 0.05; Object
4: aligned 0.07 ± 0.02 vs. raw 0.03 ± 0.01, p < 0.01; signifi-
cance was assessed through a paired permutation test, in which
the sign of the difference between aligned and raw overlap for
each pair of views was randomly assigned in 10,000 permuta-
tion loops). In addition, for both objects, the number of cases in
which the aligned overlaps were larger than expected by chance
was approximately twice as large as the number of significant raw
overlaps—for Object 3, 10/30 aligned vs. 5/30 raw overlaps were
significant, while, for Object 4, 11/30 aligned vs. 7/30 raw over-
laps were significant (see Figure 5B, where significance is coded
by the shade of gray filling the symbols).

To better understand the influence of object structure on the
adoption of a view-invariant strategy, we reported side by side in
Figure 5C the median aligned overlaps obtained for the objects
tested in our previous study (i.e., Objects 1 and 2, Stimulus Set
1) and in the current one (i.e., Objects 3 and 4, Stimulus Set 2).
The resulting bar chart shows that the aligned overlap was much
larger for the objects belonging to Stimulus Set 1, as compared
to the objects of Stimulus Set 2 (and this difference was signif-
icant at p < 0.0001, Mann–Whitney U-test). In addition, for
Object 2, the large majority of aligned overlap values was sig-
nificantly higher (79%) than expected by chance, while, for the
other objects, the percentage of significant overlaps ranged from
24 to 37% only (see Figure 5D). This implies that the pattern
of salient features was much more reproducible for the objects
belonging to Stimulus Set 1, as compared to Stimulus Set 2, and,
in particular, for Object 2, which was the object made of the more
distinctive structural parts (as discussed at length in Alemi-Neissi
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FIGURE 5 | Consistency of rat recognition strategy across object

views. (A) Illustration of the procedure to compute the raw and aligned

overlap between the salient features’ patterns obtained for two different

views of an object. The default and the leftward horizontally shifted views of

Object 3 are used as examples (first row). The raw features’ overlap was

computed by superimposing the images of the two object views (and the

corresponding features’ patterns) within the stimulus display (second row, left

plot). The aligned features’ overlap was computed by reversing the

transformation that produced the leftward horizontally shifted view. That is,

the object was shifted to the right of 18◦ and scaled back to 35◦, so as to

perfectly overlap with its default view (second row, right plot). In both cases,

the overlap was computed as the ratio between the orange area and the

sum of the red, yellow and orange areas. The significance of the overlap was

assessed by randomly shifting the salient regions of each object view within

the minimum bounding box (see white frames in the third row of the figure)

enclosing each view. (B) For each pair of views of Object 3 (circles) and

Object 4 (diamonds) resulting from affine transformations (i.e., position/size

changes and in-plane rotations), the raw features’ overlap is plotted against

the aligned features’ overlap. The shade of gray indicates whether the raw

and/or the aligned overlap for a given view was significantly larger than

expected by chance (p < 0.05; see caption). (C) Median aligned overlaps for

the objects belonging to Stimulus Set 1 and 2. The error bars are standard

errors of the medians (obtained by bootstrapping). The statistical significance

of the difference between a given pair of medians was assessed by a

Mann–Whitney U-test (∗∗∗∗p < 0.0001). (D) Percentage of significant aligned

overlap values for the objects belonging to two stimulus sets.
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et al., 2013). To summarize, Figure 5 quantifies the qualitative
observations of the previous section—the larger was the discrim-
inability of the visual objects (as in the case of Stimulus Set 1)
and the more distinctive were their structural elements (as in the
case of Object 2), the more view-invariant was rat recognition
strategy (i.e., the animals consistently used the same structural
parts of the objects, across different views, as diagnostic features
of object identity). For the less discriminable objects (i.e., Stimu-
lus Set 2), rat recognition strategy was still more consistent with
an object-based tracking of broadly defined saliency regions (e.g.,
the top or bottom parts of the stimuli) than with a low-level,
screen-centered detection of transformation-preserved diagnos-
tic image spots. However, the specific patterns of salient features
were much more view-dependent than in the case of Stimulus Set
1 (and of Object 2 in particular).

To quantitatively assess whether the difference between the
strategies used by the two groups of rats could be attributed
to objects’ similarity, we computed the normalized, pixel-wise
Euclidean distance between matching views of the objects within
each stimulus set (see Materials and Methods). Only the views
on which the bubbles masks were applied (i.e., the bubbles views)
were considered in this analysis. The result of this comparison
is reported in Table 1. As expected, the distance between the
views of the objects belonging to Stimulus Set 1 was systemat-
ically larger than the distance between the views of the objects
belonging to Stimulus Set 2. This resulted in an average pixel-
level discriminability that was significantly higher for Stimulus
Set 1, as compared to Stimulus Set 2 (0.23± 0.02 vs. 0.17± 0.01,
respectively; one-tailed, paired t-test, p < 0.001).

Comparing the Compactness of the Salient
Features’ Patterns among Stimulus Sets and
Individual Objects
Having quantified the different discriminability of the two object
pairs, we further assessed how such a difference affected the
recognition strategy of the two groups of rats by comparing the
average number (Figures 6, 7) and the average absolute and rel-
ative size (Figures 8–10) of the salient features found for each
object (with the average taken across all tested bubbles views).
Since the absolute size of the salient features ranged from a few
pixels (in the case of spot-like features) to hundreds of pixels (in
the case of features spanning over large fractions of the objects;
see Figure 4 and also Figure 6 in Alemi-Neissi et al., 2013), we
measured how these quantities (e.g., the number of salient fea-
tures) varied when only features having a size larger than a min-
imal threshold value (ranging from 1 to 100 pixels) were taken
into account. We then assessed, at each threshold value, the
statistical significance of the difference between (e.g.) the aver-
age number of features obtained, across all tested views, for the
two stimulus sets (two-tailed, unpaired t-test at p < 0.05; see
Figure 6, where the red traces in the inset show the comparisons
yielding a significant difference). The same analysis was carried
out for each of the six possible pairs of objects belonging to the
two object sets (e.g., see Figure 7 for the comparison regarding
the number of salient features).

We found that the average number of salient features was
larger for Stimulus Set 2 (Figure 6, pink line) than for Stimulus

FIGURE 6 | Average number of salient features obtained for the two

stimulus sets. The average number of salient features obtained for the view of

an object belonging to either Stimulus Set 1 or 2 (see the caption for the color

code) is plotted as a function of the minimal size of the features that were taken

into account for this analysis (the average was computed by pooling across all

views of both objects within a stimulus set and all rats). The difference

between the values obtained for two stimulus sets is plotted in the inset as a

dotted line, where the color codes its significance—black, no significant

difference; red, significant difference at p < 0.05 (two-tailed, unpaired t-test).

Set 1 (Figure 6, purple line) and this difference was significant
over a large range of minimal feature sizes (from 1 to about 55
pixels; see red dots in the inset of Figure 6). Only asymptot-
ically (for very large feature sizes), the difference between the
numbers of features found for the two stimulus sets became
not significant (see black dots in the inset of Figure 6). This is
expected, given that, by construction, only a few large features
covering big portions of the objects are left, regardless of the
stimulus set, when the minimal feature size is very large. Focus-
ing on individual objects (Figure 7), i.e., considering all possible
pairs of the four objects (regardless whether an object belonged
to Stimulus Set 1 or 2), we found that the average number of
salient features for Object 1 was significantly smaller than for
Object 3 and 4 (Figures 7B,C), as long as the minimal feature
size did not cross the 45–50 pixel value (see insets), while it was
never significantly different from the number of salient features
of Object 2 (Figure 7A). Object 2 displayed a smaller difference,
in terms of number of features, when compared to object 4 (sig-
nificant up to aminimal feature size of∼20 pixels; see Figure 7E),
and even smaller when compared to Object 3 (significant in the
ranges of minimal feature size between 5–10 and 18–22 pixels; see
Figure 7D). No significant difference was found between Object
3 and 4 (Figure 7F).

Next, we computed the size of the salient features obtained for
the four objects across all the views that were tested with the bub-
bles masks. For each object view, we measured the absolute size
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FIGURE 7 | Average number of salient features obtained for individual

objects. The average number of salient features obtained for the view of an

object is compared for each possible pair of objects (object identity is color

coded in (A–F); see caption on the top of each panel). The shaded regions

are SEM. The average was computed by pooling across all views of an

object and all rats, and was plotted against the minimal size of the features

that were taken into account for this analysis. The insets show the difference

between the values obtained for each objet pair (same color code as in

Figure 6—black, no significant difference; red, significant difference at

p < 0.05; two-tailed, unpaired t-test).
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FIGURE 8 | Average relative and absolute size of the salient

features obtained for the two stimulus sets. The average size of the

salient features obtained for the views of the objects belonging to either

Stimulus Set 1 or 2 (see the caption for the color code) is plotted as a

function of the minimal size of the features that were taken into account

for this analysis (the average was computed by pooling across all

features, all views of both objects within a stimulus set and all rats). The

shaded regions are SEM. (A,B) show, respectively, the relative and

absolute feature size (with the former computed by dividing the size of

each feature by the overall area of the corresponding object view). The

insets show the difference between the values obtained for the two

stimulus sets (same color code as in Figures 6, 7—black, no significant

difference; red, significant difference at p < 0.05; two-tailed, unpaired

t-test).

(in pixels) of all the salient features obtained for that view. Then,
the features’ sizes obtained for all the views were pooled to obtain
the average absolute feature sizes shown in Figures 8B, 10. Using
the same approach, we also computed the average relative fea-
ture sizes shown in Figures 8A, 9. The only difference was that,
in this case, the size in pixels of each salient feature was divided by
the overall area (in pixels) of the corresponding object view, thus
yielding the portion of the view that was covered by that feature.

As shown in Figure 8, a comparison between the two stimu-
lus sets revealed that the rats tested with the objects belonging
to Stimulus Set 1 selected, on average, larger features, compared
to the rats tested with Stimulus Set 2, in terms of both absolute
and relative size. This difference was significant for every mini-
mal feature size under consideration (two-tailed, unpaired t-test
at p < 0.05; see red dots in the insets of Figure 8). However, when
we considered the differences between individual object pairs, in
terms of their features’ relative size (Figure 9), we found that the
only significant difference was between Object 1 and all the other
objects (see Figures 9A–C). When the absolute size values were
compared (Figure 10), a significant difference was also observed
between Object 2 and Object 3 (Figure 10D).

Taken together, the analyses shown in Figures 6–10 revealed
a tendency for the salient features’ patterns obtained for Objects
1–4 to closely match the distinctiveness and prominence of the
objects’ structural parts. For objects with large, clearly discrim-
inable lobes (such as the top lobe of Object 1 and the three
elongated lobes of Object 2), the diagnostic salient features were
more compact (i.e., larger and less numerous). Objects with
smaller and less distinctive lobes (such as Objects 3 and 4) dis-
played a more scattered pattern of salient features (i.e., smaller
and more numerous salient patches). Not surprisingly, this dif-
ference in the compactness of the salient features was more
prominent when Object 1 (the object with the largest and most
distinctive lobe) was compared to the objects of Stimulus Set 2.
Once again, this finding suggests that rat recognition strategy

is strongly dependent on the structural properties of the target
objects.

Between-Subject Reproducibility of Rat
Recognition Strategy
To quantify whether stimulus discriminability also affected the
reproducibility of the object features that were preferentially cho-
sen by one group of rats (tested with the same object conditions),
we measured the across-rat consistency of the salient features’
patterns obtained for our two stimulus sets. This was achieved by
computing the overlap of the pattern of salient features obtained
for one rat at a given object view (e.g., the default view) with
the pattern of salient features obtained for another rat at the
same object view (the overlap was computed in the same way as
described in Figure 5). All possible views and all possible rat pairs
were considered to obtain the resulting median overlap values
shown in Figure 11.

The median overlap was much larger for Stimulus Set 1 than
for Stimulus Set 2, and such a difference was highly significant
(p < 0.0001, Mann–Whitney U-test test; see Figure 11A). When
the results of individual objects were compared, Object 1 dis-
played the largest between-rat consistency of the salient features
selected to solve the task, followed by Object 2 and then by the
objects belonging to Stimulus Set 2, with all the pairwise com-
parisons, except the one between Object 3 and 4, yielding dif-
ferences that were significantly larger than expected by chance
(p < 0.001; Mann–Whitney U-test test; see Figure 11B). This
confirms the observation that the rats tested with Stimulus Set 2
used a recognition strategy that was much more consistent with
a view-dependent selection of object features, with respect to the
rats tested with Stimulus Set 1, as noticeable by comparing Fig-
ure 4 to Figure 6 in Alemi-Neissi et al. (2013). It also confirms
that, within Stimulus Set 1, the object leading to the most consis-
tent selection of same diagnostic features was the one that, having
the simplest structure (i.e., Object 1), afforded one single feature

Frontiers in Neural Circuits | www.frontiersin.org 13 March 2015 | Volume 9 | Article 10

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Rosselli et al. Object similarity affects rat recognition

FIGURE 9 | Average relative size of the salient features obtained

for individual objects. The average relative size of the salient features

obtained for the views of an object is compared for each possible pair

of objects [object identity is color coded in (A–F); see caption on the

top of each panel]. The shaded regions are SEM. The average was

computed by pooling across all features, all views of an object and all

rats, and was plotted against the minimal size of the features that were

taken into account for this analysis. The relative size was computed as

described in Figure 8. The insets show the difference between the

values obtained for each objet pair (same color code as in

Figures 6–8—black, no significant difference; red, significant difference

at p < 0.05; two-tailed, unpaired t-test).
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FIGURE 10 | Average absolute size of the salient features obtained

for individual objects. The average absolute size of the salient features

obtained for the views of an object is compared for each possible pair of

objects [object identity is color coded in (A–F); see caption on the top of

each panel]. The shaded regions are SEM. The average was computed by

pooling across all features, all views of an object and all rats, and was plotted

against the minimal size of the features that were taken into account for this

analysis. The insets show the difference between the values obtained for

each objet pair (same color code as in Figures 6–9—black, no significant

difference; red, significant difference at p < 0.05; two-tailed, unpaired t-test).
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FIGURE 11 | Between-rat consistency of the recognition strategy. (A)

Between-rat consistency of the salient features’ patterns obtained for the

objects belonging to Stimulus Set 1 and 2. For any given object view, the

overlap between the pattern of salient features obtained for two different rats

was computed. Overlap values obtained for all the views of the objects within

a stimulus set and all possible pairs of rats were polled, yielding the median

overlaps per stimulus set shown by the colored bars. (B) Same analysis as in

(A), but with the overlap values of individual objects considered independently.

In both (A,B), a Mann–Whitney U-test was applied to check whether the

resulting medians were significantly different from each other (∗∗∗p < 0.001,
∗∗∗∗p < 0.0001).

(the top, large lobe) for its identification. Object 2, with its equally
sized and equally distinctive lobes, allowed a larger number of
perceptual alternatives (i.e., possible feature combinations) for its
recognition. Hence, the slightly (but significantly) lower between-
rat consistency observed for Object 2, as compared to Object 1.
However, since each individual feature was reproducibly con-
fined to the tip of one of the lobes, and, in most cases, at least

two lobes were used by rats as diagnostic features, Object 2 still
displayed a pattern of features that was much more consistent,
across rats, than what we found for the objects of Stimulus Set 2.

Comparison between the Saliency Maps
Obtained for the Rats and a Simulated Ideal
Observer
The finding that rat recognition strategy is more or less view-
invariant, depending on the level of stimulus discriminability,
raises the question of how optimal such a strategy was, given
the discriminatory information that each pair of visual objects
afforded. To address this question, we compared it to the strat-
egy of a simulated ideal observer that was tested using the
same bubble-masked images that had been presented to the
rats of both experimental groups. Given a stimulus set (i.e.,
either Stimulus Set 1 or 2), the simulated observer performed a
template-matching operation between incoming bubble-masked
input images and each of the possible bubbles views of the objects
within the set (e.g., those marked by red frames in Figure 1D),
to find out to what object each input image corresponded to.
The simulated observer was ideal, since it had stored in memory,
as templates, all the views that each object within the stimulus
set could take, and was linear, because the template-matching
operation consisted in computing the dot product between each
input image and each template view (see Materials and Meth-
ods and Alemi-Neissi et al., 2013, for details). The simulated
observer could be incorrect or correct in identifying the object
in a given bubble-masked input image, depending on whether
the mask occluded parts of the object that were more or less
diagnostic of its identity. Analyzing the responses of the ideal
observer to the different bubble-masked images yielded saliency
maps that were analog (and, therefore, directly comparable) to
the ones previously obtained for the rats. Specifically, the saliency
maps obtained for the ideal observer were compared both with
the maps obtained for the individual rats (see Table 2) and with
the group average maps that were obtained by pooling the bub-
bles trials collected for a given object view across all available
rats that had been tested with that view (see Figure 12, and, by
comparison, Figure 10 in Alemi-Neissi et al., 2013).

The motivation to compute group average saliency maps also
for the animals tested with Stimulus Set 2 (in addition to the
rats tested with Stimulus Set 1, as originally done in Alemi-
Neissi et al., 2013), in spite of the large between-subject variabil-
ity of the saliency patterns obtained with Object 3 and 4 (see
Figure 11), was that, as previously discussed, the overall object
regions (i.e., top or bottom part of the stimulus) containing
mostly salient (or anti-salient) features were broadly preserved
across rats (although the finer-grain features’ patterns were only
minimally preserved). Therefore, computing rat group average
maps would still allow enhancing those features that were more
consistently relied upon across subjects, by averaging out the
idiosyncratic aspects of individual rat strategies. The resulting
patterns of critical features extracted from the average saliency
maps (see red and cyan patches in Figures 12A,B, top rows)
indicate that, for most views, the salient features were generally
located in the upper lobes of Object 3 and in the central lobe of
Object 4 (or, occasionally, in Object 4’s lower margins).
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TABLE 2 | Comparison between the saliency maps obtained for the rats

and a simulated ideal observer.

Default Size Azimuth Azimuth Position Position In-plane In-plane

left right left right left right

Obj.1

Rat 1 0.08 0.28∗ −0.20 0.06 0.22 0.27 / /

Rat 2 0.25∗ 0.36∗ −0.17 0.06 0.3∗ −0.09 0.22∗ /

Rat 3 0.18 0.57∗ −0.22 0.22 0.3∗ 0.19 0.24 0.51∗

Rat 4 0.08 0.52∗ −0.13 / 0.33∗ / / /

Rat 5 0.25∗ 0.43∗ −0.13 0.03 / / / /

Rat 6 −0.1 0.35∗ −0.04 0.09 0.19 / / /

Obj.2

Rat 1 0.48∗ 0.34∗ 0.46∗ 0.4∗ 0.26 0.54 / /

Rat 2 0.51∗ 0.32∗ 0.5∗ 0.57∗ 0.45∗ 0.39∗ 0.55∗ /

Rat 3 0.55∗ 0.37∗ 0.43∗ 0.44∗ 0.36∗ 0.55∗ 0.62∗ 0.59∗

Rat 4 0.33∗ 0.15 0.35∗ / 0.4∗ / / /

Rat 5 0.54∗ 0.26 0.43∗ 0.46∗ / / / /

Rat 6 0.41∗ 0.45∗ 0.12 0.36∗ 0.47∗ / / /

Obj.3

Rat 7 0.25 0.34∗ 0.54∗ 0.5∗ 0.33∗ 0.3 / 0.39∗

Rat 8 0.33∗ 0.46∗ 0.48∗ / 0.44∗ 0.55∗ / 0.42∗

Rat 9 0.49∗ 0.37∗ 0.57∗ 0.1 0.48∗ 0.37∗ 0.39∗ /

Obj.4

Rat 7 0.07 0.25 0.27 0.17 0.23 0.06 / 0.3∗

Rat 8 −0.33∗ 0.04 −0.15 / 0.38∗ 0.24 / 0.42∗

Rat 9 0.4∗ 0.12 0.44∗ 0.16 0.29 0.19 0.44∗ /

Pearson correlation coefficients between the saliency maps obtained for Objects 1–4 and

those obtained for a simulated ideal observer. (∗p < 0.05, permutation test).

Saliency patterns that were broadly consistent with the ones
obtained for the “average rat” were found for the ideal observer
too (compare the bottom rows of Figures 12A,B to the top rows).
For instance, in the case of Object 3, the salient region obtained
for the ideal observer also covered most of the upper lobes,
although not the tip of the right lobe (as found, instead, for the
average rat). This salient region extended to the central part of
the stimulus for all tested views (Figure 12A, bottom row), while
this was the case only of 2 out of 8 views for the average rat
(i.e., the default and the position right views; see Figure 12A,
top row). Object 4 had a large salient region in the bottom part
of the central lobe, which extended to the stimulus lower mar-
gins, giving rise to a U-shaped salient feature (see Figure 12B,
bottom row). While this pattern was quite consistent with the
overall saliency pattern observed for the average rat, in the case
of the ideal observer (but not of the average rat) the tip of the
upper-right lobe was also salient for most views.

For every object view, the extent to which average and ideal
saliency maps matched was quantified by computing the Pear-
son correlation coefficient (reported under each pair of saliency
maps in Figure 12). This coefficient was significantly higher than
expected by chance for all views of Object 3, and in 4 out of 8
cases for Object 4 (p < 0.05; permutation test; see Materials and
Methods and Alemi-Neissi et al., 2013 for details). This implies
that, similarly to what found for Stimulus Set 1 (see Figure 10

in Alemi-Neissi et al., 2013), also for Stimulus Set 2 rat recogni-
tion strategy was, on average, consistent with an optimal strategy.
That is, rats made, on average, close-to-optimal use of the dis-
criminatory information afforded by Objects 3 and 4, in spite of
their lower discriminability, as compared to Objects 1 and 2. This
was definitely the case for Object 3 (for which the correlation
was significant at all tested views). As for Object 4, the correla-
tion with the ideal saliency map was either null, or failed to reach
significance, in all those cases where the average map was highly
scattered (i.e., see the default, size, azimuth right, and position
right views shown in Figure 12B, top row).

As mentioned before, the saliency maps obtained for the ideal
observer were also compared with the saliency maps obtained
for individual rats. The result of these comparisons (i.e., Pear-
son correlation coefficients and their significance) are reported
in Table 2, for all the rats belonging to the two experimental
groups (rows) and all the views that have been tested for each
rat (columns). The highest correlation values were observed for
Object 2, which also yielded the largest fraction of significant cor-
relations (∼85%; 29/34 instances) along with Object 3 (∼85%;
17/20 instances). By comparison, ∼38 and ∼35% of the correla-
tions were significant, respectively, for Object 1 (13/34 instances)
and Object 4 (7/20 instances). This indicates that, also at the level
of individual rats, there was a good consistency with a strategy
that makes close-to-optimal use of the objects’ discriminatory
information.

At first, having observed this agreement between rat (both
average and individual) and ideal saliency maps, regardless of the
similarity of the stimulus pair the animals had to discriminate
(i.e., also for the objects belonging to Stimulus Set 2), could sound
surprising. In fact, as previously shown in Figures 5, 11, the pat-
terns of salient features obtained for Objects 3 and 4 were poorly
reproducible across views and rats, and one could wonder, given
such variability, how they could be significantly correlated with
the saliency patterns of the ideal observer. However, it should be
considered that the Pearson correlation coefficients reported in
Figure 12 and Table 2measure the similarity between patterns of
saliency map values, each taken as a whole (i.e., the patterns of
gray shades shown in Figures 4, 12), and not the precise over-
lap between those few individual saliency patches that crossed
the threshold to be considered significantly salient (i.e., the red
patches in Figures 4, 12). Therefore, the consistency between
the saliency maps obtained for the rats and the ideal observer
should be interpreted as a tendency, for rats, to exploit those
relatively large object regions that are generally more informa-
tive about object identity. However, within these regions, whether
the precise pattern of individual salient features (i.e., their loca-
tion, size, shape, etc.) was also preserved across views and rats
strongly depended on the structure and discriminability of the
target objects (as shown in the previous sections).

As previously reported for the objects of Stimulus Set 1 in
Alemi-Neissi et al. (2013), also in the case of Stimulus Set 2
the saliency map found for the view of a given object roughly
resembled the negative image of the saliency map found for the
matching view of the other object (see Figures 4, 12). Such a
“phase opponency” (or “reversed polarity”) is especially notice-
able in the case of the ideal observer (i.e., compare the bottom
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rows of Figures 12A,B), but is clearly observable also for the
saliency maps of the average rat (i.e., compare the top rows of
Figures 12A,B). To quantify this phenomenon, we computed the
Pearson correlation coefficient between saliency maps of match-
ing object views, for both the average rat and the ideal observer
(see Table 3). The correlation coefficients ranged between −0.75
and −0.93 in the case of the ideal observer and they were all sig-
nificantly lower than expected by chance (p < 0.05; permutation
test). This suggests that the optimal extraction of the discrim-
inatory information afforded by two objects naturally leads to
saliency maps with reversed polarity across matching views of
the two objects. Also in the case of the average rat, most correla-
tion coefficients were significantly lower than expected by chance
(p < 0.05; permutation test). Although, on average, their mag-
nitude was lower than for the ideal observer (−0.8 ± 0.02 ideal
vs. −0.4 ± 0.09 average rat; p < 0.05, two-tailed paired per-
mutation test), this finding further confirms that rat recognition

strategy was broadly consistent with the optimal extraction of
discriminatory object information.

Discussion

Summary
The goal of this study was to investigate the influence of objects’
structural complexity and similarity on rat recognition strategy.
As a follow-up to one of our recent studies (Alemi-Neissi et al.,
2013), we exploited the same classification image method used
there, known as the Bubbles, which has been previously applied
to human (Gosselin and Schyns, 2001; Nielsen et al., 2008),
monkey (Nielsen et al., 2008), pigeon (Gibson et al., 2005) and,
recently, rat vision studies (Vermaercke and Op de Beeck, 2012;
Alemi-Neissi et al., 2013). This approach allowed the identifi-
cation of the visual features that are critical, for rats, in order

FIGURE 12 | Critical features’ patterns obtained for the average rat

and a simulated ideal observer. Rat group average saliency maps

obtained for Objects 3 (A) and 4 (B), with highlighted significantly salient (red)

and anti-salient (cyan) features (top rows), are compared to the saliency maps

obtained for a simulated ideal observer (bottom rows). Below each object

view, the Pearson correlation coefficient between the saliency maps obtained

for the average rat and the ideal observer is reported. The significance of the

correlation was assessed by a permutation test (∗p < 0.05).

TABLE 3 | Phase opponency of the saliency maps obtained for matching views of Object 3 and 4.

Default Size Azimuth left Azimuth right Position left Position right In-plane left In-plane right

Average rat −0.27 0.11 −0.64∗ −0.51∗ −0.61∗ −0.28∗ −0.37∗ −0.73∗

Ideal observer −0.84∗ −0.75∗ −0.8∗ −0.81∗ −0.92∗ −0.93∗ −0.79∗ −0.82∗

Pearson correlation coefficients between the saliency maps obtained for matching views of Object 3 and 4 (i.e., the same maps shown in Figure 10). For both the average rat (top row)

and the ideal observer (bottom row), the significance of the correlation was assessed by a permutation test (∗p < 0.05).
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to correctly discriminate two objects, in spite of both affine
(i.e., size/position changes and in-plane rotations) and non-affine
(i.e., azimuth in-depth rotations) transformations. The compar-
ison between our previous findings (Alemi-Neissi et al., 2013),
obtained with structurally dissimilar objects (i.e., Stimulus Set 1;
see Figure 1A, left panels) and our present findings (i.e., Stimulus
Set 2; see Figure 1B, left panels) uncovered several key aspects of
rat recognition strategy.

First, when required to discriminate objects with prominent,
easily distinguishable structural parts (as in the case of Stimulus
Set 1), rats were able to effectively process these parts and use
them as markers of object identity (see Alemi-Neissi et al., 2013,
for details). This resulted in a perceptual strategy where the diag-
nostic (salient) features closely matched the structural elements
of the target objects (e.g., the central region of Object 1’s top lobe
or the tip of the lobes of Object 2; see Figure 6 in Alemi-Neissi
et al., 2013). On the other hand, rats that faced a harder discrim-
ination task (Stimulus Set 2) relied on smaller, more numerous
and more scattered object features, often failing to display a clear
match with the objects’ structural parts (see Figures 4, 6–10 for a
quantitative comparison among the two stimulus sets).

Second, for the rats tested with Stimulus Set 1, the recogni-
tion strategy was remarkably stable (i.e., view-invariant) in the
face of variation in object appearance (see Figure 6 in Alemi-
Neissi et al., 2013). This was shown by the large overlap found
(for both Object 1 and 2) between the patterns of salient features
of different views, after aligning one view back onto the other
(i.e., see the aligned overlap axis in Figure 8B of Alemi-Neissi
et al., 2013). The recognition strategy of the objects belonging
to Stimulus Set 1 was also highly reproducible across rats (see
Figure 11). On the other hand, rats tested with Stimulus Set 2 dis-
played amore variable pattern of diagnostic features across object
views (see Figures 5B–D), and a higher inter-subject variability
(see Figure 11), which are suggestive of a more view-dependent
recognition strategy. Importantly though, for both groups of rats,
no trivial, screen-centered strategy could explain rat recognition
behavior (i.e., pairs of raw and aligned overlap values lay mostly
below the diagonal not only in Figure 8B of Alemi-Neissi et al.,
2013, but also in Figure 5B of the present study).

Third, rat recognition performance was, for both groups of
rats, typically larger than chance over large extents of the tested
transformation axes, with a substantial drop that was observed
only for extreme transformation values, especially in the case of
Stimulus Set 2 (see Figure 3).

Interpretation, Implications, and Limitations of
our Findings
As mentioned in the Introduction, view-invariant theories (in
their strongest version) posit that, across changes in object view,
there should be no change in recognition performance—as long
as the diagnostic features are accessible, the response of the sys-
tem remains invariant. By comparison, view-dependent theories
hypothesize that changes in the object appearance will gener-
ally result in variation of recognition performance, since objects
are represented according to how they appeared when origi-
nally learned (for a review, see Tarr and Bülthoff, 1998; Lawson,
1999; Biederman, 2000). Since both groups of rats displayed a

modulation of recognition performance, one could argue that
rats, in general, rely on a recognition strategy that is mainly view-
dependent, and becomes view-invariant as a result of training—
as shown for monkeys and pigeons, when tested with unfamil-
iar, hard-to-discriminate objects; (Logothetis and Pauls, 1995;
Wasserman et al., 1996; Spetch et al., 2001; Spetch and Fried-
man, 2003; Nielsen et al., 2006). However, even in “highly invari-
ant” visual systems, like the human one, perfect invariance of
the recognition performance is virtually never achieved (Bieder-
man, 1987, 2000; Afraz and Cavanagh, 2008, 2009). More impor-
tantly, our classification image approach allowed going beyond
what could simply be inferred based on performances, because
it provided a direct assessment of rat perceptual strategy and its
invariance. As reported in our previous study (Alemi-Neissi et al.,
2013), the analysis of the patterns of diagnostic features showed,
for Stimulus Set 1, a consistency in “tracking” the diagnostic fea-
tures across all or most the object views the animal faced. From
this, we can infer that rats are able to actively detect and extract
discrete object features, which are relied upon regardless of the
transformations the objects may undergo. The present study sug-
gests that the crucial requirement for this ability to emerge is the
distinctiveness of the objects, in terms of their structural simi-
larity and the presence of “well affordable” object-specific fea-
tures. Similarly to what has been reported for humans (Newell,
1998; Hayward and Williams, 2000; Spetch et al., 2001; Vuong
and Tarr, 2006), rats can make use of a view-invariant strat-
egy when confronting easily discriminable objects. Conversely,
a view-dependent recognition strategy will emerge as the result
of a discrimination involving visually (and structurally) similar
objects. This appears to be the case of Stimulus Set 2, where the
spread of salient features found for both Object 3 and 4 suggests
that the rats recognized these stimuli using a novel set of features
for each view.

Taking into account the larger stability of both the recognition
performances and the patterns of diagnostic features observed
for Stimulus Set 1, as compared to Stimulus Set 2, we can con-
clude that rat recognition strategy can be more or less view-
invariant, depending on the structural similarity of the target
objects. Objects that are structurally dissimilar are recognized
by a lower number of diagnostic features, which map onto the
objects’ distinctive parts across a variety of transformation axes
and magnitudes (view-invariant strategy). Objects that are struc-
turally similar are recognized through a more variable, more
scattered and more numerous set of features (implicating that
learning at each tested view is needed; viewpoint-dependent
strategy). But view-invariant and view-dependent strategies are
not mutually exclusive. As observed for humans, “it is likely that
the visual system employs them all to some degree to achieve
object constancy” (Lawson, 1999). As for rats, this is in agree-
ment with a recent report (Tafazoli et al., 2012), demonstrating
how these animals can spontaneously (i.e., without any training)
generalize their recognition to novel object views (view-invariant
strategy), although the accuracy of the discrimination improves
when training is provided (view-dependent strategy).

It is worth mentioning that, according to modern theories
of object recognition, be they based on hierarchical feedforward
processing (see, for example, Riesenhuber and Poggio, 1999) or
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recurrent, error-driven computations (see, for example, O’Reilly
et al., 2013), the view-invariant vs. view-dependent debate may
appear outdated (Hayward, 2003). However, being concerned
with the role of learning and memory in object recognition,
and their impact on object representations at the neural level,
such a distinction still provides a rather useful theoretical frame-
work to understand the invariance problem. For instance, the
object recognition model proposed by Riesenhuber and Pog-
gio (1999) explicitly embodies both view-invariant and view-
dependent computations in the same feedforward architecture.
At the first stages of processing, iterated AND-like and OR-like
computations implement general-purpose banks of local feature
detectors, which respond to subportions of visual objects with
increasingly complex shape tuning and tolerance to size and
position changes. Instead, the upper stage of the model (corre-
sponding to monkey inferotemporal cortex) is made of “view-
tuned” units, i.e., simulated neurons that selectively respond to
different views of the objects that the model has been trained
to discriminate. Other experimental and computational studies
(DiCarlo et al., 2012; Wyatte et al., 2012; O’Reilly et al., 2013;
Tang et al., 2014) have recently highlighted the importance, in
object recognition, of coupling feedforward computations (based
on little or no re-entrant processing) with recurrent computa-
tions (based on within-area, error-driven learning). Such a cou-
pling could play a key role at the latest stages of processing,
as well as under particularly challenging viewing conditions
(e.g., when object appearance is occluded, degraded, or dra-
matically shifted from its “canonical” view, as in the case of
masking or in-depth rotation). The combined findings of our
current and previous studies (Zoccolan et al., 2009; Tafazoli
et al., 2012; Alemi-Neissi et al., 2013; Zoccolan, 2015) fit within
this theoretical and experimental framework, suggesting that rat
invariant recognition is achieved by combining the automatic tol-
erance granted by local, partially invariant feature detectors with
the fuller invariance provided by acquired, view-specific object
representations.

Finally, our data show that, even in the case of structurally
similar objects, the saliency maps underlying rat recognition
strategy partially (but often significantly) overlap with those
obtained for a simulated ideal observer engaged in the same
invariant recognition task (see Figure 12). As discussed in the

Results, this implies a tendency, for rats, to select the diagnostic
object features within those relatively large object regions that are
the most informative about object identity (although the across-
view and across-rat reproducibility of the specific patterns of
diagnostic features will strongly depend on the discriminability
of the target objects).

It is important to point out that our current study rests on
behavioral data collected from a rather small number of rats (3,
i.e., half of the animals that were tested in our previous study,
Alemi-Neissi et al., 2013), thus possibly limiting the generality of
our conclusions. This would be the case, if our results were based
on comparing group average performances (as in Figures 2A, 3).
On the contrary, the conclusions of our study mainly rest on
comparing the reproducibility of rat recognition strategy across
subjects and object views. Since many different object views were
tested and, for each view, multiple salient features were obtained,

the most crucial data analyses reported in the study (shown in
Figures 5–11) are based on tens of data points, thus allowing
an adequate statistical sample and a robust assessment of rat
recognition strategy.

Taken together, the results presented in this study suggest
that, similarly to what observed for humans, also for rats,
transformation-tolerant recognition can flexibly rely on either
view-invariant representations of distinctive object features or
view-specific object representations. Given the extraordinary
potential of the rat as a model to dissect neuronal functions
at the molecular, synaptic, and circuitry levels (Margrie et al.,
2002; Ohki et al., 2005; Lee et al., 2006; Greenberg et al., 2008;
Deisseroth, 2011; Fenno et al., 2011; Egger et al., 2012; Tye and
Deisseroth, 2012; Meyer et al., 2013), our findings suggest that
rat studies could significantly advance our understanding of the
formation and maintenance of transformation-tolerant object
representations in the visual cortex.
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