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A realistic bi-hemispheric model of
the cerebellum uncovers the purpose
of the abundant granule cells during
motor control

Ruben-Dario Pinzon-Morales and Yutaka Hirata *

Neural Cybernetics Laboratory, Department of Computer Science, Chubu University Graduate School of Engineering,
Kasugai, Japan

The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive
spatio-temporal coding of incoming sensory/motor information required by downstream
cerebellar circuits to support motor learning, motor coordination, and cognition. Here we
use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN)
to selectively enable/disable the output of GCs and evaluate the behavioral and neural
consequences during three different control scenarios. The control scenarios are a simple
direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot
(2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that
adequate control was maintained with a relatively small number of GCs (< 200) in all
the control scenarios. However, the minimum number of GCs required to successfully
govern each control plant increased with their complexity (i.e., DOFs). It was also shown
that increasing the number of GCs resulted in higher robustness against changes in
the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic
weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide
the computational power during the large repertoire of motor activities and motor plants
the cerebellum is involved with, and bring robustness against changes in the cerebellar
microcircuit (e.g., neuronal connections).

Keywords: adaptive control, artificial cerebellum, robotics, firing rate model

1. Introduction

Cerebellar granule cells (GCs) are the smallest and most numerous neurons in the central nervous
system of vertebrates (Ito, 2011). Four dendrites and a long axon that bifurcates in two parallel fibers
characterize the GCs (Ito, 2011; Billings et al., 2014). Due to this specialized morphology, theoretical
works, and computational studies have suggested that the GCs perform high dimensional lossless
sparsification of incoming information, which is required at downstream cerebellar circuits to
perform associative learning (Marr, 1969; Albus, 1971; Medina and Mauk, 2000; Schweighofer
et al,, 2001; DAngelo and Zeeuw, 2009), adaptive filtering (Fujita, 1982; Dean et al., 2010), binary
addressing (Kanerva, 1988), and motor acquisition and consolidation (Galliano et al., 2013). Yet,
reaching a consensus about the role of the abundant GCs has been hampered by outstanding
challenges of isolating, recording, and stimulating these cells. Exploratory experiments with animal
models have attempted to clarify the role of the GCs by abolishing completely or partially their
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output by blocking neurotransmitter release from all GCs (Wada
et al, 2007; Kim et al., 2009), eliminating all GCs (De Zeeuw
et al., 2004), or knocking down calcium channels from a majority
of GCs (Galliano et al., 2013). Nonetheless, these works cannot
address directly the role of the abundant GCs because they alter
the balance at the input layer of the cerebellum and compensatory
mechanisms might affect their conclusions. Thus, a different
framework is required.

Understanding the functional consequence of the abundant
GCs is not only important for deepening our knowledge of
the biological system, but also for engineering applications that
employ computational models of the cerebellum (Verschure and
Mintz, 2001; Hofstotter et al., 2002; Carrillo et al., 2008; Tanaka
et al., 2010; Garrido Alcazar et al., 2013; Yamazaki and Igarashi,
2013; Pinzon-Morales and Hirata, under review). Adequate
selection of the number of GCs could improve the ratio of energy
consumption and control performance, improve robustness, and
flexibility of the cerebellar model (Newman, 2003). Yet, there has
not been any evaluation in real world engineering applications.
Thus, we tested the role of the GCs in a real world engineering
application using our bi-hemispheric neuronal network model of
the cerebellum (biCNN) that incorporates a realistic cerebellar
network architecture and learning algorithm whose validity has
been proved in both simulation and real-world experiments
(Pinzon-Morales and Hirata, 2013, 2014a). The biCNN model
enables us to isolate the GCs, knock down their output while
maintaining the integrity of the cerebellar circuit, and evaluate
the motor performance attained during control of different
plants. Using this framework we can test the role of the numerous
GCs from an engineering point of view.

We demonstrate that the abundant number of GCs is relevant
for accomplishing adequate control performance across a diverse
set of control plants and brings robustness to the biCNN model
against changes in its initialization parameters (i.e., synaptic
weights and synaptic connections). We also show that not all the
GCs are required to govern each control plant. What is more,
the minimum number of GCs required to maintain adequate
control increases with the complexity of the control object (i.e.,
DOFs). Discussion about the relation between the number of
GCs, motor performance attained, complexity of the control
object, and robustness is presented.

2. Materials and Methods

2.1. Overview of the Bi-Hemispheric Neuronal
Network Model of the Cerebellum (the biCNN
Model)

Inspired by the neuronal circuit of the cerebellar cortex,
we have previously developed a bi-hemispheric neuronal
network model of the cerebellum (the biCNN model)
(Pinzon-Morales and Hirata, 2013, 2014a) (Figure 1A).
The biCNN model is freely available via repository (https://
bitbucket.org/rdpinzonm/the-bicnn-model)  or  at  the

model database of the International Neuroinformatics
Coordinating Facility (INCF) Japane Node, Cerebellar
Platform (https://cerebellum.neuroinf,jp, id=1441). Briefly,

the network contains the same neuron cell types and synaptic
convergence/divergence ratios reported in the cerebellar cortex
(Table 1, Figure 1B). Principally the biCNN model includes
granule cells (GCs), Golgi cells (GOs), basket and stellate cells
(BCs), and Purkinje cells (PCs) cells, cells whose physiological
and anatomical properties have been well-characterized (Ito,
2011). Nonetheless, there are other less studied cerebellar cells
that might have a role in the cerebellar algorithm such as Lugaro
cells and unipolar brush cells (Dieudonné and Dumoulin, 2000).
Synaptic connectivity includes excitatory projection from mossy
fibers (MFs) to GCs and GOs, and from GCs to BCs and GOs via
parallel fibers (PFs) of the GCs. Inhibitory feedback loop between
GCs and GOs, and BCs and GOs, and mutual inhibitory loop
between BCs and PCs (O'Donoghue et al., 1989; Dumoulin et al.,
2001; Maex and Schutter, 2005; Pinzon-Morales and Hirata,
under review) (Figure 1B). Mathematical models describing
each neuron follow classical firing rate models (Pinzon-Morales
and Hirata, 2013, under review), according to which the cell
output is computed as the weighted summation of inputs passed
through an activation function. For instance, the equation
describing the firing rate of one PC is as follows:

xpc = YprWpE-pc + YBc WBC-PC (1)

1

YpC = W —0.5 (2)
where o = 8, u = 1/2, xpc is the activity vector of all PCs before
being processed by the sigmoid activation function ypc (Equation
2) which produces the firing rates of PCs in the interval [0 1], ypr
and y pc are the firing rates of GC and BC also in the interval [0
1], and Wpp_pc and Wpc pc are the matrix of synaptic weights
between PF-PC and BC-PC. The firing rates of the PCs from the
left hemisphere are inverted (i.e., firing rate in the interval [-1
0]) and added to those from the right hemisphere to generate the
output of the biCNN model in the interval [-1 1].

The biCNN model included two networks with the same
characteristics for the left and right hemispheres of the
cerebellum. The construction of each network follows an 3D
dimensional approach (Pinzon-Morales and Hirata, 2014a)
according to which the first step is to place randomly each
neuron inside a volume of the cerebellar tissue, here represented
by a cube of edge length 100 pum (Figure 1B). Then each
neuron is connected using a nearest-neighborhood rule and
the convergence/divergence ratios of each cell type (Table 1).
For instance, for a GC cell that receives 4 different MFs and
4 different GO inputs, the procedure connects the four closest
MFs and GO cells. This procedure along with the random
allocation of the neurons inside the cube, secure the singularity
of each hemisphere while conserving the general characteristics
of the cerebellar microcircuit. Random synaptic weights (W) are
extracted from a normal distribution (x = 0.9ando = 0.1 €
[0.8, 1]) and multiplied by a normalizing constant (d) that is cell
dependent. d is determined as the inverse of the number of inputs
of the same nature (excitatory or inhibitory) of each cell (Pinzon-
Morales and Hirata, 2014a). A proportional and derivative (PD)
controller, which is a feedback controller widely used in industry
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TABLE 1 | Convergence and divergence synaptic ratio of the biCNN model.

Num. Cells Divergence Convergence

Mossy fibers (MF)* 562

Golgi (GO) 56

Granular (GC) 8192

Basket/Stellate (BC) 548

Purkinje (PC) 30

MF— GC 1:59 4:1 Solinas et al.,
2010; Ito, 2011

MF— GO 1.7 66:1 Solinas et al.,
2010; Ito, 2011

PF— GO 1:12 1639:1 Solinas et al.,
2010; Ito, 2011

GO— GC 1:586 4:1 Solinas et al.,
2010; Ito, 2011

PF— BC 1:3 411 Maex and
Schutter, 1998;
Ito, 2011

PF— PC 1:4 1024:1 o, 2011

BC— PC 1:7 110:1 Solinas et al., 2010

PC— BC 1:55 3:1 Schilling et al.,
2008

BC— GO 1:3 28:1 Dieudonné and
Dumoulin, 2000

*Number of MF inputs to the cerebellar model changes with the control plant.

and other applications, is included in tandem with the biCNN
model to provide the non-cerebellar and non-adaptive input to
the vestibular nucleus (VN) that receives the firing rate of PC
from left and right hemispheres and then produce the motor
command (Figure 1C, PD).

Inputs to the biICNN model are carried by MFs and a climbing
fiber (CF). MFs are postulated to provide desired motion signals,
efference copy of motor commands, and sensory error signals
(i.e., desired trajectory—actual trajectory) (Hirata and Highstein,
2001; Blazquez et al., 2003; Huang et al., 2013). The CF input
on the other hand, has been proposed to carry an error signal
that drives plasticity at the cerebellar cortex (Ito, 2013), specially
at synapses between PFs and PCs. The current configuration
of the biCNN model include long-term depression (LTD) and
long-term potentiation (LTP) at PF-PC synapses (Ito, 2011) as
described below:

—Yup Cf(t)ypfl- (t)
VLTp)’pfi (t)

if ¢f () > cfspont

AWpE;—pc;(t) = { otherwise

3)

where AWpr,_pc;(#) is the change in the synaptic weight between
the i-th PF and the target j-th PC, cf(t) is the CF activity, ypr,(f)
is the firing rate of the i-th PE and y,,, = 4 x 107° and
Vipp = 0.3 % 107° are the learning rates for LTD and LTP,
respectively. The threshold value cfspont = 0.05 represents the
spontaneous activity in CF that has been shown to encode non-
preferred direction of sensory error (Hirata et al., 2006, 2007;
Pinzon-Morales and Hirata, 2014a). Thus, each hemisphere is
configured to receive a CF (Figure 1A, cfijgn and cfie) carrying
information from mainly one direction of the motion of the

control object. For example in the case of the robot, the left
hemisphere receives mainly forward sensory error (encoded in
cfieft(t) > cfspont) and small backward sensory error (encoded
in cfief(t) < cfspont) (Pinzon-Morales and Hirata, 2014a).
The opposite combination applies to the right hemisphere. The
biCNN model is implemented in a Windows computer 4 x
3.33 Ghz Intel Core-i7 processor, memory: 16 GB running
LabVIEW 2013 (see Pinzon-Morales and Hirata, 2014b for
another implementation).

2.2. Control Objects
Three control objects, a brushed DC motor, a two-wheel
balancing robot, and a quadcopter are employed (Figure 2).
The 2 W brushed DC electric motor (RC-280SA, Mabuchi CO,
LTD, Japan. Figure 2A) generates a torque directly from DC
current supplied. It is a control object with a single DOF. The
motor’s shaft is interfaced with an encoder circuit (ZMP INC.,
Japan) for providing angular position information [¢(t)], and a
microcontroller board (e-nuvo CPU board, ZMP INC,, Japan) in
charge of communication with the implementation computer via
USART Serial protocol. The MF inputs to the biCNN model for
this control object are shown in Table 2. The PD controller for
this plant is a position controller with k, = 0.8 and k; = 0.01 as
PD constants, respectively. A virtual dynamical model simulation
for this motor has been included in the repository of the biCNN
model as an example (see Section 2.1 for the download links).
The two-wheel balancing robot (e-nuvo wheel, ZMP INC,
Tokyo. Figure 2B) is a 2 DOFs inverted pendulum system that
is highly unstable and widely used in control engineering for
testing control strategies (Li et al., 2013). It is equipped with a
set of sensors including a motor encoder and a gyroscope, which
provide wheel angle [¢()] and body tilt angle [0(¢)], respectively.
The robot is also equipped with a USART chip to allow serial
communication with the computer on which the biCNN model
was implemented. The motion of the robot is driven by a single
DC motor connected to its wheels. The MFs inputs carry the
signals described in Table 2. Sampling frequency for the two-
wheel balancing robot alike the DC motor is 10 ms. The PD
controller in this control object is a parallel configuration of

two controllers (body position controller: k, = —18.017 and
kq; = —2.511 and wheel position controller: k, = —0.553
and k; = —0.197) designed by following optimal settings

for automatic controllers (Ziegler and Nichols, 1942; Li et al.,
2013), so that the addition of both outputs (i.e., PD controller
output) alone can stably operate the robot during a simple task
(¢ref(t) = 7w sin(270.1¢t), where ¢,ef(t) is the desired wheel
angular position). A virtual dynamical model simulation for this
balancing robot has also been included in the biCNN model
repository as an example.

The quadcopter is a 6 DOFs system multirotor helicopter
that is lifted and propelled by four brushless DC motors. The
mathematical model describing its dynamics has been reported
somewhere else (https://github.com/dch33/Quad-Sim). The MF
inputs for this simulated quadcopter carry the signals described
in Table 2. The four motors of the quadcopter are controlled by
the action of four PD controllers corresponding to yaw, pitch,
roll, and altitude, respectively. Controlling the displacement
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FIGURE 1 | General scheme of the biCNN model and its configuration
for robot control. (A) Right and left hemispheres of the biCNN model
allocated in a 3D space. (B) Synaptic connections included in the biCNN
model. (C) Wiring of the biCNN model during motor control. BC,

Sensors (velocity, position)

basket/stellate cells; CF, climbing fiber; Exc., excitatory synapse; Inh.,
inhibitory synapse; GC, granule cell; GO, Golgi cell; MFs, mossy fibers; LTD,
long-term depression; LTP, long-term potentiation; PC, Purkinje cell; PD,
proportional and derivative controller; VN, vestibular nucleus.

2W DC Motor RC-280SA
(Mabuchi CO, LTD)

FIGURE 2 | Control objects and their control variables shown in red.
(A) Two watts direct current motor with a 1 DOF. Control variable is shaft
angular position ¢(t). (B) Two-wheel balancing robot with 2 DOFs. Control

Two-wheel balancing robot
(e-nuvo wheel, ZMP INC, Tokyo)

Quadcopter Simulation
(Virtual Reality Model)

variables are wheel angular position ¢(f) and bodly tilt angle 6(f). (C) Virtual
model simulation of a quadcopter with 6 DOFs. Control variables are pitch
0(f) and horizontal position x(t).

of the quadcopter in the X, Y, and Z plane is achieved by
changing the reference point of pitch, roll and altitude controller,
respectively. Here, we interface the biCNN model in the control
loop for pitch [6(¢)]. Parameters of the controllers can be found
in the virtual dynamical model simulation included in the biCNN
model repository.

2.3. Experimental Protocol

A control task was configured for each control object comprising
at least 100 repetitions of the desired motion. In the case of the
DC motor, the desired shaft position [¢,(f)] is a sinusoidal
motion at f = 0.5 Hz [ie, ¢(t) = msin(270.5¢)]. The
balancing robot is commanded to follow a sinusoidal wheel
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TABLE 2 | Mossy fibers for each control plant.

Object Outputs (Sensors) MFs Scaling
gain
DC motor  ¢(t): shaft ang. pos. (rad) 1- ref. shaft ang. pos. 0.1rad™!
$(t): shaft ang. vel. (rad/s)  2- ref. shaft ang. vel. 0.19 rad/s™"
3- shaft ang. pos. error 0.5rad™"
4- shaft ang. vel. error 0.07 rad/s™!
5- efference copy 1A
Balancing  ¢(t) wheel angle (rad) 1- ref. wheel ang. pos. 0.03 rad™"
Robot
&(t) wheel ang. vel. (rad/s)  2- ref. wheel ang. vel. 0.04 rad/s™1
0(t) body tilt ang. pos. (rad) 3- body tilt ang. pos. error 1 rad—1
6(t) body tilt ang. vel. (rad/s) 4- body tilt ang. vel. error 0.5 rad/s™"
5- wheel ang. pos. error 0.1 rad=!
6- wheel ang. vel. eror 0.2 rad/s ™"
7- efference copy 0.5A~"
Quadcopter x(t) hor. pos. (m) 1- ref. hor. pos. 0.05 m~1
0(t) pitch (rad) 2- ref. pitch pos. 0.5 rad™!
x(t) hor. vel. (m/s) 3- hor. pos. error 0.05 m~1
6(t) pitch vel. (rad/s) 4- pitch error 0.6 rad™!
5- hor. vel. error 0.05 m/s™!
6- pitch vel. error 0.1 rad/s™!
7- efference copy 0.3A"!

Reference (ref.), angular (ang.), velocity (vel.), horizontal (hor.), and position (pos.).
Input for all control plants is in units of electric current (A).
MFs were repeated evenly to account for the 562 inputs in the biCNN.

motion [¢ref(f) = g sin(270.25¢)] while the body tilt angle
remains constant [90° with respect to the horizontal plane,
Oref(t) = 0], whereas the desired motion for the quadcopter
is a sinusoidal horizontal (X-plane) motion with amplitude 2
m [ie, x,ef(t) = 2sin(270.2t)]. Amplitude and frequency of
the desired motions were chosen to be between 80 and 90% of
the maximum values that can be controlled for each plant in
our setup. The number of active GCs in each hemisphere of
the biCNN model was modified by knocking down the initial
GC population (4000 GCs). Twelve numbers were considered
ie., 4, 10, 20, 40, 80, 200, 400, 800, 1000, 1600, 2000, or 4000
GCs. The numbers of GOs (27), MFs (257), BCs (267), and PC
(1) in each hemisphere were kept constant. A scaling synaptic
constant (1/number of knocked down GCs) was employed to
compensate for the missing excitatory input to BCs, GOs, and
PC. Since the attained motor performance might be affected by
the initialization conditions of the biCNN model such as the
random values of the synaptic weights and the random synaptic
connections (see Section 2 for a description of the synaptic
connections), five different sets of random synaptic weights and
five tables of random synaptic connections are created to form
a set of 25 permutations of initial conditions. Each control task
was repeated 25 times for a given number of knocked down
GCs (i.e., 25 x 12 = 300 experiments per control object). The
yielded motor performance was measured cycle-by-cycle as the
root mean square error (RSE) of the desired and yielded motion.
Performance of the trained biCNN model was compared with
that of the PD controller alone using One-Way ANOVA. Box

plots are used to show statistical significance of the difference
between the untrained (cycles #5-6) and trained (cycles #90-91,
quadcopter and two-wheel balancing robot; cycles #180-181, DC
motor) biCNN models. In these figures, the box represents the
central 50% of the data. Its lower and upper boundary lines are
at the 25 and 75% quantile of the data, and the central line shows
the median of the data (N = 25 experiments x 2 cycles = 50 data
points).

3. Results

We divided the experimental results into two parts with the
purpose of studying the consequences of the number of GCs
in the biCNN model during motor control. First, we show the
behavioral consequences in terms of motor performance (see
Section 2.3 for details about the experimental protocol), and
second, we show the neural consequences at PC firing rates,
PF-PC synaptic weights, and inputs to the GCs.

3.1. Behavioral Consequences of the Number of
GCs

Figure 3A shows the control performance of the DC motor (see
Section 2.2 for detailed description of the control objects) in
terms of the root mean square error (RSE) of the shaft angular
position [¢(¢)] with 4 and 4000 GCs (blue and red lines) in
each hemisphere of the biCNN model as two examples of the
GC size. ¢(t) is depicted with the DC motor in Figure 2A.
Average RSE of ¢(t) (N = 25) is shown in bold blue and
red lines. The RSE of ¢(t) shows that the biCNN model with
4000 GCs adapted and improved the motor performance (RSE
value was reduced on average 0.07 rad, 33.2% of the initial
error value 0.20 rad), meaning that the PC learned the adequate
motor commands to move the shaft of the DC motor to follow
the desired motion. On the contrary, using 4 GCs produced
highly variable performance and small improvement. Box plots
in Figure 3B summarize the motor performance for the 12
sizes of GCs considered (see Section 2.3 for details about the
experimental protocol) and for reference the performance when
the biCNN model was disabled (i.e., DC motor controlled only
by the PD) is shown as “PD.” Gray boxes were calculated at the
beginning (cycles #5-6, labeled as “untrained”) and color boxes at
the end (cycles #180-181, labeled as “trained”) of the experiment
from the 25 different initialization conditions of the biCNN
model. This result demonstrates that control performance of a
DC motor with 1 DOF is improved by using the biICNN model in
comparison with a PD controller alone (multiple comparisons,
p < 0.05 for all sizes excepting 4, 20, 40, and 80 GCs). The
best performance was produced with 1000 GCs (average RSE of
¢(t) was reduced to 0.11 rad, 41.5% of the initial error value
0.25 rad). Using 40 or less GCs resulted in notably irregular
performance and little improvement. Figure 3B also shows that
increasing the number of GCs was accompanied by a reduction
in the standard deviation of the RSE (e.g., with 80 and 1000
GCs the standard deviation of RSE was 0.14 rad and 0.041
rad, respectively) caused by changing the initial conditions.
Therefore, increasing the number of GCs in the biCNN model
during control of a single DOF system improves performance
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¢(t) when using 4 GCs (blue lines) and 4000 GCs (red lines) per
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and the end (cycles #180-181, color boxes labeled as trained) of the
experiments. Performance without the biCNN model (i.e., DC motor
controlled only by the PD) is shown for reference. Asterisks show
significant test (o < 0.05, One-Way ANOVA) between the PD and the
trained biCNN model. (C) Yielded (Y-axis) vs. desired (X-axis) shaft angle
position [¢(f)] (rotated —45°. Axes shown for reference).

and reduces the variability due to changes in the initialization
conditions.

Figure 3C shows a XY-plane constructed by plotting the
yielded [¢(t)] against the desired [qbref(t)] shaft position rotated
by 45° (axis included for reference). Panels C1-C3, which
correspond to the cycles shown in Figure 3A with equal labels,
show the behavioral effects on the yielded shaft motion when
4 (blue lines) and 4000 (red lines) GCs were used. Four GCs
resulted in trajectories that diverged from the ideal trajectory
(Figure 3C gray lines) both in the positive (clockwise) and in
the negative (counterclockwise) rotation of the shaft (shown in
Figure 3C). On the contrary, the trajectories generated by using
4000 GCs progressively improved, especially in the clockwise
direction.

The next experiment consisted in verifying the behavioral
consequences observed in a simple 1 DOF system with a more
challenging control plant. For this purpose, the biCNN model
is used for controlling a two-wheel balancing robot (Figure 2B),
which is a system with 2 DOFs. Figure 4A, in the same format
as Figure 3A, shows the control performance attained in terms
of RSE of wheel angular position [¢(¢)] with 40 and 4000 GCs
(blue and red lines). In this control scenario, using 4 GCs and
10 GCs resulted in the robot falling in 15 out of 25 and 5 out
of 25 repetitions, respectively. The control performances attained
with 40 and 4000 GCs look alike except for the lower variability
of the RSE of ¢ () achieved with 4000 GCs. This figure shows the
adaptation capability of the biCNN model and the improvement
in motor performance during control of a system with 2
DOFs. Similar to the previous control scenario, these results
evidence that the PCs learned the adequate motor commands
to move the two-wheel balancing robot to follow the desired
motion.

Figure 4B, in the same format as Figure 3B, summarizes
the motor performance for the 12 sizes of GCs considered.
This figure shows the improvement in motor performance by
using the biCNN model (untrained and trained performance,
multiple comparisons, p < 0.05). In average the RSE was
reduced by 0.5 rad or 45.5% of the initial error value of 1.1 rad.
Little improvement in average motor performance was achieved
beyond a certain number of GCs (80-200 GCs, Figure 4B
color boxes). Nonetheless, increasing the number of GCs was
accompanied by a reduction in the standard deviation of the
RSE (error bars), especially during the early cycles. The biCNN
model always outperformed the PD (shown as “PD” in Figure 4B
in comparison with color boxes). Figure 4C in the same format
as Figure 3C, presents the yielded wheel [¢(t)] motions when
40 (blue lines) and 4000 (red lines) GCs were used. Panel C1
shows that the wheel position trajectories during the beginning
cycles were different for 40 and 4000 GCs. With 4000 GCs,
the yielded wheel position presented relatively large deviation
toward negative values, which corresponds to the backward
motion of the two-wheel balancing robot. We have studied the
asymmetry between forward and backward motion in the two-
wheel balancing robot in our previous work (Pinzon-Morales and
Hirata, 2014a) to produce asymmetrical adaptation in the biCNN
model as in the real cerebellum. As the experiment progressed,
the biCNN model evolved and the two-wheel balancing robot
gradually approached to the ideal trajectory (gray line) regardless
of the number of GCs (panel C3).

Thus, far we have shown the behavioral consequences of the
number of GCs in the biCNN during control of a 1 DOF and
a 2 DOFs real world systems. Next we evaluate the behavioral
consequences in a simulated model with 6 DOFs (Figure 2C).
Figure 5A, in the same format as Figure 3A, shows the control
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performance in terms of RSE of x(#) when 200 and 4000 GCs
(blue and red lines) during control of the simulated quadcopter.
In this control scenario, using less than 200 GCs resulted in
convergence errors happening during the simulation. Similar to
the control scenarios in real world, the biCNN model increased
the control performance (average improvement of 0.02 m, 15% of
the initial value 0.2 m) and reduced the variability [i.e., standard
deviation of RSE of x(t)] in the yielded motion of the 6 DOFs
system. The performance with the quadcopter simulation also

shows that the biCNN model produced a RSE value at cycles
around #20 lower than the converged value at the end of the
experiment. This behavior was observed with more than 1000
GCs and only during simulation. In real world robot control
the biCNN model consistently converged to the lowest RSE
value attained during the experiments. This result suggests
that noiseless inputs impact the learning in the biCNN model,
whereas in real world robot experiments the noisy inputs aim the
learning convergence, as reported in other feedforward neural
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FIGURE 4 | Comparison of control performance with the number of
GCs during control of the two-wheel balancing robot in the same
format as Figure 3. (A) Raw and average control performance in terms of
RSE of ¢(t) when using 40 GCs (blue lines) and 4000 GCs (red lines) per
hemisphere in the biCNN model. (B) Box plots showing control performance
(N = 50) vs. the number of GCs in the biICNN model at the beginning (cycles
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deviation caused by the initialization conditions. Asterisks show significant
test (p < 0.05, One-Way ANOVA) between the PD and the trained biCNN
model. (C) Yielded (Y-axis) vs. desired (X-axis) wheel angle position [¢(f)]
(rotated —45°. Axes shown for reference).
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FIGURE 5 | Comparison of control performance with the number of
GCs during control of the quadcopter in simulation in the same format
as Figure 3. (A) Raw and average control performance in terms of RSE of ¢(t)
when using 200 GCs (blue lines) and 4000 GCs (red lines) per hemisphere in

the biCNN model. (B) Box plots showing control performance (N = 50) vs. the
number of GCs in the biCNN model at the beginning (cycles #5-6, gray boxes
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trained) of the experiments. Error bars show the standard deviation caused by
the initialization conditions. Asterisks show significant test (p < 0.05,
One-Way ANOVA) between the PD and the trained biCNN model. (C) Hover

plane (z = 3 mt) of the quadcopter showing desired (gray) and yielded motion
(blue and red lines).
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networks (Jim et al., 1996). Figure 5B, in the same format as
Figure 3B, summarizes the motor performance for the 12 sizes
of GCs considered. The biCNN model with 200 GCs or more
outperformed the control performance achieved by using only
the PD controller (multiple comparisons, p< 0.05). Figure 5C
shows the XY-plane in which the quadcopter hovers. The desired
trajectory is shown in gray and the yielded motion with 200
(blue lines) and 4000 (red lines) GCs are shown. This result
shows that increasing the number of GCs was accompanied by
reduced displacement in the y-axis (panel C1 in comparison with
panel C3) away from the ideal trajectory (Figure 5C gray lines).
Therefore, in this simulated system with 6 DOFs larger numbers
of GCs in the biCNN model increase the control performance
and reduce variability caused by the initial conditions as in the
real world control objects tested above.

We have shown in Figures 2B, 3B, 4B that the motor
performance is affected by the number of GCs and also by the
initial conditions. The initial conditions caused large variations
in the control performance when using small numbers of GCs (<
1000 GCs). There are two initial conditions in the biCNN model
responsible for this variation, namely, synaptic weights and
synaptic connections. Here, we evaluate the contribution of each
initial condition to the overall variability in motor performance
during control of the two-wheel balancing robot (variability with
the DC motor and the quadcopter showed similar results). The
300 experiments were separated into 5 groups (referred to as Net
#1-5) of 60 experiments each. The 60 experiments belonging to
a given group share the same synaptic connections but differ in
the number of GCs and set of random initial synaptic weights
(12 x 5 sets of synaptic weights = 60, 60 x5Nets = 300
experiments). Figure 6 shows the average (bars) and standard
deviation (error bars) of the RSE of ¢(¢) for each Net and number
of GCs. This figure shows that three (Net #2, 3, and 4) out of
five groups with 4 GCs failed to control the two-wheel balancing
robot. Similarly, with 10 GCs Net #3 failed to control the robot.
Figure 6 shows that increasing the number of GCs reduced the
variability caused by changing the synaptic connections (average
RSE, i.e., difference between bars height) and to a lesser degree
the variability caused by the initial synaptic weights (standard

deviation of RSE: error bars). Therefore, the synaptic connections
produced the major part of the variability of the control
performance with small numbers of GCs (< 800). When the
biCNN model included more than 1000 GCs disregarding of the
control object, the variability due to both initial conditions was
compensated.

3.2. Neural Consequences of the Number of GCs
Up to now we have investigated the behavioral consequences
of the number of GCs in the biCNN model. In this section we
evaluate the neural consequences, namely, PC firing rates, PF-
PC synaptic weights, and the MF and GO inputs to GCs. The
particular results for the two-wheel balancing robot are shown
here. Results with the DC motor and quadcopter are presented
in Supplementary Figures 1, 2, which followed similar trends
to those of the two-wheel balancing robot. First, we studied the
effects in the firing rate of the PCs. Figure 7 shows the firing rate
of the PCs in the left (PCy) and right (PCRr) hemisphere, and their
sum (PCgr41), which corresponds to the cerebellar input to the
VN with 4, 20, 800, and 4000 GCs. For the sake of comparison
this figure presents five cycles aligned and superimposed at the
beginning (cycles #5-10) and the end (cycles #90-95) of the
experiment. Comparison of the firing rates evidences a change
in the cerebellar input to the VN (i.e., PCr41) caused by the
number of GCs. When fewer (< 80) GCs were used, the default
firing rates of PCy, and PCp at the beginning of the experiment
did not cancel each other (Figure 7, 4 and 20 GCs black lines
labeled as PCg41), contrary to the case when more than 200
GCs were used. This means that the cerebellar input to the
VN was carrying a default modulation in its firing rate with
less than 200 GCs. Such a modulation was not learned and
probably unrelated to the control task. On the contrary, with
more than 200 GCs, PCr,1, did not present any modulation,
meaning that the cerebellar input to the VN was neutral to the
control task. The default information in PCgr,1, (Figure 7 red
traces) endured to the last cycles of the experiments. With 4 or
20 GCs the evolved PCryy, presented similar shape as the firing
rate in the early training (i.e., a bias information). With 800 or
4000 the evolved PCg,1, corresponded to the motor command
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@ . et
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FIGURE 6 | Control performance and variability due to the initial conditions. Bars represent a unique synaptic connections table labeled as Net #1-#5,
whereas the error bars show the standard deviation due to the synaptic weights (N = 5).
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required during the control of the two-wheel balancing robot
(Supplementary Figure 1 shows similar results with the DC
motor and the quadcopter).

Next we evaluate the PF-PC synapses, which are the sole
plastic loci in the current configuration of the biCNN model. To
observe additional neural changes, the desired wheel motion (see
Section 2.3 for more details about the experimental protocol) was
changed at cycle #50 to a more difficult motion corresponding

to a sum of sines (¢)mf(t) = msin(270.2t) + sin(270.7¢),
Oref(t) = 0) and left for 50 more cycles. The sum of sines is
a much more difficult motion for the robot. In fact, disabling
the biCNN model output (i.e., robot controlled only by the PD)
completely abolished the control of the robot. We analyzed the
synaptic weights between GCs and PC (Wpg._pc) in search of extra
insights into the role of the GCs (Figure 8A with 1000 GCs in
the right hemisphere; other GCs and left hemisphere presented

PC firing Rate

FIGURE 7 | Firing rate of the PCs in each hemisphere (PC, and PCR)
and their sum (i.e., input to the VN, labeled as PCr,| ) when the
biCNN model contained 4, 20, 800 and 4000 CGs cells per

GCs = 800

GCs = 4000

hemisphere. Firing rate at the beginning (black traces, cycles #5-10) and
end (red traces, cycles #90-95) of the experiment is shown labeled as
untraining and trained, respectively.
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FIGURE 8 | (A) GCs that share the same types of MFs inputs of the GC that
achieved the 4th largest Wpg_pg. Numbers in red corresponds to the GCs
number in the y-axis in (C). (B) The four MFs inputs of the 14th GCs with
largest Wpg_pg. The color indicates a different type of MF. (C) GO inputs of
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those GCs that have the same MFs inputs as the 4th GCs with largest
Whpe_pe. (D) Behavior of the Wpg_pr of three representative GCs when the
random initial weight was changed and the connectivity table remained the
same (N = 5).
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similar behavior). During the first 50 cycles corresponding to
the single sinusoidal task, the PC-PF synapses diverged from
the initial value by action of LTD (48.6% of GCs) and LTP
(51.4% of GCs). Those GCs that carried relevant information to
reduce the error signal in the CF input had their synaptic weight
presumably increased, whereas those not relevant to reduce the
error had their weight unchanged or decreased. Interestingly,
at cycle #50 when the desired motion was changed, some GCs
that had their synaptic weight decreased started to be potentiated
(10.3%) and others further depressed (in total 75.1%). Similarly,
some of the GCs that presented large synaptic weights had their
weights decreased (34.0%) or more potentiated (in total 24.9%)
(Supplementary Figure 2 shows similar results with different
number of GCs). To discard the effect of the random initial
synaptic weight in this result, Figure 8D shows the five different
initial synaptic weights belonging to three representative GCs
sharing the same synaptic connectivity (i.e., same Net). This
figure demonstrates that despite the random initial values the
global behavior of the synaptic weights follows a similar trend.
Next we investigated the MF and GO inputs to the GCs that
had their Wpg_pc synaptic weight preferably potentiated (referred
to here as “best GCs”) during control of the two-wheel balancing
robot because those GCs are presumably best suitable for the
control task. Once the best GCs were identified based on their
evolved Wpp.pc synaptic weight, we analyzed their patterns of
MF inputs and asked if those patterns are exclusively presented in
the best GCs. Such a relationship would indicate that a particular
pattern of MF inputs is well-suited for the control task. The GCs
were sorted from largest to smallest Wpp.pc synaptic value at
cycle #50. Each GC makes synapses with the four closest MFs in
the 3D cube of cerebellar cortex in the biICNN model (see Section
2 for details about the network construction), and thus, each GC
has a random combination of MFs inputs. Figure 8B shows the
four MF inputs of the 14 best GCs (i.e., 14 largest Wpg.pc) found,
and the seven different types of MFs derived from the two-wheel
balancing robot (see Section 2.2 for a description of the MFs for
the current setup) coded by colors. The color matrix suggests that
each of the 14 best GCs have a unique pattern of MF inputs.
For instance, the GC with the 4th largest Wpg_pc receives MF
inputs carrying desired wheel angle [dark blue, ¢, (t)], wheel angle
error [yellow, ¢.(t)], and two MFs carrying efference copy [dark
red, EC(#)]. However, this pattern of MF inputs is not unique
to the 4th best GC. Figure 8A shows in red the Wpg_pc of all
the GCs (13 out of 1000) that share the same pattern of MF
inputs as the 4th best GC. It can be observed that some GCs were
depressed and others were potentiated during the initial 50 cycles
of the experiment. Therefore, the MFs inputs are not the only
discriminant characteristic of those GCs preferably potentiated.
The only option remaining to determine the convergent value
of Wpr.pc is the GO inputs to the GCs. Each GC receives four
GO inputs connected in the same fashion as the MF inputs (i.e.,
the fourth closest GOs). Figure 8C shows the four GO inputs
(out of 27 available) for each of the GCs that share the same
MF inputs as the best 4th GC. The order of the GCs follows the
numeration shown in red in Figure 8A. This figure shows that
each of the 13 GCs sharing the same MFs has different GO inputs,
and therefore, each GC is processing a unique combination of

inputs that yielded the different Wpg.pc values based upon the
relevance of each GCs to the control task.

4. Discussion

We have investigated the role of the abundant GCs in a bi-
hemispheric neural network (biCNN) model of the cerebellum
compatible with cerebellar cortex anatomy and physiology
during both real-world and simulated engineering applications.
The biCNN model allows us to knock down the output of the
GCs, preserving the integrity of the cerebellar microcircuit. It
also allows us to observe the behavioral and neural consequences
during control of different control objects differing in their
degrees of freedom (DOFs). We considered a direct current
motor with 1 DOE, an unstable two-wheel balancing robot
with 2 DOFs, and a simulated model of a quadcopter with 6
DQFs. In this context the biCNN model presented a convenient
framework to assess the role of the abundant GCs. We showed
that all the control objects can be successfully controlled with
a small number of GCs that depends upon the complexity of
the control object. Further increase of the number of active GCs
reduces the variability of control performance due to changes
in the initialization parameters of the biCNN model. Hence, we
suggest that the abundant GCs in the cerebellar cortex bring
robustness against changes in the cerebellar microcircuit (e.g.,
neuronal connections), and as previously suggested, they provide
the storage and computational power required for the PCs during
the large repertoire of motor commands and motor plants the
cerebellum is involved with. Below we discuss the essential role
of GCs and we compare the biCNN model with other models of
the cerebellum.

4.1. Essential Role of the GCs

GCs are small, densely packed, and have a unique morphology
with four dendrites and an axon that bifurcates in two parallel
fibers. This is a set of remarkable features that suggest GCs
have a high input sensitivity required for processing incoming
information (Marr, 1969; Albus, 1971; Medina and Mauk, 2000;
DAngelo and Zeeuw, 2009; Billings et al., 2014). There has been
a popular theory proposing that GCs transform the incoming
information into a higher dimensional, sparse representation
(Marr, 1969; Porrill and Dean, 2007; Ito, 2011), which allows the
downstream cerebellar circuits to perform associative learning
(Marr, 1969; Albus, 1971; Medina and Mauk, 2000; Schweighofer
etal., 2001; DAngelo and Zeeuw, 2009), adaptive filtering (Fujita,
1982; Dean et al., 2010), and binary addressing (Kanerva, 1988).
Furthermore, the limited number of input synaptic connections
(i.e., four dendrites) allows optimal lossless space encoding
(Billings et al., 2014). A consequence that follows is that not
all the GCs are required for a particular motor task, since only
a fraction of the population is active at any time (i.e., sparse
representation). Computational and experimental evidence have
confirmed this premise. Schweighofer’s model that implements
unsupervised learning of GCs sparse coding showed that basic
motor performance can be normal despite a small number of GCs
(Schweighofer et al., 2001). Likewise, behavioral experiments
with mutant mice with impaired GC output showed that motor
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performance during different motor tasks was intact (Galliano
et al, 2013). In line with this evidence, the results of our
behavioral experiments with both real world and simulated
control objects showed that only a fraction of the GCs population
is required for performing successfully a specific control task (DC
motor, 10 GCs Figure 3A; two-wheel balancing robot, 40 GCs
Figure 4A; quadcopter, 200 GCs Figure 5A). Our experiments
further showed that increasing the number of GCs reduces the
variability in the results caused by changing the initialization
synaptic weights and the synaptic connections (Figure 6). This
suggests that the abundant number of GCs brings robustness to
the cerebellar circuit in two-ways; first, a large number of GCs
mean that a vast repertoire of input patterns and output control
objects can be adequately coordinated, and second, in the case
of a structural reconfiguration (e.g., injuries, aging) the integrity
of the cerebellar circuit and its functions can be preserved.
From an engineering point of view, using a large number of
GCs brought flexibility and robustness to the biCNN model as
a controller because different types of control objects could be
controlled. For instance, given a biCNN model with 200 GCs, a
quadcopter, or a two-wheel balancing robot, or a DC motor could
be adequately controlled. However, if the control task is fixed, the
number of GCs can be reduced to find a compromise between
the control performance and the energy/hardware requirements
of the biCNN model. We hypothesize that increasing the
number of DOFs of the control object would be accompanied
by an increase of the minimum number of GCs needed to
adequately control the object. Also, if the complexity of the
control task is increased then the number of GCs that need to be
recruited to produce the adequate motor command is bound to
increase. To test this hypothesis and draw the exact relationship,
systematic evaluation on the performance of the biCNN model
with a variate set of control objects is required in a future
study.

Our results are also in line with the prediction that the loop
formed by the feedback and feedforward pathways between GC-
GO, and MFs-GO-GC, respectively, support the sparsification
of the incoming information at the GCs (Porrill and Dean,
2007). We found that the pattern of MF inputs of the GCs
preferably potentiated during the control tasks did not provide
enough features to discriminate the GCs. However, when we
included in the classification the patterns of GO inputs to
those GCs it was possible to identify unequivocally each GC.
Therefore, the role carried out by the GCs is accentuated by
the inhibition from GO in our biCNN model as in the real
cerebellum.

4.2. Comparison with Other Models

Computational models of the cerebellum and their successful
application in engineering have extensively been reported.
Moreover, applications in robotic setups are also prominent
and include control of the eye plant (Kettner et al, 1997),
control of pneumatic muscles (Lenz et al., 2009), control of
robotic arms (Kawato and Gomi, 1992; Eskiizmirliler et al.,
2002; Garrido Alcazar et al., 2013), control of mobile robots
(Verschure and Mintz, 2001; Hofstotter et al, 2002), and
control of inverted pendulum systems (Ruan and Chen, 2011;
Pinzon-Morales and Hirata, under review). The biCNN model

has been employed previously to reproduce asymmetrical
motor learning (Pinzon-Morales and Hirata, 2014a). The
biCNN model is compatible with other models regarding the
anatomical description of the cerebellar cortex (Solinas et al.,
2010), employs a 3D approach for construction of the network
connections following biological densities of neurons (Solinas
et al., 2010), and includes a biologically plausible learning
rule (Tto, 1998). We have also shown that the biCNN model
is suitable for implementations using real-time, stand alone
devices (Pinzon-Morales and Hirata, 2014b). In contrast to
spiking neuron models of the cerebellum (Hofstotter et al.,
2002; Garrido Alcazar et al., 2013; Yamazaki and Igarashi, 2013),
due to the level of abstraction in our biCNN model (i.e., firing
rate neuron models), spike patterns and temporal or spatial
effects were not possible to evaluate. This would require the
construction of a cerebellar network with spiking neuronal
models that could endanger the real-time real-world application
in control engineering. Finally, the biCNN model includes
plasticity at synapses between GCs and PCs. However, other
sites of plasticity in the cerebellum and their involvement in
motor learning have been argued (McElvain et al.,, 2010; Gao
et al., 2012; Garrido Alcazar et al., 2013), such as the synapses
between molecular layer interneurons and PCs. Including
other sites of plasticity remains in a future improvement of
the biCNN model. The biCNN model is freely available via
repository (https://bitbucket.org/rdpinzonm/the-bicnn-model)
or at the model database of the International Neuroinformatics
Coordinating Facility (INCF) Japane Node, Cerebellar Platform
(http://cerebellum.neuroinf.jp, id=1441).

4.3. Experiment Suggested by the Model

Our results suggest an interesting prediction that could be tested
experimentally: GOs accentuate the transformation of incoming
information from MFs at GCs. Testing this hypothesis would
require precise control over the output of the GOs, so that GO
output can be knocked down while preserving the integrity of
the other cerebellar cells. Manipulation of ion channel expression
in GO membranes as shown in GCs (Galliano et al., 2013) is
an interesting approach to follow. Once the output of GOs is
under control, a set of simple and complex motor tasks such
as gain and phase modulation of the vistibuloocular reflex can
be assembled to assess the effects of reduced GO numbers on
motor performance and motor memory consolidation. Results
with our model predict that the motor impairment would
be higher than that produced by knocking down the output
of GCs.
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Supplementary Figure S1 | (A) Firing rate of the PCs in each hemisphere (PC|_
and PCR) and their sum (i.e., input to the VN, labeled as PCgr, ) when the biCNN
model contained 4, 40, 1000, and 4000 CGs cells per hemisphere during control
of the DC motor. Firing rate at the beginning (black traces) and end (red traces) of
the experiment is shown labeled as Early training and Trained, respectively. (B)
Firing rate of the cerebellar input to the VN, labeled as PCr,| when the biCNN
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