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Commissural neurons project across the midline at all levels of the central nervous
system (CNS), providing bilateral communication critical for the coordination of motor
activity and sensory perception. Midline crossing at the spinal ventral midline has been
extensively studied and has revealed that multiple developmental lineages contribute
to this commissural neuron population. Ventral midline crossing occurs in a manner
dependent on Robo3 regulation of Robo/Slit signaling and the ventral commissure is
absent in the spinal cord and hindbrain of Robo3 mutants. Midline crossing in the spinal
cord is not limited to the ventral midline, however. While prior anatomical studies provide
evidence that commissural axons also cross the midline dorsally, little is known of the
genetic and molecular properties of dorsally-crossing neurons or of the mechanisms
that regulate dorsal midline crossing. In this study, we describe a commissural neuron
population that crosses the spinal dorsal midline during the last quarter of embryogenesis
in discrete fiber bundles present throughout the rostrocaudal extent of the spinal
cord. Using immunohistochemistry, neurotracing, and mouse genetics, we show that
this commissural neuron population includes spinal inhibitory neurons and sensory
nociceptors. While the floor plate and roof plate are dispensable for dorsal midline
crossing, we show that this population depends on Robo/Slit signaling yet crosses
the dorsal midline in a Robo3-independent manner. The dorsally-crossing commissural
neuron population we describe suggests a substrate circuitry for pain processing in the
dorsal spinal cord.

Keywords: commissural neuron circuitry, spinal cord, dorsal midline, midline crossing, Robo1, Robo2, Robo3,
axon guidance

Introduction

Bilateral neuronal communication is present at all levels of the central nervous system (CNS)
and underlies a diverse array of neuronal functions, including the coordination of motor activity
(Butt and Kiehn, 2003; Mueller et al., 2009), sensory perception (Bermingham et al., 2001; Li and
Ebner, 2006) and interhemispheric cortical processing (Bloom and Hynd, 2005). In the spinal
cord, studies of bilateral communication have focused largely on the ventral horn, where genetically
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identified commissural neuron populations cross at the ventral
midline and provide the left-right coordination of motor activity
essential for locomotion (Lanuza et al., 2004; Zhang et al.,
2008). The axon guidance mechanisms that coordinate ventral
midline crossing have been studied extensively. This work has
identified roles for attractive and repulsive guidance cues, as
well as for the regulation of commissural axon responsiveness
to these cues (Tessier-Lavigne and Goodman, 1996; Dickson and
Zou, 2010). Anatomical studies have demonstrated commissural
projections that also cross the dorsal midline, but less is known
regarding the origins and molecular identities of dorsally-
crossing commissural neurons (DCNs) or the guidance cues that
control dorsal midline crossing.

Ramón y Cajal (1995) provided some of the earliest evidence
of axons crossing the dorsal midline, demonstrating that these
axons originate within the dorsolateral region of the spinal
cord and cross the dorsal midline in three distinct bundles
distributed between the ventral aspect of the dorsal funiculus
and the central canal. A more recent study of the embryonic rat
spinal cord similarly reported three distinct bundles of fibers at
the dorsal midline (Orlino et al., 2000). Dextran neutrotracing
in the adult rat also identified a neuronal population whose
cell bodies are restricted to the dorsolateral spinal cord and
project to the same region in the contralateral dorsal horn,
with terminals expressing synaptic proteins associated with
inhibitory neurons (Petkó and Antal, 2000; Petkó et al., 2004).
While these data support a CNS origin for some DCNs,
multiple neurotracing studies in the embryonic and postnatal
rat have demonstrated that sensory fibers also cross the dorsal
midline (Smith, 1983; Snider et al., 1992; Mirnics and Koerber,
1995).

Cytochemical studies of the spinal cord following unilateral
nerve manipulations also suggest bilateral connectivity in
the dorsal spinal cord. Numerous studies in rats have
shown that unilateral manipulations of peripheral nerves
result in contralateral changes in gene expression in the
dorsal horn (Koltzenburg et al., 1999). These changes include
decreased gamma-aminobutyric acid (GABA) and reduced
expression of the GABA transporter GAT-1 (Ibuki et al.,
1997; Miletic et al., 2003), supporting the presence of
inhibitory DCNs, and also include increases in sensory
neuropeptide expression (Zhang et al., 1996), supporting the
contribution of sensory neuronal populations. While sensory
neuron neuropeptide expression is variably distributed among
sensory neurons, studies comparing conduction velocity and
neuropeptide immunoreactivity suggest that the neuropeptides
may be preferentially expressed in C and Aδ fibers, which
function in nociception and mechanosensation (Lawson, 1995;
Lawson et al., 1997). Electrophysiological studies also provide
evidence of bilateral dorsal spinal cord connectivity in pain
pathways. In the decerebrate spinal rat, the activity of dorsal
horn neurons responsive to nociceptive stimuli was found to
be depressed by noxious stimuli applied to the contralateral
limb and tail, indicating a bilateral connectivity supported
by spinal commissural neurons or a direct sensory relay of
the nociceptive response (Fitzgerald, 1982). However, while
these studies hint at the properties of bilateral connectivity

within the dorsal spinal cord, the molecular and genetic
identities of DCNs remain unclear, and our understanding
of the development of this bilateral connectivity remains
limited.

Mouse genetics has revealed the developmental lineages and
axon guidance mechanisms used by commissural neurons that
cross at the ventral midline, supporting the use of mice for
the study of the developmental and molecular properties of
the DCN population (Kaprielian et al., 2000; Dickson and
Zou, 2010). However, evidence of dorsal midline crossing
in the mouse spinal cord has been primarily limited to
sensory neuron populations that have been shown to project
contralaterally during later stages of development (Ozaki and
Snider, 1997), leaving contributions from spinal populations
unknown. Further, while commissural axon navigation of the
ventral midline has been extensively studied, little is known
regarding this critical developmental process at the dorsal
midline.

In the spinal cord and hindbrain, attractive and repulsive
guidance cues derived from the floor plate direct commissural
axons across the ventral midline (Tessier-Lavigne and Goodman,
1996). Commissural axons are attracted to the ventral midline
by the attractive guidance cue Netrin-1 (Kennedy et al., 1994;
Serafini et al., 1994, 1996; Keino-Masu et al., 1996) and are
then expelled to enter the contralateral CNS by repulsive cues
belonging to the Slit family (Brose et al., 1999), which bind
the Robo receptors Robo1 and Robo2 (Long et al., 2004). In
the contralateral spinal cord, Robo1 and Robo2 have been
shown to function in the sorting of post-crossing commissural
axons to the ventral and lateral funiculi (Jaworski et al.,
2010). Robo1 and Robo2 protein are also expressed on pre-
crossing commissural axons (Long et al., 2004; Sabatier et al.,
2004), requiring regulation of commissural axon responsiveness
to Slit-mediated repulsion to permit entering and crossing
at the ventral midline. Alternative splicing of the divergent
Robo family member Robo3 has been shown to produce
two spatially segregated isoforms: Robo3.1, which suppresses
Slit-mediated repulsion of pre-crossing commissural axons,
and Robo3.2, which favors Slit repulsion of post-crossing
commissural axons and prevents inappropriate recrossing of
the midline (Chen et al., 2008). Robo3 loss of function, which
deletes the activity of both Robo3 isoforms, has been shown
to prevent crossing at the ventral midline, supporting the
view that Robo3 is required for commissure formation in
the spinal cord and hindbrain (Marillat et al., 2004; Sabatier
et al., 2004; Chen et al., 2008). Whether similar mechanisms
regulate crossing at the dorsal midline, however, remains
unclear.

Here, we report a commissural neuron population in the
developing mouse spinal cord that crosses at the dorsal
midline. Using mouse genetics, we find that this population
of DCNs is comprised of spinal inhibitory neurons arising
from a dorsal neuronal lineage and sensory nociceptors.
Similar to ventrally-crossing commissural neurons, we find
that DCNs require Robo1/Robo2 and Slit signaling to traverse
the midline; however, they cross the midline independently of
Robo3.
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Materials and Methods

Mouse Strains
The Ptf1a null allele (Ptf1aNull) was generated from a Ptf1a
floxed allele (Ptf1aFlox), which will be described in full detail
in a future publication. Ptf1aFlox was constructed such that
loxP sites were located upstream and downstream of the gene.
Crossing Ptf1aFlox to a germline Cre-driver (E2ACre; Lakso et al.,
1996) caused the deletion of the entire Ptf1a gene including all
protein-coding sequences. Please contact C.V.E. Wright for full
details.

The following additional mouse strains were used in this
study: Ptf1aCre/+ (Kawaguchi et al., 2002), Ptf1aCreER/+(Pan
et al., 2013), AdvillinCre/+ (Zhou et al., 2010; da Silva et al.,
2011), R26CAG−lox−STOP−tdTomato/+ (Jackson, Ai14; referred to
as R26lox−tdT/+), Robo1/2+/− (Chen et al., 2008), Robo3+/−

(Sabatier et al., 2004), Gli2lzki/+ (Bai and Joyner, 2001), Nfia+/−

(das Neves et al., 1999), and Lmx1adr−J/+ (dreher; Millonig et al.,
2000).

At least three embryos were analyzed for every genotype.
Experiments conform to the regulatory standards of the
Institutional Animal Care and Use Committee of Memorial
Sloan-Kettering Cancer Center.

Histochemistry
Immunohistochemistry and in situ hybridization on 30 µm
and 12 µm thick cryostat sections, respectively, were
performed as previously described (Arber et al., 1999; Betley
et al., 2009). The following antibodies were used in 0.3%
phosphate buffer triton (PBT); 1% bovine serum albumin
(BSA); 0.3% Triton-X in phosphate buffer saline (PBS):
rat anti-L1 Cell Adhesion Molecule (anti-L1CAM; 1:400;
Millipore), rabbit anti-red fluorescent protein (anti-RFP;
1:1000; Rockland), guinea pig anti-RFP (1:2000; Betley et al.,
2013), mouse anti-glutamic acid decarboxylase (anti-GAD-
6; 1:1000; Abcam), rabbit anti-tryosine kinase receptor A
(anti-TrkA; 1:5000; generously provided by L. Reichardt;
Huang et al., 1999), chicken anti-TrkB (1:500; generously
provided by L. Reichardt; Huang et al., 1999), chicken
anti-Parvalbumin (Pv; 1:10,000; generously provided by
S. Brenner-Morton and T. Jessell; de Nooij et al., 2013),
rabbit anti-S100β (1:1000; Dako), and fluorophore-conjugated
secondary antibodies (Jackson Labs and Molecular Probes).
Anti-sense in situ probes were generated from mouse E12.5
spinal cord cDNA using polymerase chain reaction (PCR)
amplification. The following primers were used: Robo1
(forward primer (FP): CAGGCAACAACCACAATGAC,
reverse primer (RP): AGTGGGGCCTCTTTCATCTT),
Robo2 (FP: AAGGGGAACAACGCCTTACT, RP: GCTCCG
GACACGTAACCTAA), Robo3 (FP: AAGGATTCCGTGTGT
CTTGG, RP: GAGTTCTTTGCGCTGCTTCT), Slit1 (FP: TG
TTGCAGCTGATGGAGAAC, RP: GTGGGATGGATTTGA
TACCG), Slit2 (FP: AACAACAACCCACCTTCCAG, RP:
CCCAGAAGAGCAAAGCAAAG), Slit3 (FP: ACTGGG
GACTCCTACGTGTG, RP: CACAACACAAAACAAAAC
TTGG), and Netrin-1 (FP: CTGGGTGGAGTTCACCATCT,
RP: ACAAAGAAGGCAGCCAGAAA).

Lipophilic Dye Neurotracing
For DCN neurotracing, embryos were dissected, the spinal
cord was exposed via dorsal laminectomy, fixed in 4%
paraformaldehyde (PFA) for 2 h, and washed in PBS. For
spinal DCN neurotracing, DiI crystals (Molecular Probes) were
placed in the dorsolateral region of the spinal cord using glass
micropipettes (Renier et al., 2010). For supraspinal neurotracing,
the skull was removed, and DiI crystals were placed into the
caudal hindbrain. For sensory DCN neurotracing, DiI crystals
were placed in dorsal root ganglia and the ventral roots were
cut. Tissue samples were placed in 4% PFA at 37◦C for up
to 5 weeks for DiI diffusion. Samples were then washed with
PBS and embedded in 4–6% agarose for vibratome sectioning
(200 µm). Sections were mounted with PBS for confocal
microscopy.

Results

DCNs Cross the Dorsal Midline During Late
Embryogenesis
In rat embryos, L1CAM immunohistochemical studies
demonstrated that DCNs cross the dorsal midline during
the last quarter of embryogenesis (Orlino et al., 2000), a
developmental period during which neurogenesis is ending and
the central canal is taking on its mature form (Sevc et al., 2009).
To define the embryonic stage at which DCNs in the developing
mouse spinal cord begin to cross the dorsal midline, we turned
our attention to mouse embryonic stages that resemble this
rat developmental period. BrdU and autoradiographic analyses
have shown that neurogenesis in the mouse spinal cord ends by
embryonic day (E) 14.5 (Nornes and Carry, 1978; Gross et al.,
2002; Müller et al., 2002). Moreover, by E15.5, the ventricular
zone recedes and the dorsal aspect of the neural canal fuses
(Sturrock, 1981), providing a putative pathway for DCN axons
to cross to the contralateral dorsal horn. Thus, to choose the
earliest developmental stage at which DCNs may be detected,
we selected E14.5 and used L1CAM immunohistochemistry to
visualize DCN axons. At E14.5, the neural canal still occupies
nearly the entirety of the midline along the dorsoventral axis, its
dorsal and ventral aspects apposed to the putative roof plate and
floor plate, respectively (Figure 1A; Sturrock, 1981). In addition
to its expression in the dorsal and ventral funiculi, L1CAM is
present in commissural axons that cross at the ventral midline
(Dodd et al., 1988), as well as in sensory afferents projecting
into the dorsal horn (Figure 1B). However, we did not detect
L1CAM-expressing (L1CAMON) axons approaching the dorsal
midline at this embryonic stage. By E15.5, the central canal is
nearing its mature form, and we detected L1CAMON DCN axons
approaching the dorsal midline, with some axons beginning
to enter the contralateral side (Figures 1A,C,D). By E16.5, we
detected L1CAMON DCN axons clearly crossing the midline to
the contralateral dorsal horn (Figures 1A,E,F). In longitudinal
sections of E16.5 embryos, we found that L1CAMON DCN
axons cross in discrete bundles that are present throughout the
rostrocaudal extent of the spinal cord (Figures 1G,G′; Orlino
et al., 2000). Further, at this stage, L1CAMON longitudinal
tracts are present at the dorsoventral level of the dorsal
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FIGURE 1 | DCN midline crossing during embryonic development.
(A) At E14.5, the spinal midline is comprised of the roof plate (RP), the neural
canal (red), and the floor plate (FP). By E15.5, the neural canal reduces in size,
and DCNs are approaching the dorsal midline (blue). At E16.5, DCN axons have
crossed the dorsal midline. (B) At E14.5, L1CAMON commissural axons cross at
the ventral midline (arrowhead; Dodd et al., 1988); however, no L1CAMON DCN

axons are present. (C,D) At E15.5, L1CAMON DCN axons are approaching the
dorsal midline [arrowheads in (D)]. (D) corresponds to boxed region in (C). (E,F)
By E16.5, L1CAMON DCN axons have crossed the dorsal midline [arrowheads
in (F)]. (F) corresponds to boxed region in (E). (G,G′) Longitudinally, discrete
bundles of L1CAMON DCN axons are present [arrowheads in (G′)]. Schematic
of longitudinal sections in (G). Scale bars: 100 µm.

commissure, raising the possibility that DCNs project some
distance rostrocaudally (Figure 1G′), as has been reported in the
adult rat (Petkó and Antal, 2000). Together, these results show
that DCN midline crossing in the developing mouse spinal cord
occurs during the last quarter of embryogenesis.

Spinal and Sensory Neurons Contribute to the
DCN Population
Neurotracing studies in adult rat have identified neurons in
the spinal cord that give rise to fibers crossing at the dorsal
midline (Petkó and Antal, 2000); however, it is unknown if a
population of spinal DCNs (spDCNs) is similarly present in
the developing mouse spinal cord. To test for the presence of
spDCNs, we applied the lipophilic dye DiI to the dorsolateral
region of the spinal cord of E17.5 embryos, a developmental

stage chosen to improve the likelihood that DCN axons had
extended sufficiently far into the contralateral dorsal horn
(Figure 2A). DiI neurotracing revealed DCN axons crossing
the dorsal midline, and, similar to our L1CAM analysis,
showed that they cross in discrete bundles (Figure 2B).
Further, retrograde DiI diffusion revealed labeled spDCN cell
bodies within the contralateral dorsal horn (Figures 2D,E).
Moreover, we also found that DiI-labeled DCN axons projected
longitudinally in both the rostral and caudal directions
(Figure 2C), suggesting that DCNs may provide intersegmental
connectivity.

To test whether sensory neurons contribute to the DCN
population, we next applied DiI crystals to postnatal dorsal root
ganglia (DRG; Figure 2F). DiI neurotracing showed sensory
DCN (snDCN) axons crossing within the central region of the
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FIGURE 2 | Spinal and sensory neurons contribute to the DCN
population. (A) For spinal DCN neurotracing, DiI crystals were placed in the
dorsolateral region of the spinal cord. (B,C) At E17.5, DiI-labeled DCN axons
cross in discrete bundles [arrowhead in (B)] and project longitudinally in both
the rostral and caudal directions [arrowheads in (C)]. (D,E) In transverse
sections, both DCN [white arrowhead in (D)] and commissural axons at the
ventral midline (orange arrowhead) are labeled. spDCN cell bodies are labeled in
the contralateral dorsolateral region of the spinal cord [white arrowheads in (E)].

(E) corresponds to boxed region in (D). (F) For snDCN neurotracing, DiI crystals
were placed in DRG. (G,H) At P28, snDCNs cross the dorsal midline in two
bundles, a posterior bundle (green arrowhead) and centrally at the dorsal
midline (white arrowhead). snDCNs terminate within the dorsomedial and
dorsolateral regions of the contralateral spinal cord. Sections from caudal
thoracic and rostral lumbar spinal cord. (I) Summary of DCN populations.
Predicted gray population indicates that DCNs are heterogeneous (see
“Discussion” Section). Scale bars: 100 µm (B–D,G,H); 25 µm (E).

dorsal midline and along the perimeter of the dorsal funiculus
(Figures 2G,H), in agreement with previous studies (Smith,
1983; Mirnics and Koerber, 1995; Ozaki and Snider, 1997).
These snDCNs project contralaterally to the medial or lateral
dorsal horn, the latter coinciding with the location of spDCN
cell bodies (Figure 2G). To test whether DCNs also project
supraspinally, we placed DiI crystals into the caudal hindbrain
of E16.5 embryos. While we frequently detected retrogradely-
labeled cells that cross at the ventral midline, we never observed
any retrogradely-labeled cells that cross at the dorsal midline,
suggesting that DCNs do not project supraspinally (data not
shown). Together, these results show that a spinal and sensory
component contribute to the DCN population (Figure 2I).

Spinal DCNs Belong to the Ptf1a-Expressing
Lineage and Sensory DCNs are Nociceptors
Previous electrophysiological studies have described
contralateral inhibitory signaling in the dorsal spinal cord
(Fitzgerald, 1982), suggesting the presence of inhibitory
spDCNs. Inhibitory neurons in the dorsal spinal cord arise from
the dI4 and dILA lineages and specifically express the basic
helix-loop-helix (bHLH) transcription factor Ptf1a (Glasgow
et al., 2005). To test whether these lineages contribute to
the DCN population, we used Ptf1aCre/+; R26lox−tdT/+ mice,
which restrict tdTom reporter expression to dI4 and dILA

neurons (Figure 3A). At E16.5, we found tdTomON/L1CAMON

projections crossing the dorsal midline in discrete bundles

(Figures 3B–D; data not shown), supporting the view that
Ptf1a-expressing neurons contribute to the DCN population.
To show that these Ptf1a-expressing spDCNs are GABAergic,
we used the GAD-6 monoclonal antibody, which binds the
GABA-producing enzyme GAD65 (Kaufman et al., 1991),
and detected GAD-6ON/tdTomON DCN axons crossing at
the dorsal midline (Figures 3E–G). To confirm that these
inhibitory GAD-6ON DCNs require Ptf1a and thus arise
from the dI4 or dILA lineages, we analyzed Ptf1aCre/Null;
R26lox−tdT/+ mutant embryos, where Ptf1a expression is lost
and dorsal horn inhibitory neurons are misspecified as dI5 or
dILB excitatory neurons (Glasgow et al., 2005). While we still
observed tdTomON spDCN axons, we found that the GAD-6
DCN labeling was lost, confirming that GABAergic inhibitory
spDCNs belong to the Ptf1a-expressing lineage (Figures 3H–J;
N = 3).

To analyze the development of snDCNs, we used
AdvillinCre/+; R26lox−tdT/+ mice, in which neurons of neural
crest origin express tdTom (Hasegawa et al., 2007). We
detected tdTomON snDCNs at the dorsal midline at E15.5,
which clearly cross to the contralateral dorsal horn by E16.5
(Figures 4A–C). Additionally, we found that these tdTomON

contralateral projections cross in discrete bundles throughout
the rostrocaudal extent of the spinal cord and co-label with
L1CAM (Figure 4D, data not shown). To functionally classify
snDCNs, we used immunuhistochemistry at E16.5 for TrkA,
which is primarily expressed by nocioceptive sensory neurons
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FIGURE 3 | Neurons of the Ptf1a-expressing lineage contribute to
the spinal DCN population. (A–D) At E16.5, tdTomON/L1CAMON

spDCN axons cross the dorsal midline in Ptf1aCre/+; R26lox−tdT/+ spinal
cord [arrowheads in (B–D)]. (B–D) correspond to boxed region in (A).
(E–G) At E16.5, tdTomON/GAD-6ON spDCN axons are present at the

dorsal midline in Ptf1aCre/+; R26lox−tdT/+ spinal cord [arrowheads in
(E–G)]. Dotted line indicates the dorsal funiculus. (H–J) GAD-6 labeling is
lost in spDCN axons in E16.5 Ptf1aCre/Null; R26lox−tdT/+ spinal cord
[arrowheads in (H–J)]. Dotted line indicates the dorsal funiculus. Scale
bars: 100 µm (A); 50 µm (B–J).

(Snider and McMahon, 1998; Fang et al., 2005), and the calcium-
binding protein Pv, a proprioceptive sensory neuron marker
(Mu et al., 1993; Honda, 1995). PvON fibers were never observed
crossing at the dorsal midline (data not shown). TrkAON sensory
axons, however, are present at the dorsal midline and co-label
with tdTomON snDCN axons in AdvillinCre/+; R26lox−tdT/+

embryos, suggesting that snDCNs belong to the nociceptive class
of sensory neurons (Figures 4E–I). A screen for additional DCN
axon markers found that the calcium-binding protein S100β also
labels DCN axons at the dorsal midline. While primarily thought
to be a glial cell marker, S100β is also expressed by neurons
in the brain (Friend et al., 1992), and a transgenic mouse line
expressing enhanced green fluorescent protein (EGFP) under
the control of the S100β promoter has demonstrated EGFPON

sensory neurons (Vives et al., 2003), suggesting that sensory
neurons also express S100β. In E16.5 AdvillinCre/+; R26lox−tdT/+

embryos, we found that S100β is present in the dorsal horn and
co-labels with tdTomON snDCN fibers at the dorsal midline
(Figures 4J–N), indicating that snDCNs belong to a S100βON

subpopulation of nociceptive sensory neurons.

DCNs Utilize Robo1/2 but not Robo3 for Dorsal
Midline Crossing
The floor plate provides both attractive and repulsive guidance
cues and has been shown to be a critical organizing structure
for commissural neuron midline crossing (Tessier-Lavigne and
Goodman, 1996), raising the possibility that floor plate-derived

guidance cues may also play a role in midline crossing by
DCN axons. To test this, we first assessed the transcript
expression of the attractive guidance cue Netrin-1 at E15.5
and found that it is strongly expressed at the ventral midline
(Figure 5A). We next assessed the expression of the repulsive
guidance cues Slit1, Slit2, and Slit3 at this age and found
that both Slit1 and Slit2 are expressed at the ventral midline
while Slit3 transcript is undetectable (Figures 5B,C; data not
shown). Together, these results show that floor plate-derived
guidance cues are present during DCN midline crossing. To
test if DCN midline crossing depends on these floor plate
derived guidance cues, we analyzed Gli2 mutants in which the
floor plate does not form and ventral midline guidance cue
expression is perturbed (Matise et al., 1998, 1999). In E15.5
Gli2 mutant mice, transcript expression of Netrin-1 (Matise
et al., 1999), Slit1, and Slit2 was either lost or disorganized
at the ventral midline (Figures 5D–F; N = 4). We used
immunohistochemistry for L1CAM to visualize DCN axons in
E16.5 Gli2 mutant embryos and found that L1CAMON DCN
axons continue to cross at the dorsal midline (Figures 5G–J;
N = 3), demonstrating that DCN midline crossing does not
depend on floor plate-derived guidance cues or on the floor plate
itself.

Because DCN midline crossing does not commence until
after dorsal midline fusion, we also considered a role of the
roof plate in DCN midline crossing. Previous studies have
shown that the roof plate is required for the maturation
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FIGURE 4 | Sensory DCNs belong to a S100βON population of
nociceptors. (A–D) At E15.5 and E16.5, tdTomON snDCN axons in
AdvillinCre/+; R26lox−tdT/+ spinal cord [arrowheads in (B,C)] cross the dorsal
midline in discrete bundles [arrowheads in (D)]. (E–I) tdTomON snDCN axons
co-label with TrkA [arrowheads in (F–H)], which is widely expressed in DRG

(I; Mu et al., 1993). (F–H) correspond to boxed region in (E). (J–N) tdTomON

snDCN axons double label with S100β in AdvillinCre/+; R26lox−tdT/+ embryos at
E16.5 [arrowheads in (K–M)]. tdTomON/S100βON cell bodies are present in DRG
[arrowheads in (N)]. (K–M) correspond to boxed region in (J). Scale bars:
100 µm (A,D,E,J); 50 µm (B,C,F–I,K–N).

of the neural canal (Kondrychyn et al., 2013), suggesting
that it may play a role in dorsal midline development. In
the dreher mutant, the roof plate does not form (Millonig
et al., 2000), but L1CAM immunohistochemistry revealed that
DCN midline crossing persists in this mutant background
(Figures 5K–N; N = 3), indicating that the roof plate,
similarly to the floor plate, is dispensable for DCN contralateral
growth.

We next considered guidance cue transcript expression at
the dorsal midline during the period of DCN crossing. At
E15.5, while Netrin-1 and Slit3 expression is absent along the
dorsal midline, both Slit1 and Slit2 transcripts are present
(Figures 6A-B′; data not shown). We further observed that the
Slit family receptors Robo1 and Robo2 are broadly expressed in
the spinal cord, including the dorsolateral region where spDCN
cell bodies reside (Figures 6C,D). We similarly found Robo1 and
Robo2 expression in DRG (Figures 6F,G). To test a requirement
of DCNs for Robo1 or Robo2, we assessed axon guidance at

the dorsal midline in Robo1/2 double mutants. In longitudinal
sections, we found L1CAMON axons that did not cross the
dorsal midline but rather diverged to follow a longitudinal
trajectory and appeared to contribute to ectopic longitudinal
funiculi proximal to the dorsal midline (Figures 6I–N′; N = 3).
While not impacting all dorsally-crossing axons, this phenotype
of midline divergence resembles the Robo1/2 mutant phenotype
at the ventral midline where a subset of commissural axons
diverges and enters the ventricular zone (Jaworski et al., 2010), as
well as the Robo2 mutant phenotype at the optic chiasm where
a subset of retinal ganglion cell (RGC) axons follows a caudal
trajectory (Plachez et al., 2008). Together, these results indicate
that Robo/Slit signaling is required for proper axon guidance at
the dorsal midline.

Previous studies of the ventral midline have shown that
regulation of Robo/Slit signaling by Robo3 is required for
ventral midline crossing (Sabatier et al., 2004). To assess
if Robo3 is similarly required for DCN midline crossing,
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FIGURE 5 | DCN midline crossing does not depend on floor
plate-derived guidance cues or on the roof plate. (A–F) At E15.5,
guidance cue transcript expression of Netrin-1 (A), Slit1 (B) and Slit2 (C) at
the ventral midline is lost or disorganized in the Gli2 mutant (D–F; Matise et al.,
1999). (G–J) L1CAMON DCN axons persist in E16.5 Gli2 mutant spinal cords,
compared to control. (I) corresponds to boxed region in (G). (J) corresponds
to boxed region in (H). (K–N) L1CAMON DCN axons persist in E16.5 Lmx1a
(dreher) mutant spinal cords, compared to control. (M) corresponds to boxed
region in (K). (N) corresponds to boxed region in (L). Scale bars: 100 µm
(A–H,K,L); 50 µm (I,J,M,N).

we first examined Robo3 transcript expression at E15.5. We
found sparse Robo3 expression in the dorsolateral region of
the spinal cord where spDCNs reside (Figure 6E). However,

Robo3 transcript is absent from DRG (Figure 6H), suggesting
that at least snDCNs cross the midline independently of
Robo3. We next assessed Robo3 mutants at E16.5 and found
that L1CAMON DCNs still approach and cross the dorsal
midline (Figures 6O,O′; N = 3). To confirm the persistence
of DCN midline crossing, we used DiI neurotracing in E16.5
Robo3 mutant embryos and found that while ventral midline
crossing is lost (Sabatier et al., 2004), DiI-labeled DCN axons
continue to cross to the contralateral side (Figures 6P,Q;
N = 3). Because L1CAM and DiI neurotracing label all DCNs,
we also considered the possibility that loss of Robo3 may
differentially impact DCN subpopulations. However, analysis
of Ptf1aCre/+; R26lox−tdT/+ and AdvillinCre/+; R26lox−tdT/+

embryos in a Robo3 mutant background showed that dorsal
midline crossing for sp and snDCNs remains intact (data not
shown), suggesting that these DCN subpopulations are not
differentially impacted. Together, these results show that DCNs
utilize a Robo3- and floor plate-independent midline crossing
mechanism (Figure 6R).

Discussion

Peripheral nerve injury and electrophysiological studies
have provided evidence supporting the existence of neural
connectivity underlying bilateral communication within the
dorsal spinal cord (Fitzgerald, 1982; Koltzenburg et al., 1999).
While anatomical and developmental studies in the rat (Orlino
et al., 2000; Petkó and Antal, 2000; Petkó et al., 2004) have
identified neuronal populations that may underlie these
cytochemical and physiological observations, no formal study
of the development of this dorsal bilateral connectivity or of
the properties of the neurons providing this connectivity has
been performed in the developing mouse spinal cord. Further,
it remains unclear if the commissural populations that provide
this connectivity utilize midline crossing mechanisms similar to
spinal commissural populations that cross at the ventral midline.
Here, we identify a population of DCNs in the developing mouse
spinal cord that is composed of spinal inhibitory neurons and
sensory nociceptors. Moreover, we show that DCNs do not
utilize floor plate-derived axon guidance cues and do not require
Robo3 for midline crossing.

DCNs in the Rodent Spinal Cord
The DCN population that we identify in the developing mouse
spinal cord shares both anatomical and cytochemical properties
of DCNs reported in the rat. Anatomically, DCNs in both
species cross the dorsal midline in discrete bundles found
throughout the rostrocaudal extent of the spinal cord (Orlino
et al., 2000), and spDCN cell bodies are similarly found in the
dorsolateral region of the spinal cord (Petkó and Antal, 2000).
Anatomical studies in the rat have also provided evidence that
the DCN population comprises a commissural propriospinal
network within the lumbar spinal cord (Petkó and Antal,
2000), raising the possibility that the DCN population in
the mouse may similarly provide intersegmental connectivity.
Cytochemical studies in the rat have reported that a subset
of the DCN population is inhibitory. In E19 rat spinal cord,
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FIGURE 6 | DCNs rely on Robo/Slit signaling at the dorsal
midline but utilize a Robo3-independent midline crossing
mechanism. (A–B′) Slit1 and Slit2 are expressed at the dorsal (red
arrowheads) and ventral (orange arrowheads) midline in E15.5 spinal
cord. The dorsal midline is magnified in (A′) and (B′). (C–H) At
E15.5, Robo1 and Robo2 are expressed in dorsolateral spinal cord
(C,D) and DRG (F,G). Robo3 is sparsely expressed in the
dorsolateral spinal cord (E) and is absent from DRG (H).
(I–L) L1CAMON ectopic longitudinal funiculi [arrowheads in (L)] are
present proximally to the dorsal midline in the Robo1/2 double
mutant at E16.5. (J) corresponds to the boxed region in (I).
(L) corresponds to boxed region in (K). (M–N′) In longitudinal

sections, L1CAMON misguided axons are present at the dorsoventral
level of the dorsal commissure and diverge as they approach the
dorsal midline, likely comprising the ectopic longitudinal funiculi
present in transverse sections. (M′) and (N′) represent tracings of
control and misguided axons, respectively. (O,O′) L1CAMON DCN
axons persist in E16.5 Robo3 mutant spinal cords. (O′) corresponds
to boxed region in (O). (P,Q) DiI-labeled DCN axons (blue arrowhead)
cross the midline in E16.5 Robo3 mutants, unlike ventrally-crossing
commissural axons (orange arrowhead), which fail to cross the
midline (Q; Sabatier et al., 2004). (R) Summary of findings. VCN,
ventrally-crossing commissural neurons. Scale bars: 100 µm
(A,B,C–E,I,K,M–O,P,Q); 50 µm (A′,B′,O′,F–H); 25 µm (J,L).

double immunostaining for L1CAM and GAD65 demonstrated
a subpopulation of L1CAMON/GAD65ON DCN axons, with
L1CAM labeling more axons than GAD65 (Orlino et al., 2000).
Also, in adult rat spinal cord, a subset of DCN terminals co-
labeled with antibodies against the inhibitory synaptic proteins
GAD65, GAD67, and GlyT2 (Petkó et al., 2004). We have

similarly found an inhibitory subset of DCNs, identified by
both GAD-6 immunohistochemistry and genetic labeling using
Ptf1aCre/+; R26lox−tdT/+mice, where Ptf1a expression genetically
targets inhibitory neurons in the dorsal spinal cord (Glasgow
et al., 2005). Additionally, we have found that a subset of
nociceptive sensory neurons crosses the dorsal midline and may
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account for the remaining L1CAM positive fibers reported in the
embryonic rat (Orlino et al., 2000), as well as the non-inhibitory
dextran-labeled terminals reported in the adult rat (Petkó et al.,
2004). However, could there be additional DCN populations?
An electrophysiological study in rats proposed the presence of
an excitatory commissural population with projections to the
contralateral substantia gelatinosa (Fitzgerald, 1983), and our
analysis of Ptf1aCre/Null; R26lox−tdT/+ mutants also allows the
possibility of an excitatory DCN population. Loss of Ptf1a has
been shown to result in the failure to generate inhibitory neurons
in the dorsal horn (Glasgow et al., 2005; Bröhl et al., 2008;
Huang et al., 2008). Instead, in the Ptf1a mutant, neurons of
the dorsal inhibitory dI4 and dILA lineages are misspecified
as the excitatory dI5 and dILB lineages, respectively (Glasgow
et al., 2005). Thus, our finding that tdTomON DCN axons at
the dorsal midline persist in Ptf1aCre/Null; R26lox−tdT/+ mutants
suggests that these excitatory lineages may also contribute to
the DCN population. Interestingly, DCN neurotracing in the
adult rat has identified a population of non-inhibitory DCN
terminals that do not co-label with antibodies against any
of the vesicular glutamate transporters (Petkó et al., 2004),
suggesting that this predicted population may be an excitatory
peptidergic population. The dI5 and dILB lineages include
excitatory peptidergic neurons (Xu et al., 2008), and it will be
interesting to consider if such populations indeed contribute to
the DCN population. Together, these findings suggest that the
DCN population is heterogeneous.

DCN Axon Guidance and Robo3 Independence
Inappropriate crossing at the dorsal midline has been previously
reported following genetic disruptions in Robo/Slit signaling
(Ma and Tessier-Lavigne, 2007), as well as loss of function
of the ephrin type-A receptor EphA4 (Kullander et al., 2003;
Escalante et al., 2013; Paixão et al., 2013), which normally elicits
a repulsive response upon binding the ligand ephrinB3 present
at the spinal cord midline (Imondi et al., 2000; Kullander et al.,
2001). In each of these cases, dorsal midline crossing is likely
due to the loss of repulsive axon guidance mechanisms that
normally function to restrict ipsilaterally-projecting populations
to the same side of the spinal cord. Robo/Slit signaling has also
been shown to be required for commissural axon guidance at
the midline. In addition to axon stalling at the spinal ventral
midline, Robo1/2 mutants display pathfinding errors in which
commissural axons inappropriately turn to invade the ventricular
zone (Jaworski et al., 2010). At the optic chiasm in Robo2
mutants, RGC axons also turn inappropriately to follow a
caudal trajectory (Plachez et al., 2008). We describe a similar
DCN pathfinding phenotype in Robo1/2 mutants where DCN
axons inappropriately turn to assume a longitudinal trajectory as
they approach the dorsal midline. This longitudinal divergence
suggests that Robo1/2mutant DCN axonsmay be responding to a
midline-derived repellent. While the contact-mediated repulsive
ephrins are present at the dorsal midline during the last quarter of
embryogenesis (Imondi et al., 2000), the loss of Robo1 and Robo2
is unlikely to affect DCN response to these ligands. Instead,
DCNs may be repelled by an as yet unidentified Slit receptor
that is unmasked in the Robo1/2 mutant, a model that has

also been proposed in studies of ventrally-crossing commissural
neurons in Robo1/2 mutant spinal cord (Jaworski et al., 2010).
The receptor PlexinA1, which binds the repellent Semaphorin3B
to support commissural axon exit from the ventral midline
(Nawabi et al., 2010; Charoy et al., 2012), has been shown to
bind the Slit C-terminal fragment SlitC to elicit commissural
axon repulsion (Delloye-Bourgeois et al., 2015). While sensory
neuronal PlexinA1 has been shown to be specifically expressed by
proprioceptive sensory neurons (Yoshida et al., 2006), excluding
PlexinA1 expression by snDCNs, PlexinA1 transcript is present
in the dorsolateral spinal cord during late embryogenesis
(Escalante et al., 2013), raising the possibility that PlexinA1 may
play a role in spDCN Slit responsiveness and may contribute
to the DCN dorsal midline repulsion observed in the Robo1/2
mutant.

Robo3 expression in ventrally-crossing commissural neurons
of the spinal cord and hindbrain suppresses Slit-induced
repulsion in pre-crossing commissural axons via Robo1 and
Robo2, permitting crossing at the ventral midline (Sabatier
et al., 2004). Robo3 has thus been understood to be required
for commissure formation in the hindbrain and spinal cord.
However, we find that DCNs do not require Robo3 despite a
reliance on Robo/Slit signaling for axon guidance at the dorsal
midline. Robo3 has recently been shown to collaborate with the
Netrin receptor Deleted in Colorectal Cancer (DCC; Keino-Masu
et al., 1996) to attract the axons of pontine neurons to the floor
plate in the hindbrain (Zelina et al., 2014). Ectopic expression
of Robo3 in the dorsal spinal cord has also been reported to
elicit ventral outgrowth and ventral midline crossing of dorsal
horn neurons (Escalante et al., 2013). These observations suggest
that Robo3 function may be limited to hindbrain and spinal
commissural systems that rely on Netrin-mediated midline
attraction. While we find that Slit1 and Slit2 transcript is present
at the dorsal midline, Netrin-1 transcript is absent, suggesting
that DCNs do not rely on Netrin-mediated attraction to arrive at
the dorsal midline. Further, ectopic expression of Robo3 in dorsal
horn neurons does not elicit dorsal midline crossing (Escalante
et al., 2013), consistent with our results and the view that Robo3
function may be limited to Netrin-dependent hindbrain and
spinal commissural systems.

Formation of commissures in the forebrain also does not
require Robo3 (Jen et al., 2004; Volk et al., 2011), despite ongoing
requirement for Robo1, Robo2, and Slits (Ypsilanti et al., 2010).
In further similarity to forebrain commissural populations, we
have found that commissure formation at the dorsal midline
occurs independently of a floor plate structure. Could alternative
structures provide the cues required for DCN midline crossing?
In the forebrain, commissure formation relies on transient
midline glial populations to coordinate commissural neuron
midline crossing (Lindwall et al., 2007; Chédotal and Richards,
2010). Moreover, perturbation of midline glial development,
as in the Nfia mutant, has been shown to prevent midline
crossing in multiple forebrain commissures (Shu et al., 2003;
Lindwall et al., 2007). Radial glial fibers are present at the
dorsal midline during DCN midline crossing (Comer and
Kaltschmidt, unpublished observation), raising the possibility
that midline glial-dependent mechanisms may also be used at
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the dorsal midline. However, while Nfia transcript expression
is present at the dorsal midline during DCN midline crossing
(Comer and Kaltschmidt, unpublilshed observation; Deneen
et al., 2006), radial glia persist in the Nfia mutant and DCN
midline crossing appears unchanged (Comer and Kaltschmidt,
unpublished observation), indicating that other approaches are
required to test the role of midline glia in coordinating dorsal
commissure formation.

DCNs and the Dorsal Midline
The dorsal midline itself may play a role in DCN commissure
formation. DCN midline crossing in the rat and mouse similarly
occur during the last quarter of embryogenesis, a period in
which the dorsal midline morphologically changes as the mature
form of the central canal emerges (Sturrock, 1981; Snow et al.,
1990; Sevc et al., 2009). A critical aspect of this process appears
to involve morphological changes in the roof plate as its
structure changes from a wedge shape at earlier embryonic
stages to a dorsal septum that extends from the pial surface
to the dorsal aspect of the central canal (Sturrock, 1981; Snow
et al., 1990; Kondrychyn et al., 2013). Interestingly, in the rat,
during this period, the dorsal midline axon barrier composed
of the glycosaminoglycan keratan sulfate is no longer detectable
(Snow et al., 1990), which may make the dorsal midline more
permissible for contralateral axonal growth. We considered
whether the roof plate might play an attractive signaling role
in formation of the dorsal commissure, analogous to the role
of the floor plate in ventral commissure formation. However,
our analysis of the dreher mutant, in which the roof plate
does not form (Millonig et al., 2000), shows that this structure
is not required for normal DCN midline crossing. Genetic
targeting of other components of the dorsal midlinemay yet yield
perturbations in DCN midline crossing.

Nociceptive Modulatory Circuitry
Recent studies have improved our understanding of the neuronal
circuitry underlying pain signaling in the spinal cord (Braz
et al., 2014). Spinal interneurons in the dorsal horn, in
particular, are felt indispensible for the inhibitory control
of nociception (Sandkühler, 2009; Todd, 2010). Physiological
studies of pain signaling have demonstrated the presence of
contralateral inhibition (Fitzgerald, 1982), and unilateral nerve
injury studies demonstrate changes in GABA immunoreactivity
in the contralateral dorsal horn (Ibuki et al., 1997; Eaton
et al., 1998). Both lines of evidence imply the involvement of
inhibitory neurons that project contralaterally across the dorsal
midline in pain signaling. The inhibitory spDCN population

that we describe here is well suited to provide the anatomic
basis for this contralateral inhibition. Nerve injury studies have
demonstrated changes in sensory gene and protein expression
in the contralateral dorsal horn following unilateral nerve
manipulation (Wong and Oblinger, 1990; Zhang et al., 1996),
suggesting that nociceptive sensory neurons may also project
contralaterally across the dorsal midline. Our characterization
of DCNs reveals such a population of sensory neurons and
suggests that nociceptive snDCNs may similarly contribute to
contralateral pain pathways. Given these observations, further
characterization of the nature and connectivity of DCNs will
contribute significantly to our understanding of the spinal
circuitry of pain.
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