
ORIGINAL RESEARCH
published: 08 October 2015

doi: 10.3389/fncir.2015.00054

A computational relationship
between thalamic sensory neural
responses and contrast perception
Yaoguang Jiang 1, Gopathy Purushothaman 2 and Vivien A. Casagrande 1,2,3*

1 Department of Psychology, Vanderbilt University, Nashville, TN, USA, 2 Department of Cell and Developmental Biology,
Vanderbilt University, Nashville, TN, USA, 3 Department of Ophthalmology and Visual Sciences, Vanderbilt University,
Nashville, TN, USA

Edited by:
W. Martin Usrey,

University of California, Davis, USA

Reviewed by:
Donald A. Wilson,

New York University School
of Medicine, USA

Henry Joseph Alitto,
University of California, Berkeley, USA

*Correspondence:
Vivien A. Casagrande,
Department of Cell and

Developmental Biology, Vanderbilt
University, PMB407935 RM U-3218

MRB 3, 465 21st Avenue South,
Nashville, TN 37240-7935, USA

vivien.casagrande@vanderbilt.edu

Received: 28 July 2015
Accepted: 14 September 2015
Published: 08 October 2015

Citation:
Jiang Y, Purushothaman G and

Casagrande VA (2015)
A computational relationship between

thalamic sensory neural responses
and contrast perception.

Front. Neural Circuits 9:54.
doi: 10.3389/fncir.2015.00054

Uncovering the relationship between sensory neural responses and perceptual decisions
remains a fundamental problem in neuroscience. Decades of experimental and modeling
work in the sensory cortex have demonstrated that a perceptual decision pool is usually
composed of tens to hundreds of neurons, the responses of which are significantly
correlated not only with each other, but also with the behavioral choices of an animal.
Few studies, however, have measured neural activity in the sensory thalamus of awake,
behaving animals. Therefore, it remains unclear how many thalamic neurons are recruited
and how the information from these neurons is pooled at subsequent cortical stages
to form a perceptual decision. In a previous study we measured neural activity in the
macaque lateral geniculate nucleus (LGN) during a two alternative forced choice (2AFC)
contrast detection task, and found that single LGN neurons were significantly correlated
with the monkeys’ behavioral choices, despite their relatively poor contrast sensitivity
and a lack of overall interneuronal correlations. We have now computationally tested
a number of specific hypotheses relating these measured LGN neural responses to
the contrast detection behavior of the animals. We modeled the perceptual decisions
with different numbers of neurons and using a variety of pooling/readout strategies,
and found that the most successful model consisted of about 50–200 LGN neurons,
with individual neurons weighted differentially according to their signal-to-noise ratios
(quantified as d-primes). These results supported the hypothesis that in contrast
detection the perceptual decision pool consists of multiple thalamic neurons, and that
the response fluctuations in these neurons can influence contrast perception, with the
more sensitive thalamic neurons likely to exert a greater influence.

Keywords: lateral geniculate nucleus (LGN), perception, contrast, neural model, choice probability

Introduction

From smelling a flower to recognizing the face of a loved one, every perceptual task we face,
simple or complex, involves a number of neurons in a wide range of brain areas. Of essential
interest to neuroscientists is the number of sensory neurons needed to sustain a perception, and
the way these neurons are decoded at a later stage to form various decisions. Theoretically, every
perceptual task can be accomplished by engaging only the few sensory neurons that are the most
sensitive for that task (i.e., the lower envelope principle; Barlow, 1995; Parker and Newsome, 1998).

Frontiers in Neural Circuits | www.frontiersin.org 1 October 2015 | Volume 9 | Article 54

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://dx.doi.org/10.3389/fncir.2015.00054
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2015.00054&domain=pdf&date_stamp=2015-10-08
http://journal.frontiersin.org/article/10.3389/fncir.2015.00054/abstract
http://journal.frontiersin.org/article/10.3389/fncir.2015.00054/abstract
http://journal.frontiersin.org/article/10.3389/fncir.2015.00054/abstract
http://loop.frontiersin.org/people/277809/overview
http://loop.frontiersin.org/people/63901/overview
http://loop.frontiersin.org/people/1960/overview
https://creativecommons.org/licenses/by/4.0/
mailto:vivien.casagrande@vanderbilt.edu
http://dx.doi.org/10.3389/fncir.2015.00054
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Jiang et al. Computation of contrast in thalamus

In reality, however, a variety of factors such as the response
variances of single neurons and the positive noise correlations
between pairs of neurons constrain the pool size, requiring at
least 10–1000 sensory neurons in an average sized decision pool
(Shadlen et al., 1996; Cook and Maunsell, 2002; Purushothaman
and Bradley, 2005; Cohen and Newsome, 2009; Liu et al.,
2013). In sensory cortex, such perceptual decision pools have
two prominent features. First, stimulus-independent, random
fluctuations of sensory neural responses are known to covary
with the perceptual decisions of the animal. The strength of this
covariation is quantified as ‘‘choice probability’’ (Britten et al.,
1996). Weak but significantly above chance choice probabilities
have been observed in a number of sensory cortical areas
(Britten et al., 1996; Dodd et al., 2001; Cook and Maunsell,
2002; Grunewald et al., 2002; Uka and Deangelis, 2004; Liu
and Newsome, 2005; Purushothaman and Bradley, 2005; Uka
et al., 2005; Nienborg and Cumming, 2006; Palmer et al., 2007).
Second, cortical sensory neurons are also correlated with each
other in their random response fluctuations (Averbeck et al.,
2006; Cohen and Kohn, 2011). This correlation, known as the
interneuronal noise correlation, is likely to reflect the shared
feedforward, feedback, or lateral connections between neurons
(Zohary et al., 1994; Shadlen and Newsome, 1998; Bair et al.,
2001; Reich et al., 2001; Cohen and Maunsell, 2009). Previous
modeling work has revealed that interneuronal correlations can
have a profound influence on the choice probability structure
of the decision pool (Shadlen et al., 1996; Cohen and Newsome,
2009; Nienborg and Cumming, 2010; Haefner et al., 2013).

Such interneuronal correlation or choice probability
measurements, however, are rarely made in subcortical
structures (but see Liu et al., 2013). In the mammalian visual
system, the retina sends direct input to the lateral geniculate
nucleus (LGN) of the thalamus which, in turn, relays this
information to the visual cortex. Recently, we reported the
first study in which LGN neural responses were examined in
detail while the animals were required to make perceptual
decisions using the information available within the receptive
fields of those LGN neurons (Jiang et al., 2015). In a two
alternative forced choice (2AFC) contrast detection task,
we found that the majority of single LGN parvocellular (P)
and magnocellular (M) neurons were not as sensitive as the
monkeys. Importantly, the covariation between neural responses
and perceptual decisions, measured as choice probability,
was significant for both P and M neurons, even though
the average interneuronal correlation between LGN neuron
pairs was not different from zero. Additionally, both neural
sensitivity and choice probability evolved throughout the
stimulus presentation time, with M neurons exhibiting faster
and more transient response profiles than P neurons (Jiang et al.,
2015).

Taking advantage of this previously characterized dataset
and using a computational approach, we investigated in this
study how single LGN neurons contribute to our perception of
contrast. We built a series of models to explore the interaction
between the size of the decision pool, the duration of integration
time, and the pooling/readout strategy of the neural system.
Because previous experimental and computational work has

suggested a positive relationship between neural sensitivity,
choice probability, and readout weight (for example see Britten
et al., 1996; Shadlen et al., 1996; Purushothaman and Bradley,
2005; Haefner et al., 2013; Liu et al., 2013), we examined not only
the standard uniform readout model but also several alternative
weighted readout schemes in which individual neurons were
assigned different weights based on their sensitivities. We
accepted or rejected these models based on their ability to
account for the behavioral performance of the monkeys as well
as the measured choice probability values for LGN neurons
(see Jiang et al., 2015). Aspects of the modeling data presented
here have been published in abstract form (Jiang et al., 2012,
2013).

Materials and Methods

All the experimental procedures regarding surgical preparation,
animal training, stimulus presentation, and physiological
recordings have been described in detail in previous publications
(Jiang et al., 2013, 2015), and are therefore only briefly repeated
here when relevant.

Subjects
Two macaque monkeys (monkey 1: Macaca radiata, male, 7 kg,
10 years old; monkey 2: Macaca mulatta, male, 8 kg, 12 years
old) served as subjects. The monkeys were treated and cared for
in accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and the guidelines of
Vanderbilt University Animal Care andUse Committee under an
approved protocol. The monkeys underwent sterile procedures
for the implantation of head posts and recording chambers.
The chambers were centered over the right LGN of monkey 1
(AP = 7, ML = 12.5) and the left LGN of monkey 2 (AP = 7,
ML = 12).

Visual Stimulus Presentations and Behavioral
Tasks
The monkeys were first trained to fixate on a central fixation
spot for an extended period of time. Next, the monkeys were
trained to perform a two-alternative forced choice (2AFC)
contrast detection task, in which a contrast stimulus was
presented either at the receptive field location of the cell
being recorded, or at a symmetrical location in the opposite
visual hemi-field, for a fixed duration (200 ms). The monkeys
saccaded to one of the two target locations to indicate the side
on which the stimulus was presented. The stimulus diameter
was always the sum of the classical receptive field diameter
(center and surround) plus the fixation window diameter.
During each recording session, stimuli of 5 or 9 different
contrast levels (including 0% contrast, or blank trials, where
no physical stimulus was presented) were presented at each
location. Different contrast levels and presentation locations (i.e.,
left or right) were randomly mixed, with equal probabilities
of left or right appearance and higher proportions of low to
medium contrast trials to ensure accurate estimations of the
psychophysical threshold.
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Psychometric Functions
The proportion of correct responses from the monkeys was
plotted for each contrast, and a Weibull function was fitted to
the data:

P(c) = 1− 0.5 ∗ e−(
c
α )
β

(1)

Where P(c) is the probability of correct responses at
contrast level c, α is the contrast level that supports threshold
performance (82% correct), and β is the slope of the
function.

Cell Mapping and Classification
LGN cells were hand mapped using first a flashlight and then an
elongated bar with a sharp contrast profile. Cells were classified
as ON-center or OFF-center cells, and Parvocellular (P) or
Magnocellular (M) cells, based on their visually driven responses
(Norton and Casagrande, 1982; Norton et al., 1988; Xu et al.,
2001; Royal et al., 2006; Jiang et al., 2015).

Neurometric Functions
Basic procedures in computing neurometric functions were
similar to those described in previous studies (Barlow et al.,
1971; Britten et al., 1992; Purushothaman and Bradley, 2005). For
every contrast level, an ROC (Receiver Operating Characteristic)
curve was computed (Green and Swets, 1966). Each ROC curve
plotted, for all possible signal detection criteria (spikes), the
proportion of stimulus-inside-receptive-field trials where the
spike count exceeded a certain criterion, against the proportion
of stimulus-outside-receptive-field trials that exceeded the
same criterion. Next each area-under-ROC curve value was
calculated and plotted against its corresponding contrast, a
Weibull function ([1], as described above) was fitted, and
the neurometric threshold and slope were obtained from
the fitted curve. All the LGN cells that could be clearly
mapped and maintained long enough to characterize both
the psychophysical and neural responses (>150 trials, overall
psychophysical performance >65% correct) in the detection
task were included in this analysis (overall: n = 89 neurons;
monkey 1: n = 61; monkey 2: n = 28). We identified in this
dataset 41 ON-center P neurons, 27 OFF-center P neurons,
19 ON-center M neurons, and 2 OFF-center M neurons.
We found that the average neurometric threshold (54.4 ±
4.78% contrast, n = 89 neurons, in 0–150 ms integration time
windows) was significantly different from the simultaneously
measured psychometric threshold (5.76 ± 0.72% contrast,
P = 0.000, Wilcoxon signed rank test). The average ratio of
neurometric to psychometric threshold was 40.74 ± 10.75,
indicating that the average LGN neuron was much less
sensitive than the monkey in contrast detection (Jiang et al.,
2015).

Choice Probability
Basic procedures in computing choice probabilities also
were similar to those described in previous studies (Britten
et al., 1996; Purushothaman and Bradley, 2005). The
choice probability for a certain contrast was measured by

plotting, as an ROC curve, the proportion of choice-inside-
receptive-field trials (i.e., trials in which the monkey saccaded
towards the receptive field location) against the proportion
of choice-outside-receptive-field trials that exceeded the
spike count criteria, and computing the area under that
curve. The significance of individual or population choice
probabilities was assessed using permutation tests (Britten
et al., 1996; Jiang et al., 2015). To accurately estimate choice
probability, only neural recordings that met the following
criteria were included in this analysis: (1) Behavior ratio
(choice-inside/choice-outside-receptive-field trials) > 0.25
and <4; and (2) For every contrast level that was included
in the choice probability computation, at least 10 choice-
inside and 10 choice-outside-receptive-field trials were
recorded. Out of the 89 neurons in the above dataset, 75
(54 P neurons, 21 M neurons) were included in the choice
probability analysis according to these criteria. We found in
this dataset that, in the absence of any physical stimulus (i.e.,
0% contrast, blank trials only), the average choice probability
was 0.54 ± 0.01 for LGN P neurons and 0.54 ± 0.01 for LGN
M neurons, both above chance according to permutation
tests (P neuron: P = 0.015, M neuron: P = 0.033; Jiang et al.,
2015).

Pooling Model
The basic structure of our pooling model was similar to other
bottom up pooling models previously proposed to account for
the psychophysical threshold and choice probabilities measured
during behavioral tasks (Shadlen et al., 1996; Purushothaman
and Bradley, 2005; Cohen and Newsome, 2009; Haefner et al.,
2013; Liu et al., 2013). Briefly, to simulate a perceptual decision
pool of n units, n single neurons were randomly chosen,
with replacement, from our entire dataset. To construct a
single trial at a given contrast, we simulated each neuron’s
response by randomly drawing a number from a Gaussian
distribution; the mean and variance of this distribution were
determined by that neuron’s measured response at that
contrast level. In each trial, the model made a ‘‘choice’’ by
comparing the summed activity of the neural pool at the test
contrast level to the summed activity of the same neurons
at the reference contrast (i.e., blank, 0% contrast trials).
This procedure was repeated 50 times (i.e., to simulate 50
trials) for each of the 5 contrast levels, and the simulated
‘‘psychophysical’’ performance was recorded as the percentage
of correct ‘‘choices’’ at each contrast. This performance was
fitted with a cumulative Weibull function [1], and threshold
and slope parameters were extracted as described above. The
choice probability for each simulated neuron was quantified
as the covariation between the simulated neural response and
the simulated ‘‘psychophysical choice’’ at 0% contrast. The
parameters for the model included the number of neurons in
the pool (n = 1–512 neurons), the integration time window
(t = 25–200 ms), the Fano factor (f = 0.25–3.0), the interneuronal
noise correlation (r = 0–0.3), and the downstream pooling
noise (p = 0–4.0). For each parameter combination, the set
of simulations described above (50 trials ∗ 5 contrast levels)
was repeated 200 times, each time with a new random
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sample of n neurons (with replacement), thus giving reliable
estimations of the model performance. The overall fitness of
the model was evaluated by computing a Goodness-of-Fit
(GoF) index:

GoF = (1− 1/3 ∗ (|simulated threshold −measured
threshold|/measured threshold + |simulated P choice
probability− measured P choice probability|/measured
P choice probability + |simulated M choice probability
−measured M choice probability|/measured M choice
probability)) ∗ 100% (2)

Model Parameters
In our simulations we typically used fixed or experimentally
measured values (Jiang et al., 2015) for variables such as the
Fano factor, the interneural correlation, and the pooling noise
(with the exception of Figure 1, where these parameters were
systematically varied to probe the basic properties of the pooling
model). We consider our choices for these parameter values to
be neurobiologically realistic and meaningful for the following
reasons: (1) The Fano factor: Recordings in anesthetized as
well as alert animals have reported significant variabilities in
the responses of single cortical neurons, with the Fano factor
(response variance/mean) averaging 1.0–3.0 (Tolhurst et al.,
1983; McAdams and Maunsell, 1999; Oram et al., 1999; Gu
et al., 2007). The Fano factor of subcortical visual neurons,
however, is relatively low (i.e., <1.0). This is true for retinal
ganglion cells (Levine et al., 1992; Berry et al., 1997; Reich
et al., 1997) as well as LGN cells (Kara et al., 2000). The Fano
factors measured in our detection task (Jiang et al., 2015) and
used in our models (0.8–1.4, depending on integration time)
were in agreement these previously reported measurements
(2) Interneuronal correlation: In sensory cortex, interneuronal
correlations between pairs of nearby neurons are typically weak
but positive (∼0.1–0.2; Averbeck et al., 2006). For the LGN
P-P and M-M neuron pairs, because convergent feedforward,
divergent feedforward, and lateral connections are sparser than
those in the cortex (Casagrande and Xu, 2004; Nassi and
Callaway, 2009), it is not surprising that we found an average
interneuronal correlation (0.028) that was not significantly
different from 0.0. The interneuronal correlation for a P-M
neuron pair is very likely to be even smaller, as the P and M
pathways receive different retinal inputs, remain segregated in
different layers of the LGN (Casagrande and Norton, 1991; Nassi
and Callaway, 2009), and retain separate feedback loops with
V1 (Ichida and Casagrande, 2002; Briggs and Usrey, 2009, 2011;
Ichida et al., 2014). In our model the P-M correlation was fixed
at 0.01, but our simulations could always approach >99% GoF
at some parameter combinations, given any P-M correlation
values between 0.0–0.05 (data not shown). (3) Pooling noise: The
downstream pooling noise can be thought of as the average Fano
factor of the cortical neurons onto which LGN neurons converge
(Shadlen et al., 1996). In our simulations this number was fixed
at 2.0, which is the average estimation of the Fano factor in cortex
(see above). The success of our simulations (i.e., approaching
>99% GoF at some parameter combinations), however, did not

depend on this assumption. Similar model results could be
obtained by simply assuming a true Poisson distribution for all
downstream neurons (i.e., pooling noise = 1.0).

Uniform Pooling and Alternative Pooling
Strategies
In this paper, we examined uniform pooling models as well as
several alternative weighted pooling models. All of these models
shared the same overall structure:

Xpooled =

n∑
i = 1

wixi (3)

Where Xpooled is the summed activity of the perceptual decision
pool, xi is the response of a single neuron, and wi is the
readout weight assigned to this neuron. Within this structure,
the uniform pooling model simply assigned equal weights (i.e.,
wi = 1.0) to all neurons in the decision pool, regardless of
their sensitivities (Shadlen et al., 1996). An alternative weighted
pooling strategy, in contrast, calculated the sensitivity of each
individual neuron and assigned weights accordingly. Depending
on how this neural sensitivity was quantified, there were three
main categories of weighted pooling schemes: (1) Amplitude-
per-trial (amp/trial) weighted scheme, where every neuron was
weighted according to its response amplitude in every trial
(wi ∝ xi), with the neuron with the highest spike rate carrying a
weight of 1.0; (2) Mean amplitude (mean amp) weighted scheme,
where every neuron was weighted according to its average
response amplitude (wi ∝ xi) at high contrast (80–99%), with
the neuron with the highest average spike rate carrying a weight
of 1.0; and (3) D-prime weighted scheme, where every neuron
was weighted by its d-prime value (wi ∝ d

′

i ) at high contrast
(80–99%), with the neuron with the greatest d-prime carrying a
weight of 1.0. Here d-prime was defined as:

d
′

i = (xi − x0i)
/√

s2i + s02i
2

(4)

Where xi is the neuron’s mean response amplitude at high
contrast (80–99%), x0i is its mean response amplitude at
reference contrast (i.e., blank, 0% contrast), and si and s0i
represent the corresponding standard deviations. Because of
their potential deviations from normality, for both weight and
d-prime distributions we reported medians as well as means.
Additionally, to characterize the spread of a distribution, we
reported the interquartile range:

Interquatile Range (IQR) = Q3 − Q1 (5)

Where Q1 is the 1st quartile (i.e., 25% percentile), and Q3 is the
3rd quartile (i.e., 75% percentile) in the range. To characterize the
skewness of a distribution, we reported the skewness index:

Skewness index (SI) =
1
n
∑n

i = 1 (xi − x)3(√
1
n
∑n

i = 1 (xi − x)2
)3 (6)

Where n is the sample size, and x is the mean of the sample
distribution.
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FIGURE 1 | Parametric analysis of the pooling model. (A,B) Increasing the number of neurons in the pool decreased the simulated threshold and choice
probability. Interneuronal correlation and pooling noise were assumed to be 0; integration time was 0–150 ms. Magenta: simulated P neuron; green: simulated M
neuron; thick gray line: measured mean psychophysical threshold/choice probability; thin gray line/rectangle: mean ± SEM. (C,D) Increasing the Fano factor
increased simulated threshold but maintained choice probability, for both P neurons (C) and M neurons (D). Interneuronal correlation and pooling noise were
assumed to be 0; integration time was 0–150 ms. As in (B), each simulation line moved from the upper right corner to the lower left corner as more neurons were
added in the pool. Gray line: measured mean psychophysical threshold/choice probability; rectangle: mean ± SEM. (E,F) Increasing interneuronal correlation
increased simulated threshold and choice probability, for both P neurons (E) and M neurons (F). The Fano factor was assumed to be 1.03 (measured value); pooling
noise was assumed to be 0; integration time was 0–150 ms. As in (B), each simulation line moved from the upper right corner to the lower left corner as more
neurons were added in the pool. Legends as in (C,D). (G,H) Increasing pooling noise increased simulated threshold and decreased choice probability, for both P
neurons (G) and M neurons (H). The Fano factor was assumed to be 1.03 (measured value); interneuronal correlation was assumed to be 0.028 (measured value);
integration time was 0–150 ms. As in (B), each simulation line moved from the upper right corner to the lower left corner as more neurons were added in the pool.
Legends as in (C,D). (A,B) and (E–H) were adapted from Jiang et al. (2015).
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Results

As previously reported (Jiang et al., 2015), we found that single
LGN P and M neurons, although not as sensitive as the monkeys
in detecting contrast, were significantly correlated with the
behavioral choices of the monkeys during a 2AFC contrast
detection task. Based on these experimental data, we report in
this paper a series of modeling results in the following order:
first we describe the basic parameters of the uniform pooling
model and its performance in different time frames, then we
compare several alternative weighted pooling schemes to the
uniform pooling model, and finally we zoom in on one of the
best performing weighted schemes and examine its structure in
detail.

Uniform Pooling Model: Parameters
The uniform pooling model we built was similar to a number of
previousmodels used to account for psychophysical performance
and choice probability measurements based on sensory neural
responses (Shadlen et al., 1996; Purushothaman and Bradley,
2005; Cohen and Newsome, 2009; Haefner et al., 2013; Liu
et al., 2013). Inputs to the model were single LGN P and
M neural responses at different contrasts. Outputs were the
simulated ‘‘psychophysical’’ threshold and the simulated choice
probabilities for individual neurons. In agreement with Shadlen
et al. (1996), this uniform pooling model behaved predictably
when certain model parameters were changed. Specifically,
increasing the number of neurons in the pool (n) decreased
the psychophysical threshold and choice probability values
(Figures 1A,B). Increasing the Fano factor increased the
simulated threshold but maintained the same choice probability
values (Figures 1C,D). Increasing the interneuronal correlation
increased the threshold as well as choice probability values
(Figures 1E,F). Increasing the downstream pooling noise
increased the threshold and decreased choice probability values
(Figures 1G,H). For the simulation results reported in the
following sections, the Fano factor and interneuronal noise
correlation were fixed at experimentally measured values and
the pooling noise, which could be considered as the Fano
factor of downstream neurons onto which LGN neurons
converge, was assumed to be 2.0 (see ‘‘Material and Methods’’
Section).

Uniform Pooling Model: Performance
The first pooling scheme we investigated was the uniform
pooling model, in which the responses of all neurons were
weighted equally and summed up to form perceptual decisions.
In this model, the simulated psychometric threshold consistently
decreased as: (1) more neurons (n) were added into the pool; and
(2) the integration time window (t) was extended. Specifically, we
found that: (1) at extremely short intervals (25ms), incorporating
a large number of neurons from both the P and M populations
(n = 512 P neurons, 512 M neurons) still failed to achieve
great psychophysical sensitivities (i.e., threshold<10% contrast),
but incorporating a large number of M neurons (n = 256–512)
rather than P neurons was more beneficial to model performance
(Figure 2A); (2) at relatively brief intervals (50 ms), preferably

incorporating a large number of M neurons (n = 256–512) rather
than P neurons produced good psychophysical performance
(i.e., threshold <10% contrast; Figure 2B); (3) at medium to
long intervals (75–200 ms), a wider range of M/P neuron
combinations (n = 64–512) yielded good model performance
(Figures 2C–F).

Next we analyzed the simulated choice probabilities for the
P and M populations and compared them to the measured
choice probability distributions (Jiang et al., 2015). Briefly, in
the 2AFC contrast detection task, we found that in the absence
of any physical stimulus (i.e., 0% contrast, blank trials only),
the average choice probability was 0.54 ± 0.01 for LGN P
neurons and 0.54 ± 0.01 for LGN M neurons, both above
chance according to permutation tests (P neuron: P = 0.015,
M neuron: P = 0.033). In the uniform pooling model, the
simulated choice probability distributions for P and M neurons
(n = 512 neurons, t = 0–150 ms, P choice probability = 0.54
± 0.00, M choice probability = 0.54 ± 0.00) resembled their
experimentally measured counterparts (P > 0.05, permutation
tests; Figures 3A,B). These choice probability patterns remained
unchanged throughout the 200 ms stimulus presentation time
(n = 512 neurons, P > 0.05, 1-way ANOVAs; Figures 3C,D).

To evaluate the overall performance of this model, a
Goodness-of-Fit (GoF) index (see equation [2]) was reported
for each (n, t) parameter combination. A GoF (ranging from
0–100%) reflected three factors equally: (1) how close the
simulated ‘‘psychophysical’’ threshold approached the measured
psychophysical threshold; (2) how close the simulated P
population choice probability approached the measured average
choice probability for P neurons; and (3) how close the
simulated M population choice probability approached the
measured average choice probability for M neurons. A GoF
of 100% indicated that our simulation perfectly matched the
observed psychometric threshold and the choice probabilities
for both types of neurons. By changing the duration of the
integration window (25–200 ms), we found that: (1) at extremely
short intervals (25 ms), even incorporating a large number
of neurons from both groups (n = 512 P neurons, 512
M neurons) still failed to reproduce the observed threshold
and choice probabilities (Figure 4A); (2) in 50 ms, preferably
incorporating a large number of M neurons (n = 256–512)
could explain the observed threshold and choice probabilities
(Figure 4B); (3) in 75 ms, incorporating a large number
of either P or M neurons (n = 128–512) could achieve
good overall model performance (Figure 4C); and (4) at
medium to long intervals (100–200 ms), a smaller number
of P and M neurons were needed (n = 32–128) to achieve
good model performance, but further increasing the number
of neurons resulted in a decrease in model performance
(Figures 4D–F).

Alternative Pooling Schemes
In this section we examine several alternative pooling schemes
where, instead of assigning the same weight to all neurons,
each individual neuron was weighted differentially based
on its response rate or sensitivity. We investigated three
main categories of weighted pooling schemes, namely the
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FIGURE 2 | The simulated “psychophysical” thresholds for different pool sizes (n) and integration time windows (t). Red indicates high threshold
(100% contrast), whereas blue indicates low threshold (0% contrast). (A) t = 0–25 ms. (B) t = 0–50 ms. (C) t = 0–75 ms. (D) t = 0–100 ms. (E) t = 0–150 ms.
(F) t = 0–200 ms.

amplitude-per-trial (amp/trial) weighted, the mean amplitude
(mean amp) weighted, and the d-prime weighted schemes
(see ‘‘Material and Methods’’ Section). First we compared
the simulated psychometric thresholds and found that for all
pooling schemes the average psychometric threshold decreased
with time (n = 1–512 neurons, F = 920.22, P = 0.00, 2-
way ANOVA main effect for time). Furthermore, there was
a significant difference in psychometric thresholds among
different pooling schemes (F = 54.82, P = 0.00, 2-way
ANOVA main effect for pooling strategy), and this difference
changed across time (F = 8.43, P = 0.00, 2-way ANOVA

interaction effect; Figure 5A). Next we examined whether these
alternative pooling strategies improved the sensitivity of the
model when compared to the uniform pooling strategy. Here
the mean amplitude weighted and the d-prime weighted models
could be further divided into two subcategories, respectively,
depending on whether P and M neurons were weighted
separately or together in the model. Among all of these
alternative pooling schemes, we found that only the d-prime
weighted schemes consistently improved the psychophysical
performance when compared with the uniform pooling scheme
(mean difference, d-prime 1 = −4.88 ± 0.42% contrast;
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FIGURE 3 | The simulated choice probabilities of P and M neurons for different pool sizes (n) and integration time windows (t). (A) Cumulative choice
probability distributions for P (magenta) and M (green) neurons in 200 simulations (n = 512 neurons, t = 0–150 ms). (B) Choice probability distributions for P (magenta)
and M (green) neurons in 200 simulations (n = 512 neurons, t = 0–150 ms). Arrow: mean choice probability; solid line: choice probability = 0.5. (C) Cumulative choice
probability distributions for P (magenta) neurons in different integration time windows (n = 512 neurons, 200 simulations for each integration time). (D) Cumulative
choice probability distributions for M (green) neurons in different integration time windows (n = 512 neurons, 200 simulations for each integration time).

mean difference, d-prime 2 = −4.67 ± 0.43% contrast; P
< 0.05, Tukey’s HSD tests for multiple comparisons). The
mean amplitude weighted schemes and the amplitude per
trial weighted scheme all failed to perform as well as the
uniform pooling scheme in terms of the threshold (mean
difference, mean amp 1 = 2.59 ± 0.21% contrast; mean
difference, mean amp 2 = 3.31 ± 0.23% contrast; mean
difference, amp/trial = 7.51 ± 0.28% contrast; P < 0.05,
Tukey’s HSD tests for multiple comparisons). Additionally, the
two subtypes of mean amplitude weighted models did not
differ from each other in terms of their simulated thresholds,
and the two subtypes of d-prime weighted models did not
differ from each other either (P > 0.05, Tukey’s HSD tests
for multiple comparisons; Figure 5B). Finally, the minimal
psychophysical threshold achieved by the model also decreased
with time in all pooling schemes and plateaued at around
50–75 ms after stimulus onset (n = 1–512 neurons, minimal
threshold = 2–3% contrast; Figure 5C). Taken together,
Figures 5A–C demonstrated that the d-prime weighted pooling
strategies were the most optimal in terms of the simulated
psychophysical performance, and this advantage over other

pooling strategies was the most apparent in short integration
time windows (25–50 ms).

Next, we compared the simulated choice probabilities in
these different pooling schemes. First, in a fixed time window
(t = 0–150 ms), the overall choice probability distributions for
simulated P or M neurons did not differ significantly among the
pooling schemes (n = 512 neurons, P > 0.05, 1-way ANOVAs;
Figures 5D,E). Second, these choice probability distributions
did not change with time in the case of the amplitude per
trial and mean amplitude weighted models (n = 512 neurons,
P > 0.05, 2-way ANOVAs main effect for time; Figures 5F,G).
In the d-prime weighted pooling model, however, the choice
probability distributions did shift significantly as the integration
time window was extended (n = 512 neurons, F = 4.86, P = 0.00,
2-way ANOVA main effect for time; Figure 5H), corresponding
well to the temporal dynamics of choice probability that were
experimentally measured in LGN P and M neurons (see Figure
7 of Jiang et al., 2015).

Finally, we investigated the overall performance of different
pooling strategies by comparing their GoF indices in different
time windows. We found that for all pooling schemes the overall
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FIGURE 4 | The Goodness-of-Fit (GoF) indices for different pool sizes (n) and integration time windows (t). A GoF of 100% (white) indicates that the model
perfectly matches the observed psychometric threshold as well as choice probabilities for both P and M neurons. (A) t = 0–25 ms. (B) t = 0–50 ms. (C) t = 0–75 ms.
(D) t = 0–100 ms. (E) t = 0–150 ms. (F) t = 0–200 ms. (A,B) and (D–F) were adapted from Jiang et al. (2015).

model performance improved with time (n = 1–512 neurons,
F = 223.78, P = 0.00, 2-way ANOVA main effect for time).
Furthermore, there was a significant difference in overall fitness
among different pooling schemes (F = 19.06, P = 0.00, 2-way
ANOVA main effect for pooling strategy), and this difference
changed across time (F = 2.75, P = 0.00, 2-way ANOVA
interaction effect; Figure 6A). Next, we examined whether the
alternative pooling strategies improved upon the performance
of the uniform pooling model. We found that, again, only the
d-prime weighted schemes consistently improved the overall
fitness of the model (mean difference, d-prime 1 = 1.10 ± 0.15%

GoF; mean difference, d-prime 2 = 0.95 ± 0.15% GoF; P <

0.05, Tukey’s HSD tests for multiple comparisons). The mean
amplitude weighted schemes did not differ significantly from the
uniform pooling scheme (mean difference, mean/amp 1 =−0.64
± 0.25% GoF; mean difference, mean amp 2 = −0.79 ± 0.26%
GoF; P > 0.05, Tukey’s HSD tests for multiple comparisons),
whereas the amplitude per trial weighted scheme failed to
perform as well as the uniform pooling scheme (mean difference,
amp/trial = −2.49 ± 0.29% GoF; P < 0.05, Tukey’s HSD test for
multiple comparisons). Additionally, the two subtypes of mean
amplitude weighted models did not differ from each other in

Frontiers in Neural Circuits | www.frontiersin.org 9 October 2015 | Volume 9 | Article 54

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Jiang et al. Computation of contrast in thalamus

FIGURE 5 | A comparison of threshold and choice probability values derived from different pooling schemes. (A) The average psychometric threshold
decreased with time in all pooling schemes (n = 1–512 neurons). Black: uniform pooling (as above); gray: every neuron weighted by its response amplitude in every
trial; blue: every neuron weighted by its average response amplitude at high contrast (80–99%); magenta: every neuron weighted by its d-prime value at high
contrast (80–99%); error bar: mean ± SEM. (B) Different pooling schemes yielded significantly different psychometric thresholds when compared with the uniform
pooling model (n = 1–512 neurons). Gray: every neuron weighted by its response amplitude in every trial; blue with circle: every neuron weighted by its average
response amplitude at high contrast (80–99%), with P and M neurons weighted separately in reference to their respective maximal responses; blue with triangle:
every neuron weighted by its average response amplitude at high contrast (80–99%), with P and M neurons weighted together in reference to one maximal response;
magenta with circle: every neuron weighted by its d-prime value at high contrast (80–99%), with P and M neurons weighted separately in reference to their respective
maximal d-primes; magenta with triangle: every neuron weighted by its d-prime value at high contrast (80–99%), with P and M neurons weighted together in
reference to one maximal d-prime; y axis: the difference in psychometric threshold (alternative pooling scheme—uniform, % contrast); error bar: mean ± SEM.
(C) The minimal psychometric threshold achieved by the model decreased with time in all pooling schemes. (D,E) Cumulative choice probability distributions for P
(D) and M (E) neurons (n = 512 neurons, t = 0–150 ms) in different pooling schemes. (F–H) Cumulative choice probability distributions for P (magenta) and M (green)
neurons in different integration time windows (n = 512 neurons), with every neuron weighted by its response amplitude in every trial (F), by its average response
amplitude (G), or by its d-prime (H).
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terms of their GoF indices, and neither did the two subtypes
of d-prime weighted models (P > 0.05, Tukey’s HSD tests for
multiple comparisons; Figure 6B). Additionally, the maximal
GoF achieved by themodel also increased with time in all pooling
schemes and plateaued at around 50–75 ms after stimulus
onset (n = 1–512 neurons, 98–99% GoF; Figure 6C). Finally,
the number of neurons needed to achieve the maximal GoF
decreased with time in all pooling schemes, but only the uniform
and the d-prime weighted pooling schemes were able to achieve
maximal fitness (98–99% GoF) with fewer than 100 neurons
(Figure 6D). Taken together, Figures 6A–D demonstrated that
the d-prime weighted pooling strategies were the most optimal in
terms of the overall performance, and this advantage over other
pooling strategies was the most apparent in short integration
time windows (25–50 ms).

d-prime Weighted Pooling Scheme: Performance
Of all the alternative pooling strategies described above, we
were the most interested in the d-prime weighted strategy
because of its superior performance. In the next few sections
we discuss in detail the performance, structure and properties
of the d-prime model. First, in terms of the simulated
psychophysical threshold, at extremely short integration time
windows (25 ms), the d-prime model failed to achieve good
psychophysical performance (i.e., threshold < 10% contrast)
even when it incorporated a large number of neurons from
both the P and M populations (n = 512 P neurons, 512
M neurons), but incorporating a large number of M neurons
(n = 128–512) rather than P neurons was more beneficial to
model performance (Figure 7A). At relatively brief intervals
(50 ms), incorporating a large number of either P or M neurons
(n = 256–512) could achieve good psychophysical performance
(i.e., threshold < 10% contrast; Figure 7B). At medium to
long intervals (75–200 ms), a wider range of M/P neuron
combinations (n = 64–512) yielded good model performance
(Figures 7C–F). Comparing Figure 7 (d-prime pooling) to
Figure 2 (uniform pooling), it is clear that the d-prime model
behaved rather similarly to the uniform pooling model in terms
of its psychophysical performance, but there were apparent
differences between the two models in the 25 ms and 50 ms
time windows. Specifically, the d-prime model achieved much
lower psychophysical thresholds than the uniform model in
both time windows (25 ms: mean difference = −25.00 ± 1.13%
contrast, P = 0.00, Wilcoxon signed rank test; 50 ms: mean
difference = −4.25 ± 0.28% contrast, P = 0.00, Wilcoxon signed
rank test).

In terms of the overall fitness quantified as GoF, at
extremely short integration time windows (25 ms), the d-prime
model failed to reproduce the observed threshold and choice
probabilities even when it incorporated a large number of
neurons from both the P and M populations (n = 512 P neurons,
512 M neurons; Figure 8A). In 50 ms windows, incorporating
a large number of either P or M neurons (n = 256–512)
could explain the observed threshold and choice probabilities
(Figure 8B). Finally, at medium to long intervals (75–200 ms),
a wider range of M/P neuron combinations (n = 32–256)
yielded good model performance, but further increasing the

number of neurons would result in a decrease in model
performance (Figures 8C–F). Comparing Figure 8 (d-prime
pooling) with Figure 4 (uniform pooling), it is clear that the
temporal evolution of the GoF index for the d-prime model
resembled that for the uniform model, but there were apparent
differences between the two models in the 50 ms and 75 ms
time windows. To be more precise, in the 50 ms window, the
d-prime model demonstrated better overall performance than
the uniform model (mean difference = 4.85 ± 0.51% GoF,
P = 0.00, Wilcoxon signed rank test). In the 75 ms window,
in contrast, the overall performance did not differ between the
two types of pooling models (mean difference = 0.00 ± 0.48%
GoF, P = 0.30, Wilcoxon signed rank test), but the number
of neurons needed to achieve good model performance (>90%
GoF) was significantly reduced in the d-prime model (d-prime
model: n = 64–256 neurons, uniform model: n = 128–512
neurons).

d-prime Weighted Pooling Scheme: Structure
Next, we examined the relationship between d-primes, weights,
and choice probabilities for different cell types within the
d-prime pooling model. First, intuitively, as the model was
allowed to integrate firing rate information for longer durations,
the overall d-prime distributions extended accordingly, for both
P and M populations (F = 87.74, P = 0.00, 2-way ANOVA main
effect for time; Figures 9A,B). Next, in a fixed time window of
medium duration (n = 512 neurons, t = 0–150 ms), we compared
the d-prime distributions for P and M neurons. In P neurons,
the average d-prime was 1.70 ± 0.00 and the median was 1.40.
In M neurons, the average d-prime was 1.69 ± 0.00 and the
median was 1.69 as well. Even though the average d-primes
were similar, the shapes of the distributions differed dramatically
between the two cell types, with the P d-prime distribution much
more widely spread (P interquartile range = 2.05, M interquartile
range = 1.25) and positively skewed (P skewness index = 0.73,
M skewness index = 0.12; Figures 9C,D). In the same time
window (t = 0–150 ms), the pooling weight of each individual
neuron was directly determined by its d-prime value, and the
weight distributions for P and M neurons were therefore very
reminiscent of the their corresponding d-prime distributions in
terms of shape. As the pooling weight of a neuron could not
exceed 1.0, however, the weight distributions were scaled-down
versions of the corresponding d-prime distributions (P weight:
mean = 0.29 ± 0.00, median = 0.23; M weight: mean = 0.44
± 0.00, median = 0.43). As a result, the weight distributions
for P and M neurons still differed from each other in terms of
skewness (P skewness index = 0.74, M skewness index = 0.15),
but they were no longer distinguishable in terms of spread
(P interquartile range = 0.35, M interquartile range = 0.32;
Figures 9E,F).

We also analyzed the simulated choice probabilities for
P and M neurons in the same time window (t = 0–150 ms), and
found that the P andM choice probabilities in the d-primemodel
(P choice probability = 0.53 ± 0.00, M choice probability = 0.54
± 0.00) resembled their experimentally measured counterparts
(Jiang et al., 2015, also see above; Figure 9G). Furthermore,
individual choice probability values were positively correlated
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FIGURE 6 | A comparison of the GoF indices derived from different pooling schemes. (A) The average GoF increased with time in all pooling schemes
(n = 1–512 neurons). Black: uniform pooling (as above); gray: every neuron weighted by its response amplitude in every trial; blue: every neuron weighted by its
average response amplitude at high contrast (80–99%); magenta: every neuron weighted by its d-prime value at high contrast (80–99%); error bar: mean ± SEM.
(B) Different pooling schemes yielded significantly different GoFs when compared with the uniform pooling model (n = 1–512 neurons). Gray: every neuron weighted
by its response amplitude in every trial; blue with circle: every neuron weighted by its average response amplitude at high contrast (80–99%), with P and M neurons
weighted separately in reference to their respective maximal responses; blue with triangle: every neuron weighted by its average response amplitude at high contrast
(80–99%), with P and M neurons weighted together in reference to one maximal response; magenta with circle: every neuron weighted by its d-prime value at high
contrast (80–99%), with P and M neurons weighted separately in reference to their respective maximal d-primes; magenta with triangle: every neuron weighted by its
d-prime value at high contrast (80–99%), with P and M neurons weighted together in reference to one maximal d-prime; y axis: the difference in GoF (alternative
pooling scheme—uniform, % GoF); error bar: mean ± SEM. (C) The maximal GoF achieved by the model increased with time in all pooling schemes. (D) The
number of neurons needed to achieve the maximal GoF decreased with time in all pooling schemes.

with d-prime values for both P neurons (r = 0.08, P = 0.00) and
M neurons (r = 0.04, P = 0.00; Figure 9H), indicating that the
more sensitive LGN neurons were also more correlated with the
behavioral choices of the monkeys.

d-Prime Weighted Pooling Scheme: Which One
to Choose?
As mentioned above, the d-prime weighted pooling scheme
could be further divided into two subtypes depending on whether
the P and M populations were weighted separately or together.
These two types of d-prime models were indistinguishable from
each other in terms of overall fitness, but we were interested
in comparing their structures and detailed properties as well as

making inferences as to whichmodel was neurobiologically more
meaningful. In the previous section we described the relationship
between d-prime, weight, and choice probability in the scenario
where P and M neurons were weighted separately according
to their respective maximal d-primes, and in this section we
perform similar analyses on the alternative d-prime model where
P and M neurons were weighted together.

First, as the d-prime value is a direct reflection of the signal-
to-noise ratio of single neural responses, it is not surprising that
the d-prime distributions remained the same regardless of the
pooling strategy (compare Figures 9C,D to 10A,B). Specifically,
for the P population, the average d-prime here was 1.70 ± 0.00
and the median was 1.40. For the M population, the average
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FIGURE 7 | The simulated “psychophysical” thresholds in the d-prime weighted scheme for different pool sizes (n) and integration time windows
(t). Red indicates high threshold (100% contrast), whereas blue indicates low threshold (0% contrast). (A) t = 0–25 ms. (B) t = 0–50 ms. (C) t = 0–75 ms.
(D) t = 0–100 ms. (E) t = 0–150 ms. (F) t = 0–200 ms.

d-prime here was 1.70 ± 0.00 and the median was 1.70 as
well. Additionally, the P and M d-prime distributions differed
significantly in their shapes, with the P d-prime distribution
much more widely spread (P interquartile range = 2.04, M
interquartile range = 1.25) and positively skewed (P skewness
index = 0.73, M skewness index = 0.11; Figures 10A,B). The
weight distributions for P and M neurons in the same time
window (t = 0–150ms), however, were very different between the
two types of d-prime models (compare Figures 9E,F to 10C,D).
Specifically, when P and M neurons were pooled together, as

was the case here, the weight distributions were still scaled-down
versions of their corresponding d-prime distributions (P weight:
mean = 0.29 ± 0.00, median = 0.24; M weight: mean = 0.29
± 0.00, median = 0.29), but both distributions retained their
shape and spread. In other words, the weight distributions
for P and M neurons still differed from each other in terms
of both spread (P interquartile range = 0.36, M interquartile
range = 0.21) and skewness (P skewness index = 0.74, M
skewness index = 0.14; Figures 10C,D). Two-way ANOVAs
confirmed that while the d-prime distributions did not differ
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FIGURE 8 | The GoF indices in the d-prime weighted scheme for different pool sizes (n) and integration time windows (t). A GoF of 100% (white)
indicates that the model perfectly matches the observed psychometric threshold as well as choice probabilities for both P and M neurons. (A) t = 0–25 ms.
(B) t = 0–50 ms. (C) t = 0–75 ms. (D) t = 0–100 ms. (E) t = 0–150 ms. (F) t = 0–200 ms.

(F = 0.01, P = 0.91, 2-way ANOVA main effect for pooling
strategy), the weight distributions differed dramatically between
the two pooling schemes (F = 12073.18, P = 0.00, 2-way ANOVA
main effect for pooling strategy). This difference in the weight
distributions was presumably due to the fact that, compared
withM d-prime distributions, P d-prime distributions weremore
widely spread with greater maximal values. Thus, when P and M
populations were scaled together, as was the case here, both were
most likely scaled in reference to the d-primes of a subset of P
neurons, thus preserving the shapes as well as spreads of these
distributions. When P andM populations were scaled separately,

as was the case above, M neurons were scaled to a lesser degree
when compared with P neurons, rendering the spreads of the two
distributions indistinguishable.

We also analyzed the simulated choice probabilities for P and
M neurons in the same time window (t = 0–150 ms), and found
that in this d-prime model the P and M choice probabilities
(P choice probability = 0.53± 0.00,M choice probability = 0.54±
0.00) also resembled their experimentally measured counterparts
(Jiang et al., 2015, also see above; Figure 10E). Furthermore, these
P and M choice probability distributions developed throughout
the 200ms stimulus presentation time (n = 512 neurons, F = 3.78,
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FIGURE 9 | Further analysis of the d-prime weighted pooling scheme: the relationship between d-prime, weight, and choice probability.
(A,B) Cumulative d-prime distributions for P (magenta, A) or M (green, B) neurons in different integration time windows (n = 512 neurons). (C) Cumulative d-prime
distributions for P (magenta) and M (green) neurons in a 0–150 ms window (n = 512 neurons, 200 simulations). (D) D-prime distributions for P (magenta) and
M (green) neurons in a 0–150 ms window (n = 512 neurons, 200 simulations). Arrow: median d-prime; solid line: d-prime = 0. (E) Cumulative weight distributions for
P (magenta) and M (green) neurons in the same 0–150 ms window (n = 512 neurons, 200 simulations). (F) Weight distributions for P (magenta) and M (green)
neurons in the same 0–150 ms window (n = 512 neurons, 200 simulations). Arrow: median weight; solid line: weight = 0. (G) Cumulative choice probability
distributions for P (magenta) and M (green) neurons in the same 0–150 ms window (n = 512 neurons, 200 simulations). (H) Choice probability values were positively
correlated with d-primes (n = 512 neurons, t = 0–150 ms, 200 simulations). Horizontal line: choice probability = 0.5; vertical line: d-prime = 0.
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FIGURE 10 | Further analysis of the d-prime weighted pooling scheme: P and M neurons weighted together in reference to one maximal d-prime.
(A) Cumulative d-prime distributions for P (magenta) and M (green) neurons in a 0–150 ms window (n = 512 neurons, 200 simulations). (B) D-prime distributions for
P (magenta) and M (green) neurons in a 0–150 ms window (n = 512 neurons, 200 simulations). Arrow: median d-prime; solid line: d-prime = 0. (C) Cumulative weight
distributions for P (magenta) and M (green) neurons in the same 0–150 ms window (n = 512 neurons, 200 simulations). (D) Weight distributions for P (magenta) and
M (green) neurons in the same 0–150 ms window (n = 512 neurons, 200 simulations). Arrow: median weight; solid line: weight = 0. (E) Cumulative choice probability
distributions for P (magenta) and M (green) neurons in the same 0–150 ms window (n = 512 neurons, 200 simulations). (F) Cumulative choice probability distributions
for P (magenta) and M (green) neurons in different integration time windows (n = 512 neurons).

P = 0.00, 2-way ANOVA main effect for time), much like in
the other d-prime model (compare Figures 5H to 10F), and
confirming the temporal dynamics that we had observed in the
LGN of awake monkeys (Jiang et al., 2015).

Discussion

We previously reported that, in a 2AFC contrast detection task,
single LGN P and M neurons demonstrated significant choice
probabilities despite their relatively poor neural sensitivities
(Jiang et al., 2015). In this study, we examined quantitatively the

effects of the neural pool size, the Fano factor, the interneuronal
correlation and the downstream pooling noise on the simulated
psychophysical performance and choice probability values. We
investigated different pooling/readout schemes that ranged from
basic, uniform pools to more optimal pools that preferably
weighted the more sensitive single neurons. We compared these
pooling strategies in integration time windows of different
durations, and found that the most successful model consisted
of a medium number of LGN neurons (n =∼30–250) in medium
to long integration time windows (75–200 ms), with individual
neurons weighted differentially according to their d-prime
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values. These results indicated that both the psychophysical
threshold and the LGN choice probabilities during contrast
detection could be fully explained using simple, bottom-up
pooling models without assuming significant interneuronal
correlations, and that such modeling efforts helped elucidate
the complicated relationship between neural sensitivity, readout
weight, and choice probability. We now consider the significance
of these results in light of previous experimental and theoretical
findings.

Pooling/Readout Strategies
The primate LGN provides major feedforward input to the visual
cortex, and is an essential thalamic gateway to conscious vision
(Sherman and Guillery, 2001; Jones, 2007; Schmid et al., 2010;
Casagrande and Ichida, 2011; Saalmann and Kastner, 2011).
The effort to understand how the information carried by LGN
cells is utilized at later stages is therefore of great importance.
Very generally, pooling /readout rules can be divided into two
categories. In the first, perceptual decisions are based on signals
provided by one or several of the most sensitive sensory neurons
(i.e., lower envelope principle; Barlow, 1995). In the second
category, perceptual decisions are based on some form of pooled
responses from many sensory neurons. The uniform pooling as
well as alternative weighted pooling schemes used in this paper
all fall into the second category.

The lower envelope principle, however, always remains a
theoretical possibility. This is because even in a detection task
such as ours, where the sensitivities of most single neurons
failed to match the psychophysical sensitivity of the subject,
there were still a small but significant proportion (13.5%; Jiang
et al., 2015) of single cells that matched or even outperformed
the subject. That being said, if the lower envelop principle
were true, we would expect a choice probability distribution
that is qualitatively different from what was observed in
physiological recordings. Briefly, if only a few neurons contribute
to a perceptual decision, all of them should demonstrate very
significant choice probabilities, with the rest of the entire neural
population exhibiting chance choice probabilities (Nienborg
et al., 2012; Haefner et al., 2013; but see below for the influence
of interneuronal correlation on choice probability). In reality,
most cortical recordings have reported a broad distribution of
weakly significant choice probabilities (for example, see Britten
et al., 1996; Uka and Deangelis, 2004; Liu and Newsome, 2005;
Purushothaman and Bradley, 2005; Nienborg and Cumming,
2006; Palmer et al., 2007; Price and Born, 2010; Liu et al., 2013),
a result that was confirmed in the LGN (Jiang et al., 2015).

Consequently, our current study as well as a number of other
computational studies (Shadlen et al., 1996; Purushothaman and
Bradley, 2005; Cohen and Newsome, 2009; Haefner et al., 2013)
arrived at the conclusion that an ideal perceptual decision pool
consists of not just a few, but rather tens to hundreds of single
sensory neurons. In this type of broad decision pool, the readout
weight profile, or pooling strategy, of the neural system can
be inferred from experimentally measurable quantities such as
the behavioral threshold and the choice probability distributions
(Haefner et al., 2013; Liu et al., 2013), as demonstrated in the
current study.

The d-Prime Weighted Pooling Model
According to signal detection theory (Green and Swets, 1966),
d-prime is one of the most useful and widely used descriptors
of signal-to-noise ratio. The d-prime model was one of several
selective weighted pooling models that we examined in this
paper. In this model the readout weight of each neuron was
determined by its d-prime value at high contrast, with the neuron
with the greatest d-prime value carrying a weight of 1.0. Our
simulations showed that the d-prime weighted model provided
a parsimonious and complete account of all of our experimental
data including the monkeys’ psychophysical performance and
the population distributions of LGN choice probabilities.

Compared with the simple uniform pooling scheme,
the d-prime model was superior in several major ways:
(1) The d-prime model achieved lower average and minimal
psychophysical thresholds (Figures 5A–C), especially in shorter
integration time windows; (2) The d-primemodel more faithfully
reflected the temporal developments of choice probabilities in
LGN P and M neurons (Figure 5H); and (3) The d-prime
model achieved greater average and maximal model fitness
(Figures 6A–C) with fewer neurons (Figure 6D), especially
in shorter time windows. Additionally, the d-prime weighted
model also demonstrated a clear, direct relationship between
choice probability and neural sensitivity (Figure 9H), indicating
that neurons with higher signal-to-noise ratios were also
more correlated with perceptual choices. This correlation was
even more pronounced in shorter integration time windows,
where fewer neurons demonstrated high signal-to-noise
ratios (e.g., d-prime vs. choice probability, t = 0–25 ms: r
for P neurons = 0.22, P = 0.00; r for M neurons = 0.28,
P = 0.00. t = 0–50 ms: r for P neurons = 0.18, P = 0.00;
r for M neurons = 0.18, P = 0.00). According to previous
theoretical work (Haefner et al., 2013; Moreno-Bote et al.,
2014), when choice probabilities and neural sensitivities (i.e.,
d-primes) exhibit such direct correlations, it is an indication
that the pooling/readout strategy is optimal for the task.
Last but not least, the uniform pooling scheme assumes that
even after extensive practice of a perceptual task, the initial
pattern of widespread and diffuse synaptic connections will
remain unrefined. In reality, however, perceptual learning is
known to dramatically alter the properties of single sensory
neurons (Sasaki et al., 2010; Kumano and Uka, 2013; Watanabe
and Sasaki, 2015). Therefore, neurobiologically speaking, the
d-prime weighted model is also the more plausible solution
in vivo.

If the d-prime weighted pooling strategy is indeed utilized
in the neural system, our simulations make several specific
predictions that can be tested in future psychophysical
and physiological recordings: (1) A single LGN neuron’s
d-prime value should be directly correlated with its choice
probability (Figure 9H), and this correlation should
be stronger in shorter integration time windows (see
above); (2) A single LGN neuron’s d-prime and choice
probability values should both develop throughout the
stimulus presentation time (see Figures 5H, 9A,B, 10F).
This prediction was already confirmed in our previous
publication (Figures 7C,D in Jiang et al., 2015); and
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(3) More importantly, if LGN responses are optimally
pooled in subsequent stages, humans and monkeys
should be able to maintain the same contrast detection
performance with stimulus durations as short as 50–75 ms
(see Figures 5A–C), even though LGN choice probabilities
may decrease in such short integration time windows
(Figures 5H, 10F).

As mentioned above, the d-prime weighted pooling model
could be further divided into two types, with one weighing
P and M neurons separately according to their respective
maximal d-primes, and one weighing P and M neurons together
according to one maximal d-prime. These two models were
indistinguishable in terms of their overall performance, but
they did differ from each other in their readout weight and
choice probability distributions. When considered separately,
M neurons were significantly more heavily weighted than
P neurons (Figure 9F). In contrast, when weighted together,
M neurons only had a very slight advantage over P neurons
(Figure 10D). Computationally, we could not rule out one
model in favor of the other. Neurobiologically, the former
scenario is more likely to occur only in layer 4 of V1,
where LGN P and M inputs remain segregated (Casagrande
and Xu, 2004; Nassi and Callaway, 2009). The latter readout
scheme, in contrast, is more likely to occur everywhere else
in the cortex, where LGN P and M inputs are mixed and
integrated.

The Limitations of the Pooling Models
First, to appropriately interpret our modeling results, it is
important to understand the role of interneuronal correlation
in perceptual decision making. In medium-sized decision pools
such as ours, interneuronal noise correlations can strongly
influence not only the choice probability structure, but also
the readout weight distribution (Chen et al., 2006; Haefner
et al., 2013). In cortex, interneuronal correlations are considered
to be mostly unavoidable (Averbeck et al., 2006; Cohen and
Kohn, 2011) because of the extensively shared connections
between neurons (Zohary et al., 1994; Shadlen and Newsome,
1998; Bair et al., 2001; Reich et al., 2001; Averbeck et al.,
2006; Cohen and Maunsell, 2009). Recent studies, however,
reported overall interneuronal correlations not different from
chance in chronic recordings from large populations of V1
neurons in awake monkeys (Ecker et al., 2010, 2014). Compared
to the visual cortex, neural circuitry in the LGN is simpler
(Casagrande and Norton, 1991; Nassi and Callaway, 2009) and
highly specific to cell types (Casagrande and Xu, 2004; Briggs and
Usrey, 2011; Ichida et al., 2014). Furthermore, cognitive factors
such as attention (Cohen and Maunsell, 2009; Mitchell et al.,
2009) and perceptual learning (Gu et al., 2011) are known to
decrease the existing interneuronal correlations in a perceptual
decision task. It is therefore not entirely surprising that we
found LGN interneuronal correlations to be not significantly
different from 0.0 during a contrast detection task (Jiang et al.,
2015).

Even though we were able to successfully model
experimentally measured psychophysical performance
and choice probabilities without assuming any significant

interneuronal correlations, we could not rule out the possibility
that, in reality, there exist some fine patterns within the LGN
interneuronal correlation structure. In fact, recent modeling
work has revealed that it is not the average interneuronal
correlation level, but the structure of a specific type of
differential correlation, that determines choice probability
values in a perceptual decision pool (Haefner et al., 2013;
Moreno-Bote et al., 2014). Briefly, in cortex, interneuronal
correlations are known to be stronger for similarly tuned
neurons rather than dissimilarly tuned ones (Zohary et al., 1994;
Maynard et al., 1999; Averbeck and Lee, 2003; Gu et al., 2011;
Adibi et al., 2013). In this scenario, the neurons at the center
of the decision pool could have the largest choice probabilities
simply because they are most correlated with all the other
neurons in the same pool. In other words, choice probabilities
could decrease in the direction of the pool boundaries solely
because of the correlation structure, but not the readout weight
structure, of the decision pool (Chen et al., 2006; Haefner
et al., 2013). This is a possibility that we did not model, and
therefore could not rule out for the LGN perceptual decision
pool. Furthermore, thalamic interneuronal correlations may
be qualitatively different from those measured in the cortex,
as LGN neurons sharing the same retinal inputs are known to
exhibit very strong temporal correlations in their firing patterns
(Alonso et al., 1996; Dan et al., 1998). This is also a possible
correlation structure that we did not explore in our models,
and as a result we could not rule out its potential influence on
the psychophysical sensitivity and choice probabilities of LGN
neurons.

Additionally, our pooling models were abstract
representations of the minimal computations required to
account for our experimental data. These models did not specify
and were not critically dependent on, for example, exactly when
and where a perceptual ‘‘choice’’ is made in vivo. Furthermore,
even though we were able to simulate neural pools of infinitely
large sizes for a large number of trials, the accuracies of these
simulations were constrained by the sample sizes in our original
experimental data (Jiang et al., 2015). Finally, although we took
into consideration the temporal evolution of a variety of critical
factors such as the mean and variance of neural response, the
d-prime, and the choice probability, we did not characterize how
temporal changes in other parameters such as the interneuronal
correlation and the downstream pooling noise might influence
model performance. Despite these limitations, we believe
that our modeling results clearly and unarguably support the
hypothesis that the neural pool consists of not just a few very
sensitive neurons but many neurons, likely 100 or more, at the
level of the visual thalamus, and that the response fluctuations in
these thalamic neurons can influence perception, with the more
sensitive neurons exerting a bigger influence on perception.
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