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Homeostatic plasticity is considered to maintain activity in neuronal circuits within a

functional range. In the absence of homeostatic plasticity neuronal activity is prone

to be destabilized because Hebbian plasticity mechanisms induce positive feedback

change. Several studies on homeostatic plasticity assumed the existence of a process

for monitoring neuronal activity on a time scale of hours and adjusting synaptic efficacy

by scaling up and down. However, the underlying mechanism still remains unclear.

Excitatory synaptic efficacy is associated with the size of the dendritic spine, and dendritic

spine size fluctuates even after neuronal activity is silenced. These fluctuations could

be a non-Hebbian form of synaptic plasticity that serves such a homeostatic function.

This study proposed and analyzed a synaptic plasticity model incorporating random

fluctuations and soft-bounded Hebbian plasticity at excitatory synapses, and found that

the proposed model can prevent excessive changes in neuronal activity by scaling

synaptic efficacy up and down. Soft-bounded Hebbian plasticity suppresses strong

synapses, thereby scaling synapses down and preventing runaway excitation. Random

fluctuations diffuse synaptic efficacy, thereby scaling synapses up and preventing

neurons from falling silent. The proposed model acts as a form of homeostatic plasticity,

regardless of neuronal activity monitoring.

Keywords: random fluctuation, homeostatic plasticity, spike-timing dependent plasticity, synaptic competition,

neural network

1. INTRODUCTION

Synaptic modifications are the fundamental feature for brain development and cognitive processes
such as attention, perception, and memory (Bliss and Lømo, 1973; Martin et al., 2000; Whitlock
et al., 2006; Nabavi et al., 2014). Synaptic efficacy is adjusted mainly by the process termed
as Hebbian plasticity, which depends on the correlation between the activities of the pre- and
post-synaptic neurons (Löwel and Singer, 1992; Katz and Shatz, 1996). Traditional Hebbian
plasticity and its temporally asymmetric form, spike-timing dependent plasticity (STDP) (Markram
et al., 1997; Bi and Poo, 1998; Sjöström et al., 2001), are positive feedback processes that are
inherently prone to destabilize the neuronal activity (Rochester et al., 1956; von derMalsburg, 1973;
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Oja, 1982; Miller and MacKay, 1994; Miller, 1996). Synaptic
potentiation due to a correlation between activities of pre-
and post-synaptic neurons further increases the correlation,
leading to further potentiation. Once depressed synapse no
longer leads to the correlated activities of neurons, leading
to further depression and becoming silent. To prevent these
instability issues, various constraints on synaptic efficacy have
been introduced; limit in the total sum of synaptic efficacy
projecting to one neuron (von der Malsburg, 1973; Effenberger
et al., 2015), decay in synaptic efficacy (Oja, 1982; Miller and
MacKay, 1994), and negative feedback process (Bienenstock et al.,
1982; Bear et al., 1987; Miller, 1996). Moreover, so-called “soft-
bounded” STDP models have been proposed (van Rossum et al.,
2000; Gütig et al., 2003; Morrison et al., 2007; Gilson and
Fukai, 2011), in which depression at a strong synapse is much
larger than that at a weak synapse. Soft-bounded STDP models
provide an equilibrium at which potentiation and depression are
balanced and prevent runaway potentiation or depression. Such
dependence on efficacy is supported by evidences from biological
studies (Bi and Poo, 1998). However, stability of synaptic efficacy
does not always indicate stability of neuronal activity. The ranges
of parameter values with which soft-bounded STDP models
provide stability of neuronal activity are limited (Morrison et al.,
2007; Gilson and Fukai, 2011; Yger and Gilson, 2015). Another
negative feedback process, homeostatic plasticity, has also been
proposed to maintain neuronal activity within a functional
range (van Rossum et al., 2000; Turrigiano, 2008;Watt and Desai,
2010; Zenke et al., 2013; Toyoizumi et al., 2014). It is typically
modeled as a proportional or proportional-integral controller
that monitors post-synaptic neuronal activity on a time scale of
hours, scales synaptic efficacy up or down, and stabilizes post-
synaptic neuronal activity. Several neurobiological studies have
confirmed the existence of homeostatic plasticity in mammalian
cortex and hippocampus (Rutherford et al., 1998; Turrigiano
et al., 1998; Turrigiano, 1999, 2008; Burrone et al., 2002; Ibata
et al., 2008; Keck et al., 2013; Vitureira and Goda, 2013;
Félix-Oliveira et al., 2014). After neuronal activity is decreased
or silenced by drugs or lesions in sensory organs, synapses
are potentiated on average, despite a decrease in correlated
activity. Conversely, after neuronal activity is increased by drugs,
synapses are depressed on average. Moreover, the normalized
distribution of excitatory synaptic efficacy is almost similar
before and after the change in neuronal activity. Therefore,
this type of homeostatic plasticity is called synaptic scaling
or activity-dependent scaling1. Synaptic scaling is considered
to consist of two distinct underlying mechanisms; scaling up
(potentiation against low neuronal activity.) and scaling down
(depression against high neuronal activity). Neuronal activity
converges to the rate at which scaling up and scaling down are
balanced. However, the mechanism underlying synaptic scaling
still remains unclear.

Other studies have identified activity-independent (non-
Hebbian) excitatory synaptic modifications called intrinsic

1Another type of homeostatic plasticity, namely intrinsic plasticity, is also

confirmed but is outside the scope of this paper (Desai et al., 1999; Turrigiano and

Nelson, 2000; Abraham, 2008; Watt and Desai, 2010).

fluctuations (Yasumatsu et al., 2008; Kasai et al., 2010;
Loewenstein et al., 2011; Statman et al., 2014); the size of a post-
synaptic element, dendritic spine, fluctuates even after neuronal
activity is silenced. Because the efficacy of an excitatory synapse
in the mammalian central nervous system is dependent on
the corresponding dendritic spine size (Matsuzaki et al., 2001,
2004; Kasai et al., 2003; Kopec et al., 2006; Wang et al., 2007;
Yuste, 2010; Keck et al., 2013), it is possible that these intrinsic
fluctuations serve homeostatic plasticity mechanism. However,
the intrinsic fluctuations are thought to induce change with zero
expected value as opposed to synaptic scaling.

This paper proposes an excitatory synaptic plasticity model
incorporating intrinsic fluctuations (Yasumatsu et al., 2008)
and soft-bounded STDP model (van Rossum et al., 2000), and
demonstrates a possible role for these intrinsic fluctuations in
scaling of synaptic efficacy to prevent destabilization of neuronal
activity. The proposed model demonstrated the robust stability
of post-synaptic firing rate in response to change in pre-
synaptic firing rate. The distribution of synaptic efficacy was
scaled multiplicatively with varying pre-synaptic firing rate. After
neuronal activity was silenced, synapses were scaled up. Intrinsic
fluctuations also contributed to synaptic competition (Miller,
1996; Song et al., 2000; van Rossum et al., 2000). These numerical
experiments and corresponding theoretical analyses indicate
that intrinsic fluctuations achieve scaling up of synapses and
soft-bounded STDP model achieves scaling down of synapses.
As a result, synaptic plasticity model incorporating intrinsic
fluctuations and soft-bounded STDP model acts as a form of
homeostatic plasticity without monitoring neuronal activity.

2. MODELS AND METHODS

2.1. Intrinsic Fluctuations
Recent studies have reported non-Hebbian excitatory synaptic
modifications called intrinsic fluctuations (Yasumatsu et al., 2008;
Kasai et al., 2010; Loewenstein et al., 2011; Statman et al.,
2014). Dendritic spines change size even after neuronal activity
is silenced by drugs. Because spine size is strongly related to
synaptic efficacy (Matsuzaki et al., 2001, 2004; Kasai et al.,
2003; Kopec et al., 2006; Wang et al., 2007; Yuste, 2010; Keck
et al., 2013), these intrinsic fluctuations are thought to influence
synaptic efficacy independently from pre-synaptic firing and
post-synaptic firing. According to the original studies, intrinsic
fluctuations follow the stochastic differential equation as follows:

dWt = (SWt + s)dBt, (1)

where Wt denotes the excitatory synaptic weight W at time t,
and Bt is the standard Wiener process (i.e., the continuous-time
stochastic process with zero mean and unit variance per unit
time). Equation (1) implies that the expected change E[Wt−W0]
in synaptic weightW is zero. However, in this study, the synaptic
weight was bounded at zero to prevent a negative weight; thus,
the expected change E[Wt − W0] at near-zero synaptic weight
was positive. Yasumatsu et al. (2008) estimated the parameter
values S = 0.2 and s = 0.01 µm3 per day. This study empirically
employed parameter values of S = 0.2 and s = 7000 pS per day.

Frontiers in Neural Circuits | www.frontiersin.org 2 June 2016 | Volume 10 | Article 42

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Matsubara and Uehara Homeostatic Plasticity by Random Fluctuations

2.2. Spike-Timing Dependent Plasticity
Spike-timing dependent plasticity (STDP) is a temporally
asymmetric form of Hebbian plasticity that allows both
depression and potentiation depending on the temporal
relationship between pre-synaptic firing and post-synaptic
firing (Markram et al., 1997; Bi and Poo, 1998; Sjöström et al.,
2001). When a pre-synaptic firing precedes a post-synaptic firing,
the synapse is potentiated, whereas when a pre-synaptic firing
follows a post-synaptic firing, the synapse is depressed. The STDP
model is commonly expressed as follows:

1W(W,1t) =







A+(W) exp
(

−
|1t|
τ+

)

if 1t < 0

A−(W) exp
(

−
|1t|
τ−

)

if 1t > 0,
(2)

where W is the synaptic weight and 1W is the magnitude of
the change in the synaptic weight W. The synaptic weight W is
updated to W + 1W immediately after whichever occurs later,
the pre-synaptic firing (at tpre in depression) or the post-synaptic
firing (at tpost in potentiation). This is expressed as the temporal
difference 1t = tpost − tpre. The functions A+(W) and A−(W)
determine the magnitudes 1W of potentiation and depression,
and the parameters τ+ and τ− are the time constants of the
magnitude 1W decay. This study employed the multiplicative
form of the STDP proposed by van Rossum et al. (2000), which is
expressed as

A+(W) = c+ + νpW, A−(W) = −c−W + νpW, (3)

where νp follows a normal distribution with zero mean and
variance σ 2

p , i.e., νp ∼ N (0, σ 2
p ). A strong synapse is easily

depressed and further potentiation of the strong synapse is
prevented because the amount A−(W) of depression increases
with synaptic weightW. Thus, the multiplicative STDP model is
also referred to as soft-bounded STDP model (van Rossum et al.,
2012). In this study, STDP was assumed to occur not between
all possible pairs of pre- and post-synaptic firings but between
the pair of a newly generated post-synaptic (pre-synaptic) firing
and the latest pre-synaptic (post-synaptic) firing (Morrison et al.,
2008;Watt and Desai, 2010). The parameter values were the same
as those estimated in the original study by van Rossum et al.
(2000): τ+ = τ− = 20 ms, c+ = 1 pS, c− = 0.003, and
σp = 0.015.

2.3. Activity-Dependent Scaling
For comparison, a phenomenological model of activity-
dependent scaling is introduced (van Rossum et al., 2000). This
model monitors the activity of a post-synaptic neuron with a
slow-varying sensor a as follows:

τa
da

dt
= −a+

∑

k

δ(t − tk), (4)

where δ(·) is the delta function, and tk is the time of the k-th
post-synaptic firing. At the state a, the weight W of a synapse
connected to the neuron is regulated as follows:

dW

dt
= βW(ag − a(t))+ γW

∫ t

0
(ag − a(t′))dt′, (5)

where ag (Hz) is the target post-synaptic firing rate. This
formulation follows the classical proportional-integral controller.
This study employed the same parameter values as those used in
the original study, i.e., τa = 100 s, β = 4× 10−5, and γ = 10−7

s−1, except that the target post-synaptic firing rate ag was set to 5
Hz, which is more biologically realistic than the original value of
20 Hz (Mizuseki and Buzsáki, 2013; Buzsáki andMizuseki, 2014).
The features of these models are compared in Table 1.

2.4. Dynamics of Neuron and Synapses
The dynamics of the neuron were described by a leaky integrate-
and-fire model (van Rossum et al., 2000; Izhikevich, 2004):

τm
dv

dt
= (vL − v)+ gE(vE − v)R+ gI(vI − v)R, (6)

where v is the membrane potential, τm = 20 ms is its time
constant, and vL = −60 mV, vE = 0 mV, and vI = −70
mV are the reversal potentials of leak, excitatory, and inhibitory
currents, respectively. Hereafter, the subscripts E and I represent
excitatory and inhibitory states, respectively; thus, gE and gI are
the conductances of excitatory and inhibitory synaptic currents.
R = 100 M� is the input resistance. When the membrane
potential v reaches the threshold voltage vth = −50 mV, it
is reset to vr = −60 mV immediately, and the neuron fires
(i.e., generates an action potential). The number of post-synaptic
firings per unit time is the post-synaptic firing rate fpost. The
dynamics of excitatory and inhibitory synaptic conductances are
both described as follows:

dgX

dt
= −

gX

τX
+

∑

i

Wi

∑

k

δ

(

t − s
(k)
i

)

for X ∈ {E, I}, (7)

where τX = 5 ms is the time constant of the conductance.
The subscript i is the label of the synapse, Wi is the synaptic

weight, and s
(k)
i is the time of the k-th event at synapse i. The

weights W of the excitatory synapses were plastic and followed
the synaptic plasticity models described above. They are bounded
at 0 to prevent a negative weight. The weightsW of all inhibitory
synapses were fixed at WI = 4000 pS. All the parameter values
were the same as those in the original study (van Rossum et al.,
2000).

For numerical simulations, all the equations were solved by
the forward Euler method with the time step h = 0.1 ms. A single
post-synaptic neuron model was constructed that receives inputs
from Nf = 100 excitatory and Nf /4 = 25 inhibitory synapses.
The pre-synaptic firing rate was denoted by fpre (Hz). The pre-
synaptic firing rate per time step was p = fpreh. Excitatory pre-
synaptic firings were assumed to be mutually correlated (van
Rossum et al., 2000; Bair et al., 2001). This study generated a
correlated input as a set of simultaneous excitatory pre-synaptic
firings. A correlated group contained Nc excitatory synapses. An
event within the correlated group followed a Poisson process
of rate pc per time step. For each event within the correlated
group, m excitatory synapses were randomly chosen from the
correlated group and were simultaneously activated. The rate pc
was set to pNc/m so that the pre-synaptic firing rate per time
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TABLE 1 | Comparison between properties among models.
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+NO + + + + − + + With no additional factors

+LP + + − + + With a larger potentiation c+ = 1.5 pS

+IF + + + + + + + + + With intrinsic fluctuations*

+ADS + + + + + − + With activity−dependent scaling

model**

“+” denotes “having the property,” “−” denotes “having the property partially or with a problem,” and a blank denotes “not having the property.”

*Yasumatsu et al. (2008)

**van Rossum et al. (2000)

step was p. If the random variable Xi ∈ {0, 1} represents the
occurrence of an event at the excitatory synapse i, the Pearson
correlation coefficient between two excitatory synapses i and j in
the correlated group is

c =
cov(Xi,Xj)

σXiσXj

=

pNc

m
Nc−2Cm−2

NcCm
− p2

p(1− p)
=

m−1
Nc−1 − p

1− p
≃

m− 1

Nc − 1

(8)
as long as p≪ 1. This study divided the excitatory synapses into
four groups, i.e., Nc = 25. Thus,

c ≃ 0.04× (m− 1). (9)

In the case of uncorrelated inputs (i.e., c = 0), the excitatory
synapses were activated by homogeneous Poisson processes
at fpre (Hz). In both cases, the inhibitory synapses followed
homogeneous Poisson processes at fpre (Hz). All the results were
obtained from ten trials.

3. RESULTS

3.1. Numerical Simulations
3.1.1. Stability of Neuronal Activity
This section examines the capacity of different STDP models
(see Table 1) to maintain neuronal activity in response to a
change in synaptic input (fpre). The excitatory synaptic weights
W were initialized to a sufficiently large value, the synapses were
activated with a pre-synaptic firing rate fpre = 5 Hz and a
correlation c = 0.04, and the post-synaptic neuron accepted
the pre-synaptic firings. After a sufficiently long duration, the
post-synaptic firing rate fpost in response to the pre-synaptic
firings reached a steady state. The changes in post-synaptic firing

rate fpost in response to a sudden decrease in the pre-synaptic
firing rate fpre are shown for each model in the left panel of
Figure 1. The black line denotes the result obtained from the
STDP model with no additional factors, which is referred to as
the +NO model. The initial steady-state (baseline) post-synaptic
firing rate fpost of this model in response to the pre-synaptic
firing rate fpre = 5 Hz was very low (< 0.1 Hz). At time
t = 0, the pre-synaptic firing rate fpre was decreased to 3
Hz to simulate a condition such as sensory deprivation (Keck
et al., 2013). After this decrease, the post-synaptic firing rate
fpost decreased to approximately zero and never returned to its
previous value. To prevent this excessively low post-synaptic
firing rate fpost, the amplitude c+ of potentiation was increased
to 1.5 pS in a model referred to hereafter as +LP model,
(blue lines in Figure 1). A larger potentiation c+ = 1.5 pS
induced larger synaptic weights W and a higher baseline post-
synaptic firing rate fpost in response to the pre-synaptic firing
rate fpre = 5 Hz. After decreasing the pre-synaptic firing rate
fpre, the post-synaptic firing rate fpost temporally fell to zero and
quickly started to increase. However, it did not return to baseline.
Both models cannot prevent excessively low neuronal activity.
In contrast, the model incorporating intrinsic fluctuations (red
line in Figure 1), hereafter denoted as the +IF model, prevented
this drastic decrease in the post-synaptic firing rate fpost and
restored it to baseline, thereby indicating homeostatic plasticity.
For comparison, the synaptic plasticity model incorporating
activity-dependent scaling and STDP (the +ADS model, purple
line in Figure 1) also showed a rapid return to the baseline post-
synaptic firing rate fpost after an overshoot. Ten synapses were
randomly chosen and their trajectories are shown in the lower
part of Figure 1. In the case of the +NO model, the synapses
were almost unchanged owing to very low post-synaptic firing
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FIGURE 1 | Changes in post-synaptic firing rate fpost following a change in the pre-synaptic firing rate fpre. Homeostatic plasticity is expected to restore

the post-synaptic firing rate fpost to its previous (baseline) value. (Left panel) The pre-synaptic firing rate fpre is decreased from 5 to 3 Hz. The different colored lines

denote results of STDP models with no additional factors (+NO model, black), with a larger potentiation c+ = 1.5 pS (+LP model, blue), with intrinsic fluctuations (+IF

model, red), and with activity-dependent scaling model (+ADS model, purple). The post-synaptic firing rates fpost of the +NO and +LP models decrease to

approximately zero and never return to the previous baseline value. On the contrary, an excessively low post-synaptic firing rate fpost is prevented in the +IF and

+ADS models. The trajectories of randomly chosen ten synapses are shown in the lower part. In the case of the +NO model, the synapses are almost unchanged

owing to very low post-synaptic firing rate fpost . In the other cases, some synapses become strong but others become weak; synapses are continuously shuffled

even after the post-synaptic firing rate fpost converged to a steady state. (Right panel) The pre-synaptic firing rate fpre is increased from 5 to 7 Hz. As is the case with

the decreased pre-synaptic firing rate fpre , the +IF and +ADS models restore the post-synaptic firing rate fpost to the previous baseline value, whereas the +NO and

+LP models do not.

rate fpost. In the other cases, some synapses became strong but
others became weak; synapses were continuously shuffled even
after the post-synaptic firing rate fpost converged to a steady state.

The pre-synaptic firing rate fpre was then increased from 5
to 7 Hz to simulate increased neuronal activity (right panel of
Figure 1). In all four models, the post-synaptic firing rate fpost
decreased after an initial increase. However, similar to the case
of the simulation of decreased pre-synaptic firing rate fpre, the
+IF and+ADSmodels showed rapid restoration of post-synaptic
firing rate fpost to the baseline value, whereas the +NO and +LP
models did not. Thus, the +IF and +ADS models prevented
excessive changes in neuronal activity and thereby demonstrated
homeostatic plasticity. The trajectories of synapses are also shown
in the lower part. In cases with the +IF and +ADS models,
synapses were depressed on average. More detailed analyses are
provided in the following sections.

In subsequent examinations, the pre-synaptic firing rate fpre
and the correlation c of the pre-synaptic firings were widely
varied. Figure 2 shows the relationship between pre-synaptic
firing rate fpre and resulting post-synaptic firing rates fpost at
steady state. In the +NO model, the post-synaptic firing rate

fpost reached a value of ≥ 1 Hz over a range of pre-synaptic
firing rate fpre = 0.01–20 Hz only with a high correlation
c ≥ 0.08. With a low correlation c < 0.08, the post-synaptic
firing rate fpost decreased to approximately zero (fpost < 0.1
Hz), regardless of the pre-synaptic firing rate fpre. Thus, the
soft-bounded STDP model prevented excessively strong synaptic
weights W but simultaneously leaded to a post-synaptic firing
rate fpost of approximately zero because of positive feedback.
The +LP model was expected to prevent this excessively low
post-synaptic firing rate fpost because of a larger potentiation
(c+ = 1.5 pS). However, again the post-synaptic firing rate fpost
fell to approximately zero at a pre-synaptic firing rate fpre of < 1
Hz. Moreover, the post-synaptic firing rate fpost rose to > 100
Hz at a high pre-synaptic firing rate fpre > 20 Hz or a high
correlation c > 0.04. This result indicates that increasing the
amplitude c+ of potentiation is not enough for preventing almost
silent activity and leads to a runaway excitatory as a side effect.
As mentioned in the previous studies, the ranges of parameter
values with which soft-bounded STDP models provide stability
of neuronal activity are strictly limited (Morrison et al., 2007;
Gilson and Fukai, 2011; Yger and Gilson, 2015). On the other
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FIGURE 2 | The post-synaptic firing rates fpost in response to varying the pre-synaptic firing rate fpre and the correlation c. The axis of abscissas

represents to the pre-synaptic firing rate fpre and the line type refers to the correlation c. The +NO, +LP, +IF, and +ADS models are all STDP models but with no

additional factors, a larger potentiation c+ = 1.5 pS, intrinsic fluctuations, or activity-dependent scaling model. At a high pre-synaptic firing rate fpre and a low

correlation c, the +NO and +LP models cannot prevent a near-zero post-synaptic firing rate fpost . The +LP model also cannot prevent an excessively high

post-synaptic firing rate fpost . On the other hand, the +IF and +ADS models maintain the post-synaptic firing rate fpost within a functional range, indicating that

intrinsic fluctuations and activity-dependent scaling model achieve homeostatic plasticity. The gray lines in the third panel denote the results obtained from the +IF

model without the noise term νp , which were almost the same as those obtained from the +IF model with the noise term νp denoted by the red lines.

hand, the +IF model maintained a post-synaptic firing rate fpost
within 3–10 Hz over a broad range of pre-synaptic firing rate
fpre (0.01–30 Hz) and correlation c (0–0.12) values because the
intrinsic fluctuations potentiated synapses with near zero weights
(as mentioned in Section 2.1). The post-synaptic firing rate fpost
varied little with pre-synaptic firing rate fpre but nonetheless
increases with correlation c (Figure 2, third panel, red lines).
The+IF model has doubly noise terms; intrinsic fluctuations and
the noise term νp ∼ N (0, σ 2

p ) in potentiation and depression
of soft-bounded STDP model. The +IF model without the noise
term νp (σp = 0) was also examined (Figure 2, third panel,
gray lines). The results were almost the same as those obtained
from the +IF model with the noise term νp. For comparison,
the +ADS model that incorporates both the activity-dependent
scaling model and the STDP model, was examined. In this case,
regardless of pre-synaptic firing rate fpre and correlation c, the
resultant post-synaptic firing rate fpost was almost similar to the
target post-synaptic firing rate ag = 5 Hz.

This section concludes that intrinsic fluctuations maintain
neuronal activity within limits in response to changing
conditions (pre-synaptic firing rate and correlation) and can
mediate homeostatic plasticity (see Table 1).

3.1.2. Scaling of Synaptic Weights
According to the hypothesis of synaptic scaling (Turrigiano
et al., 1998; Ibata et al., 2008; Keck et al., 2013), neuronal
activity is adjusted by scaling the excitatory synaptic
weights multiplicatively. To confirm this hypothesis, Figure 3
summarizes the cumulative distributions of synaptic weights
W at steady states for the four models. First, the effects of
changing pre-synaptic firing rate fpre are shown in Figure 3A.
The +NO, +IF, and +ADS models all yielded lower synaptic
weights W with progressive increases in pre-synaptic firing
rate fpre; these results are consistent with the synaptic scaling
observed in previous biological experiments (Turrigiano et al.,
1998; Ibata et al., 2008; Keck et al., 2013). Contrary to the

previous theoretical studies (van Rossum et al., 2000; Gilson
and Fukai, 2011), the +NO model (the STDP model with no
additional factors) also achieved synaptic scaling. A pre-synaptic
firing always has a chance to induce post-synaptic firing and
potentiation. With decreasing pre-synaptic firing rate fpre,
the chance that a post-synaptic firing immediately precedes
a pre-synaptic firing decreases (as they become sparse); thus,
the probability of depression decreases and the synapses are
potentiated more easily (see Section 3.2 for details). However,
this potentiation is not sufficient for the post-synaptic neuron
to elicit action potentials above a certain rate, as shown in
Section 3.1.1. In the +LP model with pre-synaptic firing rate
fpre = 20 Hz, the synaptic weightsW become exceptionally high.
According to Figure 2, the post-synaptic firing rate fpost diverged
from baseline, representing runaway excitation. Therefore, all of
these models can adjust synaptic weight, but only the +IF and
the +ADS models can adjust it sufficiently to prevent runaway
excitation and silence (see Table 1). The +IF model without the
noise term νp (σp = 0) was also examined (Figure 3A, third
panel, gray lines). The results were also almost the same as those
obtained from the+IF model with the noise term νp.

The synaptic weights W were scaled so that their first and
third quartiles were constant with varying pre-synaptic firing rate
fpre. The results are summarized in Figure 3B. The shapes of the
cumulative distributions of the synaptic weights W were similar
in most cases; however, the +NO model with pre-synaptic firing
rate fpre = 1 Hz yielded a different shape. This indicates that
STDP, which is incorporated into all models examined, achieves
synaptic scaling by itself.

Next, the correlation c is varied. It is to be noted that the
original biological experiments (Turrigiano et al., 1998; Ibata
et al., 2008; Keck et al., 2013) did not refer to synaptic scaling
induced by varying the correlation c because varying correlation
c is difficult in biological systems (but not in silico). The results
are summarized in Figure 3C. The +NO and +LP models
show increased synaptic weights W with higher correlation c,
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B
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FIGURE 3 | The cumulative distributions of the excitatory synaptic weights W at steady states with varying pre-synaptic firing rate fpre or correlation

c. (A) The pre-synaptic firing rate fpre is varied. (B) The pre-synaptic firing rate fpre is varied and the synaptic weights W are scaled appropriately. (C) The correlation c

is varied. Colors as in Figures 1, 2.

indicating that these models do not provide negative feedback
against increasing correlation c. With increase in the correlation
c, the+IF model exhibits a decreased number of strong synapses
but a greater number of weak synapses. The+ADS model shows
depression of all synapses with increasing correlation c. Because
synaptic scaling induced by varying the correlation c has not
been examined in vivo, this examination cannot draw biological
conclusions.

3.1.3. Stability of Strong Synapses
Memory is considered to be stored as synaptic connections and
thus strong synapses should stay strong (Fusi et al., 2005; Fusi
and Abbott, 2007; Morrison et al., 2007; Gilson and Fukai, 2011).
Intrinsic fluctuations however have a risk disturbing retention of
memory by depressing strong synapses since they are random
fluctuations. However, not only intrinsic fluctuations but also
the soft-bounded STDP model shuffles synapses (see the lower
part of Figure 1). Effects of intrinsic fluctuations on stability of
strong synapses were examined. The pre-synaptic firing rate fpre
and the correlation c were set to 5 Hz and c = 0.08, and the
post-synaptic firing rates fpost reached a steady state. Synapses
whose weights are stronger than the 90th percentile of all the
synaptic weights of each respective trial at t = 0 were treated as

strong. The survival rates, i.e., the rates of the synapses remaining
strong from t = 0, are depicted as the solid lines in Figure 4A.
The following half-lives were estimated by maximum likelihood;
7.5, 1.9, 4.0, and 4.4 min for the +NO, +LP, +IF, and +ADS
models, respectively (see the dotted lines in Figure 4A). In this
case, the post-synaptic firing rates fpost were 2.02, 16.37, 5.23, and
4.97 Hz for the +NO, +LP, +IF, and +ADS models, respectively
(see Figure 2). The estimated half-lives with varying pre-synaptic
firing rate fpre are shown in the left panel of Figure 4B; the half-
lives obtained from the +IF model were almost equal to those
from the+ADSmodel, shorter than those from the+NOmodel,
and longer than those from the+LPmodel. The increasing order
of the half-lives was similar to the decreasing order of post-
synaptic firing rates fpost (see also Figure 2). Only with a small
pre-synaptic firing rate fpre, the +IF model resulted in a shorter
half-life despite the lower post-synaptic firing rate fpost when
compared with the+ADSmodel. The middle panel of Figure 4B
shows the same results except that the axis of abscissas represents
the post-synaptic firing rate fpost instead of the pre-synaptic firing
rate fpre. Owing to homeostatic function, the post-synaptic firing
rates fpost were varied a little with the+IF and+ADSmodels. No
obvious relationship between the half-life and the post-synaptic
firing rate fpost was found. The right panel has the product
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A

B

FIGURE 4 | Stability of strong excitatory synapses. Synapses whose weights are stronger than the 90th percentile of all the synaptic weights of each respective

trial at t = 0 are treated as strong. (A) The solid lines denote the survival rate of the strong synapses in response to the pre-synaptic firing with the rate of fpre = 5 Hz

and the correlation of c = 0.08. The dotted lines denote the half-lives estimated by maximum likelihood; 7.5, 1.9, 4.0, and 4.4 min for +NO, +LP, +IF and +ADS

models respectively. (B) The estimated half-lives with varying pre-synaptic firing rate fpre . The axes of abscissas represent the pre-synaptic firing rate fpre (left), the

post-synaptic firing rate fpost (middle), and the product fpre fpost of them (right). The numerals in the middle panel indicate the corresponding pre-synaptic firing rates

fpre (Hz).

fpre × fpost of the pre- and post-synaptic firing rates on the axis
of abscissas. The dotted gray line represents 130/(fpre × fpost)
(min ·Hz−2). The half-life was roughly inversely proportional
to the product fpre × fpost of the pre- and post-synaptic firing
rates; the product fpre × fpost is also roughly proportional to
the occurrence probability of STDP (van Rossum et al., 2000;
Gilson and Fukai, 2011) (see also Section 3.2.1). These results
suggest that the half-life (i.e., the stability) of the strong synapse
is mainly related to the neuronal activity and the resulting
occurrence probability of STDP. Intrinsic fluctuations have a
slightly negative influence on the stability of strong synapses but
it is almost negligible as long as the neuronal activity (i.e., the
occurrence probability of STDP) is not too small.

3.1.4. Scaling after Silenced Neuronal Activity
Homeostatic plasticity has been also found during prolonged
bath application of the voltage-gated sodium channel antagonist
tetrodotoxin (TTX), which silences neuronal activity (Turrigiano
et al., 1998; Ibata et al., 2008). This section highlights the
examination of the cumulative distribution of excitatory synaptic
weights W in transient states after the pre-synaptic firing rate
fpre is reduced to zero. The correlation c was set to 0, and
the pre-synaptic firing rate fpre was decreased from 5 to 0
Hz at t = 0. The results are shown in Figure 5. Figure 5A
shows the trajectories of randomly chosen ten synapses. The
+NO and +LP models did not regulate the synaptic weights
after the pre-synaptic firing rate fpre was silenced; the synaptic
weights were unchanged. The +IF model shuffled synaptic
weights continuously and slowly potentiated synaptic weights

on average. The +ADS model potentiated synaptic weights
drastically; the trajectories obtained from the +ADS model were
clipped for visibility. Figure 5B shows the survival rates of the
synapses remaining stronger than the 90th percentile. The+ADS
model kept the order of weight since it potentiated synapses
multiplicatively. The survival rates obtained from the+NO,+LP,
and +ADS models are 1.0. Since intrinsic fluctuations induce
change with zero expected value, the+IF model had probabilities
for potentiating the weak synapses and depressing the strong
synapses; the half-life is 9.7 min. As mentioned in Section 3.1.3,
their negative influence on the stability of the strong synapses
is no longer negligible. Furthermore, the half-life was obtained
in a transient state differently from the half-life in Figure 4,
which was obtained in steady state. The synaptic weights are
considered to be less stable than those in steady state. Figure 5C
shows the cumulative distributions of the excitatory synaptic
weights W. The +IF model potentiated the synaptic weights W
over several days. The +ADS model potentiated the synaptic
weights W, but the post-synaptic firing rate fpost never returned
to the target post-synaptic firing rate ag (Hz) because the pre-
synaptic firing rate fpre was zero. Consequently, the synaptic
weights W became infinite. This result is not consistent with
that of the previous biological experiments (Turrigiano et al.,
1998; Turrigiano, 1999, 2008; Burrone et al., 2002; Ibata et al.,
2008; Keck et al., 2013; Félix-Oliveira et al., 2014). Hence, based
on these results, it can be concluded that the +IF and +ADS
models achieve synaptic scaling even after neuronal activity
is silenced, but the +ADS model exhibits strange behavior
(yields saturated synaptic weights W) under this condition (see
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FIGURE 5 | Excitatory synaptic weights W in transient states after neuronal activity is silenced. The correlation c is 0, and the pre-synaptic firing rate fpre is

decreased from 5 to 0 Hz at t = 0. (A) The trajectories of randomly chosen ten synapses. The +NO and +LP models cannot regulate the synaptic weights after the

pre-synaptic firing rate fpre is silenced; the synaptic weights are unchanged. The +IF model shuffles synaptic weights continuously and slowly potentiates synaptic

weights on average. The +ADS model potentiates synaptic weights drastically; the trajectories are clipped for visibility. (B) The survival rates of the synapses remaining

stronger than the 90th percentile. The +ADS model keeps the order of weight since it potentiates synapses multiplicatively. The survival rates obtained from the +NO,

+LP, and +ADS models are 1.0. The +IF model has a probability for depressing the strong synapses; the half-life is 9.7 min. Note that the half-life is obtained in a

transient state differently from the half-life in Figure 4, which is obtained in steady state. (C) The cumulative distributions of the excitatory synaptic weights W . The

+IF model potentiates the synaptic weights W over several days. The +ADS model potentiates the synaptic weights W, but the post-synaptic firing rate fpost never

returns to the target post-synaptic firing rate ag (Hz) because the pre-synaptic firing rate fpre is zero. Consequently, the synaptic weights W become infinite.

Table 1 for comparison). A theoretical analysis is provided in
Figure 7A.

3.1.5. Competition
Co-occurring excitatory pre-synaptic firings have a greater
chance to induce post-synaptic firing because of summation,
thereby potentiating synapses. In contrast to this type of
cooperation, synaptic plasticity is also competitive (Miller, 1996;
Song et al., 2000; van Rossum et al., 2000; Gütig et al., 2003;
Morrison et al., 2007; Gilson and Fukai, 2011); when a group
of excitatory synapses has an effect, another group is depressed.
Competition between synapses contributes to selectivity of
neurons for different input patterns. The traditional STDP
models exhibit strong competition often with destabilization of
synaptic weights, the soft-bounded STDP models exhibit weak
competition, and the activity-dependent scaling model promotes
competition. Similar to the activity-dependent scaling model,
intrinsic fluctuations are expected to contribute to competition.
To examine the competition achieved by synaptic plasticity, two

groups A and B of excitatory synapses were chosen from the four
groups. Groups A and B had the same pre-synaptic firing rate
fpre = 5.0 Hz and had the same or different correlations cA and
cB. First, the correlations were set to cA = cB = 0.04. After
a sufficiently long duration, the correlation cB was increased to
cB = 0.16 at t = 0, as shown in Figure 6A. The resulting changes
in the post-synaptic firing rate fpost and synaptic weights W are
summarized in Figure 6B. In all cases, the post-synaptic firing
rate fpost increased to a larger value at time t = 0 and the average
weight W̄A of group A synapses started increasing. The response
of the average weight W̄B of group B synapses depended on the
plasticity model. In the +NO model, the average weight W̄B of
group B was depressed. In other words, the model resulted in
competition between synapses. The +IF and +ADS models also
exhibited competition. On the other hand, the average weight
W̄B was almost unchanged in the +LP model. Thus, whether
soft-bounded STDP model exhibits competition depends on
parameter values (e.g., the amplitude c+ of the potentiation). A
theoretical analysis is shown in Section 3.2.3.

Frontiers in Neural Circuits | www.frontiersin.org 9 June 2016 | Volume 10 | Article 42

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Matsubara and Uehara Homeostatic Plasticity by Random Fluctuations

A

B

FIGURE 6 | The competition between the correlated groups (A,B) of excitatory synapses. The time courses of the correlations cA and cB. (A) The time

courses of the post-synaptic firing rates fpost. (B) The time courses of the average synaptic weights W̄ of the groups A and B. The +NO, +IF, and +ADS models all

exhibit the competition, while the +LP model do not.

3.2. Theoretical Analyses
3.2.1. Under Uncorrelated Activity
In this section, a procedure to obtain a synaptic weight
distribution P(W) theoretically is explained, and the mechanisms
of homeostatic plasticity and competition are analyzed. The
synaptic modifications 1W yielded by different synaptic
plasticity models can be treated as stochastic differential
equations as long as 1W are sufficiently small. A synaptic
weight distribution P(W) is obtained using the Fokker-Planck
equation (Øksendal, 2003) with the moments Mn of the
synaptic modifications 1W, where the moments Mn are
derived as

Mn(W) =

∫

P(1W)E[1W(W)n]d1W. (10)

First, for simplicity, post-synaptic firing is assumed to be
unrelated to pre-synaptic firings and to follow a single Poisson
process of fpost (Hz), which is obtained from the numerical
simulations in Section 3.1. This assumption is reasonable when
a post-synaptic neuron accepts inputs from numerous synapses
or its membrane potential is noisy. In addition, STDP is assumed
to occur between all possible pairs of pre- and post-synaptic
firings (all-to-all STDP model Morrison et al., 2008; Watt and
Desai, 2010) also for simplicity. This approximation is reasonable
as long as pre- and post-synaptic neuron firing rates are not
excessively high (Gilson and Fukai, 2011). The n-th moments
MSTDP

n (W) of the synaptic modifications yielded by the STDP
model are derived as follows (van Rossum et al., 2000; Yasumatsu
et al., 2008; Kasai et al., 2010; Gilson and Fukai, 2011; Statman
et al., 2014):

M
STDP
n (W)=

∫ ∞

−∞

P(1W)E[1W(W)n]d1W

= fpost

∫ 0

−∞

E[1W(W,1t)n]P(1t)d1t

+fpre

∫ ∞

0
E[1W(W,1t)n]P(1t)d1t

= fprefpost

∫ 0

−∞

E[A+(W)n] exp

(

−n
|1t|

τ+

)

d1t

+fprefpost

∫ ∞

0
E[A−(W)n] exp

(

−n
|1t|

τ−

)

d1t

=
1

n
fprefpost

(

τ+E[A+(W)n]+ τ−E[A−(W)n]
)

,

(11)
where P(1W) and P(1t) are the occurrence probabilities of
the potentiation (or depression) with the amount of 1W and
with the temporal difference 1t. P(1t) is equal to the pre-
synaptic firing rate fpre when 1t > 0 and to the post-synaptic
firing rate fpost when 1t < 0 because of the all-to-all STDP
model. Because this study employs the multiplicative STDP
model, described in Equation (3), the moments Mn are as
follows:

M
STDP
1 (W)= fprefpost (τ+c+ − τ−c−W) ,

M
STDP
2 (W)=

1

2
fprefpost

(

τ+(c
2
+ + σ 2

pW
2)

+ τ−(c
2
−W

2 + σ 2
pW

2)
)

.

(12)

In addition to STDP, the +IF and +ADS models take into
account synaptic modifications yielded by intrinsic fluctuations
and the activity-dependent scaling model, respectively. The
moments MH

n of their synaptic modifications are called as the
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homeostatic terms in this study and expressed as follows (van
Rossum et al., 2000; Yasumatsu et al., 2008; Kasai et al., 2010):

M
H
1 (W)=











βW(ag − a(t)) for the+ADS model,

+γW
∫ t
0 (ag − a(t′))dt′

0 for other models.

M
H
2 (W)=

{

(SW + s)2 for the+IF model,

0 for other models.

(13)
Because of the assumption that the post-synaptic firing follows
a single Poisson process of fpost, a(t) is clamped to ag and
the activity-dependent scaling model does not work. Thus, the
momentsMn of the synaptic modifications are as follows:

M1(W)= M
STDP
1 (W)+M

H
1 (W),

M2(W)= M
STDP
2 (W)+M

H
2 (W).

(14)

The Fokker-Planck equation describes the changes in the
synaptic weight distribution P(W, t) as follows:

∂

∂t
P(W, t) = −

∂

∂W
M1(W)P(W, t)+

1

2

∂2

∂W2
M2(W)P(W, t).

(15)
After a sufficiently long duration, the synaptic weight distribution
P(W, t) converges to a steady state, which is denoted by P(W).
Because the left side is equal to zero, the steady state synaptic
weight distribution P(W) is

P(W) =
C

M2(W)
exp

(∫ W

0

2M1(W
′)

M2(W′)
dW′

)

(16)

where C is a normalization factor. Figure 7A shows the
theoretically-obtained synaptic weight distributions P(W). The
colored lines denote the theoretical results and the gray
lines denote the corresponding numerical results shown in

A

B

C

FIGURE 7 | The theoretically-obtained cumulative distributions of excitatory synaptic weights W. The black and colored lines denote the theoretical results

and the gray lines denote the corresponding numerical results shown in Figure 3A. (A) Post-synaptic firing is assumed to be unrelated to pre-synaptic firings and to

follow a single Poisson process of fpost (Hz) (see Equation 14). Synaptic scaling is observed only in the case of the +IF model. The theoretical results and the

numerical results are almost different except for the case of the +IF model. (B) The dependency of post-synaptic firing on pre-synaptic firings is taken into account

(see Equation 17). All the models achieve synaptic scaling. By taking into account the dependency terms M
Dep
n (W), the theoretical results closely resemble the

numerical results except for the +LP model with a high pre-synaptic firing rate fpre = 20.0. (C) The cumulative distributions of excitatory synaptic weights W under the

competitive situation. The solid lines denote the synaptic weight distribution P(W) when correlated excitatory synapse groups A and B had the same correlation

cA = cB = 0.04. The dashed lines denote the synaptic weight distribution PA (W) of correlated group A after its correlation cA is increased to 0.16. The synapses are

potentiated. The dotted lines denote the synaptic weight distribution PB (W) of correlated group B after cA is increased to 0.16. When the synapses in the correlated

group B are depressed, synaptic scaling is achieved.
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Figure 3A. They are almost different except for the case
of the +IF model. In the absence of intrinsic fluctuations,
both the first moment M1(W) and the second moment
M2(W) are directly proportional to the product of the pre-
synaptic firing rate fpre and the post-synaptic firing rate fpost.
They cancel out in Equation (16), and the synaptic weight
distribution P(W) is independent of neuronal activity. In the
presence of intrinsic fluctuations, the second moment M2(W)
is the sum of the activity-dependent term MSTDP

2 (W) and the
activity-independent term MH

2 (W); thus, the synaptic weight
distribution P(W) depends on the product of the pre-synaptic
firing rate fpre and the post-synaptic firing rate fpost. With
increasing pre-synaptic firing rate fpre, the activity-independent
term MH

2 (W) is relatively negligible and the synaptic weight
distribution P(W) resembles that in the absence of intrinsic
fluctuations. With decreasing pre-synaptic firing rate fpre, the
activity-independent termMH

2 (W) is dominant and the synaptic
weights are widely distributed because of the relatively large
diffusion termM2(W). This is the mechanism by which the+IF
model regulates synaptic weightsW against a change in neuronal
activity.

In the case of silenced neuronal activity (fpre = 0), the
activity-dependent termsMSTDP

n (W) are zero. Thus, the synaptic
weight distributions P(W) obtained from the +NO and +LP
models are unchanged. Owing to the activity-independent term
MH

2 (W), the +IF and +ADS models mediate synaptic weight.
The steady-state synaptic weight distribution P(W) obtained
from the +IF model is a power-law distribution Ss

(SW+s)2
with

the exponent of 2; it has no well-defined mean weight. The
steady-state synaptic weight distribution P(W) obtained from the
+ADS model cannot be well-defined; activity-dependent scaling
model keeps on potentiating synaptic weights unboundedly. Both
the +IF and +ADS models lose stability of synaptic weight
distribution in the case of silenced neuronal activity, but the
+IF model needs much longer duration than the +ADS model
according to the numerical simulations (see Figure 5).

3.2.2. Under Correlated Activity
The pre-synaptic firings have a strong impact on post-synaptic
firing. Events at strong synapses or correlated synapses have
greater chances to induce post-synaptic firing and potentiation.
Next, the dependency of post-synaptic firing on pre-synaptic
firings is taken into account. The excitatory synapses are
divided into the correlated groups labeled l, each containing Nc,l

excitatory synapses. A set ofml excitatory synapses in a correlated
group l is simultaneously stimulated. A pre-synaptic firing with a

weightW in a correlated group l has a chance P
fire

l
(W) to induce

post-synaptic firing. Each group l shares the post-synaptic firing
rate fpost, but has its own synaptic weight distribution Pl(W).
Equation (14) can be rewritten as

M1,l(W)= M
STDP
1,l (W)+M

H
1,l(W)+M

Dep
1,l

(W),

M2,l(W)= M
STDP
2,l (W)+M

H
2,l(W)+M

Dep
2,l

(W),
(17)

where the terms M
Dep
n,l

(W) are the dependency terms. Under
the simplified condition that the post-synaptic neuron fires

immediately after the pre-synaptic firing, i.e., 1t < 0 and |1t|≪

1, the dependency termsM
Dep
n,l

(W) are expressed as

M
Dep
1,l

(W)= fpreP
fire

l
(W)E[A+(W)] = fpreP

fire

l
(W)c+,

M
Dep
2,l

(W)= fpreP
fire

l
(W)E[A+(W)2]= fpreP

fire

l
(W)

(c2+ + σ 2
pW

2).

(18)

The firing chance P
fire

l
(W) depends on the probability

distribution P(v) over time of the membrane potential v. A

detailed derivation of the firing chance P
fire

l
(W) is shown in

Appendix. Unlike the STDP terms MSTDP
n,l

(W), the dependency

terms M
Dep
n,l

(W) are proportional to the pre-synaptic firing rate
fpre, but not to the post-synaptic firing rate fpost. Thus, the ratio
between the first moment M1(W) and the second moment
M2(W) depends on the post-synaptic firing rate fpost. The
post-synaptic firing rate fpost is assumed to be

fpost = fpre
∑

l

Nc,l

ml
E[P

fire

l
(W)]. (19)

This value is used for the STDP terms MSTDP
n,l

(W). Figure 7B
shows the theoretical synaptic weight distributions P(W) taking

into account the dependency termsM
Dep
n (W). The colored lines

denote the theoretical results and the gray lines denote the
corresponding numerical results shown in Figure 3A. By taking

into account the dependency terms M
Dep
n (W), the theoretical

results closely resemble the numerical results.
In the cases of the +NO and +LP models, the synapses are

potentiated with a low pre-synaptic firing rate fpre and conversely
the synapses are depressed with a high pre-synaptic firing rate
fpre. The relationships between the STDP terms MSTDP

n,l
(W) and

the dependency termsM
Dep
n,l

(W) of the correlated group l are

MSTDP
n,l

(W)

M
Dep
n,l

(W)
=

1
n fprefpost

(

τ+E[A+(W)n]+ τ−E[A−(W)n]
)

fpreP
fire

l
(W)E[A+(W)n]

=
1

n

(

τ+ − τ−
E[A−(W)n]

E[A+(W)n]

)

fpost

P
fire

l
(W)

=
1

n

(

τ+ − τ−
E[A−(W)n]

E[A+(W)n]

)

fpre
∑

k
Nc,k

mk
E[P

fire

k
(W)]

P
fire

l
(W)

.

(20)

At a low pre-synaptic firing rate fpre, the dependency terms

M
Dep
n,l

(W) gain influence and potentiate the synapses. At a high

pre-synaptic firing rate fpre, the dependency terms M
Dep
n,l

(W)
are relatively negligible and the synaptic weight distribution

P(W) resembles that when the dependency terms M
Dep
n (W)

are ignored. In other words, a frequent pre-synaptic firing is
more likely to induce a depression of other synapses. This
is the mechanism by which the soft-bounded STDP model
achieves the synaptic scaling. However, synapses potentiated by
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the dependency termsM
Dep
n (W) lead to increase in post-synaptic

firing rate fpost, thereby reducing the influence of the dependency

terms M
Dep
n (W); thus, the soft-bounded STDP model cannot

increase post-synaptic firing rate fpost sufficiently. This is one
reasonwhy the+NOand+LPmodels cannot prevent excessively
low post-synaptic firing rates fpost as confirmed in Section 2.1.
In contrast, intrinsic fluctuations regulate the synaptic weights

W depending not on the dependency terms M
Dep
n (W) but on

the homeostatic termsMH
n (W). The homeostatic termsMH

n (W)
with large values of parameters S and s can keep their influence
after the post-synaptic firing rate fpost becomes larger; thus,
the +IF model prevents the excessively low post-synaptic firing
rate fpost. In the +ADS model, when the post-synaptic firing rate
fpost departs from the target ag , the homeostatic terms MH

n (W)
gain influence and regulate the synaptic weightsW to move fpost
closer to ag .

The result theoretically-obtained from the +LP model with a
high pre-synaptic firing rate fpre = 20.0 is not consistent with the
numerical result shown in Section 3.1.2 because of a factor not
taken into account in the theoretical analysis. When an excitatory
pre-synaptic firing with a strong weight is transmitted to the post-
synaptic neuron, the membrane potential v gradually approaches
the threshold voltage vth. If another excitatory pre-synaptic firing,
which is not correlated to the former, is transmitted before the
membrane potential v reaches the threshold voltage vth, it hastens
the approach. Consequently, the synapses are more likely to
be potentiated. This type of correlation between excitatory pre-
synaptic firings gains influence when many synapses become
strong and have high firing chances Pfire(W); however, it is
ignored in this theoretical analysis. For this reason, the +LP
model leads to excessively high synaptic weights W. A more
detailed analysis is outside the scope of this study.

3.2.3. Competition
The synaptic weight distributions Pl(W) of correlated groups
l with different correlations cl are also obtained from
Equation (17). As is the case with Section 3.1.5, two groups
are chosen and labeled A and B. Figure 7C shows the theoretical
synaptic weight distributions PA(W) and PB(W) of the correlated
groups A and B. According to Equation (20), the dependency

terms M
Dep
n,l

(W) of the correlated group l lose their influence
and the synapses are depressed when another correlated group

k increases its firing chance E[P
fire

k
(W)]. When the correlations

are cA = cB = 0.04, the theoretical synaptic weight distributions
PA(W) and PB(W) are the same. After the correlation for the
correlated group A is changed to cA = 0.16, the firing chance

P
fire
A (W) is increased, and the synapses in the correlated group

A are potentiated. The responses of the correlated group B
depend on the model. In the cases of the+NO and +LP models,
the STDP terms MSTDP

n,B (W) become dominant because of the
increased post-synaptic firing rate fpost; the dependency terms

M
Dep
n,B (W) lose their influence. The correlated group B loses a

chance to induce a post-synaptic firing and to be potentiated.
In the case of the +IF model, the STDP terms MSTDP

n,B (W)

become dominant, and the homeostatic terms MH
n,B(W) lose

their influence. In addition to loss of a chance to be potentiated,
the correlated group B is scaled down by soft-bounded STDP
model because of increase in post-synaptic firing rate fpost. In the
case of the +ADS model, the activity-dependent scaling model
reacts against the increasing post-synaptic firing rate fpost and
the homeostatic terms MH

n,B(W) gain influence. Consequently,
the synapses in the correlated group B are depressed. The three
models exhibit competition, but their mechanisms differ. If
a pre-synaptic firing rate fpre is high, the dependency terms

M
Dep
n,B (W) have lost their influence, and the synaptic weight

distribution PB(W) never changes in response to an increase
in post-synaptic firing rate fpost. This is why the +NO model
with the pre-synaptic firing rate fpre = 20 Hz did not exhibit
competition in the previous studies (van Rossum et al., 2000;
Gilson and Fukai, 2011). However, the +LP model does not
exhibit competition in the numerical simulation as shown
in Section 3.1.5 for the same reason as that for the excessive
potentiation induced of the +LP model shown in the previous
section.

4. DISCUSSION

4.1. Stability of Neuronal Activity
Homeostatic plasticity called synaptic scaling is expected to
maintain neuronal activity within a functional range by scaling
up and down of synapses (Bienenstock et al., 1982; Turrigiano
et al., 1998; Turrigiano, 1999, 2008; Burrone et al., 2002; Ibata
et al., 2008; Keck et al., 2013; Vitureira and Goda, 2013; Zenke
et al., 2013; Félix-Oliveira et al., 2014; Toyoizumi et al., 2014).
Without homeostatic plasticity, the soft-bounded STDP model
leaded to a post-synaptic firing rate of excessively low or
high (see the left two panels of Figure 2). The soft-bounded
STDP model prevents excessive change in synaptic weight;
strong synapse is prone to be depressed and weak synapse is
prone to be potentiated. Synaptic weights depart from upper
and lower bounds and get closer to the equilibrium at which
potentiation and depression are balanced with each other. The
equilibrium depends on neuronal activity and the soft-bounded
STDP model apparently achieves synaptic scaling by itself (see
Figure 3A). However, with very low or very high pre-synaptic
firing rate, synaptic weights at around the equilibrium lead to
excessively high or low post-synaptic neuronal activity. The
soft-bounded STDP model achieves at least stability of synaptic
weight distribution but does not achieve stability of neuronal
activity.

The soft-bounded STDP model incorporating intrinsic
fluctuations (+IF model) maintained a post-synaptic firing rate
within a certain range over a broad range of pre-synaptic
firing rate. According to theoretical analyses, the contribution
of intrinsic fluctuations is preventing excessively low neuronal
activity by scaling up of synapses. Since the occurrence
probability of STDP is roughly proportional to the product of
the pre-synaptic and post-synaptic firing rates (van Rossum et al.,
2000; Gilson and Fukai, 2011), with decreasing neuronal activity,
the soft-bounded STDP model loses its influence and intrinsic
fluctuations are relatively dominant; strong synapses are not
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depressed by the soft-bounded STDP model but rather diffused
randomly by intrinsic fluctuations. Therefore, strong synapses
stay strong and excessively low neuronal activity is prevented.
This is the mechanism for scaling up achieved by intrinsic
fluctuations. With increasing neuronal activity, the soft-bounded
STDPmodel gains its influence and intrinsic fluctuations become
negligible; strong synapses are depressed and thereby excessively
high neuronal activity is prevented. This is the mechanism
for scaling down. The soft-bounded STDP model also has
the noise term νp ∼ N (0, σ 2

p ). It is almost negligible when
compared with intrinsic fluctuations (see Figures 2, 3A) and
also loses its influence with decreasing neuronal activity; the
noise term νp does not contribute to stability of neuronal
activity. Therefore, incorporation of intrinsic fluctuations and
soft-bounded STDP model achieves scaling up and down of
synapses and neuronal activity converges to the equilibrium at
which activity-independent scaling up and activity-dependent
scaling down are balanced with each other.

Intrinsic fluctuations contribute to competition between
synapses but its mechanism differs from the others. When a
group of excitatory synapses has an effect, another group reduces
correlated activity and loses a chance to being potentiated. This
is the mechanism of soft-bounded STDP model for synaptic
competition (Song et al., 2000; van Rossum et al., 2000; Morrison
et al., 2007). The activity-dependent scaling model reacts against
increase in neuronal activity and depresses synapses as is the
case with classical negative feedback processes (Bienenstock et al.,
1982; Bear et al., 1987; Miller, 1996). On the other hand, intrinsic
fluctuations do not react against increase in neuronal activity.
Nonetheless increase in neuronal activity promotes soft-bounded
STDP model, leading to scaling down of strong synapses which
have been potentiated by intrinsic fluctuations. As a result,
incorporation of intrinsic fluctuations and soft-bounded STDP
model contribute to competition between synapses.

In the case of silenced neuronal activity, the soft-bounded
STDP model cannot regulate synapses. Intrinsic fluctuations
potentiate synapses slowly because soft-bounded Hebbian
plasticity, which normally depresses strong synapses, is blocked.
This result is consistent with homeostatic plasticity observed in
biological experiments (Turrigiano et al., 1998; Ibata et al., 2008).
After sufficiently long duration, the synaptic weight distribution
converges to a power-law distribution with nowell-definedmean.
Nonetheless synaptic weights are kept within plausible values for
several days. The activity-dependent scaling model potentiates
synapses drastically, leading implausibly strong synapses within
an hour. This is because neuronal activity falls below the target
and never returns to the target, no matter how much activity-
dependent scaling model potentiates synapses. Although both
intrinsic fluctuations and the activity-dependent scaling model
lose stability of synaptic weight distribution in the case of
silenced neuronal activity, intrinsic fluctuations lead to more
biologically plausible results. Intrinsic fluctuations derive a
power-law distribution with an exponent equal to the degree in
synaptic weight of their expression. When expression of intrinsic
fluctuations has a term having degree greater than 2 in synaptic
weight derives a power-law distribution with a well-defined
mean. Examining such intrinsic fluctuations is a future work.

4.2. Stability of Synapses
Even when the synaptic weight distribution is stable, it does not
imply that the individual synapse is stable. Memory is considered
to be stored as synapses connections, stability of synapse
contributes to retention of memory. Intrinsic fluctuations
however have a risk for disturbing memory retention since they
are random fluctuations. This study has shown that intrinsic
fluctuations have a slightly negative influence on the stability of
strong synapses but it is almost negligible as long as the neuronal
activity is not too small. Synapses are shuffled randomly not
only by intrinsic fluctuations but also by STDP (see the lower
part of Figure 1). A pre-synaptic firing has a chance to induce
a post-synaptic firing leading to potentiation of the synapse and
depression of another synapse. Frequent pre- and post-synaptic
firings induce frequent occurrence of STDP, leading to shuffling
of synapses. The influence of intrinsic fluctuations on stability
of synapses is much smaller than that of STDP. A more detailed
comparison is a future work.

Even after neuronal activity is silenced, intrinsic fluctuations
shuffle synapses in contrast to the other models. Their
negative influence on the stability of the strong synapses is
no longer negligible when the neuronal activity is silenced.
This result however does not imply instability of memory;
intrinsic fluctuations adapt synapses to the environment that has
changed.

4.3. Mechanism Underlying Intrinsic
Fluctuations
Several molecules and proteins have been considered to be
associated with scaling up and down (Turrigiano, 2008). If
intrinsic fluctuations are the mechanism underlying scaling up
of synapses, they can be mediated by these factors. Another
possible hypothesis is that these factors are associated with STDP
but not with intrinsic fluctuations, and intrinsic fluctuations
are just a noise in post-synaptic structure. Scaling up is not
necessarily achieved by promotion of intrinsic fluctuations; it
can also be achieved by disturbance of soft-bounded STDP (i.e.,
scaling down) as shown in Figure 5. In either case, examining
effects of these factors on intrinsic fluctuations is a possible future
work.

4.4. Conclusion
In summary, incorporation of intrinsic fluctuations and soft-
bounded STDP model achieves scaling up and down of synapses
and it is one plausible candidate mechanism for homeostatic
plasticity called the synaptic scaling.

AUTHOR CONTRIBUTIONS

TM designed research; TM and KU performed research and
analyzed data; and TM wrote the paper.

ACKNOWLEDGMENTS

This work was partially funded by the KAKENHI (16K12487
and 26280040) and Kayamori Foundation of Information Science
Advancement.

Frontiers in Neural Circuits | www.frontiersin.org 14 June 2016 | Volume 10 | Article 42

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Matsubara and Uehara Homeostatic Plasticity by Random Fluctuations

REFERENCES

Abraham, W. C. (2008). Metaplasticity: tuning synapses and networks for

plasticity. Nat. Rev. Neurosci. 9, 387. doi: 10.1038/nrn2356

Bair, W., Zohary, E., and Newsome, W. T. (2001). Correlated firing in macaque

visual area MT: time scales and relationship to behavior. J. Neurosci. 21,

1676–1697.

Bear, M. F., Cooper, L. N., and Ebner, F. F. (1987). A physiological basis for a theory

of synapse modification. Science 237, 42–48. doi: 10.1126/science.3037696

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal

neurons: dependence on spike timing, synaptic strength, and postsynaptic cell

type. J. Neurosci. 18, 10464–10472.

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for

the development of neuron selectivity: orientation specificity and binocular

interaction in visual cortex. J. Neurosci. 2, 32–48.

Bliss, T. V. P., and Lømo, T. (1973). Long-lasting potentiation of synaptic

transmission in the dentate area of the anaesthetized rabbit following

stimulation of the perforant path. J. Physiol. 232, 331–356. doi:

10.1113/jphysiol.1973.sp010273

Burrone, J., O’Byrne, M., and Murthy, V. N. (2002). Multiple forms of synaptic

plasticity triggered by selective suppression of activity in individual neurons.

Nature 420, 414–418. doi: 10.1038/nature01242

Buzsáki, G., and Mizuseki, K. (2014). The log-dynamic brain: how skewed

distributions affect network operations. Nat. Rev. Neurosci. 15, 264–278. doi:

10.1038/nrn3687

Desai, N. S., Rutherford, L. C., and Turrigiano, G. G. (1999). Plasticity in the

intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520.

doi: 10.1038/9165

Effenberger, F., Jost, J., and Levina, A. (2015). Self-organization in balanced state

networks by STDP and homeostatic plasticity. PLoS Comput. Biol. 11:e1004420.

doi: 10.1371/journal.pcbi.1004420

Félix-Oliveira, A., Dias, R. B., Colino-Oliveira, M., Rombo, D. M., and

Sebastião, A. M. (2014). Homeostatic plasticity induced by brief activity

deprivation enhances long-term potentiation in the mature rat hippocampus.

J. Neurophysiol. 112, 3012–3022. doi: 10.1152/jn.00058.2014

Fusi, S., and Abbott, L. F. (2007). Limits on the memory storage capacity of

bounded synapses. Nat. Neurosci. 10, 485–493. doi: 10.1038/nn1859

Fusi, S., Drew, P. J., and Abbott, L. F. (2005). Cascade models of synaptically stored

memories. Neuron 45, 599–611. doi: 10.1016/j.neuron.2005.02.001

Gilson, M., and Fukai, T. (2011). Stability versus neuronal specialization for STDP:

long-tail weight distributions solve the dilemma. PLoS ONE 6:e25339. doi:

10.1371/journal.pone.0025339

Gütig, R., Aharonov, R., Rotter, S., and Sompolinsky, H. (2003). Learning input

correlations through nonlinear temporally asymmetric Hebbian plasticity. J.

Neurosci. 23, 3697–3714.

Ibata, K., Sun, Q., and Turrigiano, G. G. (2008). Rapid synaptic scaling

induced by changes in postsynaptic firing. Neuron 57, 819–826. doi:

10.1016/j.neuron.2008.02.031

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE

Trans. Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A., and Noguchi, J. (2010).

Structural dynamics of dendritic spines in memory and cognition. Trends

Neurosci. 33, 121–129. doi: 10.1016/j.tins.2010.01.001

Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N., and Nakahara, H. (2003).

Structure-stability-function relationships of dendritic spines. Trends Neurosci.

26, 360–368. doi: 10.1016/S0166-2236(03)00162-0

Katz, L. C., and Shatz, C. J. (1996). Synaptic activity and the construction

of cortical circuits. Science 274, 1133–1138. doi: 10.1126/science.274.52

90.1133

Keck, T., Keller, G. B., Jacobsen, R. I., Eysel, U. T., Bonhoeffer, T., and Hübener, M.

(2013). Synaptic scaling and homeostatic plasticity in the mouse visual cortex

in vivo. Neuron 80, 327–334. doi: 10.1016/j.neuron.2013.08.018

Kopec, C. D., Li, B., Wei, W., Boehm, J., and Malinow, R. (2006). Glutamate

receptor exocytosis and spine enlargement during chemically induced long-

term potentiation. J. Neurosci. 26, 2000–2009. doi: 10.1523/JNEUROSCI.3918-

05.2006

Loewenstein, Y., Kuras, A., and Rumpel, S. (2011). Multiplicative dynamics

underlie the emergence of the log-normal distribution of spine sizes in the

neocortex in vivo. J. Neurosci. 31, 9481–9488. doi: 10.1523/JNEUROSCI.6130-

10.2011

Löwel, S., and Singer, W. (1992). Selection of intrinsic horizontal connections in

the visual cortex by correlated neuronal activity. Science 255, 209–212. doi:

10.1126/science.1372754

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,

213–215. doi: 10.1126/science.275.5297.213

Martin, S. J., Grimwood, P. D., andMorris, R. G. M. (2000). Synaptic plasticity and

memory: an evaluation of the hypothesis. Ann. Rev. Neurosci. 23, 649–711. doi:

10.1146/annurev.neuro.23.1.649

Matsuzaki, M., Ellis-Davies, G. C. R., Nemoto, T., Miyashita, Y., Iino, M., and

Kasai, H. (2001). Dendritic spine geometry is critical for AMPA receptor

expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–

1092. doi: 10.1038/nn736

Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R., and Kasai, H. (2004). Structural

basis of long-term potentiation in single dendritic spines. Nature 429, 761–766.

doi: 10.1038/nature02617

Miller, K. D. (1996). Synaptic economics: competition and cooperation in synaptic

plasticity. Neuron 17, 371–374. doi: 10.1016/S0896-6273(00)80169-5

Miller, K. D., and MacKay, D. J. C. (1994). The role of constraints in Hebbian

learning. Neural Comput. 6, 100–126. doi: 10.1162/neco.1994.6.1.100

Mizuseki, K., and Buzsáki, G. (2013). Preconfigured, skewed distribution of firing

rates in the hippocampus and entorhinal cortex. Cell Rep. 4, 1010–1021. doi:

10.1016/j.celrep.2013.07.039

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent

plasticity in balanced random networks. Neural Comput. 19, 1437–1467. doi:

10.1162/neco.2007.19.6.1437

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478. doi:

10.1007/s00422-008-0233-1

Nabavi, S., Fox, R., Proulx, C. D., Lin, J. Y., Tsien, R. Y., and Malinow, R.

(2014). Engineering a memory with LTD and LTP. Nature 511, 348–352. doi:

10.1038/nature13294

Oja, E. (1982). A simplified neuron model as a principal component analyzer. J.

Math. Biol. 15, 267–273. doi: 10.1007/BF00275687

Øksendal, B. (2003). Stochastic Differential Equations: An Introduction with

Applications. Berlin; Heidelberg: Springer-Verlag Berlin Heidelberg. doi:

10.1007/978-3-642-14394-6

Rochester, N., Holland, J., Haibt, L., and Duda, W. (1956). Tests on a cell assembly

theory of the action of the brain, using a large digital computer. IRE Trans.

Inform. Theory 2, 80–93. doi: 10.1109/TIT.1956.1056810

Rutherford, L. C., Nelson, S. B., and Turrigiano, G. G. (1998). BDNF has

opposite effects on the quantal amplitude of pyramidal neuron and interneuron

excitatory synapses. Neuron 21, 521–530. doi: 10.1016/S0896-6273(00)80563-2

Sjöström, P. J., Turrigiano, G. G., and Nelson, S. B. (2001). Rate, timing, and

cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–

1164. doi: 10.1016/S0896-6273(01)00542-6

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning

through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.

doi: 10.1038/78829

Statman, A., Kaufman, M., Minerbi, A., Ziv, N. E., and Brenner, N. (2014).

Synaptic size dynamics as an effectively stochastic process. PLoS Comput. Biol.

10:e1003846. doi: 10.1371/journal.pcbi.1003846

Toyoizumi, T., Kaneko, M., Stryker, M. P., and Miller, K. D. (2014). Modeling

the dynamic interaction of Hebbian and homeostatic plasticity. Neuron 84,

497–510. doi: 10.1016/j.neuron.2014.09.036

Turrigiano, G. G. (1999). Homeostatic plasticity in neuronal networks: the more

things change, the more they stay the same. Trends Neurosci. 22, 221–227. doi:

10.1016/S0166-2236(98)01341-1

Turrigiano, G. G. (2008). The self-tuning neuron: synaptic scaling of excitatory

synapses. Cell 135, 422–435. doi: 10.1016/j.cell.2008.10.008

Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., and Nelson,

S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical

neurons. Nature 391, 892–896. doi: 10.1038/36103

Turrigiano, G. G., and Nelson, S. B. (2000). Hebb and homeostasis in

neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364. doi: 10.1016/S0959-

4388(00)00091-X

Frontiers in Neural Circuits | www.frontiersin.org 15 June 2016 | Volume 10 | Article 42

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Matsubara and Uehara Homeostatic Plasticity by Random Fluctuations

van Rossum, M. C. W., Bi, G.-Q., and Turrigiano, G. G. (2000). Stable

Hebbian learning from spike timing-dependent plasticity. J. Neurosci. 20,

8812–8821.

van Rossum, M. C. W., Shippi, M., and Barrett, A. B. (2012). Soft-bound synaptic

plasticity increases storage capacity. PLoS Comput. Biol. 8:e1002836. doi:

10.1371/journal.pcbi.1002836

Vitureira, N., and Goda, Y. (2013). The interplay between hebbian and

homeostatic synaptic plasticity. J. Cell Biol. 203, 175–186. doi: 10.1083/jcb.201

306030

von der Malsburg, C. (1973). Self-organization of orientation selective

cells in the striate cortex. Kybernetik 14, 85–100. doi: 10.1007/BF00

288907

Wang, X.-B., Yang, Y., and Zhou, Q. (2007). Independent expression of synaptic

and morphological plasticity associated with long-term depression. J. Neurosci.

27, 12419–12429. doi: 10.1523/JNEUROSCI.2015-07.2007

Watt, A. J., and Desai, N. S. (2010). Homeostatic plasticity and STDP: keeping

a neuron’s cool in a fluctuating world. Front. Synaptic Neurosci. 2:5. doi:

10.3389/fnsyn.2010.00005

Whitlock, J. R., Heynen, A. J., Shuler, M. G., and Bear, M. F. (2006). Learning

induces long-term potentiation in the hippocampus. Science 313, 1093–1097.

doi: 10.1126/science.1128134

Yasumatsu, N., Matsuzaki, M., Miyazaki, T., Noguchi, J., and Kasai, H. (2008).

Principles of long-term dynamics of dendritic spines. J. Neurosci. 28, 13592–

13608. doi: 10.1523/JNEUROSCI.0603-08.2008

Yger, P., and Gilson, M. (2015). Models of metaplasticity: a review of concepts.

Front. Comput. Neurosci. 9:138. doi: 10.3389/fncom.2015.00138

Yuste, R. (2010). Dendritic Spines. Cambridge, MA; London: The MIT Press. doi:

10.7551/mitpress/9780262013505.001.0001

Zenke, F., Hennequin, G., and Gerstner, W. (2013). Synaptic plasticity in neural

networks needs homeostasis with a fast rate detector. PLoS Comput. Biol.

9:e1003330. doi: 10.1371/journal.pcbi.1003330

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Matsubara and Uehara. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 16 June 2016 | Volume 10 | Article 42

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Matsubara and Uehara Homeostatic Plasticity by Random Fluctuations

APPENDIX

In this section, the synaptic weight distribution P(W)
is derived taking into account the dependency of post-
synaptic firing on pre-synaptic firings. The time courses of
the membrane potential v and the conductance gE are as
follows:

d

dt

(

v(t)
gE(t)

)

=

(

−1/τm −(v(t)− vE)R/τm
0 −1/τg

) (

v(t)− vL
gE(t)

)

.

(A1)

A pre-synaptic firing with weight W at t = 0 immediately
increases the conductance gE by W. In this section, simplified
condition is introduced in which the rise time and the rise
amount of the membrane potential v in response to a pre-
synaptic firing are assumed to be sufficiently small; thus, the
decay of the membrane potential v from the initial value v(0) is
ignored. Under this condition, the terms v(t) − vE and v(t) − vL
are approximated by v(0)−vE and v(t)−v(0), and Equation (A1)
is solved as

v(t)− v0 =
g0(vE − v0)R(e

−t/τm − e−t/τg )

τm/τg − 1
, (A2)

where v0 = v(0) and g0 = g(0) = W. The membrane potential v
reaches the maximum value at time

tmax =
log(

τg
τm
)

τ−1
m − τ−1

g

. (A3)

The excitatory post-synaptic potential (EPSP) 1vE, which is the
change in the membrane potential v, is

1vE(W, v0): = v(tmax)− v0. (A4)

The inhibitory post-synaptic potential (IPSP) 1vI , which is the
change in the membrane potential v induced by an inhibitory
pre-synaptic firing, is obtained in the same way. Immediately
after the membrane potential v exceeds the threshold voltage
vth, the post-synaptic neuron fires and potentiation is induced.
The temporal difference 1t between the pre-synaptic firing tpre
and the post-synaptic firing tpost is assumed to be approximately
zero because of the simplified condition of the sufficiently small
rise time. According to Equation (A2), a set of ml synapses with
weightsW = {W0, . . . , Wml−1} stimulated at one time induces
an EPSP of

1vE(W, v) =

ml−1
∑

i= 0

1vE(Wi, v), (A5)

because of the linear approximation. The chance P
fire

l
(W) that the

correlated pre-synaptic firing induces a post-synaptic firing is

P
fire

l
(W) =

∫ vth

vmin(W)
P(v)dv, (A6)

where vmin(W) is the minimal value of the membrane potential at
which a post-synaptic neuron fires in response to the correlated
pre-synaptic firing, i.e., vmin = min{v|v + 1vE(W, v) ≥ vth};
P(v) is the probability distribution over time of the membrane

potential v. The chance P
fire

l
(W) that an event at a synapse with

weightW induces a post-synaptic firing is as follows:

P
fire

l
(W) = E[P

fire

l
(W)|W0 = W]

=

∫

· · ·

∫

P(W1) · · · P(Wm−1)P
fire

l
(W)dW1 · · · dWm−1

(A7)

The probability distribution P(v) over time of the membrane
potential is also derived by the Fokker-Planck equation. However,
the membrane potential v is reset from vth to vr . Taking into
account this discontinuous phenomenon, the Fokker-Planck
equation is as follows:

∂

∂t
P(v, t) = −

∂

∂v
M1(v)P(v, t)+

1

2

∂2

∂v2
M2(v)P(v, t)+ I(v),

(A8)
under the constraints that

P(v, t) = 0 for v ≥ vth,

∫ vth

−∞

P(v, t)dv = 1, I(v) = δ(v− vr)fpost.

(A9)
The n-th moment Mn(v) of the changes in the membrane
potential v is

Mn(v)=

∫

P(1v)1vnd1v

=
∑

l

fpreNc,l

ml

∫

P(W)1vE(W, v)ndW

+fpreNI1vI(WI, v)
n

=
∑

l

fpreNc,l

ml

∫

· · ·

∫

P(W0) · · · P(Wm−1)

1vE({W0, . . . ,Wm−1}, v)
ndW0 · · · dWm−1

+fpreNI1vI(WI, v)
n.

(A10)

Since the synaptic weight distribution P(W) and the probability
distribution P(v) over time of the membrane potential v depend
on each other, the Fokker-Planck equations in Equations (15) and
(A8) are solved simultaneously.
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