
ORIGINAL RESEARCH
published: 15 July 2016

doi: 10.3389/fncir.2016.00051

Frontiers in Neural Circuits | www.frontiersin.org 1 July 2016 | Volume 10 | Article 51

Edited by:

Kazutaka Takahashi,

University of Chicago, USA

Reviewed by:

Stewart Heitmann,

University of Pittsburgh, USA

Theodoros P. Zanos,

Feinstein Institute for Medical

Research, Canada

*Correspondence:

Rikkert Hindriks

rikkert.hindriks@upf.edu

Received: 23 March 2016

Accepted: 29 June 2016

Published: 15 July 2016

Citation:

Hindriks R, Arsiwalla XD,

Panagiotaropoulos T, Besserve M,

Verschure PFMJ, Logothetis NK and

Deco G (2016) Discrepancies between

Multi-Electrode LFP and CSD

Phase-Patterns: A Forward Modeling

Study. Front. Neural Circuits 10:51.

doi: 10.3389/fncir.2016.00051

Discrepancies between
Multi-Electrode LFP and CSD
Phase-Patterns: A Forward Modeling
Study
Rikkert Hindriks 1*, Xerxes D. Arsiwalla 2, Theofanis Panagiotaropoulos 3, 4, 5,

Michel Besserve 3, Paul F. M. J. Verschure 2, 6, Nikos K. Logothetis 3 and Gustavo Deco 1, 6

1Computational Neuroscience Group, Department of Information, Center for Brain and Cognition, Barcelona, Spain,
2 Synthetic Perceptive Emotive and Cognitive Systems Lab, Center of Autonomous Systems and Neurorobotics, Universitat

Pompeu Fabra, Barcelona, Spain, 3Department Physiology of Cognitive Processes, Max Planck Institute for Biological

Cybernetics, Tubingen, Germany, 4Centre for Systems Neuroscience, University of Leicester, Leicester, UK, 5 King’s College

London, Institute of Psychiatry, Psychology and Neuroscience, London, UK, 6 Institucio Catalana de Recerca i Estudis

Avancats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain

Multi-electrode recordings of local field potentials (LFPs) provide the opportunity to

investigate the spatiotemporal organization of neural activity on the scale of several

millimeters. In particular, the phases of oscillatory LFPs allow studying the coordination

of neural oscillations in time and space and to tie it to cognitive processing. Given

the computational roles of LFP phases, it is important to know how they relate to the

phases of the underlying current source densities (CSDs) that generate them. Although

CSDs and LFPs are distinct physical quantities, they are often (implicitly) identified when

interpreting experimental observations. That this identification is problematic is clear from

the fact that LFP phases change when switching to different electrode montages, while

the underlying CSD phases remain unchanged. In this study we use a volume-conductor

model to characterize discrepancies between LFP and CSD phase-patterns, to identify

the contributing factors, and to assess the effect of different electrode montages.

Although we focus on cortical LFPs recorded with two-dimensional (Utah) arrays, our

findings are also relevant for other electrode configurations. We found that the main

factors that determine the discrepancy between CSD and LFP phase-patterns are the

frequency of the neural oscillations and the extent to which the laminar CSD profile is

balanced. Furthermore, the presence of laminar phase-differences in cortical oscillations,

as commonly observed in experiments, precludes identifying LFP phases with those of

the CSD oscillations at a given cortical depth. This observation potentially complicates the

interpretation of spike-LFP coherence and spike-triggered LFP averages. With respect

to reference strategies, we found that the average-reference montage leads to larger

discrepancies between LFP and CSD phases as compared with the referential montage,

while the Laplacian montage reduces these discrepancies. We therefore advice to

conduct analysis of two-dimensional LFP recordings using the Laplacian montage.

Keywords: volume conduction, local field potential (LFP), traveling wave, neural oscillations, forward modeling,

current source density (CSD), phase-dynamics
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INTRODUCTION

Multi-electrode recordings of local field potentials (LFPs)
offer the possibility to monitor cortical activity with high
spatiotemporal resolution. A central finding in such recordings
is that cortical LFPs, whether ongoing, induced, or evoked,
are highly organized in space and time and exhibit complex
propagation patterns. Propagating LFPs have been observed in
multiple cortical regions, including primary and higher visual
cortices (Sato et al., 2012; Zheng and Yao, 2012; Zanos et al.,
2015), temporal and auditory cortices (Reimer et al., 2011;
Townsend et al., 2015), primary and premotor cortices (Rubino
et al., 2006; Takahashi et al., 2011), as well as in other structures,
most notably the hippocampus (Lubenov and Siapas, 2009; Patel
et al., 2013; Zhang and Jacobs, 2015). Thus, while LFPs have
traditionally been studied almost exclusively in the temporal
domain, the development of multi-electrode arrays has forced
us to treat cortical activity as continuous in space. This implies
that all functional roles of cortical oscillations and their temporal
coordination (Fries, 2005) can be recast into a broader framework
(Maris et al., 2016). Indeed, most putative roles of propagating
waves are based on the idea that LFPs reflect neural excitability
(Buzsáki et al., 2012; Einevoll et al., 2013; Reimann et al.,
2013). Therefore, propagating waves could subserve any function
that relies on spatiotemporal modulation of neural excitability,
such as sensory attention and, more generally, prioritizing of
information streams (Wu et al., 2008; Zanos et al., 2015),
phase-encoding in case of oscillatory waves (Ermentrout and
Kleinfeld, 2001; Agarwal et al., 2014), and stimulus integration
and segregation (Wu et al., 2008; Reimer et al., 2011; Sato et al.,
2012; Zheng and Yao, 2012).

To clarify the functional roles of propagating waves, their
properties such as direction, speed, and amplitude are correlated
with cognitive variables (Rubino et al., 2006; Zanos et al., 2015).
Successfully linking cognition to neural dynamics therefore,
depends on how closely LFP dynamics follow those of the
underlying neural currents. Although LFPs are often identified
with neural activity, they are generated by transmembrane
currents that set up electric fields and concomitant currents
in the surrounding tissue (Nicholson and Freeman, 1975;
Buzsáki et al., 2012). Thus, the LFP recorded at any particular
location reflects the integrated transmembrane currents from the
surrounding tissue, a fact that complicates their interpretation.
Although volume-conduction is what makes electrophysiological
recordings possible, it also complicates their interpretation in
terms of neural activity. Consider, as an example, a cortical
rhythm that is organized as a delayed feedback loop between
cortical layers. Since the LFP phase at a given cortical depth
depends on the phases (and amplitudes) of the transmembrane
currents in all cortical layers and the current oscillations exhibit
phase-differences, the LFP phase does not correspond to that
of the currents are any particular cortical layer. A similar
ambiguity exists in interpreting the peaks and troughs of evoked
potentials (Barth and Di, 1990). A recent study illustrates how
identifying electric potentials with neural activity can have
a substantial impact on cognitive theories (Hindriks et al.,
2014).

The example treated in Hindriks et al. (2014) is concerned
with the biophysical interpretation of alpha (7–13 Hz)
oscillations as recorded with scalp EEG, which are known
to propagate over the scalp with speeds in the range of 5–15m/s
and predominantly along the medial axis. This observation has
lead to the hypothesis that the propagation of the underlying
cortical currents is mediated by cortico-cortical axons, since
the propagation velocities of action potentials in such axons
fall within the same range. This cortico-cortical hypothesis
has led to the idea that propagating alpha waves enable
communication between frontal and occipital regions. Such
communication would be enabled by the long wavelengths of
EEG alpha oscillations, which, given their speeds, would be of
the same order as the distance between frontal and occipital
regions. This view assumes that the underlying cortical currents
propagate with similar speeds. This assumption, however, is
inconsistent with LFP recordings, which have shown alpha
oscillations to propagate with velocities around 0.3m/s and
therefore suggest mediation by intra-cortical axons (which are
known to conduct action potentials with velocities in the range
0.1–1 m/s). In Hindriks et al. (2014), this issue is solved by
constructing an EEG volume-conductor model and using it to
show that cortical currents propagating at 0.3m/s can lead to
speeds of EEG potentials in the observed range of 5–15m/s.
According to this intra-cortical hypothesis, alpha wavelengths
are short (on the order of centimeters) which precludes a
wavelength-based communication mechanism between frontal
and occipital regions.

From a mesoscopic point of view, transmembrane currents
are described in terms of a (volume) current source density
(CSD) (Nicholson and Freeman, 1975; Mitsdorf, 1985). The
CSD is a scalar function of location that describes how
much current enters or leaves the extracellular medium per
unit-of-volume. A positive/negative CSD signifies that current
enters/leaves the extracellular medium and hence corresponds to
hyperpolarization/depolarization of local neural populations. In
CSD analysis of LFP recordings, regions with positive/negative
CSD are commonly referred to as (current) sources/sinks
(Mitsdorf, 1985). From a biophysical point of view, it is the
CSD that corresponds to neural activity and hence is the
main variable of interest. The aim of this study, therefore,
is to assess how CSD and LFP phase-patterns are related
and how different variables—in particular the inter-laminar
organization of the CSD—change this relation. This is done by
simulating three-dimensional CSDs, calculating the LFPs using a
volume-conductor model, and by subsequently comparing their
dynamics using appropriate indices. To calculate the LFP due to a
given CSD we solve Poisson’s equation (Nicholson and Freeman,
1975). In the context of electrophysiology, solving Poisson’s
equation is often referred to as forward modeling and the
resulting model as a volume-conductor model. This biophysical
approach has proven valuable in understanding the biophysical
nature and physiological content of the LFP (Kajikawa and
Schroeder, 2011; Linden et al., 2011; Buzsáki et al., 2012; Einevoll
et al., 2013; Reimann et al., 2013).

In this study we simulate cortical LFPs as recorded with
the Utah array, which is a two-dimensional array containing
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100 electrodes, arranged in a 10 × 10 grid with 400µm
inter-electrode spacing (Maynard et al., 1997), as such arrays
are most frequently used to record two-dimensional cortical
LFPs (Rubino et al., 2006; Takahashi et al., 2011; Zheng and
Yao, 2012; Zanos et al., 2015). The aim of this study is to
characterize the discrepancies between oscillatory CSD and LFP
phase-dynamics and to identify the contributing factors such
as the laminar organization and temporal frequency of the
oscillations, and the electrode montage used. After describing the
volume-conductor model (Section Volume Conductor Model),
the CSD simulations (Section CSD Simulations), and how to
compare LFP and CSD phase-dynamics (Section Comparison
of LFP and CSD Phase-Patterns), we try to give the reader
some intuition on how discrepancies between CSD and LFP
phase-dynamics arise (Section The LFP as an Integrated Signal)
and illustrate this with an analytical example (Section Phase-
Contraction). In Sections LFP-CSD Phase-Coherence and LFP
and CSD Propagation Speeds we consider volume-conduction
effects in case of complex phase-patterns and traveling plane
waves, respectively. In Section Laminar Contributions to LFP
Oscillatory Phase we assess how phase-differences between
neural oscillations in different cortical layers affect the LFP phase
recorded at a given depth. Finally, in Sections The Average-
Reference Montage, The Bipolar Montage, and The Laplacian
Montage we assess the effects of switching to different electrode
montages.

MATERIALS AND METHODS

Volume Conductor Model
LFPs are generated by transmembrane currents, which give rise
to extra cellular electric fields and their corresponding electric
potentials (Buzsáki et al., 2012). The transmembrane currents
are commonly described on the mesoscopic level in terms of
a (volume) current source density C, which has the dimension
of current per unit-of-volume. C is a scalar function of cortical
location and describes how much current leaves or enters the
extracellular medium per unit-of-volume. The electric potential
V (that is, the LFP) and the CSD are related through Poisson’s
equation:

∇ • σ∇V = −C, (1)

where ∇ denotes the gradient operator, • the inner product,
and σ denotes the conductivity tensor. We assume the tissue
to be of infinite extent, since the head is much larger than the
volume of interest. Furthermore, we assume the conductivity to
be homogeneous and isotropic. Although this is a simplification,
because the conductivity differs between tissue types (gray and
white matter, cerebrospinal fluid, bone), and might be different
in the intra- and inter-laminar directions (Logothetis et al., 2007),
these assumptions been proven to give good results in modeling
studies of LFPs (Riera et al., 2012; Reimann et al., 2013; Kajikawa
and Schroeder, 2015) and will therefore serve as a good starting
point. Under these assumptions, σ reduces to a scalar and the

LFP is given by

V(x, y, z) =
1

4πσ

∫∫∫

C(x′, y′, z′)dx′dy′dz′
√

(x− x′)2 + (y− y′)2 + (z − z′)2
,

(2)
where we have used Cartesian coordinates (x, y, z), where (x, y)
and z denote intra- and inter-laminar coordinates, respectively
and where the integral is taken over the support of C. In
particular, for a localized source of unit strength, located at the
origin, that is C(x, y, z) = δ(x, y, z), the LFP is given by

V(x, y, z) =
1

4πσ
√

x2 + y2 + z2
. (3)

Unlike in the case of EEG or ECoG, where the recording
electrodes are located outside the tissue, the recording tips of
intra-cortical electrodes can be arbitrarily close to the current
sources. As Equation (3) shows, this leads to singularities when
using localized sources to model the CSD. This can be dealt
with in several ways (Pettersen et al., 2006; Riera et al., 2012;
Reimann et al., 2013; Kajikawa and Schroeder, 2015). We avoid
the singularity by assuming the CSD to be constant on small
rectangular tissue volumes, in which case we can use the explicit
formula derived in Hummer (1996).

We restricted the CSD to a rectangular tissue volume with
intra- and inter-laminar lengths of 11.6 mm (equal to the length
of the electrode grid (3.6mm) plus a 4 mm extension along
the side) and 3.5 mm, respectively. The inter-laminar length is
roughly an upper bound for the thickness of primate cortex. The
recording grid was arranged in a 10×10 electrode array with 400
µm inter-electrode spacing and was placed at the intra-laminar
center of the tissue volume, 1.15 mm deep. Figure 1A illustrates
the arrangement.

By dividing the modeled volume into K cubes and assuming
the CSD is constant on each cube, the relation between C and V
can be written as follows:

V = GC, (4)

where V ∈ RN×1 denotes the vector containing the LFPs at the
N = 100 electrodes and C∈RK×1 denotes the vector containing
the CSD at theK source locations. ThematrixG∈RN×K is known
as the (LFP) leadfield matrix (Grech et al., 2008) and its columns
are known as leadfields and correspond to source locations:
They describe how strong a source at that particular location
contributes to the voltages recorded at the different electrodes.
The volume was divided into K = 2042 × 61 = 2538576
cubes (2042 in each of the 61 intra-laminar planes) Figure 1B
shows the electrode-averaged sensitivity of the leadfield for three
different cross-sections through the tissue volume. The sensitivity
was calculated by averagingG over rows (that is, over electrodes).
The intra- and inter-laminar sensitivity of the LFP leadfield
lead to volume-conducted contributions of neural activity from
superficial and deep cortical layers, respectively, and form the
physical basis for the non-local character of the LFP (Kajikawa
and Schroeder, 2011).
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FIGURE 1 | Volume-conductor model. (A) Schematic drawing of the modeled tissue volume (black square) and the placement of the electrode grid (green line). The

dimensions of the volume are as indicated: an intra-laminar length of 11.6mm and an inter-laminar length of 3.5mm. The electrode grid is located at the horizontal

center of the tissue volume at a depth of 1.15 mm. (B) The panels show the electrode-averaged leadfield sensitivity for three different cross-sections of the modeled

tissue volume. Left and middle panel: intra-laminar cross-section at a depth of 1.15mm (that is, at the height of the electrode grid) and 3.5mm (that is, at the

boundary between cortex and white-matter), respectively. Right panel: inter-laminar cross-section through the center of the electrode grid. The color-coded values are

normalized. The white contours designate the boundary of the electrode grid.

CSD Simulations
We simulated neural activity inside the modeled tissue by
specifying a complex-valued CSD C(x, y, z, t), where (x, y, z)
denotes position in Euclidean coordinates, with x and y denoting
the intra-laminar directions, z the inter-laminar direction, and
t denotes time. The electrode grid is located at z = 0 and
the positive z−axis points toward the pial surface. We focus
on oscillatory LFPs and thus take C to be oscillatory, say with
frequency f . Moreover, we assume the intra- and inter-laminar
profiles of C to be independent, so that C can be decomposed as
follows:

C(x, y, z, t) = Cv(z)Ch(x, y)Ct(t), (5)

where Cv and Ch denote, respectively, the inter- and intra-
laminar CSD profiles (“ h ” stands for “horizontal” and “ v ” for
“vertical”) and

Ct(t) = ei2π ft, (6)

denotes its temporal profile.
The inter-laminar profile is modeled by a linear superposition

of dipolar sink-source configurations. We will refer to these
dipolar configurations as generators and model them by a linear
superposition of two Gaussian profiles with amplitudes A and
(1−ε)A, where 0 ≤ ε ≤ 1, opposite signs, inter-laminar locations

z0 + L/2 and z0 − L/2 and common width σv. Thus, in case of a
single generator, the inter-laminar profile is given by

Cv(z) = Ae−(z−(z0+L/2))2/2σ 2v − (1− ε)Ae−(z−(z0−L/2))2/2σ 2v . (7)

Note that the different signs lead to anti-phase oscillations of
the two generator poles (the source and the sink), reflecting
conservation of current in the extra cellular medium. For ε =

0, the poles of the generator are balanced, which is equivalent
to the above mentioned current conservation. Neural sources,
however, can be unbalanced or monopolar, due to ionic diffusion
currents (Bédard and Destexhe, 2009; Riera et al., 2012). This is
modeled by the parameter ε, where ε = 1 and ε = 0 correspond
to balanced and monopolar sources, respectively, and values in
between model unbalanced sources. We consider three values
of ε: 0, 0.5, and 1, corresponding to balanced, unbalanced, and
monopolar sources, respectively. Figure 2A shows an example
of an inter-laminar CSD component (color-coded) as a function
of cortical depth and time. It comprises two generators: a short
superficial one (L = 0.2 mm and z0 = −0.1 mm) and a long deep
one (L = 1 mm and z0 = −1.6 mm). The generators display 10
Hz oscillations. Other parameters were set as in Table 1.

We used twomodels for the intra-laminar CSD profileCh. The
first model is a superposition of isotropic waves. In case of a single
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FIGURE 2 | Current source density (CSD) simulations. (A) Simulated inter-laminar CSD component (color-coded) as a function of time and cortical depth (relative

to the electrode grid). Red and blue correspond to current sources (CSD > 0) and sinks (CSD < 0), respectively. In this example the component was modeled by a

superposition of two dipolar sink-source configurations (generators) located at depths of −0.1 and −1.6 mm and having lengths of 0.2 and 1mm, respectively. The

deep generator has twice the amplitude of the superficial generator and display in-phase 10Hz oscillations. (B) Intra-laminar component of simulated isotropically

propagating beta (20Hz) oscillations originating from the center of the tissue volume. Initial phase was randomly chosen. (C) Intra-laminar component of simulated

CSD constructed by superposing 100 isotropically propagating oscillations with random positions and initial phases. In (B,C) the timespan is half the oscillation

period. The black squares denote the boundary of the electrode array. Parameters were set as in Table 1.
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TABLE 1 | CSD parameters, their symbols, and ranges/nominal values.

Parameter Symbol Range/Nominal value

Oscillation frequency f 5–80Hz

Generator amplitude A 1

Generator length L 0.2–1mm

Inter-laminar width (of generator poles) σv L/3mm

Propagation speed v 0.1–0.2m/s

Intra-laminar width (of isotropic waves) σh v/3f mm

Level of current imbalance ε 0, 0.5, 1

wave, Ch is given by

Ch(x, y) = eiϕ0e−i2πd(x,y)/λe−d2(x,y)/2σ 2
h (8)

where ϕ0 denotes the initial phase of the wave, σh its spatial width,
d(x, y) denotes the intra-laminar distance of (x, y) to the center
of the wave, and λ = v/f denotes its wavelength, where v is the
propagation speed. Figure 2B shows an isotropically propagating
wave traveling away from the (intra-laminar) center of the tissue
volume with a speed of v = 0.2 m/s and having a spatial width
of σh = 1 mm. Figure 2C shows Ch modeled as a superposition
of 100 such sources with random locations and initial phases for
five different oscillation frequencies. Notice that with increasing
frequency, the oscillations become less spatially coherent. The
second model is a traveling plane wave, in which case Ch is
given by

Ch(x, y) = eiϕ0ei(kxx+kyy), (9)

where ϕ0 denotes the initial phase of the wave and kx and
ky denote the wavenumbers in the x− and y−directions,
respectively. The propagation speed of the wave is given by v =

λf , where λ = 1/
√

k2x + k2y denotes the wavelength.

To cover the experimental LFP frequency range, we chose
a representative value within the theta, alpha, beta, and (low
and high) gamma frequency bands. Specifically, we set f to 5
Hz (theta), 10 Hz (alpha), 20 Hz (beta), 40 Hz (low gamma),
and 80 Hz (high gamma). Generator amplitude A was set to the
normalized value of 1 since it does not impact CSD and LFP
phase-dynamics. In case of multipolar CSDs (that is, CSDs whose
inter-laminar component comprises more than one generator)
we do vary their relative amplitudes, however. The generator
length L is identified with the space constant of passive dendrites,
which takes values in the range 0.2–1 mm (Hindriks et al., 2014).
In case of plane waves, the propagation speed was set to v = 0.2
m/s which is consistent with both LFP (Freeman et al., 2000;
Rubino et al., 2006; Reimer et al., 2011; Takahashi et al., 2011;
Zanos et al., 2015) and voltage sensitive dye (VSD) experiments
(Slovin et al., 2002; Benucci et al., 2007; Wu et al., 2008; Sato
et al., 2012). In the case of isotropic waves, v was set to a lower
value (v = 0.1 m/s) because for superpositions of such waves,
the effective propagation speed as estimated from the simulated
data (see Section Comparison of LFP and CSD Phase-Patterns)
is higher. We point out that the dynamics—and hence the effect
of volume-conduction—of both the plane and isotropic waves

effectively depends on the wavelength λ = v/f so that a different
value of v is equivalent to rescaling the frequency range. The
intra-laminar width σh of isotropically propagating waves was set
to σh = v/3f (or equivalently, σh = λ/3) which ensures that
the wave is damped out within a distance of λ from its center, as
frequently observed experimentally (Ermentrout and Kleinfeld,
2001). The inter-laminar width σv of the generator poles was set
to L/3 which ensures that the generator poles partially overlap.
This choice reflects the fact that current sinks and sources are
typically not separated by sourceless tissue, an observation that is
probably due to the spatially continuous nature of the associated
return currents that generate the LFP. The parameters and their
ranges are listed in Table 1.

Comparison of LFP and CSD
Phase-Patterns
To characterize the phase-patterns of the simulated CSDs and
LFPs we use two indices. In case of isotropically propagating
waves we use the Kuramoto order parameter and in case of planar
traveling waves, we use the (spatially-averaged) propagation
speed. When applied to simulated CSDs, the CSDs are restricted
to the locations of the grid electrodes to enable a direct
comparison with the values obtained from the LFPs.

The Kuramoto order parameter, denoted by r, is defined by

r =
∣

∣

〈

eiψ
〉∣

∣ , (10)

where the brackets denote averaging over electrodes and the
vertical bars denote taking the absolute value (Breakspear et al.,
2010). The Kuramoto order parameter takes on values between
0 and 1 and quantifies the extent to which the phases ψ at
different locations are aligned. We calculate this index both for
the simulated LFPs as well as for the underlying CSDs and denote
the values by rLFP and rCSD, respectively.

The average propagation speed was calculated similarly as in
Takahashi et al. (2011) and is based on the spatial gradient of the
instantaneous phase-pattern ψ(x, y). In Cartesian coordinates,
the spatial gradient is given by

∇ψ =
∂ψ

∂x
x̂+

∂ψ

∂y
ŷ, (11)

where x̂ and ŷ denote the standard two-dimensional Euclidean
basis vectors. It is calculated by approximating the partial
derivatives ∂ψ/∂x and ∂ψ/∂y by first-order finite differences.

Note that the spatial unwrapping of the phases used in
calculating ψ can only be done accurately if δ < 2λ, where
δ is the inter-electrode distance and λ is the wavelength of the
oscillations. Since λ = v/f , where v is the propagation speed
and f the temporal frequency of the oscillations, this condition
is equivalent to 2v/f > δ. In this study, δ = 0.4mm, v ≥ 0.1m/s,
and f ≤ 80 Hz, so that this condition is satisfied.

The average propagation speed, denoted by v̄, is calculated as

v̄ =
2π f

〈‖∇ψ‖〉
, (12)
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where (as above) the brackets denote averaging over electrodes, f
denotes the frequency of the oscillations, and the double vertical
bars denote the Euclidean norm:

‖∇ψ‖2 =

(

∂ψ

∂x

)2

+

(

∂ψ

∂y

)2

. (13)

To compare the CSD and LFP phase-patterns we used the phase-
coherence between the simulated CSDs and LFPs, denoted by
ρLFP,CSD. Let ψLFP and ψCSD denote the LFP and CSD phase-
patterns, respectively, where as mentioned above, the CSD has
been restricted to the electrode locations. Then ρLFP,CSD is
defined as

ρLFP,CSD =

∣

∣

∣

〈

ei(ψLFP−ψCSD)
〉∣

∣

∣ , (14)

which takes values between 0 and 1 and quantifies the extent to
which ψLFP and ψCSD are coherent.

RESULTS

Before systematically comparing LFP and CSD phase-patterns
through simulations and identifying the factors that lead to
discrepancies, in Section The LFP as an Integrated Signal we
provide some intuition for the effects of volume-conduction and
in Section Phase-Contraction we discuss a simple example that
can be analyzed mathematically.

The LFP as an Integrated Signal
Equation (2) is the formal solution of Poisson’s equation
and shows how the LFP arises from the volume density of
transmembrane currents (the CSD): At any particular location,
the LFP is generated by integrating the CSD over the tissue

volume, where the CSDs contribution is weighted by the distance
to the electrode tip.

Thus, in general, distant sources contribute less to the LFP
than sources close to the electrode tip do. Equation (2) also
shows that the effect of volume-conduction is linear: The LFP
due to two sources is equal to the sum of the LFPs due to the
individual sources. The LFP therefore is an integrated signal,
reflecting the summed (or integrated) transmembrane currents
from the surrounding tissue volume.

Figure 3A shows a piece of cortex with a recording electrode
inserted into it and containing two current sources (black dots).
The sources generate electric fields E1 and E2 (visualized in blue
and red, respectively) with corresponding electric potentials V1

and V2 at the electrode tip (satisfying ∇V1 = −E1 and ∇V2 =

−E2). The electric potential V due to both sources is given by
the linear superposition of V1 and V2: V = V1 + V2. It is this
property of the LFP that complicates its interpretation (Buzsáki
et al., 2012; Kajikawa and Schroeder, 2015) for it means that it
reflects contributions from neural sources at different locations.
In particular, LFPs recorded within a cortical layer, for example
using the Utah array (Maynard et al., 1997), receive contributions
from neural sources in all other cortical layers. Moreover, the
amplitude of the LFP depends on the amplitudes and phases of
all the neural sources and the same holds for the phase of the
LFP. Thus, in contrast to the LFP itself, which depends linearly
on the neural sources, its amplitude and phase depend on those
of the neural sources in a non-linear way.

The geometric viewpoint illustrated in Figure 3B provides
some intuition for how LFP amplitude and phase are related to
those of the underlying CSD. The figure contains two oscillatory
neural sources (C1 and C2) and the respective ensuing voltages
(V1 and V2) represented by complex-valued numbers. Thus,

FIGURE 3 | Generation of LFPs through linear superposition. (A) Shown is a piece of cortex with inserted an extra cellular recording electrode and two localized

current sources (black dots). The electric fields generated by the sources are denoted by the blue and red concentric circles. The electric field, and hence the

potential, at the recording tip, is equal to the linear superposition of the electric fields of the two individual sources. It is this (linear) integration property of the LFP that

complicates its interpretation in terms of the dynamics of the underlying current sources. (B) Geometric interpretation of the effect of volume-conduction. Depicted are

the instantaneous source variables (thick blue and red bars), the ensuing voltages V1 and V2 at the recorded tip (thin blue and red arrows), and the total voltage V at

the recording tip (black arrow). All variables are represented by complex-valued numbers (that is, by an amplitude and a phase) and the figure illustrates how V1 and

V2 at add up to produce V.
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at any given moment, they are characterized by an amplitude
(length of the vectors) and a phase (angle of the vectors with the
x-axis). Note that the sources have equal amplitudes and that the
oscillations of C2 are delayed with respect to those of C1. Also
note that the phases of V1 and V2 are equal to those of C1 and
C2, respectively, reflecting the fact that the extra cellular space is
purely resistive.

In Sections LFP-CSD Phase-Coherence, LFP and CSD
Propagation Speeds, and Laminar Contributions to LFP
oscillatory phase, we discuss differences between LFP and
CSD phase-patterns. Specifically, in Section LFP-CSD Phase-
Coherence we show that LFP phase-patterns are more spatially
coherent than those of the underlying CSDs, in Section LFP
and CSD Propagation Speeds we show that LFP traveling waves
propagate faster than those of the underlying CSDs, and in
Section Laminar Contributions to LFP oscillatory phase we show
that the LFP phase is a weighted mixture of the phases of the
CSDs from all cortical layers. Can we understand these effects
from a geometric point of view? Figure 3B makes intuitively
clear that the phase ofV lies in between those ofC1 andC2, which
explains the effect discussed in Section Laminar Contributions to
LFP oscillatory phase. This implies that when LFPs are recorded
from two locations, the phase-difference between the LFPs is
smaller than that between the underlying CSDs, an effect we will
refer to as phase-contraction and prove it mathematically in the
next section. The effects discussed in Sections LFP-CSD Phase-
Coherence and LFP and CSD Propagation Speeds are direct
consequences of this basic effect for it implies that LFP phases
vary less over electrodes and hence are more spatially coherent
(Section LFP-CSD Phase-Coherence) and that LFP phase-
gradients are less steep, which implies faster propagation
of traveling waves (Section LFP and CSD Propagation
Speeds).

Phase-Contraction
In the special case of two monopolar sources, we can
mathematically prove that volume-conduction leads to the
contraction of CSD phases. Let the variables C1 = a1 exp(iϕ1)
and C2 = a2 exp(iϕ2) denote the (complex-valued) CSDs of the
monopolar sources, where a1 and a2 denote their amplitudes and
ϕ1 and ϕ2 their phases and let us write ψCSD = ϕ2 − ϕ1 for
their phase-difference. Without loss of generality we assume that
0 < ψ < π and that a1, a2 > 0. The (complex-valued) LFP
recorded at a given location is thus given by

V = β1C1 + β2C2, (15)

for certain real-valued constants β1 and β2 that depend on the
relative locations of the sources and electrode tips. Let us write
ϕLFP for the LFP phase. We will show that ϕ1 < ϕLFP < ϕ2.
Since the same argument can be applied to the LFP recorded
from a second electrode, it follows that the phases of both LFPs
lie in between ϕ1 and ϕ2. From the latter it follows that the LFP
phase-difference ψLFP is smaller than the CSD phase-difference:

|ψLFP| < |ψCSD| , (16)

where the brackets denote taking the absolute value. The
LFP phase-difference is thus contracted, relative to the CSD
phase-difference.

To show that ϕ1 < ϕLFP < ϕ2, we first write V = ξβ1C1,
where

ξ = 1+ γ exp(iψCSD), (17)

with γ = β2a2/β1a1 > 0. Note that ϕ1 < ϕLFP < ϕ2 is
equivalent to 0 < ψξ < ψCSD, where ψξ denotes the phase of
ξ .

To show that ψξ < ψCSD, note that

ψξ < arctan

(

γ sin(ψCSD)

1+ γ cos(ψCSD)

)

< arctan

(

sin(ψCSD)

cos(ψCSD)

)

= ψCSD.

From the above expression ofψξ in terms of arctan it also follows
that ψξ > 0, which completes the argument.

LFP-CSD Phase-Coherence
LFP phase-dynamics exhibit a range of dynamical patterns,
including plane and spiral waves and local contractions and
expansions (Townsend et al., 2015). Moreover, phase-gradients
are typically coherent only over short distances and propagation
velocities (both magnitude and direction) can vary between
nearby locations (Rubino et al., 2006; Kral et al., 2009). In
addition, complex wave patterns are also frequently observed
using voltage sensitive dye (VSD) imaging of cortical tissue
(Wu et al., 2008), which is not affected by volume-conduction
and therefore further supports the existence of such patterns
on the level of neural activity itself (in the sense of membrane
depolarization). Given these and related observations, it is
relevant tomap the discrepancies between complex CSD and LFP
phase-patterns.

To this end, we simulated CSD phase-patterns by
superimposing 100 isotropically propagating waves with
random intra-laminar locations and random initial phases (see
Section CSD Simulations). The inter-laminar CSD profile was
modeled by a generator with length 1mm and located at a
depth of 0.5 mm (relative to the electrode grid) as shown in
Figure 4A. Figure 4B shows the LFP-CSD phase-coherence
(red bars) and LFP and CSD Kuramoto order parameters
(orange and yellow bars, respectively) for each of the five
frequency bands. The values were obtained by averaging over
500 realizations. Note that for the lower frequency bands (theta,
alpha, and beta) the LFP-CSD phase-coherence is close to one
but decreases markedly for gamma band oscillations. Thus,
while for low-frequency oscillations, LFP phases accurately
reflect CSD phases at the corresponding locations, for high-
frequency oscillations they become increasingly inaccurate. This
can be understood by looking at the values of the Kuramoto
order parameter. Specifically, while the CSD Kuramoto order
parameter steadily decreases with increasing frequency (yellow
bars), the LFP Kuramoto order parameter decreases slower and
converges to a non-zero value (orange bars). This means that
for high-frequency oscillations (low and high gamma), the LFP
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FIGURE 4 | LFP-CSD phase-coherence. (A) Simulated inter-laminar oscillatory CSD profile as a function of time and cortical depth (relative to the electrode grid).

The CSD values are color coded: red and blue correspond to sources (CSD > 0) and sinks (CSD < 0), respectively. The CSD profile is modeled by a generator of

length 1 mm, located at a depth of 0.5 mm. For this illustration, the temporal frequency was set to 20 Hz. The black horizontal line designates the electrode grid. (B)

LFP–CSD spatial phase-coherence (red bars) and LFP (orange bars) and CSD (yellow bars) Kuramoto order parameters for each of the five frequency bands (theta,

alpha, beta, low and high gamma). Results were obtained by averaging over 500 realizations. (C,D) Same as (A,B) but with the amplitude of the deep generator pole

set to half its value. (E,F) Same as (A,B) but with the amplitude of the deep generator pole set to zero.

phases are spatially more coherent than the CSD phases and in
fact reach a minimum level of spatial coherence. As a result,
the discrepancy between LFP and CSD phases decreases with
increasing frequency.

What is the role of the deep generator pole? Given that the
electric potential of a monopolar source is inversely proportional
to distance, one might expect its contribution to be modest. To
assess this, we repeated the above simulation with the difference
that the amplitude of the deep generator pole was set to half
its value (see Figure 4C). The results are shown in Figure 4D.
The figure shows that the LFP-CSD phase-coherence now drops
much faster with increasing oscillation frequency (red bars)
and that the LFP Kuramoto order parameters converges to a
higher value than in Figure 4B.Thus, an imbalance in the inter-
laminar CSD profile causes the LFP phases to become more
spatially coherent, which leads to a larger discrepancy with the
CSD phases for fast oscillations (beta and gamma). We also
repeated the simulations while setting the amplitude of the deep

generator pole to zero (see Figure 4E). Figure 4F shows that, as
expected, the discrepancy between LFP and CSD phases further
increases. The difference between the unbalanced (Figure 4D)
and the monopolar (Figure 4F) simulations, however, is much
smaller than between the unbalanced and balanced (Figure 4B)
simulations. Figure 5 shows a single realization in the case of beta
band oscillations. It shows that imbalancing the inter-laminar
CSD component leads to increased LFP spatial coherence by
“contracting” the LFP phases (see bottom row).

LFP and CSD Propagation Speeds
In this section we asses differences between LFP and
CSD propagation velocities in case when the intra-laminar
CSD profile is modeled as a traveling plane wave (Section CSD
Simulations). Because LFP and CSD propagation directions
are the same, at least for electrically isotropic tissue, we only
consider their speeds, that is, the magnitudes of their velocity
vectors.
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FIGURE 5 | Example (beta oscillations). (A,B) Single realization of the simulated intra-laminar CSD profile (A) and its phase (B) in the case of beta (20 Hz)

oscillations. The black square in the center of the figures designates the boundary of the electrode grid. (C) Corresponding LFP (top row) and its phase (middle row)

for the (balanced) dipolar CSD (first column), the unbalanced CSD (middle column), and the monopolar CSD (right column). The bottom row contains circular plots of

the LFP phases. Each black line corresponds to an electrode. The red dots in the left panel correspond to the CSD phases at the electrode locations (which remain

the same for the three simulations).
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We consider CSDs with an inter-laminar profile comprising
a single generator of 1 mm and located at a depth of 0.5mm
(see Figure 4A). Such a generator models synaptic activation of
deep pyramidal neurons, which have extended apical dendrites
that give rise to an elongated dipolar sink/source configuration.
As described in Section CSD Simulations, the CSD propagation
speed was 0.2 m/s. Figure 6A shows LFP propagation speed
as a function of frequency (blue line). Notice that over the
entire frequency range, the LFP speed is close to 0.2 m/s. Small
perturbations of the generator depth or width of its poles left the
LFP speed practically unchanged. Furthermore, the LFP speed
remained unchanged when the initial phase of the CSDwaves was
varied (results not shown). Thus, in case of balanced (dipolar)
inter-laminar CSD profiles, LFP propagation speeds truthfully
reflect those of the underlying transmembrane currents.

To assess the effect of imbalancing the generator, we proceed
similarly as in the previous section, namely, by repeating the
above simulation with the difference that the amplitude of
the deep generator pole is set to half its value (black line in
Figure 6A) or to zero (green line in Figure 6A). Note that
the LFP speed depends on the oscillation frequency and can
either be lower or higher than the CSD speed. This complex
dependency on oscillation frequency reflects the non-linear effect
of volume-conduction on the phases of (oscillatory) neural
currents. This simulation shows that balanced transmembrane
currents are responsible for the correspondence between LFP
and CSD propagation speeds (blue line). The CSD oscillations
in deep cortical layers, which are in anti-phase with those at
the electrode plane, reduce the (mostly intra-cortical) effect of
volume-conduction. Imbalances in transmembrane currents do
exist (Riera et al., 2012) and our simulations could explain why
experimentally observed propagation speeds of cortical LFPs are
confined to the range of 0.1–0.3m/s (Freeman et al., 2000; Rubino
et al., 2006; Reimer et al., 2011; Takahashi et al., 2011; Zanos
et al., 2015), like they do in Figure 6A. Another factor that might
underlie variations in experimentally observed LFP speeds is the
intra-laminar source extent. This is suggested by the red line in

Figure 6A, which shows that LFP speedmarkedly increases when
the intra-laminar CSD profile is confined to the electrode grid.

Another non-linear feature of the LFP waves is that, in
contrast to the CSD waves, their speed depends on location.
Figure 6B displays the CSD and LFP phases as a function of
location in the case of 40 Hz oscillations. These were obtained
by taking a cross-section of the electrode grid in the direction
perpendicular to the traveling direction of the waves. The figure
shows that the LFP phase does not linearly increase with location.
In particular, in the middle of the grid (0 mm) the LFP wave
is faster than the CSD wave while at the grid edges they are
roughly equal. Figure 6C shows that this spatial-dependence of
LFP propagation speed varied with LFP oscillation frequency.
In fact, while LFP speed is constant for low frequencies, for
which CSD wavelengths are much larger than the electrode
grid, spatial-dependencies arise for frequencies for which CSD
wavelengths are of the same order of magnitude as the electrode
grid. There are hence three regimes for the CSDwavelength λ that
are relevant for the behavior of the LFP phase-gradient: much
larger, of similar size, and much smaller than the electrode grid.
In the large−λ limit, LFP propagation speed is constant (and
equals about 4.2 m/s), in the small−λ limit, LFP propagation
speed diverges, eventually leading to LFP standing waves, while
in between, volume-conduction gives rise to complex spatial-
dependencies in LFP speed.

Laminar Contributions to LFP Oscillatory
Phase
The simulations in Sections LFP-CSD Phase-Coherence and LFP
and CSD Propagation Speeds assumed neural currents whose
inter-laminar profile comprised a single generator. Cortical
oscillations, however, arise via synaptic feedback between neural
populations in different layers and one might therefore expect
to observe inter-laminar phase-differences (Bastos et al., 2012).
Several kinds of cortical as well as hippocampal oscillations
indeed show inter-laminar phase-differences (Schroeder et al.,
1998; Bollimunta et al., 2008; Lubenov and Siapas, 2009; Csercsa

FIGURE 6 | Discrepancies between LFP and CSD propagation speeds. (A) LFP propagation speed as a function of frequency. The unbalanced (black line) and

monopolar (blue line) cases correspond to setting the amplitude of the (dipolar) generator to half its value and to zero, respectively. The red line corresponds to the

dipolar case but with restricting the intra-laminar CSD profile to the electrode grid. (B) CSD (solid line) and LFP (circle markers) phase as a function of intra-laminar

location for 40Hz oscillations. The phases were obtained from a cross-section through the electrode grid perpendicular to the propagation direction. (C) Color-coded

difference between the LFP and CSD phases as a function of intra-laminar location and oscillation frequency. Color-scale is in radians.
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et al., 2010; Fourcaud-Trocmé et al., 2014). A relevant question,
therefore, is how and to what extent these phase-differences shape
the oscillatory phase of the LFP, recorded at a particular depth.
Indeed, because neural currents across cortical layers contribute
to the generation of the LFP, how are we to interpret its phase
in the presence of inter-laminar phase-differences? The answer
to this question is particularly relevant for the interpretation of
spike-LFP coherences, spike-triggered LFPs, and for phase-based
coding and long-range synchronization in general (Fries, 2005;
Maris et al., 2016).

To address this question, we simulated a localized source
whose inter-laminar profile was modeled by the superposition
of two generators: a superficial and a deep generator, located
at depths of 0.25 mm and 1.00 mm, respectively, and having a
common length of 0.5 mm. The phase-difference between the
oscillations in the deep and superficial layers was allowed to vary
(see Figure 7A). The intra-laminar CSD profile was modeled as
an isotropically propagation wave with a spatial width of 1 mm
and setting the propagation speed to infinity, thereby effectively
simulating a source with a Gaussian profile. The recording
electrode was placed at the intra-laminar center of the source. The
phase of the superficial generator was set to zero and the phase of
the deep generator was varied from zero to half the oscillation
cycle (π rad).

Figure 7B shows the results for four different amplitude ratio’s
of the deep generator over the superficial generator (1/4, 1/2, 1,
and 2). It shows, for each of the four amplitude ratios, the LFP
phase as a function of the phase of the deep generator. Note
that in the absence of the deep generator, the curve would be
horizontal (LFP phase equal to zero). On the other hand, in the

absence of the superficial generator, the curve would be diagonal
(LFP phase equal to deep generator phase). As a consequence,
with increasing amplitude of the deep generator, the curve moves
from being horizontal to being diagonal, but necessarily ends at
either 0 or 0.5 (note that in the figure, phases are measured in
fractions of the oscillation cycle). The latter can be understood
by taking a geometrical perspective (Section The LFP as an
Integrated Signal): If two sources are out-of-phase, they lie on
a straight line in the complex plane and therefore, any linear
combination lies on this line as well. In other words, any pair
of LFPs that is due to a pair of out-of-phase CSDs is either in-
or out-of-phase. In particular, if the ratio between the generator
amplitudes is increased from 1/2 to 1, the end of the curve jumps
from 0 to 0.5. This ensures that the LFP phase remains close to
that of either the deep or the superficial generator, say within
one-tenth of the oscillation cycle.

Because the phase-shifts, as measured relative to the
oscillation cycle, are independent of the oscillation frequency,
this result suggests that generally, and in the absence of
knowledge about the laminar organization and phase-differences
of the current generators, the LFP phase cannot be assumed
to follow the phase of the underlying current oscillations
with millisecond precision. Furthermore, the phases at which
physiological or behavioral events are locked to the LFP are
exact only up to a fraction of the oscillation cycle. For example,
systematic phase-differences between LFP and voltage-sensitive
dye (VSD) oscillations can be observed (Lippert et al., 2007),
which can be understood by our simulations. In particular, while
VSD signals predominantly reflect neural activity from superficial
cortical layers, LFPs contain contributions from all layers, which

FIGURE 7 | Laminar contributions to LFP phase. (A) Simulated inter-laminar CSD component as a function of time and cortical depth (relative to the electrode

grid). The CSD values are color coded: red and blue correspond to sources (CSD > 0) and sinks (CSD < 0), respectively. The CSD profile is modeled by a

superposition of two generators with common length 1mm and located at depths of 0.25 and 1mm. For this illustration, the temporal frequency was set to 20 Hz.

The black horizontal line designates the electrode grid. In this example, the phase-difference between the oscillations in the superficial and deep layers is one-eighth of

the oscillation period (π/4) and the amplitude of the deep generator is twice that of the superficial. The black horizontal line denotes the electrode grid. (B) LFP phase

as a function of the phase of the deep generator for four different amplitude ratio’s (deep over superficial): 1/4 (blue), 1/2 (red), 1 (green), and 2 (black).
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explains the generally low correlation between LFP and VSD
signals (Lippert et al., 2007) and systematic phase-differences in
particular.

The Average-Reference Montage
Electrical potentials are relative measurements in that they are
measured with respect to the potential at another electrode. In
our simulations so far, we have considered “absolute” potentials,
that is, recorded with respect to infinity. In practice, however,
the reference electrode has to make contact with the volume
conductor and is often placed on cortical tissue that is far from
the electrode grid (for example on the other hemisphere) or on
a piece of bone. This measurement configuration or montage
is referred to as the referential (or unipolar) montage and is
the most used montage in two-dimensional LFP recordings
(Menzel and Barth, 2005; Rubino et al., 2006; Lubenov and
Siapas, 2009; Takahashi et al., 2011; McDonald et al., 2014;
Zanos et al., 2015). A reference electrode is never “quit”
however and as a consequence, the voltage fluctuations measured
at the active electrodes are contaminated and can become
difficult to interpret. Another difficulty in interpreting referential
LFPs is the possible contribution of distant sources, which
are not necessarily located directly underneath the electrode
grid (Kajikawa and Schroeder, 2011). Because the distance
between the reference electrode is typically much larger than
the mutual distances between the active electrodes, all active
electrodes are contaminated by the same fluctuations and the
same holds (approximately) for distant sources. Therefore, these
contaminations can be removed by subtracting the electrode-
averaged voltage from the voltage measured at each electrode, a
procedure referred to as re-referencing to the average-reference
montage.

The average-reference montage is frequently applied to scalp
EEG and ECoG recordings and less to LFP recordings (but see
Hall et al., 2014). For scalp EEG recordings, it is motivated by
the fact that for balanced current sources inside a closed volume
conductor, the integral of the electric potential over the boundary
of the conductor equals zero. Therefore, since the head can
be treated (to a certain extent) as a closed volume conductor,
average referenced EEG potentials are approximately equal to the
absolute potentials, provided that a sufficient part of the head is
covered by electrodes (Nunez et al., 1997). It is not clear however,
to what extent the average-reference montage can be applied
to multi-electrode LFP recordings without distorting them and
rendering them uninterpretable. This is a relevant issue because
if justified, the average-reference montage allows removing the
contributions from the reference electrode as well as from distant
sources.

To address this question, we repeated the simulations of
Section LFP-CSD Phase-Coherence and calculated the LFP-
CSD phase-coherence and the CSD and LFP Kuramoto order
parameters for both the absolute and the average-reference
montages. The results are summarized in Figure 8A. The lower
panel shows that passing to the average-reference montage
removes the spatially-coherent component of the LFP (blue bars).
When this LFP component only contains volume-conducted
activity from distant sources or fluctuations at the reference

electrode, removing this component can be beneficial. This
can be seen in the high gamma band, in which the simulated
oscillations are spatially incoherent so that switching to the
average-reference montage (slightly) increases the LFP-CSD
phase-coherence (top panel). In the simulations it are not
distant sources or fluctuations at the reference electrode that are
removed, but the contribution of neural currents in cortical layers
other than in which the electrode grid is located. In any case,
in the higher frequency bands—in which the neural oscillations
are relatively spatially incoherent—switching to the average-
reference montage does not lead to a higher discrepancy between
CSD and LFP phases. In the lower frequency bands (up to the beta
band) the simulated oscillations are spatially more coherent and
therefore, switching to the average-reference montage removes
part of the source activity. This leads to a lower LFP-CSD phase-
coherence and hence makes the LFP phases more difficult to
interpret.

The Bipolar Montage
The bipolar montage is also frequently used in EEG and
ECoG studies and is obtained by taking the differences
between neighboring electrodes (in a given direction). Like
the average-reference montage, the bipolar montage suppresses
contributions from the reference electrode and from distant
sources. Its physical interpretation, however, is different. The
spatial derivative of V in a direction a is given by

∂V

∂a
= ∇V • a = −E • a,

where ∇ denotes the gradient operator and E the extra cellular
electric field. Note that ∂V/∂a corresponds to the bipolar
montage in the direction of a. Furthermore, since nervous tissue
is purely resistive, the extra cellular current density J is related
to E by J = σE. Therefore, the bipolar montage is proportional
to the current density in that direction. The current density,
however, is not equal to the CSD (they are related through∇•J =
C) so that the bipolar montage is expected to lead to a larger
discrepancy between LFP and CSD phases. As Figure 8B shows,
this is indeed the case: passing to a bipolar montage substantially
reduces LFP-CSD phase-coherence in all frequency bands and
thereby making LFP phases more difficult to interpret.

The Laplacian Montage
A montage that is frequently used in one-dimensional (laminar)
LFP recordings is the Laplacian montage (Mitsdorf, 1985). It
is directly motivated by Poisson’s equation (Equation 1). In
Cartesian coordinates (x, y, z), where (x, y) and z denote intra-
and inter-laminar locations, respectively, Poisson’s equation is
given by

(

σx
∂2

∂x2
+ σy

∂2

∂y2
+ σz

∂2

∂z2

)

V(x, y, z) = −C(x, y, z), (18)

where we have assumed that the conductivity tensor σ is diagonal
with entries σx, σy, and σz . It follows that if C is constant in the
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FIGURE 8 | Effects of electrode montages. (A) LFP-CSD phase-coherence (upper panel) and Kuramoto order parameter (lower panel) for the average-reference

montage (blue bars) for each of the five frequency bands (theta, alpha, beta, low and high gamma). The LFP-CSD phase-coherences (upper panel) and Kuramoto

order parameters (lower panel) for the referential montage (white bars) are shown for comparison. The black bars in the lower panel denote the CSD Kuramoto order

parameters. (B,C) Same as (A) but for the bipolar montage (B) and Laplacian montage (C) instead of the average-reference montage (A). In (B) the results are shown

for the bipolar montage in the x− direction only. The values were obtained by averaging over 500 simulations.

intra-laminar directions, Poisson’s equation reduces to

∂2V

∂z2
(z) = −

1

σz
C(z), (19)

so that the second-order spatial derivative of V in the inter-
laminar direction can be used to “invert” Poisson’s equation
and estimate the inter-laminar component of the CSD. For this
reason, the Laplacian montage is also referred to as the CSD
method (Nicholson and Freeman, 1975). Note that the CSD
method assumes σz to be constant across cortical layers, an
assumption that is questionable (Goto et al., 2010).

The Laplacian montage can also be used in two dimensions
as is regularly done in scalp EEG recordings (Nunez et al.,
1997; Tenke and Kayser, 2012). In the context of scalp EEG
recordings, the two-dimensional Laplacian montage is referred
to as the surface Laplacian and reflects the currents that entering
and leaving the scalp (scalp sources and sinks). Under some

extra assumptions, the surface Laplacian can be shown to be
approximately equal to the dura potential so that is can be used
to “invert” the blurring effect of the skull and scalp on the electric
potential (Nunez et al., 1997).

In the case of (intra-cortical) LFP recordings, the surface
Laplacian is directly related to neural membrane currents.
Specifically, if C is constant in the inter-laminar direction and
assuming that cortical conductivity is independent of intra-
laminar direction (say σx = σy = σ ′ for certain σ ′) then

(

∂2

∂x2
+
∂2

∂y2

)

V(x, y) = −
1

σ ′
C(x, y).

The (surface) Laplacian montage can hence be used to estimate
the intra-laminar CSD component C(x, y). Note that in Section
CSD Simulations, we have used the notation Cv and Ch for the
inter- and intra-laminar components of C, respectively. While
the conductivity assumption seems generally satisfied (Logothetis
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et al., 2007), the assumption on C is clearly not since the
cortical sheet has finite thickness and, perhaps more importantly,
the inter-laminar CSD profile is often balanced, and in any
case, is not constant. Although the surface Laplacian montage
is not commonly used in the analysis of multi-electrode LFP
recordings, it is certainly interesting, as it potentially allows
recovering the source distribution in the electrode plane. It will
therefore be relevant to see if it can still be recovered even if one
of the assumptions is violated.

To assess this issue, we carried out the same simulations as
for the other electrode montages (see Sections The Average-
Reference Montage and The Bipolar Montage) and calculated
the LFP-CSD phase-coherence and LFP and CSD Kuramoto
order parameters. Note that in these simulations, the assumption
of a constant inter-laminar CSD profile is violated since the
profile is balanced. The results are summarized in Figure 8C.The
upper panel shows that the LFP-CSD phase-coherences are rather
independent of frequency and are relatively high (around 0.75)
indicating a reasonable correspondence between (Laplacian-
referenced) LFP and CSD phases. The effect of the finite thickness
of the cortical sheet is modest as we verified by simulating CSDs
with a constant inter-laminar profile: the resulting CSD-LFP
phase-coherences were mostly > 0.9 for all frequency bands
(results not shown).

DISCUSSION

The phases of oscillatory LFPs have been tied to cognitive,
perceptual, and motor processing and their organization in
space is thought to implement a basic mechanism of neural
processing (Fries, 2005; Deco and Kringelbach, 2016; Maris et al.,
2016). To further advance our understanding of how neural
oscillations subserve cognition, it is crucial to understand how
LFP phases are related to those of the underlying neural activity.
LFPs are generated by the extra cellular electric fields that are
induced by neural activity, that is, by transmembrane currents
(Buzsáki et al., 2012). Although transmembrane currents and
extra cellular potentials are different physical quantities, in
experimental studies, LFPs are often equated with neural activity.
In this study we made this assumption explicit and used a
volume-conductor model to investigate the relation between the
phases of oscillatory transmembrane currents—as modeled by
current source densities (CSDs)—and those of the ensuing LFPs.
Although we have focused on two-dimensional LFP recordings
using Utah arrays (Maynard et al., 1997), the results are relevant
to other electrode configurations as well. Importantly, we found
that discrepancies between LFP and CSD phase-patterns do exist
and can be substantial. One finding is that, in the case of inter-
laminar phase-differences, LFP phases cannot be associated with
those of the CSD at any particular cortical depth, but rather, are
shaped by the phases and amplitudes of the CSD oscillations
in all cortical layers. This can explain the low correlations and
systematic phase-differences between VSD and LFP signals as
suggested earlier in Lippert et al. (2007). The two other main
findings are the following. First, the most important factors that
determine the discrepancy between LFP and CSD phases are the
frequency of the cortical oscillations and the extent to which
their laminar CSD profile is balanced. Second, although not

commonly used in two-dimensional LFP recordings, switching
to the Laplacian montage increases the correspondence between
CSD and LFP phases and hence renders the LFP phase easier to
interpret. This is in contrast to the average-reference montage,
which leads to larger LFP-CSD discrepancies, particularly for
low-frequency oscillations, and renders LFP phases difficult to
interpret. It will certainly be interesting to see how, and to what
extent, the relation between LFP phase-dynamics and behavioral
indices, for example those reported in Riehle et al. (2013), Hall
et al. (2014), Best et al. (2016), changes when switching to the
Laplacian montage.

As mentioned above, the two main factors that determine the
discrepancy between LFP and CSD phases are the frequency of
the cortical oscillations and the extent to which their laminar
CSD profile is balanced. With respect to their oscillation
frequency, we note that this is important only indirectly.
What effectively matters is the (intra-laminar) spatial frequency
spectrum of the oscillations. Since the wavelength of the
simulated isotropic sources is given by λ = v/f , where v is their
propagation speed and f their (temporal) frequency, a higher
frequency leads to shorter wavelengths, that is, to higher spatial
frequencies. Besides the oscillation frequency, however, there
are other factors that shape the oscillations’ spatial frequency
spectrum. These are the amplitudes, initial phases, and number
of isotropic sources. Thus, the (temporal) frequency is just one
of several factors that shape the oscillations’ spatial frequency
spectrum and thereby determine the correspondence (or lack
thereof) between LFP and CSD phases. With respect to the inter-
laminar CSD profile, our main finding is that LFP recordings
of unbalanced sources are more contaminated by volume-
conduction. Perhaps surprisingly, halving the amplitude of the
deep generator’s pole decreases the correspondence between LFP
and CSD phases almost as much as in the case of a monopolar
source. In other words, discrepancies between LFP and CSD
phases do not arise because of but in spite of the deep generator
poles and are hence mostly due to volume-conduction in the
intra-laminar directions.

Our findings allow an interpretation for the propagation
speeds of cortical LFP traveling waves, which typically fall within
the range 0.1–0.3m/s (Freeman et al., 2000; Rubino et al., 2006;
Lubenov and Siapas, 2009; Reimer et al., 2011; Zheng and Yao,
2012; Patel et al., 2013; Zanos et al., 2015), and provide an
explanation for the variation within this range. Based on our
simulations, there are two possible interpretations. First, if LFP
recordings are dominated by currents in deep cortical layers
(relative to the electrode grid), LFP propagation speed is about
an order of magnitude higher than CSD propagation speed
(results not shown). This would imply that the CSD propagation
speeds are around 0.02 m/s. Although such low propagation
speeds have been observed using VSD imaging (Kleinfeld et al.,
1994; Wu et al., 2008; Sato et al., 2012), they mostly pertain to
low-frequency activity, while the range 0.1–0.3m/s is observed
across the frequency spectrum. Moreover, propagation speeds of
VSD traveling waves usually fall within this last range (Slovin
et al., 2002; Benucci et al., 2007; Wu et al., 2008; Sato et al.,
2012). The more likely scenario, therefore, is that the recorded
LFPs are largely generated by current sources close to the
electrode tips. Our simulations have shown that in this scenario,
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LFP speeds are only moderately higher than CSD speeds. Of
interest to note is that one-dimensional LFP recordings in human
hippocampus have estimated the propagation speeds of theta
oscillations to be 2–5m/s (Zhang and Jacobs, 2015), that is, an
order of magnitude higher than those reported by Utah array
recordings. Based on our simulations, likely explanation is that
the electrode tips are located further away from the neural
generators, leading to large increases in propagation speeds.
The same probably holds for ECoG and scalp EEG oscillations,
whose speeds fall in the same range (Bahramisharif et al., 2013;
Hindriks et al., 2014). Concerning variation in propagation speed
across experiments, our simulations have shown that when CSD
oscillations propagate with 0.2 m/s, the ensuing LFP oscillations
propagate with speeds in the range 0.2–0.4m/s, depending on
the laminar profile of the oscillations, their frequency, and their
(intra-laminar) spatial extent.

LFPs are recorded using a distant reference electrode and can
subsequently be converted to a different montage if desired. In
two-dimensional LFP recordings, the data are usually not re-
referenced during their analysis (Menzel and Barth, 2005; Rubino
et al., 2006; Lubenov and Siapas, 2009; Takahashi et al., 2011;
McDonald et al., 2014; Zanos et al., 2015). Apart from electrical
activity at the reference electrode, the presence of distant sources,
and possible muscle artifacts, all of which can contaminate
the recorded signals, our simulations have shown that using
this montage, the discrepancy between LFP and CSD phases
increases with increasing oscillation frequency. Specifically, for
high-frequency oscillations, the LFP phases are more spatially
coherent than the CSD phases. Switching to the average-reference
montage, as done in some studies (Hall et al., 2014), increases the
discrepancy between LFP and CSD phases because this montage
completely removes the spatially coherent component in the
data. Thus, the average-reference is only useful when the neural
activity is known to be spatially incoherent, at least down to the
scale of the inter-electrode distances (0.4mm in our simulations).
Switching to a bipolar montage makes things even worse. The
(two-dimensional) Laplacian montage, however, was found to
produce only moderate discrepancies between LFP and CSD
phases throughout the entire frequency range (1–80 Hz). We
mention that in this study we only carried out a theoretical
evaluation of the Laplacian montage. In practice, the presence of
measurement noise requires certain interpolation schemes to be
used, which might lead to suboptimal results (Nunez et al., 1997;
Tenke and Kayser, 2012). This, however, is a practical question
that falls outside the scope of this study.

Switching to the Laplacian montage can be viewed of as
“inverting” Poisson’s equation that links the LFP to the CSD and
this is in fact what motivates this montage. A more general way
of “inverting” Poisson’s equation, which allows to incorporate the

geometry and electrical properties of the tissue as well as any a
priori knowledge of the current sources, is to construct a forward
model and to subsequently invert it, a technique that is widely
applied within the field of EEG and MEG (Grech et al., 2008).
In contrast, inverse modeling of field potentials, either ECoG
or LFPs, is only now becoming more common (Pettersen et al.,
2006; Zhang et al., 2008; Leski et al., 2011). The discrepancies
between LFP and CSD phases uncovered by our simulations

further motivate the use of such inverse methods in the analysis
and interpretation of experimental LFPs.

Our findings are also relevant for computational modeling
studies of LFPs. Several studies have been devoted to modeling
the physiological mechanisms underlying LFP (and VSD)
traveling waves and have done so on different levels, ranging
from spiking neurons endowed with a multitude of intrinsic
currents to neural fields (Sanchez-vives and Mccormick, 2000;
Ermentrout and Kleinfeld, 2001; Compte et al., 2003; Kumar
et al., 2008; Destexhe, 2009; Coombes, 2010; Heitmann et al.,
2012). In such studies, LFPs are commonly assumed to be
proportional to membrane voltage or synaptic currents and
the geometric, and in particular, the inter-laminar organization
of the modeled neural activity is often given less attention,
although this considerably impacts the LFP (Buzsáki et al., 2012;
Reimann et al., 2013). For example, LFP features depend on
the distribution of receptors along the apical dendrites of deep
pyramidal cells, because each distribution sets up a specific
three-dimensional CSD density. Our study demonstrates the
importance of using forward models in computational studies
on LFPs. Complementing computational models with suitable
forwardmodels might improve thematch between simulated and
experimental observations and enable more concrete predictions
to be formulated.
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