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Hypocretin/orexin (ORX) are two hypothalamic neuropeptides discovered in 1998.
Since their discovery, they have been one of the most studied neuropeptide systems
because of their projecting fields innervating various brain areas. The orexinergic
system is tied to sleep-wakefulness cycle, and narcolepsy is a consequence of their
system hypofunction. Orexinergic system is also involved in many other autonomic
functions such as feeding, thermoregulation, cardiovascular and neuroendocrine
regulation. The main aim of this mini review article is to investigate the relationship
between ORX and thyroid system regulation. Although knowledge about the ORX
system is evolving, its putative effects on hypothalamic-pituitary-thyroid (HPT) axis
still appear unclear. We analyzed some studies about ORX control of HPT axis to
know better the relationship between them. The studies that were analyzed suggest
Hypocretin/ORX to modulate the thyroid regulation, but the nature (excitatory or
inhibitory) of this possible interaction remains actually unclear and needs to be
confirmed.
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INTRODUCTION

Some recent studies in the literature have reported the existence of a novel family of biologically
active neuropeptides, selectively isolated from the mammalian hypothalamus, named orexins
(ORX; Sakurai et al., 1998; de Lecea et al., 1998). The ORX, including ORX-A and ORX-B (also
termed as hypocretin-1 and hypocretin-2), derive from the proteolytic cleavage of a common
130-amino-acid precursor named preproorexin (Gotter et al., 2012), identified in an intracellular
calcium influx assay as endogenous peptide ligands for multiple orphan G protein-coupled cell
surface receptors (Sakurai et al., 1998). ORX-A was initially described as an appetite-stimulating
factor following local injection of ORX-A into hypothalamic areas such as the dorsomedial
hypothalamus (DMH; Dube et al., 1999; De Luca et al., 2008; Viggiano et al., 2009), and in
the lateral hypothalamic area (LHA), where feeding behavior and energy balance are regulated
(Russell et al., 2002; Sellayah and Sikder, 2013). de Lecea et al. (1998) and Sakurai et al. (1998)
observed that ORX share structural similarity with the secretin-related peptides, so they named
them hypocretin-1 and hypocretin-2 (Hcrt-1 and Hcrt-2) to identify them as a hypothalamic
member of the incretin family (Gotter et al., 2012). At the same time, Sakurai et al. (1998) reported
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that central administration of these peptides stimulated feeding,
so they renamed themORX-A and ORX-B (from the Greek word
for appetite, ‘‘orexis’’). Mammalian ORX are 28 and 33-amino
acid peptides, respectively, encoded by a single mRNA transcript,
with a 46% amino acid sequence identity. They are encoded
by a gene located in the chromosome 17q21-q24. Their actions
are mediated through binding and activating of two closely
related G-protein coupled receptors, respectively called orexin
receptor 1 (OX1R), and orexin receptor-2 (OX2R), belonging
to the rhodopsin-like family A GPCRs. These receptors display
different affinity for ORX. The OXR1 has less affinity for ORX-A
than for ORX-B. Conversely, OXR2 shows similar affinities for
both peptides (Di Bernardo et al., 2014; Esposito et al., 2014b;
Monda et al., 2014).

Studies showed that electrical stimulation of the LHA induced
morphological changes in the thyroid gland (López et al.,
2010). In addition, Kaufman et al. (1986) demonstrated that
rats with lesions in the LHA showed lower triiodothyronine
(T3) and thyroxine (T4) levels; while, Suzuki et al. (1982)
demonstrated that the administration of thyroid-releasing
hormone (TRH) in the LHA had a marked anorectic effect.
Overall, these data suggest that ORX could modulate the
hypothalamic–pituitary–thyroid (HPT) axis. This idea was
supported by studies demonstrating that peripheral ORX-A
administration in rats inhibits the TRH release from the
hypothalamus (Mitsuma et al., 1999), resulting in a fall in the
levels of thyroid-stimulating hormone (TSH; Mitsuma et al.,
1999; Novak and Levine, 2009). This effect appears to be
entirely mediated by the decrease in TRH levels, because
both ORX-A and ORX-B failed to inhibit TSH secretion
in primary cultures from rat pituitary (Samson and Taylor,
2001). It has been suggested that this lack of effect could
be based on the slow metabolism of thyroid hormones (THs;
Novak and Levine, 2009), which normally show a delay in
their secretory responses to modulatory factors (Kim et al.,
2000).

OREXIGENIC SYSTEM

ORX are selectively expressed by few neurons located within the
lateral, dorsomedial and perifornical areas of the hypothalamus
(Messina et al., 2014a; Viggiano et al., 2014). Although
orexinergic peptides are produced by a discrete neuronal
population with a specific anatomical origin, their projection
fields have been identified in various brain areas, including
thalamus, hypothalamus, cerebral cortex and brainstem (Date
et al., 1999; Nambu et al., 1999; Messina et al., 2014b). Based on
this unique pattern of ORX-containing fiber distribution and the
functional activation of neural circuits, the pleiotropic functions
of ORXs and their involvement in the coordination of multiple
versatile physiological processes, such as sleep-wakefulness,
arousal, energy balance, narcolepsy, glucose metabolism, gastric
ulcers and thermogenesis were proposed (Szlachcic et al.,
2013; Tsujino and Sakurai, 2013; Giardino and de Lecea,
2014).

Other studies suggest that the ORX system could modulate
the HPT axis. In fact, the peripheral ORX-A administration in

rats inhibits TRH release from the hypothalamus (Mitsuma et al.,
1999), resulting in a fall of TSH levels (Russell et al., 2000). This
effect appears to be entirely mediated by the decrease in TRH
levels, because both ORX-A and ORX-B failed to inhibit TSH
secretion in primary cultures from rat pituitary (Samson and
Taylor, 2001). Curiously, plasma TH levels showed no changes
after peripheral ORX-A administration (Mitsuma et al., 1999).
It has been suggested that this lack of effect could be based by
the slow metabolism of TH (Russell et al., 2000), which normally
shows a delay in its secretory responses to modulatory factors
(Kim et al., 2000).

Moreover, ORXs can modulate the activity of both the
locus coeruleus (LC) and the basal forebrain neurons involved
in the complex mechanism of arousal (Berridge et al., 2010;
Tortorella et al., 2013), thus playing a relevant role in arousal
during waking and suppressing rapid eye movement (REM)
sleep (Hagan et al., 1999; Bourgin et al., 2000; España
et al., 2001). As reported by Zitnik (2016) ORX-containing
neurons from the hypothalamus innervate LC neurons that
project to prefrontal cortex, implicating the involvement
of LC in ORX-mediated EEG activation and wakefulness,
with specific thalamic-cortical oscillatory rhythms (Del Cid-
Pellitero and Garzón, 2011). On the other hand, ORX-mediated
activation of the LC appears to be critical not only to
maintain wakefulness during the active period, but also in
the transition from sleep to waking. Such a transition is
attributed to its engagement in neural circuit, contributing to
the regulation of circadian rhythms that may exist through
ORX-containing neurons in the DMH projecting to the LC,
since it receives projections from the suprachiasmatic nucleus
(SCN; Aston-Jones et al., 2001; Gompf and Aston-Jones,
2008).

Indeed, in vitro electrophysiological experiments showed
that ORXs activate the tuberomammillary nuclei ablations
(TMN; Bayer et al., 2001; Eriksson et al., 2001) and LC
neurons (Hagan et al., 1999). Furthermore, in vivo studies
demonstrated the involvement of the LC and OX1R in the
LC neurons (Mochizuki et al., 2011) and OX2R signaling
in the TMN, in ORX-induced arousal. Although conflicting,
recent studies have shown that the ORX-mediated sleep-to-
wake transition in mice is not dependent on the histaminergic
system and mice deficient in both OX1R and hystamine 1
receptors display normal sleep/wakefulness patterns (Tsujino
and Sakurai, 2009). Moreover, T4, entering the brain via the
choroid plexus, is preferentially delivered to subependymal brain
structures. High concentrations of LC norepinephrine promote
active conversion of T4 to T3, leading to the preeminence of
the LC as a site of T3 concentration (Dratman and Gordon,
1996).

Not secondarily, ORXs seem to play a positive role in the
learning and memory functions, suggesting a sort of direct
association with the regulation of the arousal system.

In fact, ORXs and their receptors are widely distributed
throughout the brain and thereby regulate learning and
memory functions (Jaeger et al., 2002; Telegdy and Adamik,
2002; Akbari et al., 2007). Specifically, ORX-A enables the
acquisition, consolidation and retrieval of learning and memory
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(Jaeger et al., 2002; Yang et al., 2013). Studies show that ORX-A
administered into the brain ventricles in conscious rats facilitates
learning and the consolidation of learning, as well as retrieval
processes in passive avoidance tests (Jaeger et al., 2002; Telegdy
and Adamik, 2002; Ito et al., 2008). On the other hand, the
electrical activity of hippocampal pyramidal neuron seems to
be under direct control of the ORX system (Riahi et al., 2015),
pinpointing the crucial role of hippocampal neurogenesis in
learning and memory (Deng et al., 2009; Jessberger et al., 2009;
Coras et al., 2010). Studies of behavior and hippocampal synaptic
plasticity indicate that ERK1/2 activation enhances the induction
of long-term potentiation, which contributes to the formation of
memories, moreover the improvement in learning and memory
mediated by ORX-A involves OX1R-mediated ERK1/2 activation
and hippocampal neurogenesis (Selcher et al., 2003; Zhao et al.,
2014).

It has been suggested that ORX-A is also implicated in the
regulation of hormones, including prolactin (PRL; Hagan et al.,
1999; Russell et al., 2000) and the luteinizing hormone (LH;
Pu et al., 1998; Tamura et al., 1999), and in the control of the
hypothalamo-pituitary-adrenal (HPA; Kuru et al., 2000; López
et al., 2010), thyroid (Mitsuma et al., 1999; Kok et al., 2005) and
somatotropic axes, as well (Hagan et al., 1999; Figure 1).

Conversely, the effect of the ORX system in cognition may
be properly explained by its relationship with thyroid function
along life span and not only by lowering TSH levels, frequently
it related to cognitive impairment or elderly decline (Winkler
et al., 2015; Chachamovitz et al., 2016; Moon, 2016). TH plays
an essential role in normal brain development and its function
linked to the maturation of its receptor in the developing brain.
On the other hand, hypothalamus plays a crucial role in the
regulation of TH serum concentrations, since the earliest stages
of life (Alkemade, 2015), also causing specific cognitive alteration
in progeny (Pasquali et al., 2015).

ROLE OF OREXINS IN ENDOCRINE
SYSTEM

Despite their primary role as hypothalamic neuropeptides, ORXs
and OXRs are widely expressed also in regions beyond the
brain, in particular in endocrine tissues (Heinonen et al., 2008;
Grimaldi et al., 2014). For example, the ORX peptide/receptor

FIGURE 1 | Interactions of orexins (ORX).

system was observed in the pituitary (Date et al., 2000; Blanco
et al., 2001; Silveyra et al., 2007). The relevance of ORXs in the
pituitary is also highlighted by the evidence that ORX-A-like
molecule and OX1R are widely present in the adenohypophysis
of Xenopus (Suzuki et al., 2007; Chieffi et al., 2014), and
this underlines a highly conserved function. In the Xenopus,
ORX-A-like substance is synthesized with and/or without TSH
from TSH-containing cells and controls the functions of PRL-
containing cells via OX1R in a paracrine fashion. In the Nile
tilapia (Oreochromis niloticus, Monda et al., 2008; Suzuki et al.,
2009), an ORX-B-like substance might be secreted from LH- or
TSH-containing cells and might regulate the pituitary function,
as well. Blanco et al. (2001) detected the presence of ORX-A and
ORX-B in the human adenohypophysis cell types. The ORX-A
was located in 33% of pituitary cells, including PRL (82 ± 5.3%),
TSH (18 ± 2.3%), growth hormone (GH; 10 ± 2.3%), Follicle-
Stimulating Hormone (FSH; 8 ± 2.6%) and LH (7 ± 3.2%) cells,
but not in corticotrope cells (Monda et al., 2006, 2007).

In vitro studies showed that ORX-A stimulated PRL and
GH secretion (Zieba et al., 2011), and that the intensity of this
effect depended on the duration of the day. The PRL secretion
stimulated by ORX-A was more intensive in the summer (long-
day period), than in winter (short-day; Molik et al., 2008).

The ORX-B was observed in virtually all corticotrope cells
of the adeno-hypophysis (Viggiano et al., 2010). According to
this study, lactotrope cells are the major source of ORX-A and
corticotrope cells of ORX-B, respectively, and these observations
represent the cellular basis for a possible role of ORXs influencing
virtually all the neuroendocrine axis, acting as signal molecules.

Though the adrenal gland seems to be a peripheral target
organ for ORXs (Monda et al., 2004), additional studies
revealed the presence of ORXs all over the neuroendocrine
system, as neurotransmitter peptides in the regulation of
GH, adrenocorticotropic hormone, thyroid, mineralocorticoid,
and cortisol secretion (Pu et al., 1998; Molik et al., 2008;
Figure 1).

Moreover, the relationship between thyroid glandmetabolism
andORXs is supported by evidence in euthyroid subjects affected
by narcolepsy without cataplexy (Sobol and Spector, 2014) and
among canine models (Nishino et al., 1997; Riehl et al., 2000)
of improvement in subjective sleepiness and mean sleep time
in idiopathic hypersomnia due to levothyroxine administration.
The proposed mechanisms include HPT axis alteration and/or
activation of TSH, TRH, or T3 receptors in the brain’s arousal-
promoting system (Shinno et al., 2011). On the other hand,
low levels of circulating TSH are reported in ORX-deficient
narcoleptic men, which could be attributed to low levels of
plasma leptin and/or abnormal sleep-wake cycle (Kok et al.,
2005). Finally, the prevalence of comorbid immunopathological
diseases (also affecting thyroid gland) seems to be higher in
subjects with narcolepsy and cataplexy with a significantly more
severe prognosis (Martínez-Orozco et al., 2014).

OREXINS AND THE THYROID AXIS

The TRH is synthesized in the paraventricular nucleus (PVN;
Lechan and Jackson, 1982), hosting a lot of neuroendocrine
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parvocellular neurons projecting to the median eminence, thus
stimulating TSH secretion through endocrine and paracrine
manners, respectively (Moura andMoura, 2004). Therefore, TSH
synthesis and secretion are primarily regulated by TRH release
and feedback inhibition by TH. However, PVN is not only
the central point of the regulation of hypothalamic-pituitary-
thyroid (HPT) axis, but it is also among the various brain
areas to which orexinergic neurons project (Date et al., 1999).
In fact, ORX neurons widely project to the autonomic part
of the PVN (Peyron et al., 1998), in a strategic position to
modulate the autonomic functions and the endocrine system.
However, it is yet unknown whether either the ORX axons
actually synapse with TRH neurons, or the ORX peptide/receptor
system is involved in the regulation of HPT axis. The aim of this
mini review is to investigate the relationship between orexigenic
peptides and thyroid. The putative effects of ORX-A on HPT
axis appear less clear because of the reported results in animal
experiments investigating the effects of orexigenic peptides on
the TSH release that appear inconclusive and conflicting. In
some studies intracerebroventricular (ICV) injection of ORX-A
in rats was shown to acutely decrease TRH release and plasma
TSH concentration, with changes in plasma TH levels (Mitsuma
et al., 1999). In particular, Mitsuma et al. (1999) observed that
TSH suppression was due to in vitro TRH inhibition from
the rat hypothalamus, following ORX-A addition, allowing the
authors to conjecture that ORX-A was able to inhibit TRH
release via the pituitary. Similarly, in another study Russell et al.
(2002) observed that ICV administration of ORX-A significantly
suppressed plasma TSH, without changes in plasma free T3 or
T4 (FT3, FT4). The lack of effect on TH may be due to the
low metabolism of TH. In this regard, it has been demonstrated
that changes in FT4, occurred 15 h following iPVN injection
(Kim et al., 2000). Besides it, another conflicting result was the
lack of changes in plasma TSH, following twice-daily injections
of ORX-A into the PVN for 3 days (Bartness et al., 2010).
This result suggested the absence of a sustained effect of ORX-
A chronically administered into the PVN on plasma TSH.
Taken together, ORX-A displays no measurable effect on the
HTP (Jones et al., 2001), whereas circulating TSH increased
in response to central administration of ORX-B. However,
Hagan et al. (1999) measured TSH solely at 40 min post-ICV
administration, a time point to which TSH got normalized
in Russell’s study (Russell et al., 2002), thus determining a
confounding result. In another article, López et al. (2010)
showed no significant change in hypothalamic prepro-ORX
and OXRs mRNA levels in either severe hypo-, or hyper-
hyperthyroid rats, in comparison to that in euthyroid ones,
despite altered leptin levels. Since prepro-ORX-gene expression
is regulated by leptin, this may suggest that PVN may not be
an important anatomical site for chronic effect of ORX-A in
the HPT axis. In a recent study on hyperthyroidism, Tohma
et al. (2015) described the effects of hyperthyroidism on ORX-A,
to investigate the putative relationship between ORX-A and
the increased food intake, which characterizes hyperthyroidism.
Although it seems that no link between ORX-A and increased
appetite exists in hyperthyroidism, the ORX-A levels were
decreased by hyperthyroidism, showing a negative correlation

with FT3 and FT4 levels, and a positive correlation with TSH
levels. The mechanism of these alterations is actually unknown.
Probably, decreased ORX-A levels were the consequence of
a compensatory mechanism for the increased basal metabolic
rate, characterizing hyperthyroidism (Messina et al., 2015c;
Moscatelli et al., 2015). Date et al. (2000) investigated the
ORX-A levels in adult male rats affected by hyperthyroidism,
observing no differences in ORX-A mRNA levels, caused by
hyperthyroidism. Conversely, Kok et al. (2005) found changes
in TSH concentration. Moreover, to investigate the impact of
ORX-A upon the HPT axis, the circadian timing of its release was
studied in a group of narcoleptic patients (Messina et al., 2015b;
Triggiani et al., 2015; Valenzano et al., 2016).

In conclusion, this study showed that plasma TSH levels were
reduced and were positively correlated to leptin plasma levels
that could be the presumable cause of reduced TSH (Messina
et al., 2015a). Moreover, among narcoleptic patients, energy
imbalance, eating disorders (Chabas et al., 2007), precocious
puberty, obesity and changes in bicarbonate levels are more
frequent than in healthy subjects, also during childhood (Poli
et al., 2013; Rocca et al., 2015; Franco et al., 2016).

Nevertheless, the relationship between leptin, sleep regulation
and thyroid gland, as resumed in obese patients, affected by
obstructive sleep apnea syndrome (OSAS) has to be considered.
In fact, in these subjects, the nocturnal respiratory imbalance is
a typical integrative part of the metabolic syndrome (Vgontzas
et al., 2005; Basoglu et al., 2011). Moreover, there is an inverse
link between sleep duration and body mass index, due to
the increased levels of leptin and other systemic inflammatory
markers during lifetime, which is independent of obesity in
adults (Vgontzas et al., 2016). On the other hand, in non obese
men and slightly obese women OSAS is similarly associated
with HPA axis activation, albeit stronger, compared with obese
individuals with sleep apnea (Kritikou et al., 2016), although
with specific gender differences (Gaines et al., 2014). Again,
acute sleep loss, in a less stressful environment, influences leptin
levels in a way opposite to that of short-term sleep curtailment,
associated with activation of the stress system. It is likely that
sleep loss, associated with activation of the stress system, but
not sleep loss per se, may lead to increased hunger and appetite
and hormonal changes, which ultimately may lead to increased
consumption of ‘‘comfort’’ food and thereby to obesity (Pejovic
et al., 2010), because changes in energy homeostasis directly and
reversibly impact the sleep/wake cycle (Collet et al., 2016).

About the role of thyroid ghrelin, leptin, and insulin levels
did not differ accordingly to thyroid function conditions (Dubey
et al., 2015; Kim et al., 2015), although leptin levels seem to
correlate with thyroid autoantibody titers in non obese males
(Maciver et al., 2015). More specifically, pediatric obesity is
associated with higher TSH and lower FT4 concentrations and
with a greater prevalence of abnormally high TSH and leptin
concentrations that might in part explain obesity’s effects on
thyroid status, perhaps through leptin’s influences on TSH
secretion (Krause et al., 2016). In this framework, it has
been well recognized that ORX neurons are regulated by
peripheral metabolic cues, including ghrelin, leptin and glucose
concentration, suggesting that they might provide a link between
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energy homeostasis and arousal states and the link between
the limbic system and the ORX neurons might be important
for increasing vigilance during emotional stimuli (Carotenuto
et al., 2012, 2013; García-García et al., 2014). When imbalanced,
such links could explain mood dysregulation and executive
function impairment in obese OSAS and insomniac children and
adolescents (Esposito et al., 2013, 2014a; Carotenuto et al., 2016).

CONCLUSION

Although the knowledge of ORXs functions is evolving, studies
of the putative effects of orexigenic peptides on the HPT axis
remains conflicting and there are still a number of doubts
concerning them. In fact, although the topography of ORXs and
thyrotrope neural circuits suggests that TRH neuronal activity is
influenced by ORX input, the nature of this input and the exact
role of ORX (excitatory or inhibitory) remain unclear. However,
it is clear that the ORX peptide/receptor system represents a

novel molecular model system to understand the regulation of
neuroendocrine system.
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