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One of the most challenging problems we face in neuroscience is to understand how
the cortex performs computations. There is increasing evidence that the power of the
cortical processing is produced by populations of neurons forming dynamic neuronal
ensembles. Theoretical proposals and multineuronal experimental studies have revealed
that ensembles of neurons can form emergent functional units. However, how these
ensembles are implicated in cortical computations is still a mystery. Although cell
ensembles have been associated with brain rhythms, the functional interaction remains
largely unclear. It is still unknown how spatially distributed neuronal activity can be
temporally integrated to contribute to cortical computations. A theoretical explanation
integrating spatial and temporal aspects of cortical processing is still lacking. In this
Hypothesis and Theory article, we propose a new functional theoretical framework to
explain the computational roles of these ensembles in cortical processing. We suggest
that complex neural computations underlying cortical processing could be temporally
discrete and that sensory information would need to be quantized to be computed by
the cerebral cortex. Accordingly, we propose that cortical processing is produced by the
computation of discrete spatio-temporal functional units that we have called “Discrete
Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional
mechanism by which information processing is computed in the cortex. Furthermore,
we propose that precise dynamic sequences of “Discrete Results” is the mechanism
used by the cortex to extract, code, memorize and transmit neural information. The novel
“Discrete Results” concept has the ability to match the spatial and temporal aspects of
cortical processing. We discuss the possible neural underpinnings of these functional
computational units and describe the empirical evidence supporting our hypothesis.
We propose that fast-spiking (FS) interneuron may be a key element in our hypothesis
providing the basis for this computation.

Keywords: cerebral cortex, sensory processing, cell ensembles, fast-spiking cells, brain oscillations, discrete
computation, neural synchronization, processing resolution

INTRODUCTION

The cerebral cortex is possibly one of the most complex natural systems. Untangling its intricate
functional microcircuit is one of the formidable challenges of neuroscience. However, despite its
importance, how cortical computations are performed and the underlying neural mechanisms
remain unclear.
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There is increasing evidence that the power of the cortical
processing is produced by populations of neurons forming
dynamic neuronal ensembles. Theoretical proposals (Lorente
de Nó, 1938; Hebb, 1949; Hopfield, 1982; Engel et al., 2001;
Buzsáki, 2010; Yuste, 2015) and multineuronal experimental
studies (Fujisawa et al., 2008; Miller et al., 2014) have revealed
that ensembles of neurons can form emergent functional
units. However, it is still unknown how distributed neuronal
activity can be functionally integrated to contribute to cortical
computations. Moreover, no one knows what these functional
units look like, or how they emerge. In sum, how these
ensembles are implicated in cortical computations is still a
mystery.

Although cell ensembles have been associated with brain
rhythms, the functional interaction remains largely unclear. It is
still unknown how spatially distributed neuronal activity can be
temporally integrated to contribute to cortical computations. A
theoretical explanation integrating spatial and temporal aspects
of cortical processing is still lacking.

In this Hypothesis and Theory article, we propose a new
functional theoretical framework to explain the computational
roles of these ensembles in cortical processing. We suggest that
complex neural computations underlying cortical processing
could be temporally discrete. Accordingly, we propose that
cortical processing is produced by the computation of discrete
spatio-temporal functional units that we have called ‘‘Discrete
Results’’ (Discrete Results Hypothesis). Furthermore, we propose
that precise dynamic sequences of Discrete Results is the
mechanism used by the cortex to extract, code, memorize and
transmit neural information.

As we describe in the next sections, this proposal has
the ability to match the spatial and temporal aspects of
cortical processing. Moreover, our hypothesis represents a
novel functional mechanism by which information processing
is computed in the cortex. We discuss the possible neural
underpinnings of this proposal and describe the empirical
evidence supporting our hypothesis.

NEURONAL PROCESSING BY
DISTRIBUTED NEURONAL ACTIVITY

The power of the cortex lies in the dynamic coordination
of neurons (Hebb, 1949; Pouget et al., 2000; Yuste, 2015).
Coordinated activity of large ensembles of spatially distributed
cells across the cortex provides the source for the processing
and encoding of sensory information. Experimental work
supports this idea. Highly distributed representations of tactile
information have been described in the cortex (Nicolelis et al.,
1997). In the visual cortex, sensory stimuli recruit intrinsically
generated cortical ensembles (Miller et al., 2014; Okun et al.,
2015). Representation of motor programs via cell ensembles has
been described (Hommel, 2004). Moreover, the auditory cortex
is dominated by broad scale dynamics in which a complete
representation of sounds emerges only at a global scale (Bathellier
et al., 2012).

Accordingly, multineuronal recording studies (Fujisawa et al.,
2008; Miller et al., 2014) have revealed that ensembles of neurons

can form emergent functional units. Therefore, they may be the
building blocks used in cortical processing. However, important
questions concerning integration of cortical activity remain
unresolved. It is still unknown how these ensembles are present
in the cortex and how spatially distributed cells can functionally
contribute to unified stimulus codification. Moreover, although
cell ensembles have long been thought to be associated with
brain rhythms (Harris et al., 2003), a theoretical explanation
integrating spatial and temporal aspects of cortical processing has
yet to be proposed.

RHYTHMIC NEURONAL ACTIVITY IN THE
BRAIN

Mammalian brain activity is rich in rhythms. The preservation
of that rhythmic activity during the course of evolution
demonstrates its relevance and appears to reflect a common
functional mechanism for neural processing (Buzsáki and
Draguhn, 2004). These rhythms are involved in perception,
attention, memory, consciousness and movement execution
(Gray et al., 1989; Engel et al., 2001; Fries et al., 2001; Brown,
2007; Buschman and Miller, 2010; Baldauf and Desimone, 2014).
They play a key role in neural communication (Fries, 2005;
Schroeder and Lakatos, 2009; Siegel et al., 2012). Moreover, it
has been suggested that oscillatory activity contributes to spike
synchronization of distributed neurons (Gray et al., 1989; Nuñez
et al., 1992; Engel et al., 2001) and that synchrony underlies
binding of separate features enabling perceptual unity (Singer
and Gray, 1995).

Excitation and inhibition play a key role in the generation
of rhythmic activity (Steriade et al., 1993; Whittington et al.,
1995; Traub et al., 1996; Cardin et al., 2009). However, the
mechanisms underlying oscillations and synchrony are still
not well understood. Furthermore, current theories about their
computational role are incomplete (Thiele and Stoner, 2003;
Roelfsema et al., 2004; Hermes et al., 2015). It remains unclear
what function they play in neural processing. They may
contribute to discretize the computation.

DISCRETE NEURAL COMPUTATION

The brain receives a constant flow of analog sensory information
from the environment. Successful interaction with the world
depends on accurate processing of that information. Therefore,
the challenging task that the brain faces is to rapidly extract
changing relevant features from the environment in order to
respond adequately. It requires a precise detection of changes
sampling the flow of sensory information to compare its
contents. Consequently, a primary function of the brain could
be to discretize the continuous flow of information, compare
those sampled units and extract relevant information from
that computation (Figure 1). In sum, although the brain
receives a constant flow of analog sensory information from
the environment, sensory stimuli changes will be sampled in a
discrete manner.

Scientists have long theorized that our cognition operates
discontinuously within a framework of discrete cycles
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FIGURE 1 | Discrete neural processing. Successful interaction with the world depends on accurate processing of rapidly changing stimuli. It requires a precise
detection of changes sampling the flow of sensory information to compare its contents. Of particular interest are relevant events, such as the appearance of a
predator. A challenge faced by the prey’s brain is to rapidly extract predator changing features from the scene in order to react satisfactorily. In this hypothetical
example, the prey’s visual system actively samples the visual environment. Discrete samples are taken separately by brief temporal periods. Predator movements
(choosing between the prey and the ball) can be detected by computing differences between the subsamples (see “Cortical Neural Computation by Discrete Results
Hypothesis: Functional Spatio-Temporal Units of Computation” Section). That computation allows the prey to know if the predator is approaching or leaving and to
take appropriate action.

(Pitts and McCulloch, 1947; Harter, 1967; Allport, 1968;
Varela et al., 1981; VanRullen and Koch, 2003; Buschman
and Miller, 2010). Accordingly, neural systems could undergo
oscillatory activity patterns. These oscillations could divide the
neural processing into a series of discrete computational events.

There are relevant experimental data demonstrating this
discrete processing. Discrete computations are well described
in visual perception (VanRullen et al., 2005). One example
is microsaccadic eye movements by which the visual system
acquires fine spatial detail (Ko et al., 2010). Accordingly,
vision is interrupted and sensory processing is discretized,
separating it into distinct epochs. Recent evidence has been
shown for discrete perceptual sampling in the somatosensory

domain (Baumgarten et al., 2015). They demonstrated that
somatosensory perception operates in a discrete mode, with
sensory input being sampled by discrete perceptual cycles.
Memory (Lundqvist et al., 2016) and attention are other
examples of this computational nature (Buschman and Miller,
2009; Busch and VanRullen, 2010). It is known that oscillatory
neuronal activity in the frontal eye field reflects the successive
cycles of a sequential attentional exploration process during
visual search (Buschman and Miller, 2009). Furthermore,
discretized processing and encoding in the hippocampus is
well described (Buzsáki, 2005). However, how the brain,
especially the cerebral cortex, performs this computation is
unknown.
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CORTICAL NEURAL COMPUTATION BY
DISCRETE RESULTS HYPOTHESIS:
FUNCTIONAL SPATIO-TEMPORAL UNITS
OF COMPUTATION

One of the most challenging problems we face in neuroscience
is to understand how the cortex performs computations. Here
we suggest that complex neural computations underlying cortical
processing could be temporally discrete. But how does the
cortex perform this computation? We propose that cortical
processing is produced by the computation of discrete emergent
functional units that we have called Discrete Results (Discrete
Results Hypothesis). As we describe in the next sections,
this novel concept has the ability to match the spatial and
temporal aspects of cortical processing. We discuss the possible
neural underpinnings of these spatio-temporal computational
units and describe the empirical evidence supporting our
hypothesis.

Our Discrete Results Hypothesis suggests that the
computational principle of the cortex lies in the precise
temporal coordination of spikes of spatially distributed neurons.
It is necessary to divide the temporal and spatial dimension of
that proposal for a better clarification.

Spatial Dimension of Cortical Processing:
The “Ensemble” as a Functional Spatial
Unit
In the cortex, most neuronal activity occurs in the form of
coactive groups of cells defining neuronal ensembles (Miller
et al., 2014). However, it is unclear how they emerge, with which
neurons, what and how the relation is between the members,
what spatial and temporal extension they have and what exactly
an ensemble functionally means.

In our hypothesis, we define ‘‘Ensemble’’ as a specific
spatially distributed set of excitatory neurons (referred to
as pyramidal cells hereafter, PCs) that are controlled by a
definite synchronized network of fast-spiking (FS) inhibitory
cells (see ‘‘Neural Underpinnings of Discrete Results Hypothesis :
Spatio-Temporal Integration By Fast-Spiking Cells Synchronized
Network.’’ Section). All PCs organized by that particular
synchronized inhibitory network form part of that Ensemble. It
means that the Ensemble is formed by all the PCs whose firing
could be transiently constrained by that specific synchronized
inhibitory network (Figure 2). The members and spatial
extension of the Ensemble is determined by that inhibitory
network. Moreover, individual PCs could participate in different
emergent Ensembles.

These emergent clusters of PCs form functional spatial units
of cortical computation. However, that spatial aspect must be
complemented with a temporal one.

Temporal Dimension of Cortical Processing:
“Temporal Structure of Spikes”
Neurons are temporally precise on very fine timescales (Mainen
and Sejnowski, 1995; Shmiel et al., 2005; Butts et al., 2007).
Experimental evidence indicates that the exact time point at

FIGURE 2 | Spatial functional units of cortical processing. A specific
spatially distributed set of pyramidal cells (PCs; in orange) that are controlled
by a specific coupled network of fast-spiking (FS) inhibitory cells (in red) form
functional spatial units (“Ensembles”) of cortical computation (in green). All
PCs organized by that particular inhibitory network form part of that
Ensemble. Individual PCs could participate in different Ensembles. The
members and spatial extension of the Ensemble is determined by the
inhibitory network. Red lines represent mutual connections between FS
inhibitory cells in the network. These neurons innervate strategically the PCs
(blue lines) extending a blanket of precise inhibition onto them.

which a spike occurs plays an important role in information
processing (Markram et al., 1997). Moreover, the precise timing
of neuronal spiking is vital for coding of information (Singer
and Gray, 1995). Therefore, this temporal precision is likely
to be crucial for cortical computation. However, the functional
significance remains unclear.

The Discrete Results hypothesis suggests that cortical
processing is produced by a highly ordered temporal
organization. Spike timing of PCs in a particular Ensemble
is constrained by an inhibitory network generating a precise
structured firing. We propose that this network constrains
PCs spikes in temporal precise manner creating what we have
called ‘‘Temporal Structure of Spikes’’ (Figure 3). We defined
it as the accurate spike timing organization resulting from the
precise temporal suppression of PCs spikes in the Ensemble.
Spikes from PCs occur independently but organized inside the
temporal structure. We propose that this Temporal Structure
of Spikes is very important in the processing, coding and
transfer of information in the cerebral cortex. The temporally
structured firing activity enables information to be processed
and coded in a way that downstream networks can compute.
Accordingly, the existence of this specific temporal structure
implies that failures in that precision of spikes will result
in processing dysfunctions. An example of the importance
of the temporal structure is the spike-timing-dependent
plasticity (Caporale and Dan, 2008). This temporal structure
is not fixed. It can be dynamically adjusted (for example
by sensory input or by top-down influence) to meet the
finest processing resolution depending on perceptual, task
or attentional demands. Furthermore, the structure could be
adjusted by neuromodulators. Accordingly, variations in the
temporal structure will produce changes in the rate and temporal
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FIGURE 3 | Temporal structure of spikes. Spike timing of PCs is constrained by FS inhibitory interneurons. These cells set the timing and rate of action potentials
produced by PCs limiting the temporal window during which they can be generated (Pouille and Scanziani, 2001). Moreover, PCs cannot discharge when they are
shunted by strong inhibition. Consequently, the synchronized spiking of the inhibitory network creates temporal order among the PCs firing, generating precise silent
periods that we have called “Silent Gaps” during which action potentials cannot be generated (vertical columns in purple). Rhythmic inhibition of the interneuron
network provides alternating periods of spiking and no spiking in the Ensemble of PCs constraining these spikes into discrete periods generating a scaffold that we
have called “Temporal Structure of Spikes”. Rows represent hypothetical spike rasters for an Ensemble of four PCs. Spikes from these PCs occur independently but
organized inside that temporal structure (top). These cycles would result in the oscillations observed in the brain (bottom left). The temporal structure can be
dynamically adjusted to meet the finest processing resolution depending on perceptual, task or attentional demands (bottom right).

precision of PCs firing in the Ensemble. PCs spikes latencies
and synchronization between them will vary accordingly.
Consequently, changes in that temporal precision will code
different content.

Experimental data provide support for this proposal. It is
known that spike timing of PCs is constrained by the inhibitory
cells. FS interneurons quickly limit the temporal window during
which action potentials can be generated (Pouille and Scanziani,

2001; Li et al., 2015). Consequently, PCs are more likely to
fire at precise points in time (Cardin et al., 2009). More
importantly, PCs cannot discharge when they are shunted by
strong inhibition.We propose that these precise inhibitory inputs
to PCs generate strict periods of no spiking (‘‘Silent Gaps’’)
in the Ensemble. Our hypothesis suggests that these precise
Silent Gaps are very important for cortical computation. They
divide the neural processing in the Ensemble into a series of
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discrete computational events that we have called ‘‘Discrete
Results’’.

It is also known that FS interneurons generate synchronized
networks by mutual chemical and electrical connections in the
neocortex (Whittington et al., 1995; Traub et al., 1996; Galarreta
and Hestrin, 1999; Gibson et al., 1999). Electrical synapses
generate highly precise transmission between interneurons
of these networks. We propose that this coupling promotes
the harmonized firing of connected neurons (Jones et al.,
2000; Deans et al., 2001; Bartos et al., 2007) forming
a synchronized network imposing a time-dependent spike
restriction in the Ensemble of PCs. Different synchronized
networks of FS interneurons create different sets of possible
Ensembles. The simultaneous firing of the FS interneurons in the
inhibitory network generates a synchronized inhibitory activity
at their postsynaptic PCs in the Ensemble. The synchronized
spiking of the inhibitory network could be fast enough to
adjust the onset spiking of PCs (Woodruff et al., 2011; Li
et al., 2015) and to create a temporal structure or scaffold
providing alternating windows of no spiking in the emergent
Ensemble of PCs. The rhythmic functioning of this network
creates a sequence of temporal discrete events. This network
rhythmically concentrates PCs discharges to particular discrete
moments providing observable oscillation cycles at population
level.

In sum, the inhibitory network forms a spatial structure of
synchronized FS inhibitory cells and then this synchronized
network generates a temporal structure of firing in the Ensemble.

DISCRETE RESULT: A FUNCTIONAL
SPATIO-TEMPORAL UNIT OF
COMPUTATION

Spatio-temporal activity patterns play an important role in
cortical mechanisms of information processing (Ayzenshtat
et al., 2010). Consequently, we propose that PCs compute
and communicate information by using specific spatio-temporal
patterns of spiking. Our hypothesis suggests that the cortex
generates and employs these precise patterns to perform
its computations. Thus cortical processing depends on the
precise temporally structured relations among the respective
spikes of PCs of the Ensemble. Information is encoded in
the precise relations between temporal structured discharges.
Individual spikes of PCs in the Ensemble take functional
relevance when inserted into that temporal structure, forming
a Discrete Result. Precise silent periods (Silent Gaps) inside
the structure discretize the processing and allow for the
formation of these discrete spatio-temporal functional units.
All PCs belonging to the same Ensemble participate in the
Discrete Result. Therefore, all PCs in the Ensemble have the
opportunity to fire. Spikes from these PCs occur independently
but organized inside the temporal structure. Each Discrete
Result emerges transiently formed by the combination of
the firing and silent responses (no firing) of all PCs in
the Ensemble (Figure 4). Thus, PCs silent responses are
also important in cortical computation and codification. The
same Ensemble can form multiple Discrete Results. This

FIGURE 4 | Discrete Results: neural computational units. PCs belonging to the same Ensemble participate in the Discrete Result. Therefore, all PCs in the
Ensemble have the opportunity to fire. Spikes from these PCs occur independently but organized inside the temporal structure. Each potential Discrete Result
emerges transiently formed by the combination of the firing and silent responses (no firing) of all PCs in the Ensemble. Therefore, PCs silent responses are also
important in cortical computation and codification. Moreover, the same Ensemble can form multiple Discrete Results. This means that the same PCs of the Ensemble
process and encode multitude of contents. Consequently, there are great potential neural possibilities that could form a Discrete Result and also enormous
possibilities that could form different sequences of Discrete Results. In this hypothetical example, the Ensemble is formed by seven PCs and the synchronized
network of FS interneurons by three cells. Five possible Discrete Results are shown. PCs spikes are displayed as green dots and silent responses (no spikes) as red
dots. On the right, a digital (binary) representation of these hypothetical Discrete Results is shown.
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means that the same PCs of the Ensemble, process and
encode multitude of contents. Consequently, there are great
potential neural possibilities that could form a Discrete Result
and also enormous possibilities that could form different
sequences of Discrete Results. Therefore, the number of
possible representations that can be formed is titanic. This
mechanism could explain why the cortex is so robust to
damage. Moreover, the content coded by a Discrete Result
depends also on the resolution of the Temporal Structure of
Spikes.

Individual PCs could participate in different Ensembles
and be potentially implicated in multiple representations.

Furthermore, different synchronized networks of FS
interneurons create different sets of possible Ensembles.
Accordingly, the cortex performs computations using multiple
Ensembles in parallel creating a multitude of Discrete
Results simultaneously. Moreover, different sets of possible
Ensembles are created by different synchronized networks
of FS interneurons along the cortical processing hierarchy.
Discrete Results at higher levels integrate computational
results from previous stages. Therefore, each Discrete Result
constitutes a functional unit that has the ability to process,
integrate and represent specific content (Discrete Results) from
previous computations (Figure 5). Consequently, in sensory

FIGURE 5 | Discrete Results: functional units of neural computational integration. Different sets of possible Ensembles are created by different synchronized
networks of FS cells along the cortical processing hierarchy. Experimental studies support this idea. Distinct clusters of FS interneurons have been identified in the
cortex. For example, in the rat barrel cortex, one layer 4 FS interneuron type has an axonal domain strictly confined to a barrel (Koelbl et al., 2015). Accordingly, the
cortex performs computations using multiple Ensembles in parallel creating a multitude of Discrete Results simultaneously. Discrete Results at higher levels integrate
computational results from previous stages. Therefore, each Discrete Result constitutes a functional unit that has the ability to process, integrate and represent
specific content (Discrete Results) from previous computations. Consequently, in sensory processing, they functionally contribute to unified stimulus codification.
Therefore, the Discrete Result concept could explain the binding of separate features enabling perceptual unity. Experimental data provide support for this proposal.
Highly distributed representations of tactile information have been described in the cortex (Nicolelis et al., 1997). Moreover, the auditory cortex is dominated by broad
scale dynamics in which a complete representation of sounds emerges only at a global scale (Bathellier et al., 2012).
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processing, they functionally contribute to unified stimulus
codification.

The Discrete Result concept has the ability to explain how
complex neural computations underlying cortical processing
could be temporally discrete. Consequently, we propose
that sensory information would need to be quantized to
be computed by the cerebral cortex. Therefore, processing
of sensory information must be temporally discrete and
information flow in the cortex must be quantized allowing
for the formation of Discrete Results. Therefore, in sensory
processing, they can be defined as each neural computational
functional unit resulting in quantization of the continuous flow
of sensory information (Figure 6). Increasing the number
of Discrete Results per temporal unit allows resolution
enhancement. It could be dynamically adjusted by sensory
input or by top-down influence to meet the finest processing
resolution depending on perceptual, task or attentional
demands.

NEURAL COMPUTATION BY DYNAMIC
SEQUENCE OF DISCRETE RESULTS

Multineuronal activity structured in temporal sequences has
been suggested since long ago (Lorente de Nó, 1938; Hebb,

FIGURE 6 | Discrete Results in cortical sensory processing.
Hypothetical spatial maps of cortical neurons for each computational event
resulting in quantization of the continuous flow of sensory information are
shown. Green cells show a representative Ensemble of PCs organized by a
specific synchronized network of FS interneurons. Individual spikes of these
PCs take functional relevance inserted into a temporal structure forming
discrete spatiotemporal functional units (Discrete Results). In this hypothetical
example, relevant sensory information (predator movements) can be extracted
by computing differences between the Discrete Results. Increasing the
number of Discrete Results per temporal unit allows resolution enhancement.

1949; Abeles, 1991). Experimental studies have increased our
knowledge about how this sequential activity is generated in the
brain (Harris et al., 2003). However, untangling its functional
computational significance is still a formidable challenge today.

We propose that precise sequences of Discrete Results are the
mechanism used by the cortex to perform computations. The
computation of the Discrete Results sequence is the mechanism
used by the cortex to extract, code, memorize and transmit neural
information. This proposal is a neuronal population mechanism
to compute and code. Dynamic sequences of Discrete Results
generate representations. Different sequences codify different
contents.

The rhythmic functioning of the synchronized inhibitory
network creates a sequence of Discrete Results (Figure 7).
Computations between successive Discrete Results in the
sequence produce the power of the cortical processing.
Experimental data provide support for this hypothesis.
Sequential activity of multineuronal spiking has been well
described in the cortex (Fujisawa et al., 2008; Crowe et al.,
2010; Harvey et al., 2012; Carrillo-Reid et al., 2015) and in the
hippocampus (O’Keefe and Burgess, 1996; Fyhn et al., 2004;
Foster and Wilson, 2006; Pastalkova et al., 2008; Wikenheiser
and Redish, 2015).

Moreover, cortical processing by dynamic sequences of
Discrete Results could be the neural source of some rhythmic
signals observed at population level. This hypothesis of neural
processing could be applied to other structures and nuclei of the
brain.

NEURAL UNDERPINNINGS OF DISCRETE
RESULTS HYPOTHESIS:
SPATIO-TEMPORAL INTEGRATION BY
FAST-SPIKING CELLS SYNCHRONIZED
NETWORK

Our Discrete Results hypothesis suggests that complex
neural computations underlying cortical processing could
be temporally discrete. Moreover, we propose that cortical
processing is produced by the computation of discrete
spatio-temporal functional units. But what could be the
neuronal elements underlining this computation? The
cerebral cortex is composed of many types of neurons.
Although all of them play a key role in cortical processing,
our hypothesis suggests that there must be a specific type
of inhibitory cell that may be implicated in the creation
of a spatio-temporal structure supporting discrete cortical
computation. We propose that FS interneuron may be
a key element in our hypothesis providing the basis for
this computation. These cells forming a synchronized
spatially distributed cortical network may impose a
temporal spike restriction in PCs creating functionally
coupled units of computation. Their rhythmic activity
may create a sequence of spatio-temporal functional
units (Discrete Results), discretizing the information
processing. In sum, we propose that they are able to

Frontiers in Neural Circuits | www.frontiersin.org 8 October 2016 | Volume 10 | Article 81

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Castejon and Nuñez Discrete Results Hypothesis

FIGURE 7 | Dynamic sequences of Discrete Results are the mechanism used by the cortex to perform computations. Different sequences of Discrete
Results codify different content. In this example, both types of predator trajectories involve different sequentially activated Discrete Results. One sequence codifies
the predator approaching and the other leaving. By computing the successive Discrete Results in the sequence the prey’s cortex is allowed to extract predator
trajectory in order to respond appropriately.

integrate the spatial and temporal dimension of cortical
computation.

FS cells (Kawaguchi and Kubota, 1997) are the largest
population of interneurons in the neocortex. They play a key role
as pacemakers for oscillations (Whittington et al., 1995; Traub
et al., 1996) and in shaping multineuronal activity (Cardin et al.,
2009). However, it is still unclear how these cells functionally
contribute to the operations performed by the cortex.

It is known that they form dense matrices covering PCs
(Packer and Yuste, 2011) extending a blanket of inhibition
onto them (Karnani et al., 2014). They strategically innervate
the axon initial segment (chandelier cells) or soma/proximal
(basket cells) dendrites of PCs (Klausberger and Somogyi,
2008). They shape the precise timing and dynamic range of
action potentials produced by PCs (Pouille and Scanziani,
2001; Cardin et al., 2009; Sohal et al., 2009; Li et al., 2015).
They generate synchronized networks by mutual chemical and

electrical connections (Galarreta and Hestrin, 1999; Gibson
et al., 1999; Sohal et al., 2009). Accordingly, they fire in
high synchrony (Jones et al., 2000) at high-frequency firing
pattern without a significant spike adaptation (Kawaguchi and
Kubota, 1997). They have narrow spike-waveform, fast kinetics
(Atallah et al., 2012) and high synchronous release of GABA
(Hefft and Jonas, 2005). Furthermore, they show broader tuning
than other neurons (Kerlin et al., 2010; Hofer et al., 2011;
Li et al., 2015). Thus, in accord with our proposal, these
properties render them well suited for a structural role in
cortical processing. Our hypothesis suggests that these cells
create a temporal structure or scaffold (Temporal Structures
of Spikes) providing alternating windows of no spiking (Silent
Gaps) in the emergent Ensemble of PCs. Since different classes
of FS cells have distinct properties in their temporal pattern
of discharge (Gupta et al., 2000; Dehorter et al., 2015), it
is then likely that they create diverse temporal restriction in
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PCs firing forming different Temporal Structures of Spikes.
Moreover, we propose that different synchronized networks
of FS interneurons create different sets of possible Ensembles.
Experimental work supports this idea. Distinct clusters of FS
interneurons have been identified in the cortex. For example,
in the rat barrel cortex, one layer 4 FS interneuron type has
an axonal domain strictly confined to a barrel (Koelbl et al.,
2015).

Our hypothesis suggests that precise dynamic sequences
of Discrete Results is the mechanism used by the cortex to
extract, code, memorize and transmit neural information
and that FS cells could play a key role in this discrete
cortical processing. In agreement with that proposal, these
cells are essential for perception, cognition, attention,
memory and behavior (Isomura et al., 2009; Letzkus
et al., 2011; Yizhar et al., 2011; Courtin et al., 2014; Hu
et al., 2014; Kim et al., 2016). They are also implicated in
plasticity and learning (Hensch, 2005; Yazaki-Sugiyama
et al., 2009; Letzkus et al., 2011; Donato et al., 2013)
and have been implicated in psychiatric disorders such
as epilepsy and schizophrenia (Powell et al., 2003; Lewis
et al., 2012). A prediction of our hypothesis would be that
silencing of these neurons will disrupt normal cortical
processing. Recently, it has been shown that silencing of
these interneurons disrupts attentional processing (Kim
et al., 2016). Furthermore, our hypothesis suggests that
discrete cortical processing can be dynamically adjusted
to meet the finest processing resolution depending on
perceptual, task or attentional demands. We propose that
increasing the number of Discrete Results per temporal unit
allows resolution enhancement. Accordingly, experimental
data show that perceptual coding and discrimination
are improved by increased spiking of these cells (Lee
et al., 2012). Moreover, in agreement with our proposal,
increases in task difficulty and attentional requirements
are accompanied by an enhancement of FS cells firing
(Chen et al., 2008).

CONCLUSION

There is increasing evidence that most neuronal activity in the
cortex occurs in the form of coactive groups of cells defining
neuronal ensembles. However, it is unclear what exactly an
ensemble functionally means. These ensembles of neurons can
form emergent functional units. In this Hypothesis and Theory
article, we propose a new functional theoretical framework to
explain the computational roles of these ensembles in cortical
processing. We suggest that complex neural computations
underlying cortical processing could be temporally discrete
and that sensory information would need to be quantized to
be computed by the cerebral cortex. Accordingly, we propose
that cortical processing is produced by the computation of
discrete spatio-temporal functional units that we have called
Discrete Results. For example, perceptual integration, processing
resolution and information coding can be now explained by our
hypothesis.

The Discrete Result concept explains how complex neural
computations underlying cortical processing could be temporally
discrete. This novel concept has the ability to integrate the
physiological and computational aspects of cortical processing
defining the traditional idea of cells ensemble limiting their
spatio-temporal dimension and differentiating their membership
and relations between the members. Moreover, the Discrete
Results hypothesis constitutes a conceptual advance with special
relevance for neuroscience and computer sciences.

AUTHOR CONTRIBUTIONS

CC: conceived the hypothesis. CC and AN: conceptually
developed and wrote this article.

FUNDING

Work was supported by a grant from Ministerio de Economia y
Competitividad (BFU2012-36107).

REFERENCES

Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge,
UK: Cambridge University Press.

Allport, D. A. (1968). Phenomenal simultaneity and the perceptual moment
hypothesis. Br. J. Psychol. 59, 395–406. doi: 10.1111/j.2044-8295.1968.
tb01154.x

Atallah, B. V., Bruns, W., Carandini, M., and Scanziani, M. (2012). Parvalbumin-
expressing interneurons linearly transform cortical responses to visual stimuli.
Neuron 73, 159–170. doi: 10.1016/j.neuron.2011.12.013

Ayzenshtat, I., Meirovithz, E., Edelman, H., Werner-Reiss, U., Bienenstock,
E., Abeles, M., et al. (2010). Precise spatiotemporal patterns among
visual cortical areand their relation to visual stimulus processing.
J. Neurosci. 30, 11232–11245. doi: 10.1523/JNEUROSCI.5177-
09.2010

Baldauf, D., and Desimone, R. (2014). Neural mechanisms of object-based
attention. Science 334, 424–427. doi: 10.1126/science.1247003

Bartos, M., Vida, I., and Jonas, P. (2007). Synaptic mechanisms of synchronized
gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8,
45–56. doi: 10.1038/nrn2044

Bathellier, B., Ushakova, L., and Rumpel, S. (2012). Discrete neocortical dynamics
predict behavioral categorization of sounds. Neuron 76, 435–449. doi: 10.
1016/j.neuron.2012.07.008

Baumgarten, T. J., Schnitzler, A., and Lange, J. (2015). Beta oscillations
define discrete perceptual cycles in the somatosensory domain. Proc.
Natl. Acad. Sci. U S A 112, 12187–12192. doi: 10.1073/pnas.15014
38112

Brown, P. (2007). Abnormal oscillatory synchronisation in the motor system leads
to impaired movement. Curr. Opin. Neurobiol. 17, 656–664. doi: 10.1016/j.
conb.2007.12.001

Busch, N. A., and VanRullen, R. (2010). Spontaneous EEG oscillations reveal
periodic sampling of visual attention. Proc. Natl. Acad. Sci. U S A 107,
16048–16053. doi: 10.1073/pnas.1004801107

Buschman, T. J., and Miller, E. K. (2009). Serial, covert shifts of attention
during visual search are reflected by the frontal eye fields and correlated
with population oscillations. Neuron 63, 386–396. doi: 10.1016/j.neuron.2009.
06.020

Buschman, T. J., and Miller, E. K. (2010). Shifting the spotlight of attention:
evidence for discrete computations in cognition. Front. Hum. Neurosci. 4:194.
doi: 10.3389/fnhum.2010.00194

Frontiers in Neural Circuits | www.frontiersin.org 10 October 2016 | Volume 10 | Article 81

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Castejon and Nuñez Discrete Results Hypothesis

Butts, D. A., Weng, C., Jin, J. Z., Yeh, C. I., Lesica, N. A., Alonso, J. M., et al.
(2007). Temporal precision in the neural code and the timescales of natural
vision. Nature 449, 92–95. doi: 10.1038/nature06105

Buzsáki, G. (2005). Theta rhythm of navigation: link between path integration
and landmark navigation, episodic and semantic memory. Hippocampus 15,
827–840. doi: 10.1002/hipo.20113

Buzsáki, G. (2010). Neural syntax: cell assemblies, synapsembles and readers.
Neuron 68, 362–385. doi: 10.1016/j.neuron.2010.09.023

Buzsáki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks.
Science 304, 1926–1929. doi: 10.1126/science.1099745

Caporale, N., and Dan, Y. (2008). Spike timing-dependent plasticity: a Hebbian
learning rule. Annu. Rev. Neurosci. 31, 25–46. doi: 10.1146/annurev.neuro.31.
060407.125639

Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al.
(2009). Driving fast-spiking cells induces gamma rhythm and controls sensory
responses. Nature 459, 663–667. doi: 10.1038/nature08002

Carrillo-Reid, L., Miller, J. K., Hamm, J. P., Jackson, J., and Yuste, R. (2015).
Endogenous sequential cortical activity evoked by visual stimuli. J. Neurosci.
35, 8813–8828. doi: 10.1523/JNEUROSCI.5214-14.2015

Chen, Y., Martinez-Conde, S., Macknik, S. L., Bereshpolova, Y., Swadlow, H. A.,
and Alonso, J. M. (2008). Task difficulty modulates the activity of specific
neuronal populations in primary visual cortex. Nat. Neurosci. 11, 974–982.
doi: 10.1038/nn.2147

Courtin, J., Chaudun, F., Rozeske, R. R., Karalis, N., Gonzalez-Campo, C.,
Wurtz, H., et al. (2014). Prefrontal parvalbumin interneurons shape neuronal
activity to drive fear expression. Nature 505, 92–96. doi: 10.1038/nature
12755

Crowe, D. A., Averbeck, B. B., and Chafee, M. V. (2010). Rapid sequences
of population activity patterns dynamically encode task-critical spatial
information in parietal cortex. J. Neurosci. 30, 11640–11653. doi: 10.
1523/JNEUROSCI.0954-10.2010

Deans, M. R., Gibson, J. R., Sellitto, C., Connors, B. W., and Paul, D. L. (2001).
Synchronous activity of inhibitory networks in neocortex requires electrical
synapses containing connexin36. Neuron 31, 477–485. doi: 10.1016/s0896-
6273(01)00373-7

Dehorter, N., Ciceri, G., Bartolini, G., Lim, L., del Pino, I., and Marín, O.
(2015). Tuning of fast-spiking interneuron properties by an activity-dependent
transcriptional switch. Science 349, 1216–1220. doi: 10.1126/science.aab3415

Donato, F., Rompani, S. B., and Caroni, P. (2013). Parvalbumin-expressing basket-
cell network plasticity induced by experience regulates adult learning. Nature
504, 272–276. doi: 10.1038/nature12866

Engel, A. K., Fries, P., and Singer, W. (2001). Dynamic predictions: oscillations
and synchrony in top-down processing.Nat. Rev. Neurosci. 2, 704–716. doi: 10.
1038/35094565

Foster, D. J., andWilson, M. A. (2006). Reverse replay of behavioural sequences in
hippocampal place cells during the awake state. Nature 440, 680–683. doi: 10.
1038/nature04587

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication
through neuronal coherence. Trends Cogn. Sci. 9, 474–480. doi: 10.1016/j.tics.
2005.08.011

Fries, P., Reynolds, J. H., Rorie, A. E., and Desimone, R. (2001). Modulation of
oscillatory neuronal synchronization by selective visual attention. Science 291,
1560–1563. doi: 10.1126/science.1055465

Fujisawa, S., Amarasingham, A., Harrison, M. T., and Buzsáki, G. (2008).
Behavior-dependent short-term assembly dynamics in the medial prefrontal
cortex. Nat. Neurosci. 11, 823–833. doi: 10.1038/nn.2134

Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., and Moser, M. B. (2004).
Spatial representation in the entorhinal cortex. Science 305, 1258–1264. doi: 10.
1126/science.1099901

Galarreta, M., and Hestrin, S. (1999). A network of fast-spiking cells in the
neocortex connected by electrical synapses. Nature 402, 72–75. doi: 10.
1038/47029

Gibson, J. R., Beierlein, M., and Connors, B. W. (1999). Two networks of
electrically coupled inhibitory neurons in neocortex.Nature 402, 75–79. doi: 10.
1038/47035

Gray, C.M., Konig, P., Engel, A. K., and Singer,W. (1989). Oscillatory responses in
cat visual cortex exhibit inter-columnar synchronization which reflects global
stimulus properties. Nature 338, 334–337. doi: 10.1038/338334a0

Gupta, A., Wang, Y., and Markram, H. (2000). Organizing principles for a
diversity of GABAergic interneurons and synapses in the neocortex. Science
287, 273–278. doi: 10.1126/science.287.5451.273

Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsáki, G. (2003).
Organization of cell assemblies in the hippocampus. Nature 424, 552–556.
doi: 10.1038/nature01834

Harter, M. R. (1967). Excitability cycles and cortical scanning: a review of two
hypotheses of central intermittency in perception. Psychol. Bull. 68, 47–58.
doi: 10.1037/h0024725

Harvey, C. D., Coen, P., and Tank, D. W. (2012). Choice-specific sequences in
parietal cortex during a virtual-navigation decision task. Nature 484, 62–68.
doi: 10.1038/nature10918

Hebb, D. (1949). The Organization of Behavior: A Neuropsychological Theory.New
York, NY: Wiley-Interscience.

Hefft, S., and Jonas, P. (2005). Asynchronous GABA release generates long-
lasting inhibition at a hippocampal interneuron-principal neuron synapse.Nat.
Neurosci. 8, 1319–1328. doi: 10.1038/nn1542

Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nat. Rev.
Neurosci. 6, 877–888. doi: 10.1038/nrn1787

Hermes, D., Miller, K. J., Wandell, B. A., and Winawer, J. (2015). Stimulus
dependence of gamma oscillations in human visual cortex. Cereb. Cortex 25,
2951–2959. doi: 10.1093/cercor/bhu091

Hofer, S. B., Ko, H., Pichler, B., Vogelstein, J., Ros, H., Zeng, H., et al. (2011).
Differential connectivity and response dynamics of excitatory and inhibitory
neurons in visual cortex. Nat. Neurosci. 14, 1045–1052. doi: 10.1038/nn.
2876

Hommel, B. (2004). Event files feature binding in and across perception
and action. Trends Cogn. Sci. 8, 494–500. doi: 10.1016/j.tics.2004.
08.007

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proc. Natl. Acad. Sci. U S A 79, 2554–2558.
doi: 10.1073/pnas.79.8.2554

Hu, H., Gan, J., and Jonas, P. (2014). Fast-spiking, parvalbumin+ GABAergic
interneurons: from cellular design to microcircuit function. Science
345:1255263. doi: 10.1126/science.1255263

Isomura, Y., Harukuni, R., Takekawa, T., Aizawa, H., and Fukai, T. (2009).
Microcircuitry coordination of cortical motor information in self-initiation
of voluntary movements. Nat. Neurosci. 12, 1586–1593. doi: 10.1038/nn.
2431

Jones, M. S., MacDonald, K. D., Choi, B., Dudek, F. E., and Barth, D. S.
(2000). Intracellular correlates of fast (>200 Hz) electrical oscillations in rat
somatosensory cortex. J. Neurophysiol. 84, 1505–1518.

Karnani, M. M., Agetsuma, M., and Yuste, R. (2014). A blanket of inhibition:
functional inferences from dense inhibitory connectivity. Curr. Opin.
Neurobiol. 26, 96–102. doi: 10.1016/j.conb.2013.12.015

Kawaguchi, Y., and Kubota, Y. (1997). GABAergic cell subtypes and their
synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486. doi: 10.
1093/cercor/7.6.476

Kerlin, A. M., Andermann, M. L., Berezovskii, V. K., and Reid, R. C. (2010).
Broadly tuned response properties of diverse inhibitory neuron subtypes
in mouse visual cortex. Neuron 67, 858–871. doi: 10.1016/j.neuron.2010.
08.002

Kim, H., Ährlund-Richter, S., Wang, X., Deisseroth, K., and Carlén, M. (2016).
Prefrontal parvalbumin neurons in control of attention. Cell 164, 208–218.
doi: 10.1016/j.cell.2015.11.038

Klausberger, T., and Somogyi, P. (2008). Neuronal diversity and temporal
dynamics: the unity of hippocampal circuit operations. Science 321, 53–57.
doi: 10.1126/science.1149381

Ko, H.-K., Poletti, M., and Rucci, M. (2010). Microsaccades precisely relocate gaze
in a high visual acuity task. Nat. Neurosci. 13, 1549–1553. doi: 10.1038/nn.
2663

Koelbl, C., Helmstaedter, M., Lübke, J., and Feldmeyer, D. (2015). A barrel-related
interneuron in layer 4 of rat somatosensory cortex with a high intrabarrel
connectivity. Cereb. Cortex 25, 713–725. doi: 10.1093/cercor/bht263

Lee, S. H., Kwan, A. C., Zhang, S., Phoumthipphavong, V., Flannery, J. G.,
Masmanidis, S. C., et al. (2012). Activation of specific interneurons improves
V1 feature selectivity and visual perception. Nature 488, 379–383. doi: 10.
1038/nature11312

Frontiers in Neural Circuits | www.frontiersin.org 11 October 2016 | Volume 10 | Article 81

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Castejon and Nuñez Discrete Results Hypothesis

Letzkus, J. J., Wolff, S. B., Meyer, E. M., Tovote, P., Courtin, J., Herry, C., et al.
(2011). A disinhibitory microcircuit for associative fear learning in the auditory
cortex. Nature 480, 331–335. doi: 10.1038/nature10674

Lewis, D. A., Curley, A. A., Glausier, J. R., and Volk, D. W. (2012). Cortical
parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends
Neurosci. 35, 57–67. doi: 10.1016/j.tins.2011.10.004

Li, L., Xiong, X. R., Ibrahim, L. A., Yuan, W., Tao, H. W., and Zhang, L. I.
(2015). Differential receptive field properties of parvalbumin and somatostatin
inhibitory neurons in mouse auditory cortex. Cereb. Cortex 25, 1782–1791.
doi: 10.1093/cercor/bht417

Lorente de Nó, R. (1938). Analysis of the activity of the chains of internuncial
neurons. J. Neurophysiol. 1, 207–244.

Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., andMiller, E. K.
(2016). Gamma and beta bursts underlie working memory. Neuron 90,
152–164. doi: 10.1016/j.neuron.2016.02.028

Mainen, Z. F., and Sejnowski, T. J. (1995). Reliability of spike timing in neocortical
neurons. Science 268, 1503–1506. doi: 10.1126/science.7770778

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,
213–215. doi: 10.1126/science.275.5297.213

Miller, J. E., Ayzenshtat, I., Carrillo-Reid, L., and Yuste, R. (2014). Visual stimuli
recruit intrinsically generated cortical ensembles. Proc. Natl. Acad. Sci. U S A
111, E4053–E4061. doi: 10.1073/pnas.1406077111

Nicolelis, M. A. L., Ghazanfar, A. A., Faggin, B., Votaw, S., and Oliveira,
L. M. O. (1997). Reconstructing the engram: simultaneous, multisite, many
single neuron recordings. Neuron 18, 529–537. doi: 10.1016/s0896-6273(00)
80295-0

Nuñez, A., Amzica, F., and Steriade, M. (1992). Voltage-dependent fast (20–40Hz)
oscillations in long-axoned neocortical neurons.Neuroscience 51, 7–10. doi: 10.
1016/0306-4522(92)90464-d

O’Keefe, J., and Burgess, N. (1996). Geometric determinants of the place fields of
hippocampal neurons. Nature 381, 425–428. doi: 10.1038/381425a0

Okun, M., Steinmetz, N. A., Cossell, L., Iacaruso, M. F., Ko, H., Barthó, P., et al.
(2015). Diverse coupling of neurons to populations in sensory cortex. Nature
521, 511–515. doi: 10.1038/nature14273

Packer, A. M., and Yuste, R. (2011). Dense, unspecific connectivity of neocortical
parvalbumin-positive interneurons: a canonical microcircuit for inhibition?
J. Neurosci. 31, 13260–13271. doi: 10.1523/JNEUROSCI.3131-11.2011

Pastalkova, E., Itskov, V., Amarasingham, A., and Buzsáki, G. (2008). Internally
generated cell assembly sequences in the rat hippocampus. Science 321,
1322–1327. doi: 10.1126/science.1159775

Pitts, W., and McCulloch, W. S. (1947). How we know universals: the perception
of auditory and visual forms. Bull. Math. Biophys. 9, 127–147. doi: 10.
1007/bf02478291

Pouget, A., Dayan, P., and Zemel, R. (2000). Information processing with
population codes. Nat. Rev. Neurosci. 1, 125–132. doi: 10.1038/35039062

Pouille, F., and Scanziani, M. (2001). Enforcement of temporal fidelity in
pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163.
doi: 10.1126/science.1060342

Powell, E. M., Campbell, D. B., Stanwood, G. D., Davis, C., Noebels, J. L.,
and Levitt, P. (2003). Genetic disruption of cortical interneuron development
causes region- and GABA cell type-specific deficits, epilepsy and behavioral
dysfunction. J. Neurosci. 23, 622–631.

Roelfsema, P. R., Lamme, V. A., and Spekreijse, H. (2004). Synchrony and
covariation of firing rates in the primary visual cortex during contour grouping.
Nat. Neurosci. 7, 982–991. doi: 10.1038/nn1304

Schroeder, C. E., and Lakatos, P. (2009). Low-frequency neuronal oscillations as
instruments of sensory selection. Trends Neurosci. 32, 9–18. doi: 10.1016/j.tins.
2008.09.012

Shmiel, T., Drori, R., Shmiel, O., Ben-Shaul, Y., Nadasdy, Z., Shemesh, M., et al.
(2005). Neurons of the cerebral cortex exhibit precise interspike timing in
correspondence to behavior. Proc. Natl. Acad. Sci. U S A 102, 18655–18657.
doi: 10.1073/pnas.0509346102

Siegel, M., Donner, T. H., and Engel, A. K. (2012). Spectral fingerprints of
large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 120–134. doi: 10.
1038/nrn3137

Singer, W., and Gray, C. M. (1995). Visual feature integration and the
temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586. doi: 10.
1146/annurev.neuro.18.1.555

Sohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009). Parvalbumin
neurons and gamma rhythms enhance cortical circuit performance. Nature
459, 698–702. doi: 10.1038/nature07991

Steriade, M., Nuñez, A., and Azmica, F. (1993). A novel slow (<1 Hz) oscillation
of neocortical neurons in vivo: depolarizing and hyperpolarizing components.
J. Neurosci. 13, 3252–3265.

Thiele, A., and Stoner, G. (2003). Neuronal synchrony does not correlate
with motion coherence in cortical area MT. Nature 421, 366–370. doi: 10.
1038/nature01285

Traub, R. D., Whittington, M. A., Stanford, I. M., and Jefferys, J. G. (1996).
A mechanism for generation of long-range synchronous fast oscillations in the
cortex. Nature 383, 621–624. doi: 10.1038/383621a0

VanRullen, R., and Koch, C. (2003). Is perception discrete or continuous? Trends
Cogn. Sci. 7, 207–213. doi: 10.1016/S1364-6613(03)00095-0

VanRullen, R., Reddy, L., and Koch, C. (2005). Attention-driven discrete sampling
of motion perception. Proc. Natl. Acad. Sci. U S A 102, 5291–5296. doi: 10.
1073/pnas.0409172102

Varela, F. J., Toro, A., John, E. R., and Schwartz, E. L. (1981). Perceptual framing
and cortical alpha rhythm. Neuropsychologia 19, 675–686. doi: 10.1016/0028-
3932(81)90005-1

Whittington, M. A., Traub, R. D., and Jefferys, J. G. (1995). Synchronized
oscillations in interneuron networks driven by metabotropic glutamate
receptor activation. Nature 373, 612–615. doi: 10.1038/373612a0

Wikenheiser, A.M., and Redish, A. D. (2015). Hippocampal theta sequences reflect
current goals. Nat. Neurosci. 18, 289–294. doi: 10.1038/nn.3909

Woodruff, A. R., McGarry, L. M., Vogels, T. P., Inan, M., Anderson, S. A.,
and Yuste, R. (2011). State-dependent function of neocortical chandelier
cells. J. Neurosci. 31, 17872–17886. doi: 10.1523/JNEUROSCI.3894-
11.2011

Yazaki-Sugiyama, Y., Kang, S., Câteau, H., Fukai, T., and Hensch, T. K. (2009).
Bidirectional plasticity in fast-spiking GABA circuits by visual experience.
Nature 462, 218–221. doi: 10.1038/nature08485

Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J.,
O’Shea, D. J., et al. (2011). Neocortical excitation/inhibition balance in
information processing and social dysfunction. Nature 477, 171–178. doi: 10.
1038/nature10360

Yuste, R. (2015). From the neuron doctrine to neural networks.Nat. Rev. Neurosci.
16, 487–497. doi: 10.1038/nrn3962

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Castejon and Nuñez. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution and reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 12 October 2016 | Volume 10 | Article 81

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive

	Cortical Neural Computation by Discrete Results Hypothesis
	INTRODUCTION
	NEURONAL PROCESSING BY DISTRIBUTED NEURONAL ACTIVITY
	RHYTHMIC NEURONAL ACTIVITY IN THE BRAIN
	DISCRETE NEURAL COMPUTATION
	CORTICAL NEURAL COMPUTATION BY DISCRETE RESULTS HYPOTHESIS: FUNCTIONAL SPATIO-TEMPORAL UNITS OF COMPUTATION
	Spatial Dimension of Cortical Processing: The ``Ensemble'' as a Functional Spatial Unit
	Temporal Dimension of Cortical Processing: ``Temporal Structure of Spikes''

	DISCRETE RESULT: A FUNCTIONAL SPATIO-TEMPORAL UNIT OF COMPUTATION
	NEURAL COMPUTATION BY DYNAMIC SEQUENCE OF DISCRETE RESULTS
	NEURAL UNDERPINNINGS OF DISCRETE RESULTS HYPOTHESIS: SPATIO-TEMPORAL INTEGRATION BY FAST-SPIKING CELLS SYNCHRONIZED NETWORK
	CONCLUSION
	AUTHOR CONTRIBUTIONS
	FUNDING
	REFERENCES


