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The neural circuits in the optic tectum of Xenopus tadpoles are selectively responsive

to looming visual stimuli that resemble objects approaching the animal at a collision

trajectory. This selectivity is required for adaptive collision avoidance behavior in this

species, but its underlying mechanisms are not known. In particular, it is still unclear how

the balance between the recurrent spontaneous network activity and the newly arriving

sensory flow is set in this structure, and to what degree this balance is important for

collision detection. Also, despite the clear indication for the presence of strong recurrent

excitation and spontaneous activity, the exact topology of recurrent feedback circuits

in the tectum remains elusive. In this study we take advantage of recently published

detailed cell-level data from tadpole tectum to build an informed computational model of

it, and investigate whether dynamic activation in excitatory recurrent retinotopic networks

may on its own underlie collision detection. We consider several possible recurrent

connectivity configurations and compare their performance for collision detection under

different levels of spontaneous neural activity. We show that even in the absence

of inhibition, a retinotopic network of quickly inactivating spiking neurons is naturally

selective for looming stimuli, but this selectivity is not robust to neuronal noise, and

is sensitive to the balance between direct and recurrent inputs. We also describe

how homeostatic modulation of intrinsic properties of individual tectal cells can change

selectivity thresholds in this network, and qualitatively verify our predictions in a behavioral

experiment in freely swimming tadpoles.

Keywords: looming detection, optic tectum, collision avoidance, recurrent networks, sensorimotor

transformation, intrinsic excitability, homeostatic plasticity, visual development

INTRODUCTION

Spontaneous neural activity plays a key role in the developing nervous system. In the visual system
of vertebrates, spontaneous activity generated both in the retina and in retinorecipient structures
is critical for organizing early experience and facilitating the developmental refinement of neural
circuitry (Pratt et al., 2016). However, spontaneous activity also places serious constraints on the
normal processing of sensory stimuli by adding varying amounts of neural noise, and can therefore
affect how the organism interacts with its environment. How then does a developing nervous
system balance the need to sustain spontaneous activity with the ability to effectively process and
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react to external sensory stimuli? Here we examine the process of
collision detection in Xenopus laevis tadpole tectum, in which
activity generated through recurrent connectivity (Pratt et al.,
2008; Liu et al., 2016) can interact with waves of evoked visual
responses, potentially leading to differential reactions to different
visual stimuli (Khakhalin et al., 2014).

Detection of visually expanding, or looming stimuli is
ubiquitous across the animal world, and is critical for both
navigation and predator avoidance (Sun and Frost, 1998; Preuss
et al., 2006; Liu et al., 2011; Herberholz and Marquart, 2012;
Vagnoni et al., 2012). Research suggests that different animals
may rely on different types of computations to detect looming
stimuli: it was proposed that in birds collision detection may
be achieved through spatial integration of appropriately directed
edge movements in different parts of the visual field (Frost
and Sun, 2004). In other animals, such as adult Ranid frogs
(Ishikane et al., 2005; Kuras et al., 2006; Kang and Li, 2010;
Baranauskas et al., 2012), collision detection seems to rely on
competitive temporal inactivation of inputs from OFF-detectors
in a retinotopic system. Yet other species either combine spatial
motion integration and competitive inactivation, as in the case
of locusts (Gabbiani et al., 2002; Peron and Gabbiani, 2009;
Fotowat et al., 2011), or have several distinct startle systems, some
relying on motion processing, and some on visual OFF detectors,
as it was described in fruit-flies (Card and Dickinson, 2008;
Fotowat et al., 2009; de Vries and Clandinin, 2012; Schilling and
Borst, 2015). For many popular experimental species however,
including Zebrafish larvae and Xenopus tadpoles, the exact
mechanisms of collision detection are not yet clear (Khakhalin
et al., 2014; Temizer et al., 2015; Dunn et al., 2016). Similar to
larval Zebrafish that perform three types of evasive maneuvers in
response to different visual stimuli (Burgess and Granato, 2007;
Bianco et al., 2011; Dunn et al., 2016), Xenopus tadpoles can
execute either fast randomized escapes or slow course corrections
(Khakhalin et al., 2014), suggesting that different competitive
collision detection mechanisms may be at play.

As in Zebrafish (Dunn et al., 2016), detection of looming
stimuli in tadpoles relies on the circuitry in the optic tectum
(OT) (Dong et al., 2009; Khakhalin et al., 2014). It is
known that principal neurons in the tectum receive strong
recurrent excitation (Pratt et al., 2008; Liu et al., 2016) that
supports spontaneous neuronal activity during development
(Pratt and Aizenman, 2007; Imaizumi et al., 2013; James et al.,
2015). Principal tectal neurons also demonstrate prominent
and rapid inactivation of spiking (Aizenman et al., 2003;
Ciarleglio et al., 2015), which allowed us to suggest that
together these two phenomena may underlie, or at least
contribute to collision detection (Khakhalin et al., 2014).
We hypothesized that in the presence of strong recurrent
connections, rapidly inactivating networks would naturally
discriminate in favor of expanding stimuli, reminiscent of
dendritic competition, and spike-frequency accommodation in
looming-selective neurons in insects (Peron and Gabbiani, 2009).
At the same time, strong recurrent connections may present
a challenge for a behaving animal, as spontaneous recurrent
activity can overpower both sensory inputs and computed pre-
motor outputs. The developing brain is thus faced with the

problem of finding a proper balance between recurrent and
sensory inputs to each neuron, keeping spontaneous activity at
the levels appropriate for circuitry development, and stimulus
detection.

In this study we describe an informed spiking model of
the Xenopus tectum based on the recent detailed cell-level
description of this region (Ciarleglio et al., 2015), and test
whether the activation of this network may support collision
detection. As the exact topology of recurrent connections in
the tectum is not known, we compare several hypothetical
internal connectivity profiles, and make tentative predictions
about which of these profiles are more likely to be utilized
by real tadpoles. We also study how the relative strength of
recurrent and sensory inputs affect generation of spontaneous
activity and stimulus selectivity, and investigate the robustness
of stimulus selectivity in recurrent networks to different levels of
spontaneous neural noise.

RESULTS

The Computational Model
To keep the model computationally efficient, we represented
each tectal neuron as a one-compartmental cell with spiking
governed by a system of two ordinary differential equations: a
quadratic differential equation with hard reset for voltage, and
a linear differential equation for slow outward currents, similar
to classic hybrid models with reset (Izhikevich, 2003, 2010).
Compared to many other neural cells types however, principal
neurons in the tadpole tectum typically produce very few spikes
in response to both in vitro current injections (Ciarleglio et al.,
2015) and in vivo visual stimulation (Khakhalin et al., 2014), yet
show little frequency accommodation, presumably due to strong
inactivation of Na+ voltage-gated channels. To approximate this
spiking behavior, we adjusted the model by introducing several
tuning parameters and a non-linear dependency between the
input current in the cell and the change in cell potential (see
Methods). These adjustments ensured that model neurons ceased
spiking even in response to strong current injections (Figure 1A),
and showed little frequency adaptation (Figure 1B).

To populate the network with appropriate cell types, we
reanalyzed the data from Ciarleglio et al. (2015), and classified
104 biological cells recorded in stage 48–49 naïve tadpoles
according to the maximal number of spikes they produced in
response to step current injections. To simplify model tuning,
we did not attempt to replicate the full gradient of neuronal
excitability profiles, but classified biological cells from Ciarleglio
et al. (2015) into four representative spiking phenotypes
(Figure 1C): low-spiking cells that produced at most one spike;
3-spike cells (that produced 2 or 3 spikes); 5-spike cells (from 4
to 7 spikes), and highly spiking cells (8–11 spikes; 10 on average).
For each cell group, we then collected three types of statistics:
the number of spikes generated in response to whole-cell step
current injections of different amplitudes (20–120 pA); the first
spike latency in response to a 100 pA step current injection,
and the inter-spike interval for 100 pA current injection.
We then manually tuned four model neurons (Figure 1D),
ensuring that they reproduce spike counts (Figure 1E), latencies,

Frontiers in Neural Circuits | www.frontiersin.org 2 November 2016 | Volume 10 | Article 95

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Jang et al. Looming Detection Emergence in the Optic Tectum

FIGURE 1 | The fast-inactivating spiking model of a tectal neuron. (A) The phase space of a system of two differential equations representing a spiking neuron,

showing a sample trajectory in this space (black), two nullclines (purple and green), and the values involved in potential reset during spiking (Vspike in red, and Vreset in

blue). (B) A typical response of a model neuron to a step current injection. (C) Spike-time rasters of four representative physiological neurons from Ciarleglio et al.

(2015) as they spike in response to current clamp steps of amplitudes from 20 to 120 pA. (D) Voltage traces of four model neurons in response to current steps of

amplitudes from 20 to 120 pA. Responses to 80 pA current step are highlighted. (E) Input-output curves, showing the number of spikes generated by neurons in

response to current step injections of different amplitudes, for four representative spiking groups separately. Response curves of individual biological neurons from

Ciarleglio et al. (2015) are shown in green, averages for biological neurons in blue, model neuron responses in black. (F) Distributions of first spike latencies (left) and

first-to-second inter-spike intervals (right) during responses of biological neurons to step current injections of 100 pA, with similar values for model neurons

superimposed on them (black dots).

and inter-spike intervals (Figure 1F) observed in physiological
experiments.

The model tectal network consisted of 400 cells arranged in a
20 × 20 grid; the cells were randomly assigned one of four cell
types (1-, 3-, 5-, or 10-spike-generating cells) in the proportions
observed in stage 49 tadpoles (20, 25, 40, and 15% respectively;
Ciarleglio et al., 2015). This network received excitatory inputs
from 400 retinal ganglion cells (RGCs) arranged in a similar grid.
All RGCs were assumed to be OFF cells, and once activated, each
RGC produced a train of four spikes with random inter-spike
intervals; the distribution of these inter-spike intervals was
adjusted to approximate both experimentally observed spiking
of individual RGCs (Demas et al., 2012; Miraucourt et al., 2016),
and bulk summary responses in the optic nerve during in vivo
visual stimulation (Khakhalin et al., 2014). Projections from the
RGC layer formed a “blurred” retinotopic map in the OT layer
(Figure 2A), with a stride of 5 grid cells, and connection strength
decreasing with distance.

As the topology of recurrent connections in the tadpole
tectum is not known (Pratt et al., 2008; Liu et al., 2016),
we considered three possible configurations (Figure 2B):

uniform, with random connections across the entire network
and uniformly distributed connection weights; local, with
connections spanning 5 nearby cells in each direction, and with
average strength decreasing with distance; and scale-free: a
small-world network with a few strongly connected hub cells
linking the entire network in a set of connected clusters (Barabasi
and Albert, 1999). All connectivity profiles were normalized by
synaptic strength, so that the average sum of synaptic inputs
received by tectal cells was same in each network type, regardless
of its topology. Both feedforward RGC-OT and recurrent OT-
OT connections were modeled as conductance-based excitatory
synapses with exponential decay, and dynamics approximating
physiological data from Xu et al. (2011), Khakhalin et al. (2014),
Ciarleglio et al. (2015). See Methods for more details on the
model construction and parameter validation.

Activation in Response to Visual Stimuli
In computational experiments, the RGC layer simulated
responses to virtual “visual stimuli” that were modeled after
behaviorally relevant stimuli from Khakhalin et al. (2014).
These included a full-field dark “flash”; a linearly expanding

Frontiers in Neural Circuits | www.frontiersin.org 3 November 2016 | Volume 10 | Article 95

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Jang et al. Looming Detection Emergence in the Optic Tectum

FIGURE 2 | Network model, retinal inputs, and network responses. (A) The basic topology of the model network: a grid of retinal ganglion cells (RGCs) made a

“blurred” retinotopic projection to the tectal layer (black arrows), with recurrent connections within the tectal layer (red arrows). Different colors schematically show

relative activation of RGCs and tectal cells during visual stimulus processing. (B) Three possible options for the recurrent intra-tectal connectivity: local (neurons are

connected only to their neighbors); uniform (connections between any two neurons are equally probable); and scale-free (small-world network with highly connected

hub cells). (C) Snapshots of RGC layer spiking, representing four visual stimuli: instantaneous full-field flash; randomly rearranged (scrambled) looming stimulus;

linearly expanding looming stimulus (crash); and realistic non-linearly expanding looming stimulus. Each square shows a “still frame” from a dynamic response, taken

in 250 ms increments after the stimulus onset (0 ms); with more recent spikes within each 250 ms window shown in lighter shades of gray. (D) Sample rasters of

spiking responses in the tectum, generated for different recurrent connectivity profiles (rows), and different visual stimuli (columns). The horizontal axis presents model

cell positions as distance from the 20 × 20 grid center; vertical axis shows spike latency; blue lines for crash and realistic stimuli show the theoretical time at which

each tectal cell is directly engaged by the visual stimulus through the corresponding retinal cell. Cells of different spiking phenotypes are shown in different colors, from

most spiky (red) to least spiky (dark blue).

looming “crash”; a looming stimulus with its pixels randomly
spatially rearranged on the 20 × 20 grid (“scrambled”), and a
geometrically realistic looming stimulus with faster, non-linear
hyperbolic dynamics (“realistic”). The spiking of RGC layer
neurons over time is shown in Figure 2C.

In the tectal layer (Figure 2D) “flashes” evoked rapid,
short responses, mostly mediated by high-spiking cells (red).
“Scrambled” stimuli produced delayed and more prolonged
responses with higher involvement of medium-spiky cells
(orange and blue), but also lacking spatial organization, while
“crashes” and “realistic” collisions created spatially organized
waves of excitation that propagated through the tectum, from its
center to the periphery. We observed that scale-free connectivity
(bottom row of Figure 2D) easily gave rise to spontaneous
epileptiform activity (clouds of points on the top of each raster
plot, corresponding to ongoing spontaneous spiking), while
activity in local and uniformly-connected networks tended to
“die out” even in the absence of inhibition.

We found that the relative number of spikes generated
in response to each type of stimulus (Figures 3A–C), as well
as median latencies of neuronal responses (Figures 3A–C),
matched the results of biological experiments (Figures 3A,C,D;
data from Khakhalin et al. (2014). Linear looming “crashes”
produced the highest total network activation, followed by

spatially disorganized stimuli (“scrambled” in this study; “ramp”
and “grid” in Khakhalin et al., 2014), and finally followed by
synchronous “flashes.” The average number of spikes generated
by neurons in the model was lower than that observed in
physiological experiments (1.4 for “crash” in the model; 6.2 for
“crash” in Khakhalin et al. (2014), for which we can offer several
potential explanations (see Discussion).

The higher total spike-output in response to looming stimuli,
compared to full field “flashes,” was primarily due to the
stronger contribution of medium-high spiking neurons (orange
in Figure 3B) that were mostly silent after “flashes,” but spiked
in response to slower stimuli. In line with this observation,
the relative preference for “crash” over “flash” in model data
correlated with neuronal spikiness (Figure 3D). We verified this
prediction by re-analyzing experimental data from Khakhalin
et al. (2014), and found that in our in vivo experiments selectivity
of individual neurons for “crash” over “flash” also correlated with
their spikiness (Figure 3E, r = 0.4, p = 1e−3, N = 55; data from
Khakhalin et al. (2014).

Parametric Analysis
We then investigated how the relative strength of recurrent
connections and retinal inputs in the tectum affected network
activation and selectivity for different visual stimuli. For each
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FIGURE 3 | The summary statistics of spiking output in the tectum. (A) Averages (markers) and standard deviations (error bars) of the number of spikes per

neuron generated by the tectum during responses to different visual stimuli, in models with different recurrent connectivity profiles (A–C), and in physiological data [D,

data from Khakhalin et al. (2014) Figure 4]. Here “f” stands for “flash,” “s” for “scrambled,” “c” for “crash,” “r” for realistic, and for physiological data “g” stands for

“grid” (a stimulus that can be considered analogous to the “scrambled” stimulus from the model); responses were respectively modeled or recorded for 2 s after

stimulus onset. Both in computational and biological experiments looming stimuli evoked stronger responses than an instantaneous flash (paired t-test p = 5e−66, n
= 400 for the model, p = 1e−5, n = 56 in physiological experiments; significant after Bonferroni correction), while spatially disarranged stimuli evoked intermediate

responses (B). The relative contribution of different neuronal spiking phenotypes to model responses, measured as the total number of spikes generated by all

10-spike (red), 5-spike (orange), 3-spike (light blue), and 1-spike (dark blue) neurons. Medium-spiking neurons were more involved in responses to slow than to fast

stimuli (C). The median and inter-quartile ranges of first spike latencies during tectal responses to different stimuli, in model networks with different connectivity profiles

(A–C), and in biological experiments (D), data from Khakhalin et al. (2014), not previously presented). The model successfully predicted typical latencies observed in

physiological experiments (all pairwise comparisons between responses to different stimuli p < 1e−6, paired t-test, significant after Bonferroni correction). (D) The

average number of spikes generated by model neurons across all four visual responses correlated (r = 0.31) with their preference (Cohen d effect size) for looming

stimuli (crashes) over flashes; regression line shown in red (E). A similar analysis for the physiological data from Khakhalin et al. (2014) verified this prediction, as spikier

neurons preferred looming stimuli to flashes (r = 0.42).

connectivity configuration we considered a family of models,
with differently scaled weights of direct and recurrent inputs.
Each network model was defined by two scaling coefficients: SR
for RGC inputs, and ST for recurrent intratectal connections.
With SR = 1 and ST = 0 there were no functional recurrent
currents, and all drive to tectal cells came from RGCs, reaching
on average 180 pA at peak (a rather high number, compared
to in vivo average peak value of 70 pA in Xu et al. (2011),
and 30 pA in Khakhalin et al. (2014). Conversely, with SR =
0 there were no inputs from the retina, while with SR = ST
the average strengths of direct and recurrent connections
were equal.

We ran the model 25 times for each combination of SR
and ST, and calculated total amount of spikes generated in
response to each stimulus in each experiment. The average values
of total spike output are shown at (Figure 4A), encoded by
color, with lighter colors representing stronger spike outputs.
We then used signed F-values to quantify statistical reliability
of stimulus preference across multiple experimental runs, and
compared responses to different visual stimuli for each point
in the (SR, ST) parametric space (Figure 4B). This calculation
divided the (SR, ST) space into regions statistically selective for
“flashes” (shown in blue in Figure 4B); selective for looming
stimuli (red), and non-selective regions (white). We found that
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FIGURE 4 | The effect of balance between recurrent and direct inputs

to the tectum on stimulus selectivity (A). The total number of spikes

(shown as pixels of different color, from black to white) generated in model

networks with different strength of direct (horizontal axes) and recurrent

(vertical axes) synaptic inputs, for different stimulus types (rows), and recurrent

network topologies (columns) (B). The comparison of looming stimuli

responses to full-field flash responses. Here color encodes the reliability

(signed F-value) of getting a stronger total network response to either looming

(red), or flash (blue) stimulus, for different strengths of direct (SR) and recurrent

(ST) synaptic inputs. Networks with strong direct and recurrent synaptic inputs

are selective for looming stimuli (red in the top right corner), while weakly

connected networks are selective for full-field flashes (blue crescents in the left

lower corner). This pattern is present, but less pronounced for fast looming

stimuli, and in scale-free networks.

for both “local” and “uniform” recurrent connectivity profiles
most of the parametric space was selective to looming stimuli
(red in Figure 4B), while models with underpowered RGC-
OT or OT-OT synaptic connections were selective for full field
flashes (blue crescents in bottom left corners in Figure 4B). The
parametric space for “scale-free” connectivity looked somewhat
similar, but less selective, as networks were easily overpowered
by epileptiform activity (of a kind shown earlier in Figure 2D,
bottom row). The effects of spontaneous epileptiform activity can
also be seen in respective spike-output heat maps (Figure 4A,
third column), as yellow and orange areas of high total spiking
at the top of each heat map (corresponding to regions of strong
recurrent connectivity, ST > 0.5). Overall, our results suggest
that in the absence of neuronal noise, the balance between
recurrent and direct inputs in tectal networks does not have
to be tight, as the networks are naturally selective to looming

stimuli, provided that both direct and recurrent inputs are
strong enough.

Effects of Spontaneous Neuronal Noise
We then investigated the sensitivity of looming stimuli detection
in our model to the level of background neural noise. We
made every tectal neuron in the model spontaneously fire action
potentials at frequencies from 0 to 0.3 Hz, and analyzed these
“noisy” networks in the same way as we analyzed the original
network. The results of these experiments are presented in
(Figure 5A): as the level of neuronal noise increased (from
top rows down in Figure 5A), red areas, representing tuning
parameter combinations that kept the network selective for
looming stimuli, shrunk, and then disappeared altogether. From
the shape of red looming-selective regions in the second and
third rows of (Figure 5A) we can see that for moderate levels
of neuronal noise (0.05–0.10Hz) collision detection happened
only when the strength of recurrent connections offered a trade-
off between the absence of temporal integration for low values
of ST, and susceptibility to epileptiform spontaneous activity for
large values of ST. Moreover, as the levels of noise increased, the
areas of selectivity for slow “crashes” and fast “realistic” collisions
became increasingly non-overlapping, suggesting that for high
levels of neuronal noise the balance of recurrent and direct
connections may be important not just for enabling collision
detection, but also for tuning it to specific temporal dynamics of
the stimulus.

To quantify the range of “valid” (SR, ST) combinations that
kept the network tuned for looming detection under conditions
of high neuronal noise, for each heat map from (Figure 5A) we
measured the relative size of the looming-selective region in the
(SR, ST) parametric space, using an arbitrary threshold of 10 for
the F-value. We found (Figure 5B) that selectivity areas reduced
in size with increasing levels of neuronal noise, and that the
uniformly connected network (red) was most robust, followed
by locally-connected network (blue), while scale-free network
was very sensitive to noise due to its propensity to spontaneous
activity (green). These results suggest that in realistic conditions
of non-zero neuronal noise, the balance of recurrent and direct
inputs in the tectummay require a tight homeostatic control, and
that the level of inflexibility in tuning increases with the amount
of spontaneous activity in the system.

Effects of Sensory Experience
Finally, we looked into the effects of sensory experience on
spontaneous activity and collision detection in the tectum.
We updated the model to mimic the changes in the tectum
of Xenopus tadpoles in response to strong, prolonged visual
stimulation (Aizenman et al., 2003; Ciarleglio et al., 2015),
and analyzed this “overstimulated” tectal network in the same
way as we analyzed the “naïve” network. We changed the
distribution of spike phenotypes to 5, 30, 20, and 45% for 1,
3, 5, and 10-spike-generating cells respectively (Ciarleglio et al.,
2015); decreased all synaptic currents by 25% (Aizenman et al.,
2002); and introduced 30% inward rectification for synaptic
currents (Aizenman et al., 2002). The parametric space analysis
showed that in overstimulated networks the selectivity for slow
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FIGURE 5 | Neuronal noise reduces selectivity to looming stimuli, and makes the balance of direct and recurrent inputs more important. (A) Selectivity

charts in the (SR, ST) space for different connectivity profiles and two types of looming stimuli (columns), shown for different levels of spontaneous neural noise (rows).

As the levels of noise increase (top to down across the panel), the areas of selectivity for looming stimuli become smaller. (B) The share of the parametric space

selective to looming stimuli (with arbitrary threshold of F = 10), as a function of neural noise level, for two types of looming stimuli. The share of (SR, ST) combinations

allowing looming stimuli detection goes down as noise levels increase, yet uniformly connected network (red) is less sensitive to background noise than either local

(blue) or scale-free (green) networks.

“crashes” was lost, except for areas of extreme synaptic strength
(Figure 6A), while selectivity for fast collisions remained largely
unaffected (Figure 6B).

From these results, we predicted that after prolonged
stimulation with light flashes tadpoles would retain avoidance
of fast collisions, but would no longer respond to slow moving
objects. We performed a series of behavioral experiments in
freely swimming stage 49 Xenopus tadpoles, and found that after
prolonged visual stimulation the avoidance of large (11mm in
diameter) slow (1.4 cm/s) black circles was indeed significantly
impaired (from 0.73 ± 0.22 to 0.51 ± 0.23, Mann-Whitney P =
0.003; Figure 6C), while it was previously shown, using a slightly
different, but conceptually similar experimental protocol, that the

avoidance of smaller (8mm) black circles moving at faster speeds
(3 cm/s) is not affected by prolonged sensory stimulation (Dong
et al., 2009).

DISCUSSION

In this study we show that a simple experimentally inspired
retinotopic network of inactivating spiking neurons can naturally
function as a detector of looming stimuli, provided that recurrent
excitation in the network is strong enough, and the network
is not overpowered by spontaneous neural noise. Notably, this
selectivity for looming stimuli occurs even in the absence of
inhibition, and without contribution from specialized motion
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FIGURE 6 | Effects of sensory experience on looming stimulus detection. (A) Compared to naïve networks shown in Figure 4, overstimulated networks spike

more in response to fast stimuli (“flash” and “realistic” looming), but not in response to slow “looming” stimuli. Color shows the total number of spikes generated by the

network in response to a stimulus (B). Unlike naïve networks, overstimulated networks are not selective for slow looming stimuli (large blue areas in the first row), but

retain selectivity for fast “realistic” looming stimuli (red areas in the second row) (C). In behavioral experiments, after prolonged strong visual stimulation tadpoles don’t

perform avoidance maneuvers in response to slow-moving objects (Mann-Whitney P = 0.003).

or expansion detectors. Importantly, our model replicates some
of the key physiological and behavioral features of looming
stimulus detection in the tectum of Xenopus tadpoles, potentially
including effects of strong visual stimulation on collision
avoidance.

Our results indicate a possibility of functional convergent
evolution between looming detection in vertebrates and insects,
as in our model a retinotopic layer of rapidly inactivating
neurons seemed to discriminate looming stimuli in a way that
is fundamentally similar to how spike frequency adaptation
and competitive inhibition make it happen in the dendritic
tree of looming-selective DCMD neurons in locusts (Gabbiani
et al., 2002; Peron and Gabbiani, 2009). In both cases,
inactivation-like processes (recurrent excitation and sodium
channel inactivation in Xenopus; spike frequency adaptation and
spatially localized shunting inhibition in insects) introduce a
competition mechanism that discriminates against stimuli that
are either too synchronous and localized or develop too slowly.
To evoke the highest total spike-output, in both insects and
tadpoles, the sensory input should develop as a wave of increasing
strength, running slow enough to allow temporal summation
(Gabbiani et al., 2004; Khakhalin et al., 2014), yet fast enough to
get ahead of competitive inactivation in the retinotopic system
(Peron and Gabbiani, 2009; Jones and Gabbiani, 2010). These
local inactivation mechanisms therefore may link temporal and

spatial properties of the sensory stimulus, providing a simple and
efficient mechanism for stimulus recognition.

The discrepancy between the average number of spikes
observed in this model study (about one or two) and during
physiological in vivo loose cell-attached recordings (5–12 spikes;
Khakhalin et al., 2014), which happened despite a careful and
meticulous calibration of cell intrinsic properties we undertook
in this study, can be explained by several possible effects. One
potential difference between the studies of neuronal spiking in
whole cell (Ciarleglio et al., 2015) and loose cell-attached modes
(Khakhalin et al., 2014) is that spike-triggering currents arrive at
different compartments within the neuron: in the soma in case
of whole-cell studies, but at the dendritic tree during synaptic
stimulation. Because of that, our model, which was based on the
data from Ciarleglio et al. (2015), might have underestimated
the effects of active dendritic integration that may in fact take
place in the optic tectum (Bollmann and Engert, 2009; Felch
et al., 2016). Another complication of whole-cell studies is that
during the recording, messenger molecules may be washed out
from the cytoplasm of the neuron (Zhang et al., 1998; Khakhalin
and Aizenman, 2012), potentially triggering changes in intrinsic
properties and loss of spikiness (Staley et al., 1992). Although in
Ciarleglio et al. (2015) intrinsic properties were typically recorded
first, immediately following the entry to the cell, this effect might
have contributed to lower estimations of cell spikiness in this
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study. Further, during data acquisition for (Khakhalin et al.,
2014), cells that were silent to both “crash” and “flash” after one or
two presentations were not included in the analysis, introducing
a selection bias, which was not present in this study.

Our study suggests that looming stimulus detection can
be supported by very different recurrent connectivity profiles,
including spatially disorganized random uniform networks. It
may mean that at least for the purposes of collision detection,
the refinement of recurrent connections in the tectum may be
not as critical as the refinement of input retinotectal projections
(Dong et al., 2009), although it may still be critical for computing
appropriate directional motor responses during avoidance of
slow-moving objects, as described in Khakhalin et al. (2014).
The best robustness to spontaneously generated neural noise
was observed in a spatially unorganized uniformly connected
network, which intuitively lies “in between” a local recurrent
network and a scalefree network in terms of how strongly
on average it connects neural cells from different parts of the
model tectum. (A formal justification for this claim can be
achieved through a calculation of the average distance between
two randomly selected nodes in the network ofN nodes, which is
typically the largest for a locally connected network (it grows with
N as a power of N), intermediate in a random network (grows
slower, as ln N), and is the smallest (grows as ln ln N) in the
scale-free network we used (Barabási, 2014, ch. 4, p. 21). In effect,
for connectivity profiles, as well as for synaptic scaling parameter
ST that defined the strength of recurrent connections, it was the
“middle solution” that offered most robust collision detection
under conditions of moderate neural noise, while both weakly
connected and hyperconnected networks failed. This finding
suggests that developing tectal networks in Xenopus tadpoles
may employ a yet undescribed homeostatic mechanism to
balance relative abundance and strength of direct and recurrent
synaptic connections in principal tectal cells, keeping it in
the range that supports collision avoidance computations. Our
modeling data also suggests that collision detection may be
further improved by recurrent feedback inhibition (Khakhalin
et al., 2014; Liu et al., 2016), especially for networks that are
tightly connected and susceptible to epileptiform activity, or
when the level of spontaneous neuronal noise in the system
is high. We hypothesize that delayed feedback inhibition may
act as a safeguard, temporally limiting recurrent activity in the
network, and thus allowing for strong integration between direct
and recurrent inputs within the window before the inhibition
onset, without the risk of succumbing to epileptiform activity.

Overall, we demonstrated that recurrent networks with
inactivation can indeed underlie collision detection, and that
appropriate calibration and tuning of recurrent and direct
inputs to the tectum becomes more important as the levels
of noise generated by spontaneous activity in the network
increase.

METHODS

Spiking Cell Model
Our spiking cell model is governed by two ordinary differential
equations: a quadratic differential equation with hard reset for

voltage (V), and a linear differential equation for slow outwards
currents (U):

{

dV
dt
= 1

C ·
(

k1 (V − Vr) (V − Vth)− U + IM
)

dU
dt
= a(k2 (V − Vr)− U)

(1)

Here V represents cell membrane potential (the value of V is
dimensionless, but can be interpreted as membrane potential in
mV); U (also dimensionless) approximates both activation of
slow K+ channels and inactivation of Na+ channels; Vr stands
for resting membrane potential (typically −50); V th represents
voltage-gated Na+ channels threshold potential (a-value in the
−5 to −20 range, depending on the cell type); C is a tuning
parameter similar to cell membrane capacitance (large values of
C make cells spike slower); I is the external current injected in
the cell (in pA), andM represents the current adjustment for leak
and space clamp effects.

The parameter a controls the speed of inactivation (U), and
flips between two values, depending on whether the voltage is
increasing or decreasing, to better represent the dynamics of
recovery of physiological neurons fromNa channels inactivation,
as observed in Ciarleglio et al. (2015) during responses to cosine
current injections:

a =
{

a1, if
dV
dt

> 0

a2, otherwise
(2)

Of parameters k1 and k2, the latter was made dynamically
dependent on the value of external current injected in the cell (I):

k1 =
−4L

(Vth − Vr)
2

k2 =











b if 2 · L+ I
Vth −Vr

> b

0.2 if 2 · L+ I
Vth −Vr

< 0.2

2 · L+ I
Vth −Vr

otherwise

(3)

Here L and b are tuning parameters. With these adjustments,
compared to the original Izhikevichmodel (Izhikevich, 2003), the
parabolic and linear nullclines of the phase portrait (Figure 1A)
always intersect: as the parabolic nullcline moves up during
positive current injections, the linear nullcline changes its slope,
always passing through the lower point of the parabola. As a
result, the phase space retains a stable attractor for the phase
trajectory, ensuring that even for high currents the neuron never
switches to regular spiking, but generates a limited near-constant
number of spikes (Figure 1B). Moreover, unlike in bursting
and thalamo-cortical varieties of the Izhikevich model, where
fast inactivation is achieved by an increase in the value of U,
our neurons showed very little spike-frequency adaptation, with
almost constant inter-spike intervals within a burst, as it is the
case in real physiological neurons (Ciarleglio et al., 2015).

The equations were solved using an Euler method with time
step dt of 0.1 ms, except for the hard spiking reset that was
implemented algorithmically:

if V > Vspike, then :

{

V ← Vreset

U ← U + d
(4)
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where tuning parameter d contributes to inactivation speed. Here
and below, all modeling and analysis of results were performed in
Matlab (MathWorks Ltd., Natick, MA).

Cell Model Tuning and Calibration
We manually tuned four model spiking cells to represent
electrophysiological subtypes of tectal cells observed in Ciarleglio
et al. (2015). We also selected a representative physiological
cell for each group to serve as a general visual guide (cell
ids: 28,003, 9004, 1104, and 9003 from Ciarleglio et al. (2015)
respectively). For each of four cell types, our goal was to make
the model match as well as possible the mean number of spikes
for different injected currents, and the median latency and inter-
spike intervals, or at least be within one standard deviation
from it. The results of this manual tuning process are shown in
Figures 1E,F.

To make sure that model cells respond adequately to dynamic
inputs, we compared spiking of model and biological cells in
response to cosine current injections of different frequencies
(data not shown, but see (Ciarleglio et al., 2015) for details of the
protocol). As each model cell spiked in a deterministic fashion,
we had to introduce noise in each of the tuning parameters
before visually comparing average behavior of model cells to
that of biological cells. This rough comparison prompted us to
introduce different speeds for spiking inactivation and recovery
(parameters a1 and a2 in the model above), as depolarization-
associated inactivation of spiking in biological cells was typically
much slower than recovery during in-between hyperpolarization
periods.

The final set of model parameters for the four representative
cell types were chosen as follows:

Parameter 1-spike cell 3-spike cell 5-spike cell 10-spike cell

1/C 0.1036 0.0451 0.0444 0.0513

Vr −50 −50 −51.1765 −50

Vth −20 −14.1176 −6.353 −14.8235

Vspike 9.5294 10 10 10

Vreset −12 −12 −18.0588 −15.0588

M 0.34 0.5918 1.3406 0.5682

a1 0.022 0.02 0.0068 0.0106

a2 0.33 1.2 0.374 0.848

L −1.4118 −2.3824 −8.0294 −3.2647

d 50 20.6 31.4 6.1579

Network Population
The model tectal network consisted of 400 cells arranged
in a 20 × 20 grid. A fixed share of these cells was
assigned each of the four subtypes, according to the actual
distribution of spikiness in biological stage 49 tadpoles (Ciarleglio
et al., 2015): 20%, 25%, 40% and 15% respectively for naïve
animals (default state of the network, Figures 2–5), and
5%, 30%, 20% and 45% for the “overstimulated” network
(Figure 6). The cell types were randomly permuted for each
model run.

Synaptic Transmission
Synaptic connections were modeled as an excitatory
conductance-based transmission with exponential decay of
conductance over time after each pre-synaptic spike:

dGi

dt
= −

Gi

τ
+ q ·

∑

j

wijSj (5)

Ii = Gi · (E− V) (6)

whereGi represents synaptic conductance of cell i at this moment
of time; S—the vector of pre-synaptic cell spike-trains, with each
spike treated as a delta-function, w—the matrix of synaptic input
weights (synaptic strengths); q—scaling sensitivity of this neuron
type to synaptic inputs (set to 2.5, 2, 1.5, and 1.5 for neurons
of 4 spiking types respectively); τ—synaptic conductance decay
(25 ms); I—synaptic current; E—excitatory reversal potential
(0mV), and V—cell membrane potential at this moment of
time. We found that with these values of synaptic parameters,
the model produced subthreshold postsynaptic potentials that
were very similar in shape to average postsynaptic potentials
observed in biological experiments in response to synchronous
activation of visual inputs (Ciarleglio et al., 2015). We also
found that in response to suprathreshold synchronous synaptic
stimulation of biologically reasonable strength, our model cells
on average produced the same number of spikes (from 1 to 10)
that they produced in response to current injections. As dynamic
properties of recurrent intra-tectal synapses are not yet described
in the literature, we modeled them in the same way as synapses
from the retina. Our model did not include effects of short-
term pre-synaptic plasticity, such as paired-pulse facilitation or
paired-pulse depression.

For the model of overstimulated tectal network (Figure 6)
synaptic transmission was further adjusted: all synaptic
conductances (q) were reduced by 25%, and inward rectification
was introduced (Aizenman et al., 2002), reducing synaptic
currents by further 30% if the postsynaptic cell has a positive
membrane potential:

{

Ii = 0.7 · Gi (E− V) , if V > 0
Ii = Gi (E− V) , otherwise

(7)

Projections from RGCs to OT
Themodel retina consisted of 400 “retinal ganglion cells” (RGCs),
arranged in a 20 × 20 square matrix, and producing trains of
spikes in response to “visual stimulation” (see below). Each RGC
cell was connected to a square spanning 5 cells in each direction
from its “precise projection” in the tectal retinotopic network.
It led to a total projection size of about one half tectal network
width, roughly matching projection size in real Xenopus tectum
(Shen et al., 2011). The strength of synaptic inputs within this
projection square was inversely proportional to the Euclidian
distance between each tectal cell location (i, j) and the “precise
projection” point (ip, jp):

wRT =
wmax

1+
√

(

i− ip
)2 +

(

j− jp
)2

(8)
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OT Recurrent Connectivity
In the model tectum, we tested three different connectivity
profiles: uniform connectivity, in which each tectal cell was
equally probable to get connected to every other tectal cell;
local, in which only neighboring tectal cells were connected,
and scalefree, which gave the model properties of a small world
network. All three connection profiles were calibrated to deliver
similar total drive to the tectal cells (see below).

For the uniformly connected OT network, we first created
a random adjacency (connectivity) matrix, with every tectal
neuron connected to every other tectal neuron, and synaptic
weights wij uniformly distributed between 0 and 1. We then
removed self-connections, calculated the sum of all inputs
received by each tectal cell (total synaptic drive), and divided all
input weights for this cell to its total synaptic drive, thus scaling
the total sum of inputs received by each cell to 1:

for each i :
∑

j

wij = 1 (9)

For the locally connected OT network, we first connected
all neurons randomly and uniformly, as described above, and
removed all self-connections. We then scaled all weights between
tectal neurons based on the Euclidian distance between them
along the rectangular grid, making the average weight linearly
increase from zero for cells separated by 5 or more grid steps,
to strong connections between immediately neighboring cells:

w = ξ ·
{

1− D
5 , if D ≤ 5

0, otherwise
(10)

were D is the distance between cells, D =
√

(x1 − x2)
2 +

(

y1 − y2
)2
, and ξ is a random variable uniformly

distributed on [0, 1]. The width of 5 cells in each direction was
chosen to match the width of retinotectal connections seen in
Shen et al. (2011), and seems to roughly replicate the direct
measurements of tectal activation observed after local release of
glutamate in the tectum (Carlos Aizenman, unpublished data),
which is the best guess we can make in the absence of published
observations. In the same way as it was done for the uniform
network, we then calculated the total sum of inputs received
by each cell, and scaled inputs by this number, ensuring that
each cell in the network received the same total synaptic drive,
regardless of the size and position of its recurrent connectivity
“watershed.”

For the scale-free tectal network, we followed the version of
Barabasi algorithm (Barabasi and Albert, 1999) as implemented
in the SFNG Matlab script (George, 2006). After the scale-free
connection graph was constructed, the weights of all established
connections were randomized with a uniform distribution
between 0 and 1, and scaled (normalized) for each cell in the same
way as for uniform and local connectivity profiles.

Balancing Retinal and Recurrent Inputs
As relative strength of direct and recurrent inputs to tectal cells
in real Xenopus tecta are not known, we created a family of
model networks with different average strengths of retinotectal

and recurrent inputs, and performed a hyperparameter analysis
for this family of models. We multiplied all normalized synaptic
weights by two scaling factors: SR for retinal inputs, and ST
for tecto-tectal recurrent inputs. For SR = 1 the total synaptic
current in each model cell during full-field synchronous visual
stimulation reached 180 pA, which was 2–3 times higher than
highest amplitudes of total synaptic currents recorded in vivo in
Xenopus tadpole tectum (Xu et al., 2011; Khakhalin et al., 2014),
and was similar to strongest synaptic currents ever recorded in
tectal cells in response to optic chiasm stimulation (160–250 pA
in selected cells in Ciarleglio et al. (2015). As in our model, for
SR = 1 this extreme current was experienced by all cells in the
tectum, we could be sure that for SR = 1 the retinal inputs were
too strong (stronger than in a biological tectum), and so the
“realistic” SR value would lie somewhere between 0 and 1.

As isolated recurrent tectal currents are not well studied in
the biological tectum, we linked recurrent scaling coefficient ST
to the value of SR, in such a way that for ST = SR the total
recurrent drive experienced by tectal cells during massive spiking
in the tectumwould be on average the same as for the retinotectal
sensory drive. A practical interpretation of ST values is therefore
similar to that for SR: for ST = 0 all recurrent connections
were eliminated, while for ST = 1 recurrent connections were
obviously exaggerated, suggesting that the unknown “realistic”
value of ST would lie somewhere in the [0, 1] region. For
Figures 2, 3 we used values of SR = ST = 0.5, which produced
visual responses similar to that in Khakhalin et al. (2014), and
spontaneous recurrent events similar in strength to spontaneous
barrages in James et al. (2015). For hyperparameter search in
Figures 4–6, the values of SR and ST were sampled between 0
and 1 in steps of 0.1.

Visual Stimuli
The model retina was presented with four different black-and
white (binary) virtual visual stimuli. In case of instantaneous full-
field flash, the entire visual field went black at moment t = 0.
For crash, or linear looming stimulus, a black circle grew from
the center of the visual field and onto the edge, with the radius
of the circle linearly increasing with time over a course of 1 s, as
in Khakhalin et al. (2014). For scrambled, first a crash stimulus
was calculated, and then 400 pixels of which it consisted were
randomly rearranged (we used a different random permutation
in each computational experiment, but the permutation was fixed
during the experiment itself). Finally, a realistic stimulus was
also looming, but with the relative radius of the visual stimulus
increasing hyperbolically, to reproduce a perspective projection
during a frontal collision with a flat object:

R =
√
2n ·

1− v

1− vt
(11)

where n is the number of RGC neurons (400); v is a dimensionless
approach speed (0.1), and time t changed from 0 to 1 s.

RGC Spiking
All retinal cells (RGCs) were modeled as “off” cells, with
simple one-pixel receptive fields, together representing the 20
× 20 virtual black-and-white visual stimuli. The change of
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a virtual pixel from white to black triggered a “response” in
the corresponding RGC. Each response consisted of 4 spikes,
reflecting the average number of spikes recorded in loose cell-
attached recordings from individual RGCs in Xenopus tadpoles
(Demas et al., 2012; Miraucourt et al., 2016). The latency of
the first spike was distributed normally with the mean of 50
ms and standard deviation of 17 ms, while the inter-spike
intervals followed a gamma-distribution with mean of 50 ms and
standard deviation of 20 ms. With these parameter values, the
superposition of spike-trains generated by the model retina in
response to full-field flashes well reproduced the average response
in the optic nerve in response to full field stimulation (Khakhalin
et al., 2014).

Spontaneous Activity
When studying the effects of noise on stimulus selectivity
(Figure 5) we also introduced background spontaneous spiking
in the tectal network. In these computational experiments each
cell was equally likely to generate a “spontaneous spike” at
each time tick, with frequencies ranging from 0 to 0.3 Hz.
These “spontaneous spikes” were not modeled fully, and did not
affect the instantaneous membrane potential V of the cell itself,
but triggered postsynaptic potentials in all cells that received
innervation from the spiking cell, according to the weight of this
connections, in the same way as it would have happened for
a “normal,” evoked spike. Note that this approach to modeling
of spontaneous neuronal noise may somewhat exaggerate the
network effects of it, as it does not take into account the
inactivation of sodium channels after each spontaneous spike.
We also made all neuronal types generate the same amount of
spontaneous spikes, even though in a biological network high-
spiking neurons may generate more spontaneous activity than
low-spiking neurons.

Analysis
For the analysis of looming stimulus selectivity regions in the
(SR, ST) parametric space (Figures 4–6), we ran the model
25 times for each recurrent connectivity profile, stimulus type,
and the combination of SR and ST parameters. In each
run all other parameters of the network were randomized
(cell types assignments, synaptic connectivity weights, RGC
spiking patterns, and background spiking, where applicable).
For each model run we calculated the total number of spikes
generated by the network during 2 s of visual stimulus processing
(Figures 4A, 6A), and used signed F-values (the share of variance
in total spiking responses S, explained by the stimulus type as a
factor, taken with the sign of average response difference between
two stimuli) as a measure of statistical reliability of looming
stimulus selectivity:

F = sign
(

S1 − S2
)

·
explained variance

unexplained variance
= (12)

= sign
(

S1 − S2
)

·
var

([

S1 S2
])

var
([

S1 − S1 , S2 − S2
]) ·

N − 1

N − 2

where S1 and S2 are random variables representing total network
responses to two different stimulus types, each value obtained

in a different model run; square brackets stand for vector
concatenation (as in Matlab notation), and N is the total sample
size for values compared:

N = length (S1)+ length (S2) = 25+ 25 = 50 (13)

For the analysis of noise influence (Figure 5) we used an arbitrary
threshold of F = 10 to classify noisy networks with different
scaling parameters combinations as either selective for looming
stimuli or not, similar to how it is shown as differently colored
regions in Figure 4B.

When Cohen d effect size is reported, it was calculated as d
= 1m/s, where 1m is the difference of means, and s is a pooled
standard deviation across both groups.

Behavior
All animal experiments were performed in accordance
with Brown University Institutional Animal Care and Use
Committee standards, and were approved by the committee.
For behavioral experiments, Xenopus tadpoles were raised
as described previously (Ciarleglio et al., 2015) until they
reached developmental stage 48–49 (Nieuwkoop and Faber,
1994). At this point they were either put to experiment directly
from the incubator (“naïve” group), or were first stimulated
by lines of green LEDs flashing in sequence at 1 Hz for 4 h
(Aizenman et al., 2003; Dong et al., 2009; Ciarleglio et al.,
2015). One by one, tadpoles were then placed in a Petri dish,
and each of them was presented with a black circle 11 mm
in diameter projected on the floor of the chamber. Every
30 s the circle was sent toward the tadpole at a speed of 1.4
cm/s, to elicit a collision avoidance response, as described in
Khakhalin et al. (2014). Tadpole behavior was recorded with
a video camera, tracked in Noldus EthoVision XT (Noldus
Information Technology, Leesburg, VA, USA), and analyzed
offline. Each tadpole was presented with 8–10 stimuli (average
of 9.8), and avoidance responses were counted. Trajectory
analysis showed that neither average distance (1.5 ± 0.7 cm),
nor average speed of successful avoidance responses (4.0 ± 3.8
cm/s) were different between naïve and overstimulated tadpoles
(Mann-Whitney p = 0.8 and 0.2 respectively), suggesting
that we observed a true change in collision detection and
avoidance responsiveness in the sensory and sensorimotor
regions of the brain, and not a difference in avoidance maneuver
implementation.

AUTHOR CONTRIBUTIONS

EJ and AK designed the model and ran the computational
experiments. CR designed, ran and analyzed the behavioral
experiments. CA and AK oversaw the project, contributed to
the overall experimental design and interpretation. All authors
contributed to the manuscript.

ACKNOWLEDGMENTS

We thank Dr. Eugene Izhikevich and Dr. Stephanie
Jones for their helpful feedback on early versions of this

Frontiers in Neural Circuits | www.frontiersin.org 12 November 2016 | Volume 10 | Article 95

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Jang et al. Looming Detection Emergence in the Optic Tectum

manuscript, and Louis Miraucourt and Edward Ruthazer
for sharing raw data from their retinal study. This work
was funded by NSF IOS-1353044, and was a recipient

of the Faculty for Undergraduate Neuroscience (FUN)
Travel Award at SfN 2014, sponsored by AD Instruments
(Milford, MA).

REFERENCES

Aizenman, C. D., Akerman, C. J., Jensen, K. R., and Cline, H. T. (2003). Visually

driven regulation of intrinsic neuronal excitability improves stimulus detection

in vivo. Neuron 39, 831–842. doi: 10.1016/S0896-6273(03)00527-0

Aizenman, C. D., Munoz-Elias, G., and Cline, H. T. (2002). Visually driven

modulation of glutamatergic synaptic transmission is mediated by the

regulation of intracellular polyamines. Neuron 34, 623–634. doi: 10.1016/

S0896-6273(02)00674-8

Barabási, A. L. (2014). Network Science Book. Boston, MA: Center for Complex

Network, Northeastern University. Available online at: http://barabasi.com/

networksciencebook/

Barabasi, A. L., and Albert, R. (1999). Emergence of scaling in random networks.

Science 286, 509–512. doi: 10.1126/science.286.5439.509

Baranauskas, G., Svirskiene, N., and Svirskis, G. (2012). 20Hz membrane potential

oscillations are driven by synaptic inputs in collision-detecting neurons in

the frog optic tectum. Neurosci. Lett. 528, 196–200. doi: 10.1016/j.neulet.2012.

09.009

Bianco, I. H., Kampff, A. R., and Engert, F. (2011). Prey capture behavior evoked

by simple visual stimuli in larval zebrafish. Front. Syst. Neurosci. 5:101. doi: 10.

3389/fnsys.2011.00101

Bollmann, J. H., and Engert, F. (2009). Subcellular topography of visually driven

dendritic activity in the vertebrate visual system. Neuron 61, 895–905. doi: 10.

1016/j.neuron.2009.01.018

Burgess, H. A., and Granato, M. (2007). Sensorimotor gating in larval zebrafish. J.

Neurosci. 27, 4984–4994. doi: 10.1523/JNEUROSCI.0615-07.2007

Card, G., and Dickinson, M. (2008). Performance trade-offs in the flight initiation

of Drosophila. J. Exp. Biol. 211, 341–353. doi: 10.1242/jeb.012682

Ciarleglio, C. M., Khakhalin, A. S., Wang, A. F., Constantino, A. C., Yip, S. P., and

Aizenman, C. D. (2015). Multivariate analysis of electrophysiological diversity

of Xenopus visual neurons during development and plasticity. Elife 4:e11351.

doi: 10.7554/eLife.11351

Demas, J. A., Payne, H., and Cline, H. T. (2012). Vision drives correlated activity

without patterned spontaneous activity in developing Xenopus retina. Dev.

Neurobiol. 72, 537–546. doi: 10.1002/dneu.20880

de Vries, S. E., and Clandinin, T. R. (2012). Loom-sensitive neurons link

computation to action in the Drosophila visual system. Curr. Biol. 22, 353–362.

doi: 10.1016/j.cub.2012.01.007

Dong, W., Lee, R. H., Xu, H., Yang, S., Pratt, K. G., Cao, V., et al. (2009). Visual

avoidance in Xenopus tadpoles is correlated with the maturation of visual

responses in the optic tectum. J. Neurophysiol. 101, 803–815. doi: 10.1152/jn.

90848.2008

Dunn, T. W., Gebhardt, C., Naumann, E. A., Riegler, C., Ahrens, M. B., Engert,

F., et al. (2016). Neural circuits underlying visually evoked escapes in larval

zebrafish. Neuron 89, 613–628. doi: 10.1016/j.neuron.2015.12.021

Felch, D. L., Khakhalin, A. S., and Aizenman, C. D. (2016). Multisensory

integration in the developing tectum is constrained by the balance of excitation

and inhibition. Elife 5:e15600. doi: 10.7554/elife.15600

Fotowat, H., Fayyazuddin, A., Bellen, H. J., and Gabbiani, F. (2009). A novel

neuronal pathway for visually guided escape in drosophila melanogaster. J.

Neurophysiol. 102, 875–885. doi: 10.1152/jn.00073.2009

Fotowat, H., Harrison, R. R., and Gabbiani, F. (2011). Multiplexing of motor

information in the discharge of a collision detecting neuron during escape

behaviors. Neuron 69, 147–158. doi: 10.1016/j.neuron.2010.12.007

Frost, B. J., and Sun, H. (2004). The biological bases of time-to-collision

computation. Adv. Psychol. 135, 13–37. doi: 10.1016/S0166-4115(04)

80004-9

Gabbiani, F., Krapp, H. G., Hatsopoulos, N., Mo, C. H., Koch, C., and

Laurent, G. (2004). Multiplication and stimulus invariance in a looming-

sensitive neuron. J. Physiol. Paris 98, 19–34. doi: 10.1016/j.jphysparis.2004.

03.001

Gabbiani, F., Krapp, H. G., Koch, C., and Laurent, G. (2002). Multiplicative

computation in a visual neuron sensitive to looming. Nature 420, 320–324.

doi: 10.1038/nature01190

George, M. (2006). “B-A scale-free network generation and visualization,” in

Mathworks File Exchange. Available online at: https://www.mathworks.com/

matlabcentral/fileexchange/11947-b-a-scale-free-network-generation-and-

visualization

Herberholz, J., and Marquart, G. D. (2012). Decision Making and Behavioral

Choice during Predator Avoidance. Front. Neurosci. 6:125. doi: 10.3389/fnins.

2012.00125

Imaizumi, K., Shih, J. Y., and Farris, H. E. (2013). Global Hyper-synchronous

Spontaneous Activity in the Developing Optic Tectum. Sci. Rep. 3:1552. doi: 10.

1038/srep01552

Ishikane, H., Gangi, M., Honda, S., and Tachibana, M. (2005). Synchronized retinal

oscillations encode essential information for escape behavior in frogs. Nat.

Neurosci. 8, 1087–1095. doi: 10.1038/nn1497

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2010). Hybrid spiking models. Philos. Trans. A Math. Phys. Eng.

Sci. 368, 5061–5070. doi: 10.1098/rsta.2010.0130

James, E. J., Gu, J., Ramirez-Vizcarrondo, C. M., Hasan, M., Truszkowski, T.

L., Tan, Y., et al. (2015). Valproate-induced neurodevelopmental deficits in

xenopus laevis tadpoles. J. Neurosci. 35, 3218–3229. doi: 10.1523/JNEUROSCI.

4050-14.2015

Jones, P. W., and Gabbiani, F. (2010). Synchronized neural input shapes stimulus

selectivity in a collision-detecting neuron. Curr. Biol. 20, 2052–2057. doi: 10.

1016/j.cub.2010.10.025

Kang, H. J., and Li, X. H. (2010). Response properties and receptive field

organization of collision-sensitive neurons in the optic tectum of bullfrog, Rana

catesbeiana. Neurosci. Bull. 26, 304–316. doi: 10.1007/s12264-010-0306-8

Khakhalin, A. S., and Aizenman, C. D. (2012). GABAergic transmission and

chloride equilibrium potential are not modulated by pyruvate in the developing

optic tectum of Xenopus laevis tadpoles. PLoS ONE 7:e34446. doi: 10.1371/

journal.pone.0034446

Khakhalin, A. S., Koren, D., Gu, J., Xu, H., and Aizenman, C. D. (2014). Excitation

and inhibition in recurrent networks mediate collision avoidance in Xenopus

tadpoles. Eur. J. Neurosci. 40, 2948–2962. doi: 10.1111/ejn.12664

Kuras, A., Baginskas, A., and Batuleviciene, V. (2006). Non-NMDA and NMDA

receptors are involved in suprathreshold excitation of network of frog tectal

neurons by a single retinal ganglion cell. Neurosci. Res. 54, 328–337. doi: 10.

1016/j.neures.2005.12.014

Liu, Y. J., Wang, Q., and Li, B. (2011). Neuronal responses to looming objects in

the superior colliculus of the cat. Brain Behav. Evol. 77, 193–205. doi: 10.1159/

000327045

Liu, Z., Ciarleglio, C.M., Hamodi, A. S., Aizenman, C. D., and Pratt, K. G. (2016). A

population of gap junction-coupled neurons drives recurrent network activity

in a developing visual circuit. J. Neurophysiol. 115, 1477–1486. doi: 10.1152/jn.

01046.2015

Miraucourt, L. S., Tsui, J., Gobert, D., Desjardins, J. F., Schohl, A., Sild, M.,

et al. (2016). Endocannabinoid signaling enhances visual responses through

modulation of intracellular chloride levels in retinal ganglion cells. Elife

5:e15932. doi: 10.7554/elife.15932

Nieuwkoop, P. D., and Faber, J. (1994). Normal Table of Xenopus Laevis (Daudin):

A Systematical and Chronological Survey of the Development from the Fertilized

Egg till the End of Metamorphosis. New York, NY: Garland Pub.

Peron, S., and Gabbiani, F. (2009). Spike frequency adaptation mediates looming

stimulus selectivity in a collision-detecting neuron. Nat. Neurosci. 12, 318–326.

doi: 10.1038/nn.2259

Pratt, K. G., and Aizenman, C. D. (2007). Homeostatic regulation of intrinsic

excitability and synaptic transmission in a developing visual circuit. J. Neurosci.

27, 8268–8277. doi: 10.1523/JNEUROSCI.1738-07.2007

Frontiers in Neural Circuits | www.frontiersin.org 13 November 2016 | Volume 10 | Article 95

https://doi.org/10.1016/S0896-6273(03)00527-0
https://doi.org/10.1016/S0896-6273(02)00674-8
http://barabasi.com/networksciencebook/
http://barabasi.com/networksciencebook/
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/j.neulet.2012.09.009
https://doi.org/10.3389/fnsys.2011.00101
https://doi.org/10.1016/j.neuron.2009.01.018
https://doi.org/10.1523/JNEUROSCI.0615-07.2007
https://doi.org/10.1242/jeb.012682
https://doi.org/10.7554/eLife.11351
https://doi.org/10.1002/dneu.20880
https://doi.org/10.1016/j.cub.2012.01.007
https://doi.org/10.1152/jn.90848.2008
https://doi.org/10.1016/j.neuron.2015.12.021
https://doi.org/10.7554/elife.15600
https://doi.org/10.1152/jn.00073.2009
https://doi.org/10.1016/j.neuron.2010.12.007
https://doi.org/10.1016/S0166-4115(04)80004-9
https://doi.org/10.1016/j.jphysparis.2004.03.001
https://doi.org/10.1038/nature01190
https://www.mathworks.com/matlabcentral/fileexchange/11947-b-a-scale-free-network-generation-and-visualization
https://www.mathworks.com/matlabcentral/fileexchange/11947-b-a-scale-free-network-generation-and-visualization
https://www.mathworks.com/matlabcentral/fileexchange/11947-b-a-scale-free-network-generation-and-visualization
https://doi.org/10.3389/fnins.2012.00125
https://doi.org/10.1038/srep01552
https://doi.org/10.1038/nn1497
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1098/rsta.2010.0130
https://doi.org/10.1523/JNEUROSCI.4050-14.2015
https://doi.org/10.1016/j.cub.2010.10.025
https://doi.org/10.1007/s12264-010-0306-8
https://doi.org/10.1371/journal.pone.0034446
https://doi.org/10.1111/ejn.12664
https://doi.org/10.1016/j.neures.2005.12.014
https://doi.org/10.1159/000327045
https://doi.org/10.1152/jn.01046.2015
https://doi.org/10.7554/elife.15932
https://doi.org/10.1038/nn.2259
https://doi.org/10.1523/JNEUROSCI.1738-07.2007
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Jang et al. Looming Detection Emergence in the Optic Tectum

Pratt, K. G., Dong, W., and Aizenman, C. D. (2008). Development and spike

timing-dependent plasticity of recurrent excitation in the Xenopus optic

tectum. Nat. Neurosci. 11, 467–475. doi: 10.1038/nn2076

Pratt, K. G., Hiramoto, M., and Cline, H. T. (2016). An evolutionarily conserved

mechanism for activity-dependent visual circuit development. Front. Neural

Circuits 10:79. doi: 10.3389/fncir.2016.00079

Preuss, T., Osei-Bonsu, P. E., Weiss, S. A., Wang, C., and Faber, D. S.

(2006). Neural representation of object approach in a decision-making

motor circuit. J. Neurosci. 26, 3454–3464. doi: 10.1523/JNEUROSCI.5259-

05.2006

Schilling, T., and Borst, A. (2015). Local motion detectors are required for the

computation of expansion flow-fields. Biol. Open 4, 1105–1108. doi: 10.1242/

bio.012690

Shen, W., McKeown, C. R., Demas, J. A., and Cline, H. T. (2011). Inhibition

to excitation ratio regulates visual system responses and behavior in vivo. J.

Neurophysiol. 106, 2285–2302. doi: 10.1152/jn.00641.2011

Staley, K. J., Otis, T. S., andMody, I. (1992). Membrane properties of dentate gyrus

granule cells: comparison of sharp microelectrode and whole-cell recordings. J.

Neurophysiol. 67, 1346–1358.

Sun, H. J., and Frost, B. J. (1998). Computation of different optical variables of

looming objects in pigeon nucleus rotundus neurons.Nat. Neurosci. 1, 296–303.

doi: 10.1038/1110

Temizer, I., Donovan, J. C., Baier, H., and Semmelhack, J. L.

(2015). A visual pathway for looming-evoked escape in larval

zebrafish. Curr. Biol. 25, 1823–1834. doi: 10.1016/j.cub.2015.

06.002

Vagnoni, E., Lourenco, S. F., and Longo,M. R. (2012). Threat modulates perception

of looming visual stimuli. Curr. Biol. 22, R826–R827. doi: 10.1016/j.cub.2012.

07.053

Xu, H., Khakhalin, A. S., Nurmikko, A. V., and Aizenman, C. D. (2011). Visual

experience-dependent maturation of correlated neuronal activity patterns

in a developing visual system. J. Neurosci. 31, 8025–8036. doi: 10.1523/

JNEUROSCI.5802-10.2011

Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A., and Poo, M. (1998). A critical

window for cooperation and competition among developing retinotectal

synapses. Nature 395, 37–44. doi: 10.1038/25665

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Jang, Ramirez-Vizcarrondo, Aizenman and Khakhalin. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 14 November 2016 | Volume 10 | Article 95

https://doi.org/10.1038/nn2076
https://doi.org/10.3389/fncir.2016.00079
https://doi.org/10.1523/JNEUROSCI.5259-05.2006
https://doi.org/10.1242/bio.012690
https://doi.org/10.1152/jn.00641.2011
https://doi.org/10.1038/1110
https://doi.org/10.1016/j.cub.2015.06.002
https://doi.org/10.1016/j.cub.2012.07.053
https://doi.org/10.1523/JNEUROSCI.5802-10.2011
https://doi.org/10.1038/25665
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

	Emergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum
	Introduction
	Results
	The Computational Model
	Activation in Response to Visual Stimuli
	Parametric Analysis
	Effects of Spontaneous Neuronal Noise
	Effects of Sensory Experience

	Discussion
	Methods
	Spiking Cell Model
	Cell Model Tuning and Calibration
	Network Population
	Synaptic Transmission
	Projections from RGCs to OT
	OT Recurrent Connectivity
	Balancing Retinal and Recurrent Inputs
	Visual Stimuli
	RGC Spiking
	Spontaneous Activity
	Analysis
	Behavior

	Author contributions
	Acknowledgments
	References


