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Background: The spatiotemporal patterns of correlated neural activity during the
transition from wakefulness to general anesthesia have not been fully characterized.
Correlation analysis of blood-oxygen-level dependent (BOLD) functional magnetic
resonance imaging (fMRI) allows segmentation of the brain into resting-state networks
(RSNs), with functional connectivity referring to the covarying activity that suggests
shared functional specialization. We quantified the persistence of these correlations
following the induction of general anesthesia in healthy volunteers and assessed for a
dynamic nature over time.

Methods: We analyzed human fMRI data acquired at 0 and 1.2% vol sevoflurane. The
covariance in the correlated activity among different brain regions was calculated over
time using bounded Kalman filtering. These time series were then clustered into eight
orthogonal motifs using a K-means algorithm, where the structure of correlated activity
throughout the brain at any time is the weighted sum of all motifs.

Results: Across time scales and under anesthesia, the reorganization of interactions
between RSNs is related to the strength of dynamic connections between member pairs.
The covariance of correlated activity between RSNs persists compared to that linking
individual member pairs of different RSNs.

Conclusions: Accounting for the spatiotemporal structure of correlated BOLD signals,
anesthetic-induced loss of consciousness is mainly associated with the disruption of
motifs with intermediate strength within and between members of different RSNs.
In contrast, motifs with higher strength of connections, predominantly with regions-
pairs from within-RSN interactions, are conserved among states of wakefulness and
sevoflurane general anesthesia.

Keywords: resting-state functional MRI, dynamic functional connectivity, sevoflurane, spatiotemporal analysis,
Kalman filtering

Frontiers in Neural Circuits | www.frontiersin.org 1

December 2016 | Volume 10 | Article 107


http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
https://doi.org/10.3389/fncir.2016.00107
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2016.00107&domain=pdf&date_stamp=2016-12-27
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive
https://creativecommons.org/licenses/by/4.0/
mailto:palancab@wustl.edu
https://doi.org/10.3389/fncir.2016.00107
http://journal.frontiersin.org/article/10.3389/fncir.2016.00107/abstract
http://loop.frontiersin.org/people/357647/overview
http://loop.frontiersin.org/people/50550/overview
http://loop.frontiersin.org/people/393742/overview

Kafashan et al.

Sevoflurane Alters Spatiotemporal FC Motifs

1. INTRODUCTION

The induction of general anesthesia incurs a dramatic change
in phenotype compared to wakefulness. Substantial progress has
been made at identifying the molecular targets (Franks, 2008)
and subcortical arousal systems (Schwartz et al., 2010) perturbed
in this transition. Correlated electroencephalographic activity
among distributed scalp regions also changes substantively,
suggesting concurrent perturbation in the networks underlying
cognition and behavior (Jordan et al, 2013; Akeju et al,
2014a,b; Blain-Moraes et al., 2014, 2015; Kaskinoro et al,
2015; Purdon et al, 2015). While prior investigations have
evaluated the temporal dynamics of electroencephalographic
signatures during anesthetized states (Chander et al., 2014;
Hudson et al, 2014), the characterization of fluctuations
in neural activity across both space and time have been
lacking. Functional magnetic resonance imaging (fMRI)
studies have shown that the temporal variability in the
blood-oxygen-level dependent (BOLD) signal varies between
wakefulness and general anesthesia (Huang et al, 2014,
2016).

The disruption of resting-state networks (RSNs) is a
candidate mechanism whereby anesthetic agents induce
sedation and unconsciousness. Each RSN encompasses
brain regions of presumably shared functional specialization
that demonstrate marked zero time lag correlation among
surrogates of neural activity. This phenomenon of functional
connectivity recapitulates the patterns of brain activation
associated with particular stimulus or task. These findings

evoke a complementary line of inquiring regarding
which components of the functional neuroarchitecture
underlying wakefulness remain preserved during the

anesthetized state. General anesthesia appear to perturb
RSNs in both animals (Vincent et al, 2007) and humans
(Peltier et al., 2005; Boveroux et al., 2010; Palanca et al,
2015).

However, these previous approaches rely on the classical
functional connectivity (FC) method of obtaining a single
correlation metric over an entire recording. Such an approach
obscures changes that might occur in the temporal dynamics of
the FC, i.e., dynamic functional connectivity. We hypothesized
that analyzing these temporal dynamics (the dynamical
functional connectivity) would reveal additional anesthesia-
induced disruptions within and between RSNs.  While
different approaches (Kang et al., 2011) have been developed,
interpretability and statistical evaluation of such approaches
remain unresolved (Hutchison et al., 2013a; Calhoun et al., 2014;
Keilholz, 2014), and no standard consensus exists. Prior work to
assess these dynamics in the anesthetized state has employed a
framework wherein brain activation transitions within a discrete
set of exclusive states (Barttfeld et al., 2015). However, with this
approach, it is difficult to disassociate particular region pairs in
terms of their temporal dynamics. In other words, certain region
pairs may evolve slowly, while other evolve quickly, giving the
appearance of a discrete set of states (Hutchison et al., 2013b;
Amico et al, 2014; Liang et al., 2015; Thompson et al., 2015).
Moreover, there are no empirical bounds on the number/types

of states that exist during wakefulness and altered states of
consciousness.

Extending on prior work (Kafashan et al., 2014), we studied
how dynamic functional connectivity changes in subjects who
underwent general anesthesia induced by the halogenated ether,
sevoflurane. We sought to understand how FC among different
pairs of cortical regions covary across time and arousal state.
To this end, we used an unsupervised clustering method
to separate the FC time series into groups of region pairs
that exhibit similar dynamic functional connectivity temporal
profiles—spatiotemporal motifs that exhibit similar dynamics
of correlated activity that are coexpressed at each point in
time. Overall, our results quantify the extent of conservation
within the functional architecture of the brain despite robust
pharmacological perturbation, and the identification of dynamic
components that are more transient and less robust to anesthesia.

2. MATERIALS AND METHODS

2.1. Participants and Data Acquisition
Secondary analysis of data was carried out as previously
described (Palanca et al, 2015). Briefly, healthy human
volunteers underwent structural and functional MRI during
quiet wakefulness and while rendered unresponsive by 1.2 vol%
sevoflurane. Volunteers remained spontaneously ventilating by
mask without assisted ventilation. Maintenance of general
anesthesia and unconsciousness was assessed by lack of response
to noxious finger bed pressure. Arterial carbon dioxide levels
partial pressures were monitored. At least 15 min of equilibration
were alloted at 1.2% sevoflurane prior to imaging. Data were
acquired using a 3 Tesla Siemens Trio scanner (Siemens,
Erlangen, Germany) and a 12-channel head coil. During both
experimental conditions, at least two 7.5min T2"-weighted
scans (TR 2200 ms, TE 27 ms, FA 90 degrees, FOV 256 mm, 36
slices/volume, 200 volumes/run, 4 mm isotropic) of resting-state
echoplanar BOLD images were acquired. Structural images were
also acquired, including a T1-weighed (Magnetization Prepared
Rapid Gradient Echo, MPRAGE: TR 2400 ms, TE 3.16 ms, FA
8 degrees, FOV 256 mm, 176 slices, 1 mm isotropic) and T2-
weighted scans (TR 6280 ms, TE 88 ms, FA 120 degrees, FOV
256 mm, 36 slices, 1 x 1 x 4mm).

2.2. BOLD fMRI Data Pre-processing

Following established pre-processing of BOLD images (Shulman
etal,, 2010), additional maneuvers were undertaken for magnetic
field distortion correction and generation of physiologic nuisance
regressors. Strict frame censoring of motion artifact (DVARS
< 0.4 root-mean square BOLD signal change across adjacent
image frames (Power et al., 2014) and regression of whole brain
global signal were both utilized to minimize artifacts related to
micromovements of the head. While global signal regression
remains a controversial technique, it has been shown to be
effective at reducing the spurious changes in correlated BOLD
signals that are introduced by motion of the head (Power et al.,
2012, 2014; Yan et al,, 2013).

Frontiers in Neural Circuits | www.frontiersin.org

December 2016 | Volume 10 | Article 107


http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Kafashan et al.

Sevoflurane Alters Spatiotemporal FC Motifs

2.3. Cortical Segmentation into
Resting-State Networks

Cortical gray matter was segmented into 6 x 6 x 6 mm regions.
Instead of 9 x 9 x 9mm regions as in the prespecified analysis
(Palanca et al., 2015), we used a higher spatial sampling for
two reasons: (1) to maximize the likelihood of an individual
voxel to include gray matter of only one RSN and (2) to
maximize the spatial independence between sampled voxels. A
winner-take-all algorithm selected 1076 regions with at least
50% gray matter and more than 90% probability of exclusive
assignment to one of the seven RSNs. While there is no
consensus for the precise brain regions associated with each RSN,
we used a previously published parcellation method (Hacker
et al., 2013). In this method, a supervised classifier (multi-layer
perceptron) was trained to associate BOLD correlation maps
corresponding to predefined seeds with specific RSN identities.
This included regions of the Default Mode Network (DMN,
Sestieri et al., 2010, 2011), a collection of brain areas that
are more active at rest than during performing a particular
task. The Dorsal Attention Network (DAN, Shulman et al,
2009; Tosoni et al, 2013), is thought to be responsible for
maintaining attention to locations or features, and distinct from
the network involved in detecting novel stimuli and initiating
shifts of attention, referred to as the Ventral Attention Network
(VAN, Corbetta et al., 2000; Astafiev et al, 2004; Kincade
et al.,, 2005). Regions of the Frontal Parietal Control Network
(FPC, Dosenbach et al.,, 2007) are thought to be involved in
working memory and in configuring the brain’s moment-to-
moment information processing. Visual (VIS, Sylvester et al.,
2007, 2008, 2009) and language (LAN, Sestieri et al., 2010, 2011)
networks are responsible for visual and language processing,
respectively. Finally, regions of the Somatomotor Network
(SMN, Corbetta et al., 2000; Kincade et al., 2005; Petacchi
et al., 2005) are hypothesized to be involved in active processing
of motor and tactile sensory tasks. Repeated pseudorandom
resampling of these regions was performed to select 15
representatives of the seven RSN for each iteration. These
subsampled data of 105 voxels were used for our spatiotemporal
decomposition.

2.4. Spatiotemporal Analysis of Functional

Connectivity

Dynamic functional connectivity describes the phenomenon that
different brain regions of similar function covary in the time
and may, or may not, correspond to anatomical connections
(Damoiseaux and Greicius, 2009). Regardless of the metric
used to determine this association, the outcome amounts to a
weighted graph, where the recorded regions are the nodes and the
statistical associations constitute the edge weights (Friston, 2011),
Figure 1B. For electrophysiological recordings and recently for
fMRI signals (Kaminski et al., 2001; Friston et al., 2003; Mitra and
Raichle, 2016), increasing effort has been directed at elucidating
these weights in a directed fashion (e.g., Blinowska 2011; Bressler
and Seth 2011). The Pearson correlation coefficient to assess
zero-lag correlation between paired brain regions, remains the
conventionally used functional connectivity metric.

Characterization of large-scale brain networks using BOLD
resting-state functional connectivity MRI is typically based on the
assumption of network stationarity across the duration of scan.
The assumption of stationarity provides a convenient framework
in which to examine and interpret results. Approaches built
upon these assumptions have produced a wealth of literature
expanding our knowledge of large-scale brain networks. Recent
studies in humans have questioned this assumption by showing
that within-network functional connectivity fluctuates on the
order of seconds to minutes (Jones et al., 2012; Kiviniemi
et al., 2011). Resting-state functional connectivity is not static;
RSNs can exhibit non-stationary, spontaneous relationships
irrespective of conscious, cognitive processing (Allen et al., 2012;
Hutchison et al., 2013b). The findings imply that mechanistically
important network information can be missed when using
average functional connectivity as the single network measure.
The changes of the functional networks of the brain are generally
seen as movements from one short term state to another,
rather than continuous shifts (Hutchison et al., 2013a). Many
studies have shown reproducible patterns of network activity
that move throughout the brain. Sliding window analysis is
the most common method used in the analysis of dynamic
functional connectivity. Sliding window analysis is performed by
conducting analysis on a set number of scans in an fMRI session.

2.4.1. Estimation of Sliding Window Temporal
Covariance Matrices

In order to characterize the temporal dynamics of functional
connectivity, first we used a 5-frame window (11 s, adjacent
non-overlapping windows) to generate covariance matrices Sy
for each subject and at both 0 and 1.2% sevoflurane. Then, we
estimated covariance from the regularized precision matrix using
the graphical LASSO method by placing a penalty on the £; norm
of the precision matrix (®) to promote sparsity (Friedman et al.,
2008; Monti et al., 2014). It assigns a large cost to matrices with
large absolute values, thus effectively shrinking elements toward
zero. For each sliding window, k, the following log-likelihood
optimization problem is maximized:

L(O) = log det(Or) — tr(SkOk) + Al[Oll¢,» 1)

where the regularization parameter, A, allows us to balance
the tradeoff between log-likelihood and the number of non-
zero coefficients in the inverse covariance matrix, which was
set to 0.1 in our analyses. After estimating the covariance
matrix from (1), correlation trajectories for each region pair
were calculated using a bounded Kalman filtering approach
explained in Supplementary Material, Section 1. The developed
filter tracked correlation dynamics, and produced estimates of
correlation trajectories that are more precise than those obtained
directly from measurements, i.e., obtained over sliding windows.
After that, correlation time series were concatenated across
subjects and both arousal states.

2.4.2. Determination of Spatiotemporal Motifs
Using a k-means algorithm, we defined 8 orthogonal clusters
with region pair membership defined by the strength of
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covarying correlation trajectories. We selected 8 clusters based
on analysis of model fit assessed by Akaike Information Criterion
(AIC) (Akaike, 1974), (Supplemental Material, Section 2). More
detail on this approach is provided elsewhere (Kafashan et al.,
2014). Schematic of spatiotemporal decomposition of dynamic
functional connectivity is shown in Figure 1.

Our spatiotemporal motif analysis can be summarized as
follow: (1) Extracting correlation trajectory for all region-pairs
from each subject and at a specific arousal state, and filtering the
correlation trajectories utilizing our developed bounded Kalman
filter (Figure 1A). (2) Applying k-means technique to the filtered
correlation trajectories to extract orthogonal motifs (Figure 1C).

Simulations on synthesized data demonstrate efficacy and
utility of our approach for differentiating different patterns of
dynamic fluctuations among spatially distributed clusters of brain
regions with identical mean average correlation, (Supplementary
Material, Figure 2).

3. RESULTS

3.1. Widespread Conservation of
Functional Connectivity Structure under

Sevoflurane Anesthesia

We first asked, how similar, on average, is the correlation
structure during wakefulness compared to that during
sevoflurane general anesthesia. This analysis complemented
our earlier analysis (Palanca et al., 2015) that suggested key
alterations within the DMN and VAN. Using both a simple
correlation (Figure 2) for quantifying similarity across average
correlation matrices (0 and 1.2%), we observed a high degree of
conservation of functional connectivity within RSNs regardless
of arousal state. Matrices showing the average correlation
for the two conditions are similar (Figure2A). At a region
level, the standard deviation across volunteers is 0.13 and
mainly 0.15. Figure 2B shows the standard error of mean
(SEM) of average correlation (0 and 1.2%). We assessed
the similarity between the two conditions by calculating
the correlation of the mean correlation values. The overall
similarity of all correlations among brains regions at 0 and
1.2% sevoflurane was 0.76. Thus, the correlated activity during
wakefulness accounts for roughly 58% of that during sevoflurane
general anesthesia. The greatest similarity was within RSN,
as summarized in Figure 2C, with low variance across our
participants (Figure 2D). To allow feasibility for subsequent
spatiotemporal analysis, we reduced dimensionality using
random subsampling of all regions, 15 per RSN. Again, similarity
in the average correlation structure at 0 and 1.2% sevoflurane
was conserved (Figure 2E), mainly for within RSN comparisons,
with variance across subjects. Figure 3A demonstrates the
average FC over subjects at 0% compared to the difference
of average FC at both conditions (0-1.2%). Figure 3B shows
changes in the average FC for both conditions (1.2-0%) as a
function of the average FC at 0%. Furthermore, average FC at
1.2% vs. average FC at 0% is depicted in Figure 3C. Note in
Figure 3 that within-RSN connectivity decreases slightly during
anesthesia.

3.2. Correlated Brain Activity during
Sevoflurane General Anesthesia Can Be
Decomposed into Dynamic Spatiotemporal
Motifs

Our first aim was to determine whether the temporal trajectory
of correlation among pairs of brain regions respect RSN
boundaries. We separately decomposed the correlations among
fMRI BOLD signals acquired at 0 and 1.2% sevoflurane into
eight clusters. Each cluster represents correlations between
paired brain regions that follow a similar pattern over time.
The resulting spatiotemporal motifs were ranked by average
correlation among members. Figure 4 shows second and third
spatial (Figures 4A,F) and temporal (Figures 4D,ELJ) motifs of
the decomposition.

We carried out spatiotemporal decomposition of the
correlated brain activity measured at 0 and 1.2% sevoflurane.
These motifs were determined independently as we could not
assume that the motifs would be identical. Figure 5 shows all
temporal motifs. All spatial motifs are shown in Figure 6. Three
types of motifs were observed. The obtained spatiotemporal
motifs are for one subsample. However, similar results were
observed for repeated subsamples generated randomly (data
not shown). Motifs 1 and 2 contained mainly within-RSN
pairings with high mean correlation strength and appear
relatively conserved following the transition from wakefulness
to anesthetic-induced unconsciousness. Other motifs, 3-4,
were composed of region pairs with intermediate correlation
strength between interactions/connections within and between
resting state networks. Their membership and correlation
strength change between 0 and 1.2% sevoflurane. Clustering also
generated motifs mainly in between-RSN region pairs of low or
intermediate correlation (motifs 5-7) and a motif with negligible
correlation (motif 8).

We quantified the similarity between motifs during
wakefulness and 1.2% sevoflurane, compared the number
of edges that were in each motif among the two conditions,
and found the distributions to have no statistical difference
(Chi-square test, dF = 49, p = 0.23).

The spatiotemporal motifs obtained from this approach are
explained in the following sections.

3.2.1. Spatiotemporal Motifs That Persist between
Wakefulness and General Anesthesia

As the correlations of signals within a resting-state network
show the greatest correlation (Figure2A), one possibility is
that spatiotemporal decomposition would recapitulate RSNs.
Instead, our clustering generated motifs composed of brain
regions spanning different RSNs but appeared to be relatively
conserved between quiet wakefulness and general anesthesia, as
for the motif 2 (Figure 4A). This motif is composed mainly of
within-RSN pairs, suggesting that changes in correlation strength
covary across RSNs. The mean correlation strength does not
appear to change between wakefulness and general anesthesia.
The temporal profile of average correlation over time shows
marginally higher correlation and variability at 0% compared to
1.2% (0%: mean 0.39, SD 0.11; 1.2%: mean 0.34, SD 0.1, Figures
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FIGURE 1 | Schematic of spatiotemporal decomposition of dynamic functional connectivity. (A) Functional connectivity over time. (B) Average FC over
entire scan time. (C) Temporal and spatial motifs obtained from spatiotemporal analyses.
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FIGURE 2 | (A) Average correlation matrices (0 and 1.2%). (B) Standard error of mean (SEM) of average correlation matrices. (C) Similarity across average correlation
matrices (0 and 1.2%) for entire data. (D) SEM of Similarity across average correlation matrices for entire data. (E) Similarity across average correlation matrices (0 and
1.2%) for subsampled data. (F) SEM of Similarity across average correlation matrices for subsampled data.

4D,E). We use the F-test to show that the variability in variance In contrast, motif 3 has varying membership of intra-RSN
between two conditions is statistically significant (F-test, dF1 =  and inter-RSN pairs (Figure 4F). As with motif 2, the temporal
2059, dF2 = 1539, p <« 0.001). profile of correlations across members shows greater strength and
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variability at 0% sevoflurane (0%: mean 0.25, SD 8.8 x 1072;
1.2%: mean 0.21, SD 7.7 x 1072, F-test, dF1 = 2059, dF2 = 1539, p
<« 0.001; Figures 41,]). As with motifs 2 and 3 (Figures 4D,E,L]J),
the correlation strength and variance in all temporal motifs is
higher at 0% (Figure 5).

Figure 7B shows the average similarity between motifs, for
8 different window sizes, by computing the correlation of
the spatial component of each motif. Motifs 1, 2, 3, and 8
had the greatest similarity between wakefulness and general
anesthesia. In other words, the region pairs with the strongest
average correlation changed the least during the transition to
anesthetic-induced unconsciousness. Standard error of the mean
of similarity between motifs is shown in Figure 7C.

3.2.2. Spatiotemporal Motifs That Vary between
Wakefulness and General Anesthesia

Figure 7B demonstrates that there are motifs which are
not similar during the transition to anesthetic-induced
unconsciousness. Motifs 4-7 show very low similarity from
wakefulness to anesthetic condition. An interesting result from
these motifs is the observation that spatiotemporal dynamics
differ between 0 and 1.2% sevoflurane mainly in interactions
between resting state networks.

It can be seen in motif 4 that connections/interactions between
DAN and VIS networks represent similar dynamic covariation
during 0% sevoflurane, which groups them in the same motif,
while such a similarity is broken in 1.2% sevoflurane. This
reorganization of interactions between RSNs can be seen between
VIS and SMN networks in motif 4 with intermediate strength of
average correlation as well as DMN and SMN in motif 6 with
intermediate average correlation.

3.3. Robustness as a Function of

Parameters and Intersubject Variability

We also assessed the consistency of motifs as a function across
individual subjects (Figures 7D-G). Figure 7A demonstrates the
average cardinality of each motif over different window length.
Here, eight different window lengths with 5, 10, 20, 40, 50, 60,
80, and 100 frames (with sampling time of 2.2 s per frame and
adjacent non-overlapping windows) were used in the analysis.

Error bars stand for SEM of the average cardinality. Figure 7D
represents average similarity between motifs calculated separately
from each individual during wakefulness. This figure illustrates
that the motifs are robust across different subjects. In other
words, high value of similarity are located mostly on diagonal
elements of the similarity matrix; however, because of process
noise and subject variability in some motifs, medium similarity
can be seen in the off diagonal elements of the similarity matrix.
Standard error of the mean of similarity in this calculation is
shown in Figure 7E. In a similar way, Figure 7F demonstrates
average similarity between motifs calculated separately from each
individual during anesthetic-induced unconsciousness. Average
similarity between motifs and the deviation from the mean for
a fixed window size, 11 s, over different individuals, without
concatenation, is illustrated in Supplementary Material, Figure 3.

4. DISCUSSION

We quantified the extent of conservation of functional
connectivity, defined by the correlation of intrinsic activity,
within the cerebral cortex between wakefulness and sevoflurane
general anesthesia. This was addressed in multiple ways.
First, we assessed the similarity between the functional
connectivity by computing correlations of the entire BOLD
time-series (i.e., average correlation) for each regime.
Second, we estimated how the correlation between region-
pairs evolves as a function of time, thus enabling us to
disambiguate region-pairs with similar average correlations
into groups with different correlation dynamics. In particular,
we decomposed the correlation at each moment in time into
a finite set of spatiotemporal motifs whose superposition
recovers the average functional connectivity. Our results
indicate that the transition from 0 to 1.2% sevoflurane is
associated with altered interaction between resting state
networks.

4.1. Dynamic Functional Connectivity

The correlation structure of intrinsic neural activity can be
decomposed into spatiotemporal motifs whose members show
covariation in their temporal correlation patterns. Our clustering
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FIGURE 5 | Temporal motifs for 0 and 1.2% sevoflurane. Blue vertical lines in the traces of the temporal motifs denote transitions of data contributed by individual
participants.

approach generates similar motifs for wakefulness compared  the bulk of differences in connectivity are between RSNs and not
to sevoflurane general anesthesia for region pairs within RSNs  within individual RSNs (Figure 3A).
(motifs 1-3, 19% region pairs). Other motifs (4-6, 49% region Furthermore, our findings suggests, perhaps intuitively, that
pairs) with intermediate average correlation strength exhibit  intermediate correlations between RSNs are the most sensitive to
dissimilar membership between the baseline and anesthetic ~ sevoflurane anesthesia. Indeed, we observe that the composition
conditions. Finally, the large bulk of interactions between regions ~ of motifs with intermediate strength of correlation is largely
of different RSNs differ between motifs and have low mean  altered, while motifs with higher strength of average correlation
correlation strength (motifs 7-8, 32% of region-pairs). are maintained at both 0 and 1.2% sevoflurane.

Our results complement our prior findings of susceptibility These observations provide a complementary characterization
within the DMN and VAN (Palanca et al., 2015) to sevoflurane;  of temporal correlation dynamics to that posited in Hudetz et al.
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FIGURE 6 | Spatial motifs for 0 and 1.2% sevoflurane.

(2015); Barttfeld et al. (2015), wherein the correlation structure
was shown to transition between a finite number of canonical
patterns, referred to as microstates. These data have suggested
that there may be differences in the quantity or quality of
microstates following pharmacologic ablation of arousal. Here,
rather than grouping the correlation patterns generated over
a narrow time window, we group the temporal correlation
trajectories, thus enabling a grouping of pairs whose correlation
co-evolve.

4.2. Altered Correlation Dynamics in

Sevoflurane General Anesthesia

Following an analysis of the mixed population of humans
anesthetized with either propofol or sevoflurane, Huang
and colleagues showed that variability in the BOLD signal
was reduced in midline DMN cortical areas but greater in
lateral regions (Huang et al, 2014). Furthermore, it has
been shown in Huang et al. (2016) that temporal variability
is coupled to signal synchronization in wakefulness while
such coupling attenuates under anesthesia. Our observations
suggest a mechanism for sevoflurane-induced unconsciousness
involving discoordination between RSNs. Specifically, whereas
within-RSN interactions appear quite robust, the motifs
associated with cross-RSN interactions are fundamentally
altered in their composition. Thus, those regions with co-
evolving correlation in awake conditions no longer exhibit
the same coordination in unconsciousness. While not a causal
mechanism for unconsciousness, this observation is nonetheless
consistent with the integrated information theory of (loss
of) consciousness (Tononi, 2004), while also allowing for the
possibility of persistent coordinated electrical activity over
wide swatches of cortex during general anesthesia (Ching et al.,
2010).

Our report also complements a recent study (Ranft et al,
2016) on simultaneous electroencephalography (utilizing
permutation and transfer entropy) and fMRI (utilizing functional
connectivity) acquired during wakefulness and multiple levels
of sevoflurane general anesthesia. Our findings that strength
and variability at 0% sevoflurane is higher than that at 1.2%
sevoflurane for all motifs is consistent with their observations of
reduced connectivity between RSNs during sevoflurane general
anesthesia. At the same time, our spatiotemporal motifs may
represent higher-level organization coordinating correlated
activity between brain regions that vary over time. Overall,
our analyses support the presence of information in transient
fluctuations of the BOLD, despite its low temporal resolution
compared to EEG. In this sense, our spatiotemporal motifs may
represent correlated EEG signals in low-frequency bandwidths
(0.01-0.1 Hz). Further investigations of simultaneous EEG and
fMRI may address this possibility. Furthermore, spatiotemporal
motif analysis can potentially be applied to effective connectivity
in future works to characterize the interactions between different
functional networks in a finer detail.

4.3. Concerns for Non-stationarity

There are different hypotheses about non-stationarity of resting
state functional connectivity over a small timescale (e.g., 1-2
min). Although there is a rich body of literature on dynamic
functional connectivity which suggests meaningful correlation
fluctuations in resting state networks, such fluctuations may
nonetheless be a simple reflection of physiological noise, head
motion, sampling variability intrinsic to small quantities of data,
or bona-fide signal changes related to sleep state (Laumann
et al, 2016). In our analyses, we consider a dynamic model for
correlation time series, but we do not necessarily need to have
non-stationary correlation trajectories to find spatial motifs with
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Average similarity (F) and SEM of average similarity (G) between motifs calculated from each individual at 1.2% sevoflurane.

similar co-activation. Indeed, if there were no dynamicity (non-
stationarity) in the correlation trajectories, each spatial motif
would simply consist of region-pairs with similar (stationary)
correlations. Accepting a hypothesis in which RSNs are stationary
refuses the existence of discrete “microstates,” alluded to above.
Our technique may substantiate either stationary or non-
stationary hypotheses, and our goal is to fully describe the co-
activation patterns that may reflect coordinated, time-varying
brain activation.

4.4. Limitations

As noted in our prior report (Palanca et al., 2015), artifacts
related to micromovements of the head require particular
treatment in studies utilizing anesthetic agents. The regression
of the whole brain global signal is critical component in our
processing pipeline. The possibility remains that our findings
may differ slightly, particular those involving correlation values
of very low magnitude (include anticorrelations). Given that
removal of this step is likely to introduce additional noise
related to head motion and are not likely to affect the main
findings reinforcing the flux in moderate strength correlations
during the transition from wakefulness to anesthetic-induced
unconsciousness. Thus, we have opted not to pursue this
analysis.

We acknowledge limitations in our work that may inform
future investigations. To identify spatiotemporal patterns, we
used the k-means clustering technique. Though k-means
clustering is an efficient and robust partitioning algorithm, it
has several limitations, in particular difficulty separating clusters
of different sizes and densities as well as a high susceptibility
to outliers (Ert6z et al., 2003). A possible source of variation

in this approach relates to the selection of the number of
clusters, k. As in other investigations, we did not have an a
priori value of k and instead parametrically determined the
number of groups with the best fit (Supplemental Material,
Figure 1). An experimental limitation of this study is the number
of subjects scanned under both conditions. Though we were
able to scan each subject for an extended period, increasing
the number of subjects will improve the robustness of the
findings.
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