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A remarkable accomplishment of self organizing models is their ability to simulate the

development of feature maps in the cortex. Additionally, these models have been trained

to tease out the differential causes of multiple feature maps, mapped on to the same

output space. Recently, a Laterally Interconnected Synergetically Self Organizing Map

(LISSOM) model has been used to simulate the mapping of eccentricity and meridional

angle onto orthogonal axes in the primary visual cortex (V1). This model is further probed

to simulate the development of the radial bias in V1, using a training set that consists

of both radial (rectangular bars of random size and orientation) as well as non-radial

stimuli. The radial bias describes the preference of the visual system toward orientations

that match the angular position (meridional angle) of that orientation with respect to

the point of fixation. Recent fMRI results have shown that there exists a coarse scale

orientation map in V1, which resembles the meridional angle map, thereby providing a

plausible neural basis for the radial bias. The LISSOMmodel, trained for the development

of the retinotopic map, on probing for orientation preference, exhibits a coarse scale

orientation map, consistent with these experimental results, quantified using the circular

cross correlation (rc). The rc between the orientation map developed on probing with a

thin annular ring containing sinusoidal gratings with a spatial frequency of 0.5 cycles per

degree (cpd) and the corresponding meridional map for the same annular ring, has a

value of 0.8894. The results also suggest that the radial bias goes beyond the current

understanding of a node to node correlation between the two maps.

Keywords: radial bias, retinotopy, meridional preference, orientation preference, self-organizing, LISSOM, V1,

plasticity

INTRODUCTION

Hyper-columns in V1, mapping the entire range of orientations possible, have a flattened spatial
extent of ∼1 × 1mm and ∼2 × 2mm, in monkeys and humans respectively (Blasdel and Salama,
1986; Adams et al., 2007). It would seem improbable that from Blood Oxygen Level Dependent—
functional Magnetic Resonance Imaging (BOLD-fMRI) activity, which has a spatial resolution of
∼3 × 3 × 3 mm corresponding to each voxel, one could successfully decipher the orientation
of a grating pattern presented to a subject. However, landmark BOLD-fMRI results demonstrate
that this is indeed possible (Kamitani and Tong, 2005; Sasaki et al., 2006). There are two prevalent
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hypotheses which attempt to explain these results: (a) Hyper-
acuity: There exists a sampling bias in the population
activity of hyper-columns that contribute to each fMRI voxel,
which on multivariate pattern analysis would yield orientation
discriminability (Kamitani and Tong, 2005; Haynes and Rees,
2006); (b) Coarse scale orientation maps: There exists an
orientation map at a spatial scale equivalent to that of the
retinotopic map. These maps have a radial bias, i.e., those
orientations which match the retinotopic meridional angle are
over-represented as compared to other orientations (Sasaki et al.,
2006; Freeman et al., 2011). (The projection of retinal space onto
the cortical space is called retinotopy. Meridional angle refers to
the angular position of a stimulus with respect to the point of
fixation, in radial co-ordinates.)

Recent studies, interpreting both psychophysics (Hong, 2015)
as well as fMRI results, have confirmed the existence of a coarse
orientation map which is radially biased (Sasaki et al., 2006;
Freeman et al., 2011, 2013; Alink et al., 2013). The neural basis
for the radial bias has been supported by electrophysiological
recordings in the cat V1 (Leventhal and Schall, 1983; Schall
et al., 1986). However, most studies at a population level,
using techniques such as optical imaging, have not reported
the presence of such a bias, either due to the limited spatial
extent considered as speculated by Freeman et al. (2011), or
due to the deliberate filtering out of global orientation biases
(Shmuel and Grinvald, 1996). This being said, there is still debate
regarding the necessity of these global orientation biases for
orientation discriminability. Freeman et al. (2011) demonstrated
that the orientation decoding accuracy reduces significantly when
the orientations corresponding to the angular positions were
removed prior to the classification, suggesting the necessity of
the radial bias. However, Alink et al. (2013), have shown that
fine-grained components of the fMRI activity also contribute
to the orientation discriminability. A recent modeling effort
by Carlson (2014) similarly suggests that any sort of bias
is unnecessary for orientation decoding. Another debate in
the field is regarding the successful decoding of anticlockwise
vs. clockwise spiral gratings. These grating have equal local
orientation edges at every radial spatial location. Mannion et al.
(2009) speculate that this result negates the need for the radial
bias and any coarse scale map in orientation decoding, since
the fMRI responses in response to local features appear to be
sufficient to account for the orientation decoding. However,
subsequent experiments by Freeman et al. (2013), demonstrate
the presence of a coarse scale bias even in response to these
spirals. These studies primarily question the necessity of the
radial bias in decoding orientations, not the existence of the radial
bias itself. Secondly, the radial bias is conventionally quantified
by the voxel to voxel correlation between the meridional and
the orientation maps. The absence of such a correlation may
be mistakenly construed to imply the absence of a radial
bias.

The mechanisms involved in the development of the
radial bias are not entirely understood. There is speculation
that the radial bias might be a natural consequence of the
retinal development as retinal ganglion cells are tiled in a
radial fashion (Leventhal and Schall, 1983). The elongation

of dendritic fields of Retinal Ganglion Cells toward the fovea
could also contribute to the radial bias (Rodieck et al.,
1985; Schall et al., 1986). When eye movements are directed
toward a given position, radial orientations do not appear
blurred, suggesting that eye movements may also play a
role in the development of such a bias Sasaki et al. (2006).
Recent results by Alink et al. (2013) hint at the possibility
of lateral connections in V1 as well as top down effects
playing a role in the development of global preference maps.
Another series of experiments performed by Cichy et al.
(2015) utilize MEG signals in order to probe orientation
discriminability. The MEG signals obtained in the first 150
ms post stimulus presentation gave the highest discriminability
across all stimuli considered. The radial bias has been implicated
in explaining a number of experimental phenomena such as
binocular disparity (Durand et al., 2002), context assimilation
(Alexander et al., 2004), and perceptual distortions (Westheimer,
2003).

We propose that, given the appropriate training stimuli, there
is a co-evolution of a large scale orientation and meridional
map, resulting in a strong correlation between the two maps.
The model described is the same as that used to develop the
retinotopic map in Philips and Chakravarthy (2015) having
2 layers, one representative of the retina and the other
representative of the primary visual cortex (V1). Each node in the
output layer (V1) receives afferent inputs from the retinal layer,
as well as recurrent lateral excitatory and inhibitory inputs from
other nodes in V1. A detailed description of the architecture is
provided in the Methods section.

We train the model now using rectangular bars having an
aspect ratio of 0.025, which are near radial. These stimuli now
also cause the nodes of the V1 layer to have a preference toward
radial orientations. This is because each node in the V1 layer,
trained exclusively on near radial edges (because the bars are
centered), using the Hebbian learning rule, evolves a receptive
field which prefers such edges. Now when the orientation
preference of each node of V1 is probed, a coarse scale orientation
map emerges.

The rationale for such a training regime is as follows: While
it is true that external visual stimuli could have all possible
orientations at all possible spatial locations, radial stimuli would
result in larger activation of RGCs. This is due to the fact that
the dendrites of the RGCs have their projective fields elongated
toward the fovea (Rodieck et al., 1985; Schall et al., 1986). Thus,
a radial or near radial edge would result in the co-activation of a
larger number of inputs from the photo-receptors via the bipolar
cells, which project to a particular RGC.

The exact radial bias in the retinal space is difficult to ascertain,
since for different intensities of the actual visual stimulus, the
retinal bias would vary. For example when the input stimuli are
at the threshold of detection only radial stimuli would cause the
RGCs to fire. We have performed a few additional simulations
on varying the retinal radial bias, by introducing non-radial
stimuli in the training regime as well. We demonstrate that for
different ratios of radial to non-radial stimuli a reasonable cross
correlation between the orientation and meridional maps still
exists.

Frontiers in Neural Circuits | www.frontiersin.org 2 January 2017 | Volume 10 | Article 109

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Philips and Chakravarthy SOM Model of Radial Bias

In order to validate the results of the model, the meridional
and orientation preference maps are compared in a similar
fashion as in Sasaki et al. (2006) and Freeman et al. (2011).
It is observed that the model mimics the experimental results
of the radial bias reasonably well. On increasing the spatial
frequency of the gratings and the width of the annulus used for
probing, the clean pixel to pixel correspondence between the
meridional and orientation maps reduces (as reflected by the
cross correlation scores); however the orientationmap developed
is still robust enough to achieve orientation discriminability.
Thus, the insights gained from this model could possibly help
reconcile contradictory experimental results which correlate the
apparent presence or absence of a global orientation map and
orientation discriminability.

METHODS

LISSOM Model
Self organizing mechanisms have been utilized extensively in
explaining the development of cortical maps. The basic Self
Organizing Map (SOM) model involves iteratively selecting
winner nodes which maximally respond to a particular input
stimuli and then updating the weights of nodes within a
defined radius around the winning node (Kohonen, 1982, 1990).
A variant of the SOM model, namely LISSOM (Sirosh and
Miikkulainen, 1994; Miikkulainen‘ et al., 2005), wherein the
self-organization is achieved by including lateral connections
between nodes has been deemed more biologically realistic
and has been invoked to explain a number of experimentally
observed phenomena in the visual cortex (Bednar, 2012). A
recent implementation of the LISSOM model has been used to
develop a large scale retinotopic map which closely resembles the
mapping of eccentricity and meridional angle (angular position)
on to orthogonal axes in the V1 (Philips and Chakravarthy, 2015).
This very model is utilized in the present study and built upon in
order to investigate a plausible theory for the development of the
radial bias seen in V1.

A schematic representation of the LISSOM architecture is
provided in Figure 1. The afferent and lateral weights are
randomly initialized within the initial radius defined. The output
of a particular neuron(yij) in the output layer (V1), initially is
dependent only on the afferent projections to that neuron as
given by Equation (1).

yij = g





∑

a,b

Aij,abxab



 (1)

where (a, b) denotes a neuron in the receptive field of the
(i, j)th neuron in the output layer, with input given as xab; Aij,ab

represents the weight from the (a, b)th neuron to the (i, j)th

neuron; g is a piecewise approximation of the sigmoid function
given as:

g(s) =







0 : s ≤ αl

(s− αl)/(αu − αl) : αl < s < αu

1 : s ≥ αu

where αl and αu are set to 0.1, and 0.65, respectively. After this
initialization the lateral connections start contributing to the
output (yij(t)) which depends on the output from the previous
iteration (yij(t − 1)). Thus, the output (yij(t)) is given as:

yij(t) = g



p
∑

a,b

Aij,abxab(t − 1)+ q
∑

k,l

Eij,klykl(t − 1)

− r
∑

k,l

Iij,klykl(t − 1)



 (2)

where p, q, r are scaling factors; Eij,kl is the lateral excitatory
weight from neuron (k, l) to neuron (i, j) and similarly Iij,kl is the
lateral inhibitory weight from neuron (k, l) to neuron (i, j) (values
specified in Table 1). Thus, the afferent input to the node yij(t)
is given as p

∑

a,b Aij,abxab(t − 1), similarly the lateral excitatory
input is given as q

∑

k,l Eij,klykl(t − 1), and the lateral inhibitory
input as r

∑

k,l Iij,klykl(t − 1). The weight update rule for this
unsupervised model, is a normalized Hebbian, and is the same
for afferent as well as lateral weights, as given in Equation (3).

wij,mn(t + 1) =
wij,mn(t)+ ηyij(t)Pmn(t)

∑

mn(wij,mn(t)+ ηyij(t)Pmn(t))
(3)

where Pmn is a generalized notation representing the pre-synaptic
activity originating from the neuron (m, n); η is the learning rate.
Thus, Pmn could represent a neuron in retinal layer with afferent
weights, or a neuron in the V1 layer with either lateral excitatory
or lateral inhibitory weights. These learning rates can be different
for each of the connections: ηA, ηE and ηI are the learning
rates for the afferent, excitatory and inhibitory connections,
respectively.

The receptive fields of the afferent connections of each node in
V1 are initialized to be centered around that particular node with
a radius of radA. Each node of the output layer V1 also has lateral
excitatory and inhibitory connections with other neurons in V1
within a radii of radE and radI , respectively. The weights of each
of the connections are initialized to be uniformly random within
the radii mentioned.

The training stimuli are presented in a pseudo-random
fashion to the network. For every iteration (stimulus
presentation) the network output activity is allowed to settle
(9 sub-iterations) before the next input stimulus is presented.
The activity of the network is re-initialized for each new input
stimulus presented. The simulation is allowed to proceed
for 600 iterations, by which duration the maps formed are
quasi-stationary.

This model is first trained on stimuli similar to those used
in the development of the retinotopic map: which include
rectangular bars of varying dilation and rotation (Figures 2A,B).
It has been demonstrated that this training regime with an
appropriate boundary condition yields a final map which closely
resembles the retinotopicmapping of eccentricity andmeridional
angle onto orthogonal axes (Philips and Chakravarthy, 2015).
This model is then probed to measure the orientation selectivity
of each node in the output layer of the model which represents
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FIGURE 1 | A schematic representation of the architecture of the

LISSOM model.

V1. The precise nature of the stimuli used for training as well
as probing the map developed is described in the following
subsection.

Model Stimuli
Training Stimuli

Rectangular bars
One set of the stimuli employed for training are rectangular bars
of varying dilations and rotations. The dilation (size) values vary
from smallest 0.33◦ to largest 4◦ of visual field, as shown in
Figures 2A,B. The rotation values vary from−π to π . The aspect
ratio of stimuli used is 0.025.

Probing Stimuli

Point stimuli
Collinear point stimuli with 24 different meridional angles are
used to probe the development of the retinotopic map as shown
in Figure 2C.

Full field sinusoidal gratings
In order to probe the orientation preference of a particular node
in the output layer sinusoidal grating patterns which cover the
entire visual field considered are used. The frequency of gratings
used is 0.5 cpd or 0.75 cpd with only two orientations considered
45◦ and 135◦. Each stimulus is presented for 18 different phases
equally spaced between 0 and 2π . These stimuli are chosen to
resemble the input stimuli used by Sasaki et al. (2006). Examples
of such a stimuli are shown in Figures 2D,E.

Full field sinusoidal gratings with noise
In order to generate training and testing examples of the cortical
responses corresponding to sinusoidal gratings with external
noise, these gratings are masked with a random dot stereogram
with a defined dot density (here 30%) as shown in Figure 2F.

Annular ring with sinusoidal gratings
Two different annuli are utilized, one subtending 2◦ of visual
angle with a thickness of 0.285◦, another subtending 2.285◦ of

TABLE 1 | Parameter values chosen in the LISSOM model for the

simulation of the meridional angle map.

Parameter Value

p 1.05

q 2.3

r 2.45

ηA 0.5

ηE 0.3

ηI 0.11

radA 1

radE 0.03

radI 0.55

visual angle with a thickness of 2◦. These annuli are masked
with sinusoidal gratings having different spatial frequencies
such as 0.5 cpd, 0.75 cpd. Each stimulus is presented for 18
different phases equally spaced between 0 and 2π . These stimuli
are chosen to resemble the input stimuli used by Freeman
et al. (2011). An example of such a stimulus is shown in
Figure 2G.

Blurred edge annular ring with sinusoidal gratings
These inputs are similar to the annular ring stimuli, except that
the edge of the ring is blurred with a smoothing parameter of
0.05. These stimuli are chosen to resemble the input stimuli used
by Freeman et al. (2011). An example of such a stimulus is shown
in Figure 2H.

Model Parameters and Boundary
Conditions
The LISSOM model used simulates the central 4◦ of visual
space and maps onto 27% of V1 (Adams and Horton, 2003). A
constraint is imposed on the outer limit of the output layer, in
order to approximate the shape of V1. It has been demonstrated
that this boundary condition is vital in map development. If u
and v represent the horizonal and vertical axes of V1, respectively,
then the boundary of the cortical area is given as:

u = log(
√

a2 + (a tan(v))2) (4)

where a is a constant set to 1. A detailed derivation for
this boundary equation is given in Philips and Chakravarthy
(2015). Within this spatial boundary, the total number of V1
nodes considered in the simulation is 2945. The input space
is discretized such that 24 nodes represent 4◦ of visual space.
The model parameters are chosen so as to develop a retinotopic
map which resembles the map in V1. The parameters chosen
are within ranges which are biologically realistic. A detailed
description of their biological correspondence is given in Philips
and Chakravarthy (2015). All the simulations performed are
using the Topographica Simulator (Bednar, 2009).

Analysis
In order to analyze the results of the simulation, a number of
measures are utilized. These measures have been previously used
by Freeman et al. (2011) to analyze some of the experimental
results which are compared in this study.
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FIGURE 2 | Training and probing stimuli used in the LISSOM model. The first 2 stimuli represent training stimuli, while the rest are representative of probing

stimuli. (A,B) Rectangular bar with aspect ratio of 0.05, and randomized dilation and rotation; (C) Centered, collinear point stimuli to probe orientation preference;

(D,E) Full field sinusoidal gratings with a spatial frequency of 0.75 cpd, 0.5 cpd to probe orientation preference; (F) Full field sinusoidal gratings with random noise

added; (G) Annular ring subtending 2◦ of visual angle masked with a sinusoidal grating of randomized orientation and phase with a spatial frequency of 0.5 cpd;

(H) Blurred edge annular ring subtending 2◦ of visual angle masked with a sinusoidal grating of randomized orientation and phase with a spatial frequency of 0.5 cpd.

Map Representation
For a given stimulus, the feature (either orientation ormeridional
angle) which has the highest circular average across all the phases
presented is assigned to a particular node in the output layer of
the model. This feature is then color coded as shown in Figure 3.
The number of colors present in the map equal the number of
features probed.

Map Similarity
In order to demonstrate the similarity between the meridional
preference map and the orientation preference map two
measures are utilized, namely the circular cross correlation, and
the overall shift. The circular cross correlation for a node n with
orientation preference o and meridional preferencem is given as:

rc =
R(o−m)− R(o+m)

2

√

∑N
n= 1 sin

2(on − ō)
∑N

n= 1 sin
2(mn − m̄)

(5)

where N is the total number of nodes; ō and m̄ represent the
circular mean of all orientation and meridional preferences,
respectively; the concentration of angular sum (or difference) :
R(o±m) is given as:

R(o±m) =

∣

∣

∣

∣

∣

N
∑

n= 1

ei(on±mn)

∣

∣

∣

∣

∣

(6)

where |.| is the magnitude of the complex number. The value of
rc ranges from −1 to 1, and greater the value better the circular
correlation. When each corresponding on and mn have similar
values, indicating a close match between the 2 maps, R(o − m)
becomes close to N. Similarly R(o + m) takes a value close to 0.

Thus, the relative values of the 2 terms in the numerator dictates
the measure of correlation. The denominator simply normalizes
the value.

In order to test the statistical significance of the correlation
a randomization test was performed. Thus, meridional angles
and orientations of any one node were randomly assigned
to any other node. This process is repeated 10,000 times to
obtain the null hypothesis distribution such that the 2 maps
are uncorrelated. The p value was calculated as the fraction of
samples in the null distribution which were less than the actual rc
value.

Estimating the shift between the meridional and orientation
maps involves computing 1shift where:

m = o+ 1shift modulo 2π (7)

The best value for 1shift can be achieved by minimizing the
following function:

N
∑

n= 1

(cos(mn)− cos(on−1shift))
2+ (sin(mn)− sin(on−1shift))

2

(8)
This optimal value 1̂shift can be obtained by differentiating the
preceding equation and equating to zero:

1̂shift = tan−1

(

∑N
n= 1 sin(on −mn)

∑N
n= 1 cos(on −mn)

)

(9)

Classification
We wanted to verify if the orientation of the grating shown to
the model could be deciphered from the LISSOM output (V1)
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response. The purpose of this exercise is to replicate results
which demonstrate that fMRI data could be used to decode
the orientation of the gratings shown to human and monkey
subjects. For the classification task we construct a vector from all
the individual nodes of the LISSOM output layer. The neuronal
responses corresponding to sinusoidal gratings with a given cpd
and randomized phase, masked with noise stimuli with a given
dot density are considered as data vectors for the classification.
There are 60 data vectors for each of the orientation bins (class)
used for training, whereas the remaining 40 data points per
class are used for testing. The data points are randomized and
a Monte-Carlo cross validation is performed in order validate
the accuracy over randomized train and test sets. The overall
accuracy is calculated as the average accuracy over all cases. The
model used for the classification is a multi-class support vector
machine (SVM) (Hsu and Lin, 2002). A linear kernel is used for
the SVM in order to estimate the optimal separating hyperplane.

Sufficiency
In order to demonstrate that the coarse scale orientation map
developed was sufficient for orientation decoding, we divided the
meridional angles possible into bins of width w and segregated
the nodes on this basis. We then averaged the orientation
preference of these nodes which lie within a single bin. The bin
widths w were then varied and the classification accuracy was
determined. We then compare this accuracy profile against that
when nodes are assigned to a particular bin randomly.

Necessity
In order to evaluate the necessity of the coupling between
the retinotopic map and the orientation map, we remove the
component corresponding to the meridional angle of each
node from its corresponding orientation preference. This is
accomplished by calculating the residual (R̄):

R̄ = ȳ−
ȳ · x̄

x̄ · x̄
x̄ (10)

where:

ȳ = [cos(o), sin(o)]T (11)

x̄ = [cos(m), sin(m)]T (12)

This ensures that the residual (R̄) is orthogonal to the removed
component x.

RESULTS

The global orientation map is developed on training the LISSOM
model with dilated and rotated near radial rectangular bars as
described in theModel Stimuli section. In order to verify the map
developed a number of probing stimuli are used. The subsections
detail the comparison of the map developed when compared
with a number of experimental observations. The first subsection
compares the map developed on probing with stimuli similar
to the ones used by Sasaki et al. (2006). The second subsection
verifies the map developed, on probing with stimuli similar to
the one used by Freeman et al. (2011). The third subsection

FIGURE 3 | The orientation map developed when the trained LISSOM

model is probed with gratings having orientation 45◦ and 135◦,

respectively, with varying spatial frequencies. The nodes which respond

maximally to one of the orientations are color coded appropriately as shown in

the colorbar. These results resemble (Sasaki et al., 2006), where the majority of

nodes in the upper half of the output map prefer the 45◦ orientation, while the

nodes in the lower half respond to the 135◦ orientation stimulus.

(A) Orientation Preference of the map developed on probing with gratings of

0.5 cpd; (B) Combined Orientation Preference and Selectivity on probing with

gratings of 0.5 cpd.

attempts to answer the question regarding the contribution of the
global orientation map developed in orientation decoding. The
last subsection attempts to elucidate the relationship between the
global orientation map and the radial bias.

Comparison with Sasaki et al.
In their paper, Sasaki et al. (2006) used 45◦ and 135◦ gratings.
These grating are full field gratings. They observe that for the 45◦

grating the upper region responds maximally, whereas for the
135◦ grating the lower region does so. The map developed also
shows the similar kind of responses as shown in Figure 3. These
results are a subset of the results shown in the next section when
the map developed is compared with experimental observations
by Freeman et al. (2011). However, these results help verify that
the global map is not a consequence of the boundaries of the
stimuli used as the stimuli used are full field.

Comparison with Freeman et al.
The meridional preference and orientation preference maps
developed in response to stimuli similar to those used by
Freeman et al. (2011) are shown in Figure 4. One set of stimuli
used are annular rings with sinusoidal gratings as described in
the methods section. The nodes responsive to the 12 different
orientations and 12 different meridional angles are appropriately
color coded. The radial bias in the orientation map, almost
mirroring the meridional map, is observed (Figures 4A,B). The
orientation map developed (Figure 4B) on probing with a thin
annular ring having a sinusoidal grating with spatial frequency
of 0.5 cpd (as described in the methods section, shown in
the inset) is compared with the corresponding meridional map
developed (Figure 4B) on probing with an annular ring of the
same thickness. The circular cross correlation (rc) between the
meridional and orientation preference was found to be 0.8894
as shown in Figure 5. When compared with the corresponding
rc on randomization (described in the methods section),none of
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FIGURE 4 | The orientation map developed when the trained LISSOM model is probed with gratings having 12 orientations equally spaced between 0◦

and 180◦, respectively. The nodes which respond to these orientations are color coded appropriately as shown by the colorbar. These results resemble (Freeman

et al., 2011) with the orientation map developed resembling the meridional map developed. (A) Meridional preference map developed; (B) Orientation preference map

developed on probing with a thin annular ring with spatial frequency of grating set to 0.5 cpd; (C) Orientation preference map developed on probing with a thick

annular ring with spatial frequency of gratings set to 0.5 cpd; (D) Orientation preference map developed on probing with a thick annular ring with spatial frequency of

the grating set to 0.75 cpd.

the 10,000 reshuffled data points exceed the rc of 0.8894, giving
a p < 0.0001. The 1shift between the 2 maps was determined to
be −0.44◦. These results are comparable with the experimental
results described by Freeman et al. (2011) which have rc = 0.52,
p < 0.0001, 1shift = 1◦ for the corresponding maps developed
using the same stimuli.

This effect appears to be robust, even on increasing the width
of the annulus and increasing the spatial frequency of the gratings
to an extent (Figures 4C,D). The selectivity, however is reduced
as represented by the lighter shades of the map developed.
The orientation map developed (Figure 4C) on probing with a
thick (almost full field) annular ring having a sinusoidal grating
with spatial frequency of 0.5 cpd (as described in the methods
section, shown in the inset) is compared with the corresponding
meridional map developed on probing with an annular ring of
the same thickness. The similarity measures of rc = 0.6357,
p < 0.0001,1shift = −0.9122◦ for the simulation are comparable
with experimental results on using the same stimuli (rc = 0.54,
p < 0.0001, 1shift = 0◦). However, it is to be noted that the
experimental results correspond to only the peripheral region
of interest (ROI), whereas the simulation results consider the
complete maps developed.

Interestingly, on increasing the spatial frequency and
considering a full field input the experimental rc falls to 0.28
(p < 0.0001), with negligible change in the shift between maps
(1shift = 0◦). The simulation results also show a similar trend on
increasing the spatial frequency. The orientation map developed
(Figure 4D) on probing with a thick (almost full field) annular
ring having a sinusoidal grating with spatial frequency of 0.75
cpd (as described in the methods section, shown in the inset) is
compared with the corresponding meridional map developed on
probing with an annular ring of the same thickness. The rc value
now falls to 0.5007 (p < 0.0001), and the shift between maps
developed is 1shift = −0.7965◦.

In order to ascertain the influence of non-radial stimuli
in the development of global orientation map, the model
is trained with varying ratios of radial to non-radial input
stimuli. The circular cross-correlation values between
the meridional and orientation maps are determined.

FIGURE 5 | Similarity between the meridional preference and

orientation preference maps: For a single node the orientation

preference is assigned to the y-coordinate where as the meridional

preference is assigned the x-coordinate, so as to give the location of a

point.

A 0.5 cpd grating is used to probe the orientation map
developed. We observe a decent cross-correlation even when
only one in ten stimuli are guaranteed to be radial (See
Figure 6).

The neuronal responses corresponding to orientation gratings
masked with external noise are probed in order to perform
the classification task as described in the methods section. It
should be noted that in this subsection the decoding results
shown correspond to the thin annular ring containing sinusoidal
gratings with spatial frequency of 0.5 cpd alone. The accuracy
in determining the orientation preference from the LISSOM
output activity is 62.46% (10% external noise added to stimuli)
for 12 classes. The sufficiency and necessity of the radial bias in
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FIGURE 6 | A radial bias is observed even on training with different ratios of radial to non-radial orientation. For the maps shown (A) 1 in 2, (B) 1 in 3, (C) 1

in 5, (D) 1 in 10, (E) 1 in 20 of the orientations given for their training are radial. The cross-correlation values are given the bottom of each map.

FIGURE 7 | The coarse scale orientation map is sufficient in order to achieve orientation discriminability from the output activity of the model. (A) The

sufficiency of the orientation map to classify orientations is demonstrated by circular average of the orientation of nodes which have similar meridional preference as

opposed to random averaging; (B) The necessity of the radial bias is probed by removing the component corresponding to meridional preference from the orientation

preference of each node as opposed to removing a random meridional component.

the decoding of input orientations are probed for in Figure 7.
The dip in accuracy on removal of the meridional preference
from the orientation preference of each node demonstrates the
contribution of the radial bias in orientation discriminability;
however it is still above chance and hence does not guarantee
necessity. The experimental results report an accuracy of 54%
without removing any component (Freeman et al., 2011).
This number drops to 20% on removing the meridional
component. However, on removing a random component from
the orientation preference the accuracy increases to 43%. The
tolerance to averaging out the orientation preferences of nodes
having similar meridional preference as compared to random
averaging, demonstrates sufficiency. Experimental results show

a similar trend with accuracy dropping to 40% on meridional
angle based averaging as opposed to 10% on random averaging
(Freeman et al., 2011). There is a caveat to be kept in mind
however. The demonstration of the sufficiency of the radial
bias by averaging the orientation preference of nodes which
have similar meridional preference, assumes that the orientation
map developed must be locally similar to the meridional
map. Similarly, removing the meridional component from the
orientation preference assumes a point to point correspondence
between the two maps. While this assumption certainly appears
to be true for the maps developed corresponding to the stimuli
considered in this subsection (thin annulus, 0.5 cpd), for maps
corresponding to stimuli with higher spatial frequencies and
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wider annuli, this assumption is invalid (as apparent from the
decreasing rc values). This now begs the question: In the absence
of such a clean node to node correspondence between the two
map, is orientation decoding still possible using the orientation
preferences developed?

The Radial Bias and Orientation Decoding
As described in the previous subsection, as the spatial frequency
and annulus width of the stimuli shown are increased, the rc value
between the orientation map and the meridional map developed
decreases. However, this does not imply that the orientation
map developed is devoid of features which may be useful in
order to decode orientational information using fMRI data alone.
The orientation decoding accuracy using the orientation maps
developed for various stimuli are shown in Tables 2–4 . As
expected in each of the cases the performance does not worsen
on decreasing the number of classes (orientations) considered.
Interestingly, even though there is a dip in the rc value of themaps
developed for thick annulus 0.5 cpd stimuli as compared with
to that for thin annulus 0.5 cpd stimuli, the accuracy is actually
higher. This suggests that the node to node correlation between
the orientation and meridional maps may not be necessary
for orientation decoding. On increasing the spatial frequency
(Thick annulus 0.75 cpd), the accuracy decreases as the number
of classes considered is increased. However, most experimental
results demonstrating high orientation discriminability for such
high frequency stimuli, only consider a limited (≤ 6) number
of classes. Tong et al. (2012) report accuracy levels of 80%
for distinguishing responses to orthogonal stimuli for 0.25 as
well as 1.0 cpd gratings. The accuracy drops to 70% for a pair
of 4.0 cpd gratings. These results suggest that a more loose
mapping between the orientation map and the meridional map,
than the point to point mapping conventionally assumed, may
exist. At higher spatial frequencies, the cross correlation between
the 2 maps reduces. However, as far the model is concerned,
the orientation maps developed, irrespective of the stimulus
used, is a consequence of the training regime of radial bars
employed in order to develop the meridional preference of each
node.

The Radial Bias and the Global Orientation
Maps
The robustness of the radial bias in the orientation map is
checked for different spatial frequencies of full scale gratings,
annular ring gratings with blurred edges. The map development
across iterations for meridional preference as well as orientation
preference for spatial frequencies of 0.5 and 0.75 cpd is shown
in Figure 8. It is seen that as the spatial frequency is increased
the corresponding orientation map begins to show prominent
discontinuities. This result was also similar to that observed by
Freeman et al. (2011). The effect of having a sharp edged or
blurred edged annular ring as the probing stimulus does not
seem to play a role in the orientation map developed as shown
in Figure 9.

A key insight from the model is that radial stimuli aid in
the development of an orientation map which resembles the
meridional map. The radial stimuli thus would also bias the

TABLE 2 | Orientation decoding accuracy (10 times Monte-Carlo cross

validated with standard deviation given in the bracket) on varying the

probing stimuli, with 10% noise density.

Number of

orientation classes

0.5 cpd thin

annulus (%)

0.5 cpd thick

annulus (%)

0.75 cpd thick

annulus (%)

2 100 (0) 100 (0) 98.25 (2.05)

6 95.87 (1.20) 97.93 (0.94) 68.96 (1.86)

8 86.12 (2.24) 88.69 (1.77) 50.72 (2.01)

12 62.46 (3.11) 68.00 (2.40) 33.37 (1.68)

TABLE 3 | Orientation decoding accuracy (10 times Monte-Carlo cross

validated with standard deviation given in the bracket) on varying the

probing stimuli, with 30% noise density.

Number of

orientation classes

0.5 cpd thin

annulus (%)

0.5 cpd thick

annulus (%)

0.75 cpd thick

annulus (%)

2 100 (0) 100 (0) 97.25 (2.48)

6 92.00 (1.42) 92.54 (1.18) 60.33 (1.46)

8 78.31 (2.80) 82.87 (2.49) 44.59 (2.15)

12 53.94 (1.99) 57.54 (1.30) 26.79 (1.40)

TABLE 4 | Orientation decoding accuracy (10 times Monte-Carlo cross

validated with standard deviation given in the bracket) on varying the

probing stimuli, with 50% noise density.

Number of

orientation classes

0.5 cpd thin

annulus (%)

0.5 cpd thick

annulus (%)

0.75 cpd thick

annulus (%)

2 100 (0) 100 (0) 93.75 (3.17)

6 86.79 (1.54) 89.66 (1.04) 55.87 (2.91)

8 71.62 (1.71) 75.25 (3.01) 42.50 (2.53)

12 44.78 (2.19) 50.77 (1.99) 25.25 (1.32)

phase preference of the global map developed. This leads to a
testable prediction of the model: The presence of a global phase
preference map across spatial frequencies as shown in Figure 10.

The scale of the simulation performed does not allow one
to visualize orientation maps at the scale of the hypercolumn.
It is however possible to simulate a sub-region of the map
at the level of the hyper-column. An additional simulation
is performed in which there is an over-representation of the
horizontal (here radial) orientation in the input training regime.
We observe the effects of such an input bias reflected in the
map developed as well (See Figure 11). A region represented
using a grid of size 48 × 48 neurons in order to observe the
fine-scale orientation map developed. The radial orientation is
assumed to be horizontal for the location under consideration.
The same LISSOM model is trained with and without an
input training bias of horizontal orientations. We observe a
fine-scale orientation map with pin-wheels, fractures and iso-
orientation domains in both cases. We also observe that in the
map developed there is an over-representation of the horizontal
(here radial) orientation when such an input training bias is
employed.
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FIGURE 8 | Development of the meridional preference map and orientation preference maps. Developing meridional preference maps when probed at

(A) 200, (B) 400, (C) 600 iterations, respectively; Developing orientation preference maps when probed at (D) 200, (E) 400, (F) 600 iterations respectively with full field

orientation gratings having a spatial frequency of 0.5 cpd; Developing orientation preference maps when probed at (G) 200, (H) 400, (I) 600 iterations respectively

with full field orientation gratings having spatial frequency of 0.75 cpd.

FIGURE 9 | The blurring of the edge of the annular ring does not seem to affect the radial bias. (A) Orientation map developed on probing with a sharp

edged annular ring masked with a sinusoidal grating; (B) Orientation map developed on probing with a blurred edged annular ring masked with a sinusoidal grating.

DISCUSSION

A computational model which simulates the development of
the radial bias is described in this paper. It is proposed that
similar mechanisms that result in the development of the
global retinotopy, could also create a global orientation bias,
namely the radial bias using self organizing mechanisms. The

Willshaw-von der Malsburg SOM model (Willshaw and Von
Der Malsburg, 1976) was initially proposed to demonstrate
that correlated activity in the input (retinal) layer, could result
in a topography preserving map in the output (tectal) layer.
A simplified (in terms of architecture) and more generalized
(in terms of input dimensions) version of SOM was proposed
by Kohonen (1990). Self organizing models and their variants
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FIGURE 10 | The phase preference map developed reflects the preferences of individual nodes to that phase of the grating, when the middle peak of

the grating matches with radial stimuli. (A–C) represent the phase preferences on testing with sinusoidal gratings of varying orientation for spatial frequency of

0.25, 0.5, and 0.75 cpd, respectively.

FIGURE 11 | The fine-scale orientation map developed at the scale of the hyper-column. (A) The orientation map developed using equi-probable orientations

for training and (C) the histogram of the orientations in the map. (B) The orientation map developed when one in 10 orientations used for training are horizontal (here

radial) and (D) the histogram of the orientations in the map demonstrating an over-representation of the horizontal (here radial) orientations.

have been used to simulate a number of features in the cortex
including the responses of area V2 neurons (Plebe, 2012), the
development of simple and complex receptive fields in V1
neurons (Antolík and Bednar, 2011), whisker direction maps
in the barrel cortex (Wilson et al., 2010), the presence of tilt
aftereffects in V1 neurons (Bednar and Miikkulainen, 2000),
direction and orientation maps (Bednar and Miikkulainen,
2003).

In this study, the LISSOM model, when trained on dilated
and rotated images has been shown to simulate the development
of the global retinotopic map seen in primate V1 (Philips and
Chakravarthy, 2015). In this paper it is further demonstrated that
the same model on training with a stimulus set consisting of near
radial bars also biases the development of a global orientation
map. This implies that just as a there is complex-logarithmic
transformation of retinotopy in the cortex, there also appears to
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be a complex-logarithmic transformation of a global orientation
preference. We demonstrate that both these maps co-evolve
given the appropriate stimuli and boundary conditions. In order
to validate the results, the orientationmap developed is compared
with fMRI observations from Freeman et al. (2011) and Sasaki
et al. (2006).

Sasaki et al. (2006), while first describing the radial bias,
had speculated on the possibility of a link between the
retinotopic and coarse scale orientation maps in V1. While
modeling efforts have attempted to explain the difference
between the angular preference and orientation preference
around positive and negative singularities in the V1 of tree
shrews (Paik and Ringach, 2012), no concrete model exists that
simulates the global correlations between meridional angle and
orientation preference. In this paper it is proposed that self
organizing mechanisms on appropriate training could result in
the development of the radial bias.

The LISSOM model maps the input features it receives such
that nearby nodes in the output layer respond to similar features
due to the short range lateral excitatory connections, whereas
further away nodes respond to dissimilar features due to the
longer range lateral inhibitory connections. Nowwhen the model
is trained using centered rectangular bars and provided the
appropriate spatial constraint on the area of V1, the model
maps the input space of eccentricity and meridional angle such
that they are mapped on to orthogonal axes in the V1 layer
(Philips and Chakravarthy, 2015). The rectangular bars used
have an aspect ratio of 0.025, and hence are near radial. These
stimuli now also cause the nodes of the V1 layer to have
a preference toward radial orientations. This is because each
node in the V1 layer, trained exclusively on near radial edges
(because the bars are centered), using the Hebbian learning rule,
evolves a receptive field which prefers such edges. Now when the
orientation preference of each node of V1 is probed, a coarse scale
orientationmap emerges. The novelty of the results lies in the fact
that just as meridonal angle gets mapped on to the horizontal axis
in the V1 cortical space, orientation preference also gets mapped
onto the same axis.

In order for a retinotopic map to emerge which resembles
the retinotopy in V1, appropriate parameters are chosen to
describe the connection strengths, learning rates and radii. These
parameters are chosen such that they are biologically realistic.
Similarly the boundary condition applied to the output layer
such that it mimics the boundary of the primary visual cortex. A
detailed description of role of the parameters and the boundary
condition in the emergence of eccentricity and meridional angle
being mapped on to orthogonal axes is given in a previous
paper (Philips and Chakravarthy, 2015). Similar parameter and
boundary conditions are used in this paper as well.

The preference of the global orientation map for orientations
which are similar to the corresponding meridional angle is an
indication of the radial bias. In order to quantify this similarity
the two maps are compared to measure the circular cross
correlation (rc) and the shift (1shift) between the orientation
and meridional preferences of each node in the output layer
of the model. These results are compared with experimental
observation to validate a close match.

An additional insight that the modeling results provide is a
plausible reason as to why the global orientationmaps have a near
one-to-one mapping for spatial frequencies between 0.25 and 0.5
cpd. Freeman et al. (2011), speculate this could be because of the
mismatch between higher spatial frequencies and the receptive
fields of individual neurons in the periphery. From the model it is
apparent that, on moving toward the periphery of the visual field,
the mismatch between the probing edges and the rectangular
bar which was used for training would diverge as the spatial
frequency increases. In other words, each node in the output
layer of the model is probed for a larger number of edges at
higher spatial frequencies many of which do not match with the
receptive field learnt by that node during the initial training.

A key prediction of the model is the presence of a global phase
preference map. This phase preference is a result of the radial
nature of the stimuli used while training. Phase preference in V1
columns was thought to be randomly distributed, but Wang et al.
(2015) in a recent paper describe the columnar organization of
phase preference in V1. Just as Freeman et al. (2011) describe
the presence of a global orientation map, we predict that there
exists a global phase preference map which is prominent at
0.25–0.5 cpd.

It is to be emphasized that even though at higher spatial
frequencies of input stimuli probed, the output orientation
preference map does not correlate well with the meridional
map, the orientation map developed still encodes a radial bias.
It is likely that when such maps are used (corresponding to
high frequency spatial patterns), a better than chance accuracy
decoding of the orientation of the grating shown could be
achieved, as demonstrated in the results section. This could
explain why Kamitani and Tong (2005) report orientation
decodability in the absence of an apparent global orientation
map. The probing stimuli used by them had a spatial frequency
of 1.5 cpd. Similarly Alink et al. (2013) have demonstrated robust
decodability, on high pass filtering of V1 activity, suggesting that
fine grained activity could also contribute to decodability. Again
the spatial frequency of stimuli employed is 1.25 cpd.

In a recent paper, Pratte et al. (2016) state that the
conventional radial bias is not necessary for orientation decoding
on using grating stimuli of 0.5 cpd. They compute a measure
called the retinotopy baseline, to quantify the retinotopic
information present even after the removal of the conventional
radial bias from the orientation preference. They report that on
changing the stimuli parameters, duration protocol or removing
harmonics, the difference between orientation decoding accuracy
for radial bias removed orientation data and for the retinotopy
baseline becomes significant. Their results also confirm that
there is a drop in the accuracy on removing the meridional
component, similar to the model results described earlier. As far
as the model is concerned, removing the meridional component
does not reduce the orientation decoding accuracy levels to
chance.

Alink et al. (2013) also report robust discriminability on
using globally similar but locally dissimilar stimuli such as patch
swapped stimuli. Though the accuracies achieved are lower than
for global stimuli, it is still significantly greater than chance. This
led them to speculate that lateral and top down effects may play a
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role in orientation discriminability. Similarly context modulation
effects may play a role in the global form effects which could
also contribute to orientation discriminability (Cichy et al., 2015),
suggesting the role of extra-striate feedback.

The current model does not capture neuronal spiking
dynamics and is restrictive in its architecture. The scale at which
the simulations are performed (the mapping of 4◦ of visual
space), allows us to visualize only the large-scale bias in the
orientation map developed even on training with non-radial
stimuli. The current model also does not consider feedback from
higher cortical regions. It would be a fruitful future endeavor to
consider a more detailed model with top down feedback.
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