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We have shown previously that CA1 conveys significant neural signals necessary to

update value of the chosen target, namely chosen value and reward signals. To better

understand hippocampal neural processes related to valuation, we compared chosen

value- and reward-related neural activity between the CA3 and CA1 regions. Single units

were recorded with tetrodes from the dorsal CA3 and CA1 regions of rats performing

a dynamic foraging task, and chosen value- and reward-related neural activity was

estimated using a reinforcement learning model and multiple regression analyses. Neural

signals for chosen value and reward converged in both CA3 and CA1 when a trial

outcome was revealed. However, these neural signals were stronger in CA1 than CA3.

Consequently, neural signals for reward prediction error and updated chosen value were

stronger in CA1 than CA3. Together with our previous finding that CA1 conveys stronger

value signals than the subiculum, our results raise the possibility that CA1 might play

a particularly important role among hippocampal subregions in evaluating experienced

events.

Keywords: hippocampus, reinforcement learning, chosen value, dynamic foraging task, decision making, T-maze,

rat

INTRODUCTION

As a structure known for its essential role in encoding episodic memory, the hippocampus has not
been a popular target for investigation of the neural underpinning of value-based decision-making.
However, when we remember a past episode, we usually remember not only what happened, but
also its affective component—how good or bad—as well. In this regard, significant value signals
have been found in the human (Tanaka et al., 2004; Bornstein and Daw, 2013) and rat (Lee et al.,
2012) hippocampus, raising the possibility that factual and value information may be conjunctively
encoded in the hippocampus such that the memory of an event is inseparable from the memory of
its value. If so, recalling factual information will automatically evoke associated value information,
whichwould be useful formaking advantageous choices in the future when one encounters a similar
situation as experienced before (Wimmer and Shohamy, 2012). Concurrent coding of factual and
value information would be also useful for simulating hypothetical outcomes and assessing their
values. It is now well-established that the hippocampus is important not only for memory, but
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also for imagining new experiences (Buckner, 2010; Schacter
et al., 2012; Gaesser et al., 2013; Mullally and Maguire, 2014).
Value information represented in the hippocampus would be
useful for simulating most probable and rewarding scenarios for
maximizing value.

Currently, hippocampal neural processes related to value-
based decision making are poorly understood. We have shown
previously that CA1 conveys strong and robust value signals,
whereas value signals are only weak in its neighboring structure,
subiculum, in rats (Lee et al., 2012). An important question then
is whether and how the other hippocampal subregions process
value-related information. A particularly important question is
characteristics of value-related neural signals in CA3, which
provides the heaviest afferent projections to CA1 (Amaral et al.,
1990). In the present study, to better understand hippocampal
neural processes related to updating values of experienced events,
we compared value-related neural activity between CA3 and
CA1.We found that chosen value and reward signals are stronger
in CA1 than CA3. Our results argue against the possibility that
CA3 is the major source of value signals found in CA1. They also
suggest that CA1 may play a particularly important role among
hippocampal subregions in evaluating experienced events.

MATERIALS AND METHODS

Animals
Four young (9 weeks old, 300–350 g) male Sprague-Dawley
rats were individually housed in their home cages and initially
allowed free access to food and water with extensive handling
for 1 week. They were then gradually water deprived so that
their body weights were maintained at 80–85% of their free-
feeding weights throughout the experiments. The experiments
were performed in the dark phase of a 12 h light/dark cycle.
The experimental protocol was approved by the Ethics Review
Committee for Animal Experimentation of Korea Advanced
Institute of Science and Technology.

Behavioral Task
The rats were trained in a dynamic foraging task in a modified
T-maze as described previously (Lee et al., 2012). The maze
(65 × 60 cm, width of track: 8 cm, 3 cm high walls along the
entire track except the central bridge; elevated 30 cm from the
floor) contained three photobeam sensors tomonitor the animal’s
position in the maze (Figure 1A). The animals were required to
navigate from the central stem to either goal site to obtain water
reward and come back to the central stem via the lateral alley in
each trial. A 2 s delay was imposed at the beginning of each trial
by raising the distal portion of the central stem. A fixed amount
of water reward (40 µl) was delivered according to a concurrent
variable-ratio/variable-ratio reinforcement schedule so that each
choice contributed to the ratio requirement of both goals. If
water was delivered at the unvisited goal, it remained available
in the subsequent trials without additional water delivery until
the animal visited there [“dual assignment with hold” (DAWH)
task] (Lau and Glimcher, 2005; Huh et al., 2009). The animal’s
arrival at a goal was detected by a photobeam sensor (placed
6 cm ahead of the water delivery nozzle) and triggered an

auditory tone (conditional stimulus or CS, 9 and 1 KHz for
rewarded and unrewarded trials) for 1 s, which marked the onset
of the reward period. Water was delivered at the CS offset in
rewarded trials. The animals performed four blocks of trials in
each recording session. The number of trials in each block was
35 plus a random number drawn from a geometric mean of 5
with the maximum of 45 (41.7± 1.4 trials per block and 167.0±
1.4 trials per session; mean ± SD). Reward probability of a goal
was constant within a block of trials, but changed across blocks
without any sensory cues, so that changes in the probabilities
of reward could be discovered only by trial and error. The
following four combinations of reward probabilities were used
in each session: 0.72:0.12, 0.63:0.21, 0.21:0.63, and 0.12:0.72. The
sequence was determined randomly with the constraint that the
richer alternative always changed its location at the beginning of
a new block.

Unit Recording
An array of 12, 15, or 24 tetrodes was implanted above the right
hippocampus (3.6 mm posterior and 2.2 mm lateral to bregma;
1.5 mm ventral to brain surface) of well-trained (20–30 days of
training in the DAWH task before surgery) rats under isoflurane
(1.5–2.0% [vol/vol] in 100% oxygen) anesthesia. Following 7
days of recovery from surgery, the rats were further trained in
the DAWH task for 7–10 days while tetrodes were gradually
advanced toward the CA1 cell body layer. Unit signals were
recorded first in the CA1 cell body layer (12–16 sessions) and
then in the CA3 cell body layer (9–15 sessions), with 12–15 days
of tetrode advancements between two bouts of unit recordings.
Some tetrodes passed through the dentate granule cell layer
instead of the CA3 pyramidal cell layer. Units recorded in the
DG were not analyzed because the number of recorded units
was relatively small. Unit signals were amplified with the gain of
10,000, filtered between 0.6 and 6KHz, digitized at 32 KHz and
stored on a personal computer using a Cheetah data acquisition
system (Neuralynx; Bozemann, MT, USA). Unit signals were
also recorded with the animals placed on the pedestal before
and after each experimental session to examine the stability of
recorded unit signals. Local field potentials (LFPs) were also
recorded from each tetrode (gain, 1,000; band-pass filtering, 0.1–
1,000 Hz; digitization, 2 KHz). The head position of the animal
was recorded at 30 Hz by tracking an array of light-emitting
diodes mounted on the headstage. When CA3 or DG recordings
were completed, small marking lesions were made by passing an
electrolytic current (30 µA, 20 s, cathodal) through one channel
of each tetrode and electrode tracks and marking lesions were
verified histologically according to a standard procedure (Baeg
et al., 2001). Recoding locations were determined based on the
history of electrode advancements and histologically-confirmed
electrode tracks and lesion sites (Figure 2A).

Analysis of Behavior
Logistic Regression Analysis
Effects of previous choices and their outcomes on animal’s goal
choice were estimated using the following logistic regression
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FIGURE 1 | Behavioral performance. (A) The modified T-maze used for rats. The rats were allowed to choose freely between two targets (blue circles) that delivered

water in a probabilistic manner. Breaking a photobeam sensor in front of a reward site (the two red dashed lines on top) triggered an auditory tone (CS, 1 s) that

signaled a trial outcome. Water reward was delivered at the CS offset in rewarded trials. Calibration, 10 cm. (B) Rat’s choice behavior during one example session.

The probability of choosing the left target (PL) is plotted in moving average of 10 trials (gray curve). The black curve represents choice probability predicted by an RL

model. Tick marks denote trial-by-trial choices of the rat (upper, left choice; lower, right choice; long, rewarded trial; short, unrewarded trial). Each session consisted of

four blocks of trials with different combinations of reward probabilities. Vertical lines denote block transitions and numbers on top indicate reward probabilities used in

this example session. (C–E) Comparison of choice behavior during CA1 and CA3 recording sessions. (C) The relationship between log choice ratio (ordinate) and log

reinforcement ratio (abscissa) is shown separately for CA1 and CA3 recording sessions. Each data point was obtained by analyzing steady-state behavioral data (trials

after the proportion of higher-reward-probability target choices reaching >90% of the maximum value in each block in 7-trial moving average) during one block of

trials. (D) Effects of past rewards on the rat’s choice are shown separately for CA1 and CA3 recording sessions. The influence of past rewards on the rat’s choice was

estimated using a logistic regression model. Shown are regression coefficients averaged across four rats (mean ± SEM). Positive coefficients indicate the animal’s

tendency to make the same choice that was rewarded in recent trials. (E) The proportion of higher-reward-probability target choices [P(H)] in each block, the

proportion of win-stay (repeating the rewarded choice) in each session, the proportion of lose-switch (switching from unrewarded choice) in each session, and choice

bias (the proportion of choosing one target over the other in each session) were compared between CA1 and CA3 recording sessions. No significant difference was

found in any of these measures (t-test, p > 0.1).

model (Lau and Glimcher, 2005; Kim et al., 2009):

log
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=
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(
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))

+ r0, (1)

where pL(i) [or pR(i)] is the probability of selecting the left (or
right) goal in the i-th trial. The variables RL(i) [or RR(i)] andCL(i)
[orCR(i)] are reward delivery at the left (or right) goal (0 or 1) and
the left (or right) goal choice (0 or 1) in the i-th trial, respectively.
The coefficients rrj and rcj denote the effect of past rewards and
choices, respectively, and r0 is a bias term.

Matching Law
Steady-state behavioral data was analyzed to test their conformity
to the generalized matching law (Baum, 1974) as follows:

CL

CR
= b(

RL

RR
)a, (2)

where CL (or CR) and RL (or RR) are choice frequency and
reinforcement frequency for the left (or right) goal, respectively.
The coefficients a and b are the sensitivity to the reinforcement
ratio and a bias term, respectively.

Reinforcement Learning (RL) Model
Value-related activity of CA3 and CA1 neurons was examined
using an RL model. We have shown previously that the “stack
probability” (SP) model explains rat’s choice behavior in the
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DAWH task better than a simple Q-learning model in terms
of Akaike’s and Bayesian information criteria (AIC and BIC,
respectively; Huh et al., 2009), which was confirmed in the
present study (Q-learning model, AIC per trial, 1.211 ± 0.009;
BIC per trial, 1.213 ± 0.009; SP model, AIC per trial, 1.181 ±

0.012; BIC per trial, 1.183± 0.012, mean± SEM). The SP model
is similar to the simple Q-learning model except that values were
computed considering that reward probability of the unchosen
target increases as a function of the number of consecutive
alternative choices. Action selection in the model was based on
the softmax action selection rule, in which choice probability
varied as a graded function of the difference in action values.
Details of the SP model are described in our previous study (Huh
et al., 2009).

Analysis of Neural Data
Unit Isolation Classification
Putative single units were isolated off-line by manual cluster
cutting of various spike waveform parameters using the MClust
software (A. D. Redish). Only those clusters with L-ratio < 0.15
(0.04 ± 0.00, n = 535), and isolation distance > 15 (52.5 ±

3.1; Schmitzer-Torbert et al., 2005) were included in the analysis.
Units recorded from CA1 and CA3 were classified into putative
pyramidal cells (complex spike cells) and putative inhibitory
interneurons (theta cells) based on mean discharge rate and
a burst index (the percentage of inter-spike intervals shorter
than one-fourth of each neuron’s mean inter-spike interval).
Those units with mean discharge < 5 Hz and the burst index
> 45% were classified as putative pyramidal cells, that were
included in the analysis, and the rest were classified as putative
interneurons (Figure 2B). The majority of classified units were
putative pyramidal cells (CA1, 262 of 283, 92.6%; CA3, 231 of
252, 91.7%). Their mean discharge rates and burst index were
0.50 ± 0.49 Hz and 73.3 ± 8.3%, respectively, in CA1 and
0.38 ± 0.34 Hz and 72.3 ± 10.4% (mean ± SD), respectively,
in CA3.

FIGURE 2 | Recording locations and unit classification. (A) Single units were

recorded first from CA1 and then CA3/DG regions of the rat dorsal

hippocampus. Red dots indicate the final recording locations of all tetrodes.

Modified from Paxinos and Watson (1998) with permission. (B) Unit

classification. The recorded units were classified into putative pyramidal cells

and putative interneurons based on mean discharge rates and the distribution

of inter-spike intervals. Those units with mean discharge rates <5Hz and the

burst index (the percentage of inter-spike intervals shorter than one-fourth of

each neuron’s mean inter-spike interval) >45% were classified as putative

pyramidal cells and the rest were classified as putative interneurons.

Multiple Regression Analysis
Neural activity related to the animal’s choice and its outcome (i.e.,
reward) was examined using the following regression model:

S (t) = a0 +
∑2

n=0
[a3n+1C (t − n) + a3n+2R (t − n)

+ a3n+3X (t − n)]+ a10L (t) + a11Y (t)

+ a12M (t) + A (t) + ε(t), (3)

where S(t) is neural firing rate, C(t) , R(t), and X(t) indicate the
animal’s choice, its outcome (or reward), and their interaction in
trial t, L(t) is the animal’s lateral position (lateral deviation from
the midline of the maze), Y (t) is the Y-position of the animal,
M(t) is the animal’s movement speed, ε(t) is the error term, and
a0−a12 are regression coefficients. A(t) is a set of autocorrelation
terms (neural firing rates during the same analysis time window
in the previous five trials):

A (t) =
∑5

n=1
an+12S(t − n),

where a13 − a17 are regression coefficients.
Value-related neural activity was examined using the following

regression model:

S (t) = a0 + a1C (t) + a2R (t) + a3X (t) + a4QL (t) + a5QR (t)

+ a6Qc (t) + a7L (t) + a8Y (t)

+ a9M (t) + A (t) + ε (t), (4)

whereQL (t) andQR (t) indicate the action values for the leftward
and rightward goal choices in trial t, respectively, that were
estimated with the SP model, and Qc (t) denotes the chosen value
(value of the chosen target in each trial).

Neural activity related to reward prediction error (RPE) and
updated chosen value (upQc) was examined using the following
regression models:

S (t) = a0 + a1C (t) + a2QL (t) + a3QR (t) + a4RPE+ a5L (t)

+ a6Y (t) + a7M (t) + A (t) + ε (t) (5)

S (t) = a0 + a1C (t) + a2QL (t) + a3QR (t) + a4upQc(t)

+ a5L (t) + a6Y (t) + a7M (t) + A (t) + ε (t), (6)

where RPE = R (t) − Qc (t) and upQc (t) = Qc (t) + αRPE.
The parameter α is the learning rate of the SP model that was
estimated for each rat using a maximum likelihood procedure
(Sul et al., 2010).

The following regression model was used to analyze RPE- and
updated chosen value-related neural activity at each reward site
separately:

S (t) = a0 + a1QL (t) + a2QR (t) + a3RPE+ a4L (t) + a5Y (t)

+ a6M (t) + A (t) + ε (t), (7)

S (t) = a0 + a1QL (t) + a2QR (t) + a3upQc (t)+ a4L (t)

+ a5Y (t) + a6M (t) + A (t) + ε (t), (8)

For this analysis, those neurons that have significant coefficients
for RPE (or upQc) at either reward site (p < 0.025; alpha = 0.05
was corrected for multiple comparisons) were determined to be
RPE- (or upQc-) responsive neurons.
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Coefficient for Partial Determination (CPD)
CPD for RPE and updated chosen value was calculated as the
following (Neter et al., 1996; Kim et al., 2009):

CPD(X2) = [SSE(X1) − SSE(X1, X2)]/SSE(X1), (9)

where SSE(Xi) is the sum of squared errors of a regression model
containing a set of independent variables Xi, X1 included C(t),
QL(t), and QR(t) along with behavioral variables [L(t), Y(t),
and M(t)], and X2 was either RPE or updated chosen value.
Thus, CPD is the fraction of variance in neuronal activity that
is additionally explained by RPE or updated chosen value.

Onset Time of Upcoming Choice Signals
To determine the time of choice onset (first behavioral
manifestation of the animal’s choice), we first estimated the Y-
position in which the animal’s X-position begins to diverge (near
the upper T-junction in Figure 1A) for each session based on
visual inspection. We then aligned the animal’s X-position data
relative to the time when the animal reached this Y-position,
and choice onset was defined as the time when the animal’s X-
positions during the left-choice and right-choice trials became
significantly different (t-test, p < 0.05; Figure 4A). Thus, choice
onset was determined separately for each behavioral session.
We then plotted temporal profiles of choice signals (fractions
of neurons significantly responsive to the animal’s upcoming
choice) relative to choice onset (Figure 4A). The onset time
of upcoming choice signals was when choice signals became
significant for the first time and remained that way>1 s following
choice onset.

Analysis of Local Field Potentials (LFPs)
LFPs were recorded through one channel of each tetrode. For the
identification of SWR events, LFPs were filtered between 100 and
250 Hz. The amplitude for each LFP trace was determined by the
Hilbert transform, averaged across tetrodes and then smoothed
with a Gaussian kernel (σ = 4 ms). SWR events were defined
as the time periods when the smoothed envelop exceeded a
threshold of the mean plus 2.5 SD for at least 20 ms (Jackson
et al., 2006). Twenty milliseconds were added to the beginning
and end of each SWR event. SWR events were analyzed only
when animal’s head speed was <4 cm/s.

Statistical Analysis
Statistical significance of a regression coefficient was tested based
on a t-test, and significance of the fraction of neurons for a
given variable was tested with a binomial test. Strengths of
neural signals (fractions of neurons coding a given variable)
between CA3 and CA1 were compared with a χ2-test.
All statistical tests were based on two-tailed tests. A p <

0.05 was used as the criterion for a significant statistical
difference. Data are expressed as mean ± SEM unless noted
otherwise.

RESULTS

Rat’s Choice Behavior
All rats showed biased choices toward the higher-reward-
probability target after block transition, an effect that was
well-captured by a reinforcement learning (RL) model (Huh
et al., 2009) (Figure 1B). The rat’s choice behavior during
the steady state (trials after reaching >90% of the maximum
value in each block in 7-trial moving average) was consistent
with the generalized matching law (Baum, 1974; Figure 1C). A
logistic regression analysis revealed that the animal’s choice was
influenced by past choice outcomes, with more recent choice
outcomes having stronger effects (Figure 1D). These results show
that the animals were capable of tracking changes in relative
reward probabilities based on past choice outcomes and adjusted
their choices accordingly.

Neural Activity Related to Choice and
Reward
Units were recorded first from CA1 and then from CA3.
All rats were over-trained in the task, and no significant
difference was found in rat’s choice behavior between CA1 and
CA3 unit recording sessions (Figures 1C–E). In the present
study, we focused our analysis on neural spike data at the
reward sites to examine neural activity related to the evaluation
of choice outcome. Neural spike data at the two reward
sites were combined and analyzed together using multiple
regression models so that neural activity related to chosen
value (value of the chosen target in each trial) and action
value (value of the left or right target) can be dissociated.
Similar conclusions were obtained, however, when neural
activity in each reward site was analyzed separately (see
below).

In our task, the arrival of the rat at either goal site (breaking a
photobeam sensor; Figure 1A) triggered an auditory tone (CS;
9 and 1 KHz in rewarded and unrewarded trials, respectively)
signaling the availability of reward for 1 s before actual delivery
of reward. This was to examine trial outcome-dependent neural
activity while minimizing potential motor/sensory confounds;
the animal’s motor behavior and sensory inputs might differ
between rewarded and unrewarded trials after actual delivery
(or no delivery) of reward. We examined neural activity related
to the rat’s choice (C) and its outcome (or reward; R) at
the reward site (between 2 s before and 3 s after CS onset)
using a multiple regression model (Equation 3). Many CA3
and CA1 neurons were responsive to the rat’s choice (left vs.
right) and/or its outcome (reward vs. no reward) at the reward
site (Figure 3A). Note that “choice”-related neural activity at
reward sites merely represents side specificity of unit firing (i.e.,
place-specific firing). Temporal profiles of choice and reward
signals (in terms of the fraction of neurons responsive to each
variable; Equation 3) are shown in Figure 3B. As shown, both
CA1 and CA3 conveyed strong neural signals for choice and
reward when the choice outcome was revealed at the reward
sites, with both choice and reward signals stronger in CA1
than CA3.
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FIGURE 3 | Neural activity related to choice and reward at reward sites. (A) Examples of choice- and reward-coding neurons at reward sites. Spike raster plots and

spike density functions (σ = 100 ms) are shown for two example neurons that were responsive to both choice [left (L) vs. right (R) reward sites] and reward [reward (+)

vs. no reward (−)]. Trials were grouped according to the animal’s choice and reward. (B) Temporal profiles of choice and reward signals at reward sites, measured as

the fraction of neurons that are significantly responsive to each variable (1 s moving window, 50 ms time steps). Large circles, significant differences between CA1 and

CA3 (χ2-test, p < 0.05). Shading, chance level (binomial test). The green dashed line indicates the averaged time of reward stage offset in unrewarded trials.

We also examined whether CA3 or CA1 neurons conveyed
information on the rat’s upcoming choice (Frank et al., 2000;
Wood et al., 2000; Ito et al., 2015) when the animal was on
the central stem of the maze (Equation 3). For this analysis, we
aligned neural activity to the onset of choice behavior (the first
time point for behavioral manifestation of the rat’s upcoming
target choice; Figure 4A) that was determined based on the
animal’s movement trajectories in each behavioral session as
previously described (Kim et al., 2009, 2013; Sul et al., 2010,
2011). A sliding window analysis (1 s window advanced in 50 ms
steps) showed that choice signals were weak before behavioral
manifestation of the rat’s goal choice in both CA3 and CA1
(Figure 4B). An analysis at a higher temporal resolution (0.5 s
moving window) showed that significant choice signals were
evident in both CA1 and CA3 only after behavioral manifestation
of the animal’s choice (Figure 4B). The current task allows
separate examinations of neural activities related to previous
and future choices, because they were only modestly correlated
(r = 0.037 ± 0.154; mean ± SD across sessions). Both CA1
and CA3 carried relatively strong previous choice signals on
the central stem of the maze (Equation 3; Figure 4C), which is

consistent with our previous finding (Lee et al., 2012). Thus,
both CA1 and CA3 conveyed strong retrospective choice signals,
but weak prospective choice signals, on the central stem of
the maze.

Neural Activity Related to Chosen Value
We then examined neural activity related to chosen value (value
of the chosen target in each trial), that was estimated with
the SP model, using a multiple regression model (Equation 4;
Figure 5A). As shown in our previous study (Lee et al., 2012),
chosen value signals began to rise ∼1 s before CS onset in
CA1, indicating that expected reward signals emerged in CA1
before choice outcome was revealed. CA1 chosen value signals
stayed well-above chance level during the CS period and then
subsided below chance level at CS offset. Thus, neural signals
necessary to update value of the chosen action, namely reward
and chosen value signals, coexisted during the CS period in
CA1, which is consistent with our previous findings (Lee et al.,
2012). Chosen value signals were also elevated in CA3 when
the outcome of the animal’s choice was revealed at the reward
sites. However, compared to CA1, CA3 chosen-value signals rose
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FIGURE 4 | Neural activity related to upcoming and previous choices on central stem. (A) Determination of the time of choice onset. Choice onset was when the

difference in the animal’s horizontal coordinate (X-position) of the left- and right-choice trials first became statistically significant. Shown are the time course of the

animal’s X-position data near the upper T-junction of the maze (Figure 1A) during an example session (left, individual trials; right, mean). Blue and red indicate trials

associated with the left and right goal choices, respectively. The dashed line (0 ms) indicates the time of clear separation in the animal’s X-positions according to its

choice upon visual inspection, and the solid line corresponds to the time when the difference in the X-positions for the left- and right-choice trials first became

statistically significant (i.e., choice onset; t-test, p < 0.05) within ±0.5 s window from time 0. (B) Choice signals around choice onset examined with 1 s (left) and 0.5 s

(right) moving windows (50 ms time steps). (C) Previous choice signals examined with 1 s (left) and 0.5 s (right) moving windows (50 ms time steps). The same format

as in Figure 3B.

above chance level more slowly (500 and 100 ms before outcome
onset for CA1 and CA3, respectively; Figure 5B), and were
significantly weaker (CA3, 8.2%; CA1, 14.1%; χ2-test, p= 0.040)

when analyzed using a relatively large analysis time window
(between −0.5 and +1 s relative to outcome onset). Moreover,
after subsiding at ∼1 s following outcome onset, chosen-value
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FIGURE 5 | Neural activity related to chosen value. (A) Two examples of chosen value-coding neurons. Trials were grouped according to chosen value (in quartiles).

(B) Temporal profiles of chosen value signals. The same format as in Figure 3B. (C) Chosen-value signals as a function of firing rate (mean of 150 neurons, steps of

10 neurons). CA3 and CA1 units were aligned according to their mean discharge rates, and chosen value signals around CS onset (2 s window centered on CS onset)

and during 2–3 s since CS onset were examined using a moving window of 150 neurons that was advanced in steps of 10 neurons (starting from the low-firing side).

signals rose again in CA1, but not in CA3 (Figure 5B). Chosen
value signals around CS onset (2 s window centered on CS
onset) and during late reward period (2–3 s since CS onset) were
consistently stronger in CA1 than CA3, as shown by a plot of
strength of chosen-value signals as a function of mean discharge

rate during the task (Figure 5C). Sharp-wave ripple (SWR) events
were rare at reward sites in our study; consequently, similar
levels of chosen-value signals were found after excluding neural
activity associated with SWR events (Figure 6), indicating that
our results are independent of reward-enhanced, SWR-associated
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FIGURE 6 | Results of LFP analysis. (A) LFP power spectrum during the early (between –1 and 1 s since CS onset) and late (between 2 s since CS onset and exit from

the reward site) phases of the outcome period (CA1, n = 32 sessions; CA3, n = 49 sessions). (B) The frequency of SWRs (events per second) during the early and

late phases of the outcome period. (C) Chosen value signals, that were estimated with and without excluding the neural data associated with SWRs, were compared.

replays of place cell activity (Foster and Wilson, 2006; Singer
and Frank, 2009; Pfeiffer and Foster, 2013; Ólafsdóttir et al.,
2015).

Neural Activity Related to Reward
Prediction Error and Updated Chosen
Value
Chosen value and outcome signals can be combined to compute
RPE and update chosen value (Kim et al., 2009; Sul et al., 2010,
2011; Lee et al., 2012). Both RPE and upQc signals, that were
examined with multiple regression models (Equations 5 and 6),
were stronger in CA1 than CA3 (Figures 7A,B). An analysis of
neural activity separately at each goal site (Equations 7 and 8)

yielded similar results (Figure 7C). An analysis examining the
effect sizes of all neurons, rather than the fraction of significant
neurons, using CPD (Equation 9) also yielded similar results
(Figure 7D).

DISCUSSION

We have shown previously that CA1 conveys neural signals
necessary to update value of the chosen target in a dynamic
foraging task (Lee et al., 2012). In the present study, we compared
neuronal activity related to updating the value of chosen target
in the CA3 vs. CA1 regions in the identical behavioral task. We
replicated our previous findings in the present study; reward and
chosen value signals converge in CA1 when trial outcome was
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FIGURE 7 | Neural activity related to RPE and updated chosen value. (A) Example neurons coding RPE (top) or updated chosen value (upQc; bottom). Trials were

grouped according to RPE or updated chosen value (in quartiles). (B) Temporal profiles of RPE and updated chosen value signals. The same format as in Figure 3B.

(C) Neural activity at each goal site was analyzed separately. (D) CPD for RPE and updated chosen value. Shading indicates SEM.

revealed. In addition, we found that CA3 also conveys significant
reward and chosen value signals when trial outcomewas revealed.
However, reward and chosen value signals were stronger in CA1
than CA3 and, consequently, signals for RPE and updated chosen
value were also stronger in CA1 than CA3. These results are
in line with a finding that spatial firing of CA1, but not CA3,
neurons is reorganized to represent new goal locations (Dupret
et al., 2010). They are also consistent with our recent finding
that selective inactivation of CA1, but not CA3, impairs value
learning (Jeong et al., 2016). Together with our previous finding
that value signals are stronger in CA1 than the subiculum (Lee
et al., 2012), these results raise the possibility that CA1might play
a particularly important role among hippocampal subregions in
evaluating experienced events.

Our results indicate that at least some of CA1 value signals
are independent of value-dependent discharges of CA3 neurons.
What would be the neural basis of CA3-independent value
signals in CA1? One possibility would be differential effects
of dopamine on CA3 and CA1 neural activity. Dopaminergic
projections from the ventral tegmental area (VTA) and dopamine
receptor subtype distributions are different between CA3 and
CA1 (Gasbarri et al., 1997; Shohamy and Adcock, 2010; c.f.,
Takeuchi et al., 2016). Dopamine conveys RPE signals (Schultz
et al., 1997; Roesch et al., 2007; Cohen et al., 2012) and
modulates synaptic transmission/plasticity in CA1 (e.g., Frey
and Schroeder, 1990; Otmakhova and Lisman, 1996; Li et al.,
2003; O’carroll and Morris, 2004; Zhang et al., 2009; Hansen
and Manahan-Vaughan, 2012; Brzosko et al., 2015; Rosen et al.,
2015). Dopaminemight differentially affect CA3 vs. CA1 neurons
through these mechanisms so that CA1 neuronal activity is
modulated by value independent of CA3 inputs. This possibility
is supported by the finding that inactivation of the ventral
tegmental area affects spatial firing of CA1, but not CA3, place

cells (Martig and Mizumori, 2011). It is also possible that other
afferent projections to CA1, such as direct layer III entorhinal
cortical projections (Witter, 1986, 1993; Amaral, 1993), CA2
projections (Tamamaki et al., 1988; Shinohara et al., 2012; Kohara
et al., 2014), prefrontal cortical projections (Rajasethupathy et al.,
2015), and thalamic projections (Herkenham, 1978; Wouterlood
et al., 1990), contribute to value-related neural activity of CA1
neurons. Future studies combining manipulation of specific
afferent projections and monitoring CA1 neural activity would
be helpful in elucidating roles of dopaminergic and other afferent
projections in CA1 value processing.

Recent studies indicate an important role of the hippocampus
in imagining future episodes (Buckner, 2010; Schacter et al.,
2012; Gaesser et al., 2013; Mullally and Maguire, 2014). In
rats, hippocampal place cells go through sequential discharges
(replays) during sleep and awake immobility that reflect
experienced as well as unexperienced trajectories (e.g., Louie
and Wilson, 2001; Lee and Wilson, 2002; Diba and Buzsáki,
2007; Johnson and Redish, 2007; Gupta et al., 2010; Carr et al.,
2011; Dragoi and Tonegawa, 2011; Pfeiffer and Foster, 2013).
Our results suggest that replay of CA1 place cells may be
affected by value information represented in CA1. Consistent
with this possibility, trajectories reconstructed from replays
of CA1 place cells are preferentially directed to previously
visited as well as unvisited (but observed) reward locations
in rats (Foster and Wilson, 2006; Pfeiffer and Foster, 2013;
Ólafsdóttir et al., 2015). Replay of place cells involving value-
coding CA1 neurons might be a way of evaluating expected
values of replayed place cell sequences, which would be useful for
simulating themost probable and rewarding trajectories (or event
sequences) for maximizing value. Additional studies are needed
to explore whether and how value-dependent firing of CA1
neurons contributes to the evaluation of simulated trajectories.

Frontiers in Neural Circuits | www.frontiersin.org 10 June 2017 | Volume 11 | Article 40

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Lee et al. CA1 and CA3 Value Signals

AUTHOR CONTRIBUTIONS

SL and MJ conceived the study. SL, NH and JL performed the
experiments. SL, NH, JL, JG, and MJ analyzed the data; and IL
and MJ wrote the paper with inputs from all authors.

ACKNOWLEDGMENTS

This work was supported by the Research Center
Program of the Institute for Basic Science
(IBS-R002-G1).

REFERENCES

Amaral, D. G. (1993). Emerging principles of intrinsic hippocampal
organization. Curr. Opin. Neurobiol. 3, 225–229. doi: 10.1016/0959-4388(93)
90214-J

Amaral, D. G., Ishizuka, N., and Claiborne, B. (1990). Neurons,
numbers and the hippocampal network. Prog. Brain Res. 83, 1–11.
doi: 10.1016/S0079-6123(08)61237-6

Baeg, E. H., Kim, Y. B., Jang, J., Kim, H. T., Mook-Jung, I., and Jung, M. W.
(2001). Fast spiking and regular spiking neural correlates of fear conditioning
in the medial prefrontal cortex of the rat. Cereb. Cortex 11, 441–451.
doi: 10.1093/cercor/11.5.441

Baum, W. M. (1974). On two types of deviation from the matching
law: bias and undermatching1 . J. Exp. Anal. Behav. 22, 231–242.
doi: 10.1901/jeab.1974.22-231

Bornstein, A. M., and Daw, N. D. (2013). Cortical and hippocampal correlates
of deliberation during model-based decisions for rewards in humans. PLoS
Comput. Biol. 9:e1003387. doi: 10.1371/journal.pcbi.1003387

Brzosko, Z., Schultz, W., and Paulsen, O. (2015). Retroactive modulation
of spike timing-dependent plasticity by dopamine. Elife 4:e09685.
doi: 10.7554/eLife.09685

Buckner, R. L. (2010). The role of the hippocampus in
prediction and imagination. Annu. Rev. Psychol. 27–48, C1–C8.
doi: 10.1146/annurev.psych.60.110707.163508

Carr, M. F., Jadhav, S. P., and Frank, L. M. (2011). Hippocampal replay in the
awake state: a potential substrate for memory consolidation and retrieval. Nat.
Neurosci. 14, 147–153. doi: 10.1038/nn.2732

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., and Uchida, N. (2012). Neuron-
type-specific signals for reward and punishment in the ventral tegmental area.
Nature 482, 85–88. doi: 10.1038/nature10754

Diba, K., and Buzsáki, G. (2007). Forward and reverse hippocampal place-cell
sequences during ripples. Nat. Neurosci. 10, 1241–1242. doi: 10.1038/nn1961

Dragoi, G., and Tonegawa, S. (2011). Preplay of future place cell
sequences by hippocampal cellular assemblies. Nature 469, 397–401.
doi: 10.1038/nature09633

Dupret, D., O’neill, J., Pleydell-Bouverie, B., and Csicsvari, J. (2010). The
reorganization and reactivation of hippocampal maps predict spatial memory
performance. Nat. Neurosci. 13, 995–1002. doi: 10.1038/nn.2599

Foster, D. J., and Wilson, M. A. (2006). Reverse replay of behavioural sequences
in hippocampal place cells during the awake state. Nature 440, 680–683.
doi: 10.1038/nature04587

Frank, L. M., Brown, E. N., and Wilson, M. (2000). Trajectory encoding
in the hippocampus and entorhinal cortex. Neuron 27, 169–178.
doi: 10.1016/S0896-6273(00)00018-0

Frey, U., and Schroeder, H. (1990). Dopaminergic antagonists prevent long-term
maintenance of posttetanic LTP in the CA1 region of rat hippocampal slices.
Brain Res. 522, 69–75. doi: 10.1016/0006-8993(90)91578-5

Gaesser, B., Spreng, R. N., McLelland, V. C., Addis, D. R., and Schacter, D. L.
(2013). Imagining the future: evidence for a hippocampal contribution to
constructive processing. Hippocampus 23, 1150–1161. doi: 10.1002/hipo.22152

Gasbarri, A., Sulli, A., and Packard, M. G. (1997). The dopaminergic
mesencephalic projections to the hippocampal formation in
the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 1–22.
doi: 10.1016/S0278-5846(96)00157-1

Gupta, A. S., van der Meer, M. A., Touretzky, D. S., and Redish, A. D. (2010).
Hippocampal replay is not a simple function of experience. Neuron 65,
695–705. doi: 10.1016/j.neuron.2010.01.034

Hansen, N., and Manahan-Vaughan, D. (2012). Dopamine D1/D5 receptors
mediate informational saliency that promotes persistent hippocampal long-
term plasticity. Cereb Cortex. 24, 845–858. doi: 10.1093/cercor/bhs362

Herkenham,M. (1978). The connections of the nucleus reuniens thalami: evidence
for a direct thalamo-hippocampal pathway in the rat. J. Comp. Neurol. 177,
589–609. doi: 10.1002/cne.901770405

Huh, N., Jo, S., Kim, H., Sul, J. H., and Jung, M. W. (2009). Model-based
reinforcement learning under concurrent schedules of reinforcement in
rodents. Learn. Mem. 16, 315–323. doi: 10.1101/lm.1295509

Ito, H. T., Zhang, S. J., Witter, M. P., Moser, E. I., and Moser, M. B. (2015). A
prefrontal–thalamo–hippocampal circuit for goal-directed spatial navigation.
Nature 522, 50–55. doi: 10.1038/nature14396

Jackson, J. C., Johnson, A., and Redish, A. D. (2006). Hippocampal sharp waves
and reactivation during awake states depend on repeated sequential experience.
J. Neurosci. 26, 12415–12426. doi: 10.1523/JNEUROSCI.4118-06.2006

Jeong, Y., Lee, J., Lee, J. W., and Jung, M. W. (2016). Inactivation of Dorsal CA1,

but not Dorsal CA3, Impairs Value Learning in a Dynamic Foraging Task.

Abstract retrieved from Abstracts in Society for Neuroscience (Accession No.
2016-S-5934-SfN).

Johnson, A., and Redish, A. D. (2007). Neural ensembles in CA3 transiently encode
paths forward of the animal at a decision point. J. Neurosci. 27, 12176–12189.
doi: 10.1523/JNEUROSCI.3761-07.2007

Kim, H., Lee, D., and Jung, M. W. (2013). Signals for previous goal choice persist
in the dorsomedial, but not dorsolateral striatum of rats. J. Neurosci. 33, 52–63.
doi: 10.1523/JNEUROSCI.2422-12.2013

Kim, H., Sul, J. H., Huh, N., Lee, D., and Jung, M. W. (2009). Role of
striatum in updating values of chosen actions. J. Neurosci. 29, 14701–14712.
doi: 10.1523/JNEUROSCI.2728-09.2009

Kohara, K., Pignatelli, M., Rivest, A. J., Jung, H. Y., Kitamura, T., Suh, J., et al.
(2014). Cell type-specific genetic and optogenetic tools reveal hippocampal
CA2 circuits. Nat. Neurosci. 17, 269–279. doi: 10.1038/nn.3614

Lau, B., and Glimcher, P. W. (2005). Dynamic response-by-response models
of matching behavior in rhesus monkeys. J. Exp. Anal. Behav. 84, 555–579.
doi: 10.1901/jeab.2005.110-04

Lee, A. K., and Wilson, M. A. (2002). Memory of sequential experience
in the hippocampus during slow wave sleep. Neuron 36, 1183–1194.
doi: 10.1016/S0896-6273(02)01096-6

Lee, H., Ghim, J. W., Kim, H., Lee, D., and Jung, M. (2012). Hippocampal
neural correlates for values of experienced events. J. Neurosci. 32, 15053–15065.
doi: 10.1523/JNEUROSCI.2806-12.2012

Li, S., Cullen, W. K., Anwyl, R., and Rowan, M. J. (2003). Dopamine-dependent
facilitation of LTP induction in hippocampal CA1 by exposure to spatial
novelty. Nat. Neurosci. 6, 526–531. doi: 10.1038/nn1049

Louie, K., and Wilson, M. A. (2001). Temporally structured replay of awake
hippocampal ensemble activity during rapid eye movement sleep. Neuron 29,
145–156. doi: 10.1016/S0896-6273(01)00186-6

Martig, A. K., and Mizumori, S. J. (2011). Ventral tegmental area
disruption selectively affects CA1/CA2 but not CA3 place fields during
a differential reward working memory task. Hippocampus 21, 172–184.
doi: 10.1002/hipo.20734

Mullally, S. L., and Maguire, E. A. (2014). Memory, imagination, and predicting
the future: a common brain mechanism? Neuroscientist 20, 220–234.
doi: 10.1177/1073858413495091

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996). Applied
Linear Statistical Models, Vol. 4. Chicago, IL: Irwin, 318.

O’carroll, C. M., and Morris, R. G. (2004). Heterosynaptic co-activation
of glutamatergic and dopaminergic afferents is required to induce

Frontiers in Neural Circuits | www.frontiersin.org 11 June 2017 | Volume 11 | Article 40

https://doi.org/10.1016/0959-4388(93)90214-J
https://doi.org/10.1016/S0079-6123(08)61237-6
https://doi.org/10.1093/cercor/11.5.441
https://doi.org/10.1901/jeab.1974.22-231
https://doi.org/10.1371/journal.pcbi.1003387
https://doi.org/10.7554/eLife.09685
https://doi.org/10.1146/annurev.psych.60.110707.163508
https://doi.org/10.1038/nn.2732
https://doi.org/10.1038/nature10754
https://doi.org/10.1038/nn1961
https://doi.org/10.1038/nature09633
https://doi.org/10.1038/nn.2599
https://doi.org/10.1038/nature04587
https://doi.org/10.1016/S0896-6273(00)00018-0
https://doi.org/10.1016/0006-8993(90)91578-5
https://doi.org/10.1002/hipo.22152
https://doi.org/10.1016/S0278-5846(96)00157-1
https://doi.org/10.1016/j.neuron.2010.01.034
https://doi.org/10.1093/cercor/bhs362
https://doi.org/10.1002/cne.901770405
https://doi.org/10.1101/lm.1295509
https://doi.org/10.1038/nature14396
https://doi.org/10.1523/JNEUROSCI.4118-06.2006
https://doi.org/10.1523/JNEUROSCI.3761-07.2007
https://doi.org/10.1523/JNEUROSCI.2422-12.2013
https://doi.org/10.1523/JNEUROSCI.2728-09.2009
https://doi.org/10.1038/nn.3614
https://doi.org/10.1901/jeab.2005.110-04
https://doi.org/10.1016/S0896-6273(02)01096-6
https://doi.org/10.1523/JNEUROSCI.2806-12.2012
https://doi.org/10.1038/nn1049
https://doi.org/10.1016/S0896-6273(01)00186-6
https://doi.org/10.1002/hipo.20734
https://doi.org/10.1177/1073858413495091
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Lee et al. CA1 and CA3 Value Signals

persistent long-term potentiation. Neuropharmacology 47, 324–332.
doi: 10.1016/j.neuropharm.2004.04.005

Ólafsdóttir, H. F., Barry, C., Saleem, A. B., Hassabis, D., and Spiers, H. J.
(2015). Hippocampal place cells construct reward related sequences through
unexplored space. Elife 4:e06063. doi: 10.7554/eLife.06063

Otmakhova, N. A., and Lisman, J. E. (1996). D1/D5 dopamine receptor activation
increases the magnitude of early long-term potentiation at CA1 hippocampal
synapses. J. Neurosci. 16, 7478–7486.

Paxinos, G., and Watson, C. (1998). The Rat Brain in Stereotaxic Coordinates. San
Diego, CA: Academic Press.

Pfeiffer, B. E., and Foster, D. J. (2013). Hippocampal place-cell sequences depict
future paths to remembered goals.Nature 497, 74–79. doi: 10.1038/nature12112

Rajasethupathy, P., Sankaran, S., Marshel, J. H., Kim, C. K., Ferenczi, E., Lee, S. Y.,
et al. (2015). Projections from neocortex mediate top-down control of memory
retrieval. Nature 526, 653–659. doi: 10.1038/nature15389

Roesch, M. R., Calu, D. J., and Schoenbaum, G. (2007). Dopamine neurons encode
the better option in rats deciding between differently delayed or sized rewards.
Nat. Neurosci. 10, 1615–1624. doi: 10.1038/nn2013

Rosen, Z. B., Cheung, S., and Siegelbaum, S. A. (2015). Midbrain dopamine
neurons bidirectionally regulate CA3–CA1 synaptic drive. Nat. Neurosci. 18,
1763–1771. doi: 10.1038/nn.4152

Schacter, D. L., Addis, D. R., Hassabis, D.,Martin, V. C., Spreng, R. N., and Szpunar,
K. K. (2012). The future of memory: remembering, imagining, and the brain.
Neuron. 76, 677–694. doi: 10.1016/j.neuron.2012.11.001

Schmitzer-Torbert, N., Jackson, J., Henze, D., Harris, K., and Redish, A. D. (2005).
Quantitative measures of cluster quality for use in extracellular recordings.
Neuroscience 131, 1–11. doi: 10.1016/j.neuroscience.2004.09.066

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural
substrate of prediction and reward. Science 275, 1593–1599.
doi: 10.1126/science.275.5306.1593

Shinohara, Y., Hosoya, A., Yahagi, K., Ferecskó, A. S., Yaguchi, K., Sík,
A., et al. (2012). Hippocampal CA3 and CA2 have distinct bilateral
innervation patterns to CA1 in rodents. Eur. J. Neurosci. 35, 702–710.
doi: 10.1111/j.1460-9568.2012.07993.x

Shohamy, D., and Adcock, R. A. (2010). Dopamine and adaptive memory. Trends
Cogn. Sci. 14, 464–472. doi: 10.1016/j.tics.2010.08.002

Singer, A. C., and Frank, L. M. (2009). Rewarded outcomes enhance
reactivation of experience in the hippocampus. Neuron 64, 910–921.
doi: 10.1016/j.neuron.2009.11.016

Sul, J. H., Jo, S., Lee, D., and Jung, M. W. (2011). Role of rodent secondary
motor cortex in value-based action selection. Nat. Neurosci. 14, 1202–1208.
doi: 10.1038/nn.2881

Sul, J. H., Kim, H., Huh, N., Lee, D., and Jung, M. W. (2010). Distinct roles of
rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron
66, 449–460. doi: 10.1016/j.neuron.2010.03.033

Takeuchi, T., Duszkiewicz, A. J., Sonneborn, A., Spooner, P. A., Yamasaki,
M., Watanabe, M., et al. (2016). Locus coeruleus and dopaminergic
consolidation of everyday memory. Nature 537, 357–362. doi: 10.1038/nature
19325

Tamamaki, N., Abe, K., and Nojyo, Y. (1988). Three-dimensional analysis of the
whole axonal arbors originating from single CA2 pyramidal neurons in the rat
hippocampus with the aid of a computer graphic technique. Brain Res. 452,
255–272. doi: 10.1016/0006-8993(88)90030-3

Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., and Yamawaki,
S. (2004). Prediction of immediate and future rewards differentially recruits
cortico-basal ganglia loops. Nat. Neurosci. 7, 887–893. doi: 10.1038/
nn1279

Wimmer, G. E., and Shohamy, D. (2012). Preference by association: how
memory mechanisms in the hippocampus bias decisions. Science 338, 270–273.
doi: 10.1126/science.1223252

Witter, M. P. (1986). A survey of the anatomy of the hippocampal
formation, with emphasis on the septotemporal organization of its
intrinsic and extrinsic connections. Adv. Exp. Med. Biol. 203, 67–82.
doi: 10.1007/978-1-4684-7971-3_5

Witter, M. P. (1993). Organization of the entorhinal-hippocampal system: a review
of current anatomical data. Hippocampus 3, 33–44.

Wood, E. R., Dudchenko, P. A., Robitsek, R. J., and Eichenbaum, H.
(2000). Hippocampal neurons encode information about different types of
memory episodes occurring in the same location. Neuron 27, 623–633.
doi: 10.1016/S0896-6273(00)00071-4

Wouterlood, F. G., Saldana, E., and Witter, M. P. (1990). Projection
from the nucleus reuniens thalami to the hippocampal region: light
and electron microscopic tracing study in the rat with the anterograde
tracer Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol. 296, 179–203.
doi: 10.1002/cne.902960202

Zhang, J. C., Lau, P. M., and Bi, G. Q. (2009). Gain in sensitivity
and loss in temporal contrast of STDP by dopaminergic modulation at
hippocampal synapses. Proc. Natl. Acad. Sci. U.S.A. 106, 13028–13033.
doi: 10.1073/pnas.0900546106

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Lee, Huh, Lee, Ghim, Lee and Jung. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 12 June 2017 | Volume 11 | Article 40

https://doi.org/10.1016/j.neuropharm.2004.04.005
https://doi.org/10.7554/eLife.06063
https://doi.org/10.1038/nature12112
https://doi.org/10.1038/nature15389
https://doi.org/10.1038/nn2013
https://doi.org/10.1038/nn.4152
https://doi.org/10.1016/j.neuron.2012.11.001
https://doi.org/10.1016/j.neuroscience.2004.09.066
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1111/j.1460-9568.2012.07993.x
https://doi.org/10.1016/j.tics.2010.08.002
https://doi.org/10.1016/j.neuron.2009.11.016
https://doi.org/10.1038/nn.2881
https://doi.org/10.1016/j.neuron.2010.03.033
https://doi.org/10.1038/nature19325
https://doi.org/10.1016/0006-8993(88)90030-3
https://doi.org/10.1038/nn1279
https://doi.org/10.1126/science.1223252
https://doi.org/10.1007/978-1-4684-7971-3_5
https://doi.org/10.1016/S0896-6273(00)00071-4
https://doi.org/10.1002/cne.902960202
https://doi.org/10.1073/pnas.0900546106
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

	Neural Signals Related to Outcome Evaluation Are Stronger in CA1 than CA3
	Introduction
	Materials and methods
	Animals
	Behavioral Task
	Unit Recording
	Analysis of Behavior
	Logistic Regression Analysis
	Matching Law
	Reinforcement Learning (RL) Model

	Analysis of Neural Data
	Unit Isolation Classification
	Multiple Regression Analysis
	Coefficient for Partial Determination (CPD)
	Onset Time of Upcoming Choice Signals
	Analysis of Local Field Potentials (LFPs)

	Statistical Analysis

	Results
	Rat's Choice Behavior
	Neural Activity Related to Choice and Reward
	Neural Activity Related to Chosen Value
	Neural Activity Related to Reward Prediction Error and Updated Chosen Value

	Discussion
	Author Contributions
	Acknowledgments
	References


