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Cortical neuropil modulations recorded by calcium imaging reflect the activity of large

aggregates of axo-dendritic processes and synaptic compartments from a large number

of neurons. The organization of this activity impacts neuronal firing but is not well

understood. Here we used in vivo 2-photon imaging with Oregon Green Bapta (OGB)

and GCaMP6s to study neuropil visual responses to moving gratings in layer 2/3 of

mouse area V1. We found neuropil responses to be strongly modulated and more reliable

than neighboring somatic activity. Furthermore, stimulus independent modulations in

neuropil activity, i.e., noise correlations, were highly coherent across the cortical surface,

up to distances of at least 200µm. Pairwise neuropil-to-neuropil-patch noise correlation

strength was much higher than cell-to-cell noise correlation strength and depended

strongly on brain state, decreasing in quiet wakefulness relative to light anesthesia. The

profile of neuropil noise correlation strength decreased gently with distance, dropping

by ∼11% at a distance of 200µm. This was comparatively slower than the profile

of cell-to-cell noise correlations, which dropped by ∼23% at 200µm. Interestingly, in

spite of the “salt & pepper” organization of orientation and direction encoding across

mouse V1 neurons, populations of neuropil patches, even of moderately large size (radius

∼100µm), showed high accuracy for discriminating perpendicularly moving gratings.

This was commensurate to the accuracy of corresponding cell populations. The dynamic,

stimulus dependent, nature of neuropil activity further underscores the need to carefully

separate neuropil from cell soma activity in contemporary imaging studies.

Keywords: neuropil, visual cortex, population codes, visual system, information encoding

INTRODUCTION

Chklovskii et al. (2002) and Braitenberg et al. (Braitenberg and Shchuz, 1998) argued that axons
(including axonal boutons) and dendrites constitute ∼70–80% of the neuropil. Neuropil activity
reflects chiefly aggregate activity from axonal and dendritic branches as well as pre- and post-
synaptic components in large numbers of local synaptic aggregates. Individual neurons fire in
the context of nearby neuropil activity. It is therefore important to understand more about the
neuropil’s functional organization. Kerr and colleagues measured the spontaneous calcium signal
modulation in large ∼10,000µm2 patches of neuropil in layer 2/3 of rat motor and barrel cortices
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(Kerr et al., 2005) and showed that it correlates well with
the simultaneously recorded electro-corticogram (ECoG). Other
studies (Kerlin et al., 2010; Bonin et al., 2011; Chen et al., 2013)
document but do not systematically quantify visually driven
neuropil responses (c.f., Goltstein et al., 2015). It is interesting
to understand how the spatial organization of neuropil activity
relates to the activity of nearby neurons during visual processing.
Mouse primary visual cortex is thought to have “salt & pepper”
organization for orientation selectivity (Ohki et al., 2005; but see
Ringach et al., 2016). It is not clear whether this organization
is also reflected in the neuropil, or whether the neuropil has
more coarse grained orientation representation allowing large
neuropil neighborhoods to have significant residual orientation
preference. More generally, it is important to know how strongly
correlated somatic activity is to adjacent neuropil activity and
how reliable neuropil visual responses are compared to adjacent
neuronal responses.

We recorded neuronal activity using in vivo two-photon
calcium imaging in layer 2/3 of mouse primary visual cortex
(V1) while presenting drifting grating stimuli subtending a large
visual angle. Our experiments reveal that local neuropil patches
exhibit stronger and more reliable calcium responses to visual
stimulation than adjacent neurons, and this difference is more
pronounced under anesthesia than during quiet wakefulness.
Neuropil activity is highly correlated across the field of view but
correlation strength decays slowly as a function of distance up
to the range examined (∼200µm). Neuropil correlation strength
depends on brain state, being higher under light anesthesia
compared to quiet wakefulness. Finally, somewhat surprisingly
because of the “salt & pepper” mouse V1 organization, relatively
large (∼15 × 15 µm2 or larger) neuropil patches show high
decoding accuracies in a direction discrimination paradigm,
on par with the performance of nearby cell populations. This
suggests that in layer 2/3 of mouse V1, substantial local direction
information is contained in the aggregate activity of neuropil
patches with radii ranging from 30 to as large as 200µm.

MATERIALS AND METHODS

Animal Preparation
All experiments and animal procedures were performed in
accordance with guidelines of the National Institutes of Health
for the care and use of laboratory animals and were approved by
the IACUC at Baylor College of Medicine. All mice used were
derived from C57BL/6 lines and were 4–8 weeks old. Imaging
experiments under anesthesia were performed in 5 fields of view
(FOV’s) from 3 Parvalbumin (PV)-Cre X Ai9 F1 mice and 2
FOV’s from 2 Dlx5/6-Cre X Ai9 F1 mice. Awake experiments
were performed in 11 FOV’s (2 FOV’s from 2 PV-Cre X Ai9 F1
mice and 9 FOV’s from 4 wild-type C57BL6mice). For GCaMP6s
(Chen et al., 2013) experiments two Thy1-GCaMP6s 4.3 (Dana
et al., 2014) mice, which express GCaMP6 genetically, were used.

Surgery
All procedures were carried out according to animal welfare
guidelines authorized by the Baylor College of Medicine
IACUC committee. All surgeries were performed under general

anesthesia with 1.5% isoflurane. The mouse head was fixed in a
stereotactical stage (Kopf Instruments), and eyes were protected
with a thin layer of polydimethylsiloxane (30,000 cst, Sigma-
Aldrich). After removing the scalp, a custom-made titanium
headplate was attached to the skull with dental acrylic (Lang
Dental). A 3mm wide circular craniotomy centered 2.5mm
lateral of the midline and 1.2mm anterior of the lambda suture
was made, targeting the middle of the monocular region of left
V1. A coverglass with a hole for pipette access was placed on the
brain and carefully anchored with vetbond glue (3M, Saint Paul,
MN) and dental acrylic (Lang Dental).

Dye Loading and Imaging
We used the calcium indicator Oregon Green BAPTA-1 (OGB)
because it stains uniformly both cell bodies and aggregate
neuropil processes near the site of injection. Fifty micrograms
Oregon Green 488 BAPTA-1 AM (OGB, Invitrogen) was
dissolved in 4µl DMSO (heated to 40◦C) with 10% Pluronic
acid F-127 (Invitrogen), vortexed for 20min, and diluted in
40µl 0.9%-NaCl solution containing 10µM Alexa-594 for
experiments with tdTomato-labeled interneurons, and 10µM
Sulforhodamine 101 (Nimmerjahn et al., 2004) for selective
astrocyte-labeling in other experiments. This solution was
injected using a glass pipette at depths of 200, 300, and 400µm
of mouse visual cortex under two-photon visual guidance. Cell
imaging commenced 1 h after the dye injection. Populations of
50–100 cells located 150–250µm below the pia were imaged with
water-dipping objective lenses, either 20x, 0.95 NA (Olympus),
or 25x, 1.1 NA (Nikon), in a modified Prairie Ultima IV
two-photon laser scanning microscope (Prairie Technologies,
Middleton, WI), fed by a Chameleon Ultra II laser (Coherent,
Santa Clara, CA). Local windows of 200–250 × 200–250µm
with an in-plane iso-symmetric pixel resolution of 1.2–1.9µm
were imaged at frame rates of 7–10Hz. Depending on imaging
depth, the laser power was kept between 10mW at the surface
and 50mW at depths below 250µm, at 840 nm (when the
patch pipette was filled with Alexa 594 or sulforhodamine) or
890 nm (when filled with dextran) laser wavelength. During
visual stimulation experiments under light anesthesia, 0.7%
isoflurane was maintained during the experiment via a nose cone
and anesthesia was monitored between imaging sessions via the
eyelid reflex. The body temperature of the mouse was kept at
36–37◦C with a heating pad (Harvard Apparatus).

For experiments with GCaMP6s, the craniotomy was covered
with a glass window on the center of mouse visual cortex
−2.7mm lateral to the midline and 1.5mm posterior to the
bregma. Imaging experiments were performed 1–2 weeks after
the surgery. In these experiments, the laser power was set
similarly to OGB experiments but the wavelength was set to
920 nm. Populations of 100–200 cells in layer 2/3 of mouse V1
were simultaneously imaged with a large FOV (∼400× 400µm)
0.5–1 h after injecting a sedating cocktail consisting of 1.5mg/kg
of fentanyl and 0.5mg/kg dexmedetomidine.

For both anesthetized and sedated animals, silicone oil
(polydimethylsiloxane-200, Sigma-Aldrich) was applied to both
eyes during experiments. For awake experiments, while animals
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were restrained with a head post, they were free to move forward
or backward on a rotating wheel.

Visual Stimulation
Visual stimuli were generated in MATLAB and displayed using
Psychtoolbox (Brainard, 1997). The stimuli were presented on
an LCD monitor (DELL 2408WFP, Dell, Texas, USA) at 60Hz
frame rate, positioned 32 cm in front of the right eye, centered at
45◦ clockwise from the mouse’s body axis. The visual angle of the
screen spanned 54◦ elevation and 78◦ azimuth. The screen was
gamma-corrected, and the mean luminance level was photopic at
80 cd/m2. Our visual stimulation paradigm consisted of grating
stimuli moving in one of 2 orthogonal directions (0 vs. 90◦)
at 3 different contrast levels (100, 40, 15% Michelson contrast;
Michelson, 1927). Each grating stimulus was generated as a
square wave with a spatial frequency of 0.04 cycles/degree and
a temporal frequency of 2Hz. Grating stimuli were presented for
600ms (500ms for a single FOV) followed by an inter-stimulus
interval of 1.5 s during which a full-field gray screen at the
same mean luminance (background illumination) was presented.
Each of the 6 possible conditions was presented 80–100 times in
pseudo-random interleaved order.

For experiments with animals expressing GCaMP6s
genetically, grating stimuli were presented for 500ms at
100 and 40% contrast, followed by an inter-stimulus interval of
1.5 s.

Patch-Clamp Recording
Whole-cell and loose-patch recordings were obtained with a
Heka EPC-10 USB amplifier in current-clamp mode using
standard techniques (Margrie et al., 2003). Glass pipettes of
6–8 MOhm, filled with intracellular solution (in mM: 105 K-
gluconate, 30 KCl, 10 HEPES, 10 phosphocreatine, 4 ATPMg,
and 0.3 GTP), adjusted to 290 mOsm and pH 7.3 with KOH
(Golshani et al., 2009) and containing 10µM Alexa-594 or
tetramethylrhodamine dextran (Invitrogen), were used for the
recording under two-photon visual guidance. After approaching
a target cell with pressure adjustment based on the depth of the
pipette from the pia and the distance to the cell, a GigaOhm
seal between cell membrane and the pipette was formed. A
patch of cell membrane was broken by applying 200ms pulses
of negative pressure with increasing strength using a picospritzer
III (Parker Hannifin, Pine Brook, NJ). Fast pipette capacitance
was neutralized before break-in, and slow capacitance afterwards.
We targeted putative pyramidal cells in layer 2/3 (between 100
and 250µm below the pia). We performed the patch-clamping
experiments in vivo, while presenting moving oriented grating
stimuli, whose orientation varied randomly in steps of 30◦.
Stimulus presentation duration was 1 s followed by an inter-
stimulus interval of 1.5 s. The recording time for each cell was
5–10min and mean firing rate over the entire recording time
ranged from 0.8 to 5Hz.

Data Analysis
Preprocessing
Movies were motion-corrected along a 2D image plane (x-y
motion). Motion parameters were estimated in the red channel,

in which tdTomato-labeled interneurons were identified, by
registering all image frames to the average of the first 5 image
frames using a sub-pixel registration method (Guizar-Sicairos
et al., 2008). Then, the correction parameters were applied to
the green channel (in which calcium dynamics of cells were
monitored) to reconstruct motion-corrected movies. Data from
awake animals were further constrained based on the extent
of their movements during imaging. Animal movement during
awake experiments was indirectly measured by monitoring
XY movements of the FOV imaged. All trials showing any
image frame with movement >2 × pixel size (∼3µm within
the x-y plane) from the first frame of each movie, or >0.5
pixel (∼0.7µm) in consecutive frames were excluded from
data analysis. The motion threshold used to select awake data
resulted in similar x-y motion levels (i.e., <3 microns) during
quiet wakefulness as were observed under anesthesia. Hereafter,
“awake data” refers to data acquired while animals were standing
still (quiet wakefulness).

The application of this criterion reduced the number of trials
per condition to∼70 but minimized the possibility that different
results between the different brain states were due to motion
artifacts.

For cell identification, a local region-of-interest (ROI) over a
cell body was manually defined with a circular disk to cover the
cell body, then scanned for the pixel with the highest fluorescence
value within the disk (cell body center). The boundary of the
region containing the cell signal was then defined by thresholding
at 0.5 × maximum fluorescence within the disk along the polar
coordinates (Figure 1A; Chen et al., 2013). To correct for slow
signal drift over time, the signal time series from each pixel
was high-pass filtered (HPF) at 0.05Hz using the discrete cosine
transformation.

We corrected for optical contamination from the neuropil
signal to the cell soma. Note that this is important to do since
optical contamination extends considerably further along the Z-
axis (see Figure 1B) compared to within the X-Y plane, and the
neuropil signal surrounds the soma. Since the neuropil signal
is locally uniform, changing only slowly with cortical distance
(Figures 4A, 5B right), it is possible to do this by subtracting
the neuropil signal surrounding the cell in the image plane.
In contrast, doing the converse correction, i.e., correcting for
contamination from the cell soma to nearby neuropil signal
was not necessary: (1) the optical spread is much smaller along
the X-Y plane (in our data the standard deviation of the point
spread function along the X-Y plane was∼0.22µm), (2) neuropil
patches were shaped like rings surrounding the cells, with inner
diameter >∼7µm from the cell center, at least ∼2µm further
away from the cell border. In addition, linear subtraction of
cell activity from neuropil signal (see section for calculation of
neuropil noise correlations) did not change ourmain conclusions
on neuropil activity (see Figure 4C and Supplementary Figure
5A).

We measured the ratio between the mean calcium signal
within the lumen of non-radial blood vessels (≤10µm) and the
surrounding neuropil patch (Kerlin et al., 2010). This gave us an
approximate measure of neuropil contamination at the cell soma,
the so-called contamination scale, whose typical value was 0.6.
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FIGURE 1 | Neuropil and somatic response variability and dependence to contrast. (A) Selecting cell somata and local neuropil patches. An example of a typical field

of view (FOV, left). The orange area is magnified on the right. Cell radii in our experiments were generally ≤5µm. A local neuropil patch was defined around each cell

body as an annulus with inner radius 7µm and outer radius 15µm. Any annulus pixels belonging to or being close to other cells (i.e., within 7µm of the cell center),

vessels, or poorly stained regions were excluded by visual inspection to minimize contamination of the neuropil signal by sources other than neuropil. In the example,

the green outline shows a selected cell soma (green outline only for visualization). Its local neuropil patch is outlined in red. Note that nearby neurons were excluded

from the definition of the neuropil ROI (annulus) and are shown in blue (outline only). The pixel resolution is 1.2 × 1.2µm. (B) Gaussian fit of the point spread function

(PSF) of our microscope measured by imaging a single spherical fluorophore with a radius of 0.1µm. (C) Example of the average response of cells and

neuropil-patches (annular patch with radii of 7–15µm) in a single FOV to 100% contrast. “NP”: mean neuropil response. “Uncor”: mean uncorrected somatic

response. “Cor”: mean somatic response after neuropil contamination correction (see Section Materials and Methods) (D) Mean evoked fluorescence responses to

gratings of 100, 40, and 15% contrast, respectively, derived from all visually responsive cells in 7 anesthetized (AN) and 11 awake (AW) FOV’s, respectively. (E) Ratio of

mean somatic vs. mean neuropil responses (pooled from all FOV data). These ratios are plotted after correcting for neuropil contamination. Note that the relative

strength of cell vs. neuropil 1F/F responses decreased in the lightly anesthetized state. This is largely due to the fact that neuropil responses markedly increase in the

lightly anesthetized state. NP, neuropil; AW, awake state; AN, anesthetized state. Statistics are across FOV’s.

To correct for the neuropil contamination at the soma, the mean
fluorescence of the adjacent neuropil patch, Fn, was subtracted
using the contamination scale S: Fcorrect = F − S∗Fn. The
patch Fn formed an annulus with a radius of 7–15µm centered
around the soma, excluding pixels that belonged to other cell
bodies or astrocytes, which are labeled red with sulforhodamine
(Figure 1A). In our calcium imaging setup, the point spread
function is wider along the z-axis (Figure 1B), so the correction
factor mostly compensates for neuropil contamination along the
z-axis. The contamination of the neuronal signal by the neuropil
signal varied with cell size as well as with the in-plane diameter
of the soma cross-section. We therefore examined a range of
values around the empirically estimated value S = 0.5–0.6, and
verified that reasonable variation in the level of contamination
(S) did not significantly affect our conclusions (Figures 1C,D and
Supplementary Figure 1). We found that a range of correction
factors S (S = 0.4–0.6) result in similar response patterns as

shown in Figures 1C,D and Supplementary Figure 5A. Higher
levels of contamination (S= 0.8) began to distort visually evoked
responses, resulting in prolonged, non-physiological, delays of
the visual response peak (Supplementary Figures 1A,B,D,E). Such
high levels of contamination were not empirically found in our
data, as judged bymeasuring the spread of the calcium signal into
the lumen of vessels running parallel or perpendicular to the field
of view, whose lumens were commensurate to the typical range
of cell sizes.

Effects of Correction on Noise Correlations
The neuropil correction naturally decreases somewhat the
magnitude of the cell 1F/F response as it removes the
component of it that is due to neuropil contamination (Figure 1,
Supplementary Figure 1). This decrease is mainly evident in
the anesthetized state, where the neuropil response is relatively
higher. The main effect of the neuropil correction however,
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is in allowing a veridical estimation of noise correlation
strength. Prior to neuropil contamination correction, mean inter-
neuronal noise correlation coefficients ranged from ∼0.15 to
0.3 (Supplementary Figure 2), commensurate with results from
several published 2-photon imaging studies (Kerr et al., 2007;
Golshani et al., 2009; Rothschild et al., 2010). Suchmeasurements
are subject to neuropil contamination, which, because of its
high spatial coherence, has the potential to substantially alter
the magnitude of noise correlations. Neuropil contamination
correction results in a significant adjustment resulting in noise
correlation coefficients ∼0.05 (Supplementary Figure 2). Note
that we calculated the noise correlation by estimating the
spike rates from the corrected neuropil signal (see below for
spike-rate estimation). These values are much closer to values
(<0.05) reported in recent electrophysiology studies (Ecker
et al., 2010, 2014), which had excellent single unit isolation
and recording stability. In conclusion, while the correction for
neuropil contamination has little effect on mean neuronal visual
responses, it does have a big effect on the strength of noise
correlations across pairs of cells.

Note that unless explicitly mentioned, all cell responses are
calculated by implementing a neuropil contamination correction
with the empirically determined factor S= 0.6.

Only putative excitatory pyramidal neurons and their
surrounding neuropil patches were used in analysis.
Interneurons expressing Td-tomato and astrocytes (stained
red with sulforhodamine) were excluded from the analysis.

A New, Stable, Spike-Estimation Algorithm
Outperforming (Vogelstein et al., 2010)
We used a new method based on sparse non-negative linear
regression to estimate spike rates associated with the calcium
fluorescence 1F/F signal. This method assumes linear calcium
dynamics with a time constant that does not change over the
course of the experiment. Cell firing is modeled as causing an
instant (within one ∼130ms frame) calcium increase that slowly
decays in the subsequent frames:

ct = rct−1+nt−1 (1)

where c is the cell’s calcium1F/F signal, t indexes time in units of
∼130ms frames, r = 1 − 1/τ , where 1 is the frame duration, τ
the time constant and n the normalized spike number during the
frame duration, which has the same units as 1F/F.

In Matrix-vector form,















−r 1 0 . . . 0
0 −r 1 0 . . . 0
...

. . .
...

0 −r 1 0
0 . . . 0 −r 1































c1
...
ct
...
cT

































n1
...
nt
...
nT

















MC = n (2)

where M is a convolution matrix that transforms a calcium
concentration time series to spikes, and n ≥ 0.

Or

C = Pn (3)

where P is the inverse matrix ofM, and n ≥ 0.
Assuming exponential distribution of spikes, the objective

function for n is defined as a minimum mean square error form:

J = ‖C−Pn‖2F+k‖n‖1 s.t. n ≥ 0 (4)

where k is a regularization parameter.
After incorporating a term (a ≥ 0) that allows us to optimize

the spatial filtering of the pixels within the cell body, this formula
becomes:

J =
∥

∥

∥
C−PnaT

∥

∥

∥

2

F
+k1‖n‖1+k2‖a‖1 s.t. n ≥ 0 and a ≥ 0. (5)

C is now a multi-pixel Matrix (time samples × pixels), and
the spatial filter a is constrained to be non-negative and to
be bounded for convergence of the objective function. Here
we adopted the L1-norm (||1) minimization to bound a and
n guaranteeing the convergence of the alternating optimization
algorithm (between n and a). The advantage of the regularization
used for a is to minimize contributions of low SNR pixels to spike
estimation.

To estimate n and a iteratively, we used an optimization
method similar to the Expectation Maximization algorithm
(Dempster et al., 1997), alternately estimating n while holding a
fixed and vice versa:

J(n) =
∥

∥

∥
C−PnaT

∥

∥

∥

2

F
+k1‖n‖1, s.t. n ≥ 0 (6)

J(a) =
∥

∥

∥
C−PnaT

∥

∥

∥

2

F
+k2‖a‖1, s.t. a ≥ 0 (7)

This model can also be interpreted as a Bayesian model,
maximizing the a posterior probability

p (C | n, a) p (n) p(a) (8)

where p (C | n, a)=1/(2πλ0)
N
2 exp(

∥

∥C−PnaT
∥

∥

2

F

λ0
), (9)

with priors p(n) = λ1exp(−λ1n), n ≥ 0 (10)

and p(a) = exp(−a), a ≥ 0 (11)

From the Bayesian model, the parameter k1 and k2 can
be released freely by maximizing the posterior probability.
Specifically, this was performed by alternatively updating C, n,
and a and updating only λ0 with λ1 fixed. In our estimation, λ1

was set as the imaging frame period. Therefore, for Equations (6,
7), both parameters, k1 and k2, can be controlled solely with λ0.

In each iteration, after estimating n and a, λ0 can be updated
by maximizing

p (C | λ0) =

∫

p (C | n, a,λ0) p (n) p (a) dadn. (12)

However, due to the intractability of the integral, it is a common
practice to obtain the λ0 estimate by setting the derivative of the
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log-posterior probability, log(p (C | n, a) p (n) p(a)), with respect
to λ0 equal to 0 and then solving the equation.

We used an optimization technique for the linear regression
model with the L1 norm, which uses a log-barrier technique
for non-negative constraints and tests for convergence of the
learning algorithm via assessing the gap between primal and
dual problems (Boyd and Vandenberghe, 2004; Kim et al., 2007).
This convex optimization with completely bounding alternative
parameters theoretically converges to the global minimum
(Grippo and Sciandrone, 2000; Kim and Park, 2007).

Our spike estimation method, like a previously published
method (Vogelstein et al., 2010), assumes linear calcium
dynamics and an exponential distribution of spike rates, and
uses alternating optimization and the log-barrier optimization
technique for L1-norm minimization. However, it has one
major advantage over (Vogelstein et al., 2010), which is that
its parameter optimization is stable. Theoretically, interacting
parameters could cause the objective (cost) function to become
unstable because the same objective value can result from a
different combination of parameter values. For instance, the
parameters σ and λ for exp(−(. . . )2/ σ)exp(−λ(. . . )) in Equation
(11) of the Vogelstein algorithm (Vogelstein et al., 2010) are
interacting and can lead to unstable optimization (Figure 2).
However, our method does not have this problem, because the
sub-objective functions, Equations (6, 7) have only one single free
parameter each, k1 and k2, respectively, as they are optimized
alternatingly with respect to n and a. Both k1 and k2 are
determined solely by λ0.

The same instability occurs with respect to estimating the
spatial filter, α, and the estimated calcium trace, C (Equations 33
and 36 of Vogelstein et al., 2010). Moreover, the spatial filter α in
the Vogelstein algorithm is unconstrained and could be negative,
thus potentially yielding erroneous estimates. In contrast, our
method constrains the spatial filter a to be both non-negative and
upper-bounded. This prevents the main objective function from
oscillating through alternating optimizations of n and a.

Application of our method reliably estimated the actual
spike rate (Figures 2Aleft,C) and outperformed the Vogelstein
algorithm by producing higher correlation (25% higher, p <

0.05) to actual spikes simultaneously recorded (Figure 2C). Data
from an optical-imaging only session also showed reliable results
by identifying rapid calcium transients as spikes (Figure 2B).
In addition, our method shows clear empirical convergence of
the learning curves (e.g., Figures 2A,B) together with the above
theoretical guarantee in accordance with convex optimization
theory.

Cell and Neuropil Analysis
To estimate the spike rate, the pre-processed (HPF) fluorescence
signal was normalized, pixel by pixel, by calculating (F − F0)/F0
(i.e., 1F/F). F0 was defined as the mean of the fluorescence
values that were less than 2 standard deviations above the overall
mean for that pixel. This value was chosen to exclude outlier
values, which were likely related to spike activity. Spike rates
were then estimated by applying the method described above
(Figure 2) to the pixels constituting a cell body. Following spike
train estimation, a threshold of 1/2 × standard deviation of the

spike rate was used to suppress spurious spikes arising from
photon noise. This threshold was found to work well in that it was
less likely to suppress activity generated by actual spikes, because
spike-rates were sparse and exponentially distributed and thus
had small standard deviations. We tested different thresholds,
including zero, and none of them changed the results we present
in this paper.

To calculate percent fluorescent change in a cell, the mean
1F/F was calculated by projecting the 1F/F matrix (time-point
samples × pixels in the cell) onto the spatial filter a (pixels
× 1), and normalizing by the sum of the coefficients ai to
produce a weighted mean. The filter α was optimized from the
deconvolution algorithm.

Around each cell, a local neuropil patch was defined by
selecting an annulus with radii of 7–15µm centered around
the middle of the cell body. Unless explicitly specified, all
neuropil results shown in the present study were drawn from
this neuropil patch size. We chose the minimum inner radius
as 7µm to minimize contamination from the cell signal onto
the neuropil patch. In accordance with a previous report for
the size of cell somata in mouse visual cortex (Braitenberg
and Shchuz, 1998), this was indeed large enough to exclude
any pixels from other cell somata, by visual inspection. Other
cell bodies, glia, and dark blood vessel regions were similarly
excluded. After the application of HPF (cut-off at 0.05Hz), the
1F/F was calculated in single pixels with the same method as
for the cell somata, and then averaged across all pixels within the
patch.

The mean response to the visual stimulus was calculated for
each ROI (cell or neuropil) after subtracting the mean 1F/F
response over the last 3 frames prior to stimulus onset. An
aggregate response was computed by averaging the calcium
signal over a period corresponding to the duration of the
stimulus presentation (600ms), centered at the peak frame
of the mean response computed across the cell population
for stimuli at 100 and 40% contrast. This strategy was
particularly important for anesthetized animals because the
time course of the calcium signal was more prolonged
(Haider et al., 2013), peaking near the end of the stimulus
presentation. Cells were called visually responsive if they
had a significant mean response across all stimuli presented
at 100% contrast (i.e., 1F/F > 0.5%). For GCaMP6s data,
we included cells with mean 1F/F > 5% across stimulus
conditions in the analysis. In the analysis that follows we
used visually responsive cells and their surround neuropil
patches.

Fano factors were calculated from 1F/F (%) responses
individually for the 6 stimulus conditions, and averaged
across the two grating orientations presented for each
given contrast. Mean Fano factors of cells and neuropil
patches, and their ratios (Fcell/Fneuropil), were calculated
across each FOV. The overall mean and SEM of the ratio is
reported across FOV’s. Note that even though Fano factors
were calculated here using 1F/F (%) responses instead of
spike rates, they are still useful for comparing the relative
variability between cell and neuropil and across different brain
states.

Frontiers in Neural Circuits | www.frontiersin.org 6 July 2017 | Volume 11 | Article 50

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Lee et al. Information Encoding by V1 Neuropil Activity

FIGURE 2 | Improving spike inference from the calcium signal. (A) Example of spike trains inferred by our deconvolution algorithm and by a previously published

method (Vogelstein et al., 2010). Left bottom: OGB calcium fluorescence trace of a cell whose spikes were measured via patch-clamp recording. Left Top: The

prediction of our deconvolution method (blue) vs. the Vogelstein method (red, Vogelstein et al., 2010). Actual spike events at the time of image frames are overlaid as

black dots. The events do not include the spike numbers. For major calcium transients both methods show similar predictions. For intermediate and low calcium

transients, however, our method identifies action potentials with greater sensitivity than the Vogelstein method (see dotted outlines). This is reflected in a higher

correlation of the deconvolved to the actual spike rates (0.64 for ours, 0.51 for Vogelstein). Right: Convergence of our method (blue) vs. Vogelstein’s method (red) as a

function of the number of iterations, applied to the time-series of a cell’s calcium signal. Blue and red dashed circles indicate the iteration at which algorithms return

the optimal estimates. (B) Example of spike trains inferred by the two methods in a typical calcium signal recording. Left: Both methods identify strong calcium

transients (blue and red) at the maximum of the cost function within 10 iterations performed. The green graph shows spike identification at an iteration (iteration = 10),

where the spike identification is markedly poorer than in iteration nine, where the best result was obtained. For visualization, each estimated spike-rate train was

thresholded at 3x standard deviation. Since spike trains are sparse, thresholding did not significantly suppress spike rates. In particular, the green trace was not

affected by this thresholding process. Right: Learning curve of the two methods. The blue, red, and green dashed circles indicate the iterations at which the estimates

were obtained. While the learning curve of the Vogelstein method does not converge after multiple iterations, the proposed method shows a monotonic increase of

the learning curve. This illustrates that the Vogelstein method can be inherently unstable, whereas the method proposed here is stable by converging monotonically.

(C) Correlation between deconvolution algorithms and actual spike trains for 5 patched and imaged units (left) and relative performance improvement of our method

(right). Left: The proposed method shows significantly higher correlation (p < 0.05; paired t-test, n = 5) than the Vogelstein algorithm. *p < 0.05. Right: Each circle

represents a relative increase of correlation coefficient, i.e., [Proposed – Vogelstein]/Vogelstein, for each patched cell.

Noise Correlation Analysis
For noise correlation analysis, pairwise Pearson’s correlation
coefficients between pairs of cells, pairs of neuropil-patches
and between cells and neuropil-patches, were calculated for
each stimulus condition. Noise correlation coefficients were
calculated in a standard fashion, with single trial-responses
subtracted from the mean-response across trials within each
stimulus condition. Then, noise correlation coefficient values
of two directions in each contrast were averaged to obtain a

mean noise correlation coefficient at the given contrast. For cells,
estimated spike responses (see above) were used to calculate
noise correlation coefficients. Since neuropil activity reflects a
broad, mixed, aggregate of neural processes including excitatory
and inhibitory activity, we have not applied spike estimation to
the neuropil signal. Neuropil-to-neuropil and cell-to-cell noise
correlations were grouped separately according to their distance
and averaged to yield the mean noise correlation coefficient as a
function of distance. Linear fits to these plots were obtained per
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FOV and used to compare between the linear decays of neuropil-
to-neuropil and cell-to-cell noise correlations by performing a
statistical test for difference between the two slopes (Cohen, 1975)
as follows:

Neuropil: ynp = αnpxnp + βnp,

Cell: yc = αcxc + βc,

t = (αnp−αc)/
√

SE2αnp+SE2αc , where SE indicates the standard

error of a slope.
t ∼ T(nnp + nc − 4), where T is the t-distribution, and

nnp and nc are sample numbers of neuropil and cell data,
respectively. This slope test was also performed between brain
states within either cell or neuropil noise correlation. To avoid
local neuropil contamination of cell somata, we restricted the
correlation analysis to cell and neuropil patches that were at least
30µm apart from each other.

We also measured noise cross-correlations between the cell
soma and a set of adjacent, 2µm-thick neuropil annuli located
at progressively larger distances from the center of the cell soma.
Briefly, (1) 2µm-thick annular neuropil patches whose radii
increased incrementally (31–33, 51–53µm, and so forth) were
defined, (2) the mean cross-correlations between the cell soma
(spike-estimate) and its corresponding neuropil patches (1F/F)
were measured across each FOV, and (3) the overall mean and
standard error of the mean (SEM) were calculated across all
FOV’s.

Neuropil Correlation Analysis after Linear Subtraction

of Adjacent Cell Response
To estimate the contribution of single cells’ responses to neuropil
activity, single cells’ responses weighted with a common scale
value were subtracted from neuropil responses. The common
scale value was estimated through a linear regression model:
y = Xβ , where y is an n× 1 vector composed of n neuropil patch
responses, X is a n× 2 vector composed of an n× 1 vector of cell
responses and an n× 1 vector of 1s, β is a 2×1 vector, composed
of a scale value and a bias. After subtracting cell responses with
the common scale value β , the residual neuropil responses, yr =
y − Xβ , were used for correlation analysis to measure the linear
subtraction effects. Even though the use of a common scale value
across all pairs of cells and adjacent neuropil patches within an
FOVdoes not take into account varying interactions of individual
pairs, the overall effects from the linear subtraction can still be
assessed under the assumption that overall effects are similar
across FOV’s and brain states.

Decoding Accuracy of Cell Populations
versus Neuropil Patches
To compare the decoding accuracy for direction discrimination
between cells and neuropil patches, optimal linear decoding
was used (Duda et al., 2001). First, the responses of visually
responsive cells to the stimulus were transformed into a vector
representing a population rate code in each trial. Then, 10-fold
cross-validation tests were performed by leaving out 10% of the
data for testing, and training the classifier with the remaining

90%. Discriminability between vertical and horizontal gratings
was measured separately for each contrast level.

Decoding accuracies of n-element populations were calculated
by selecting n cells or n neuropil patches randomly from
each FOV in each trial, collecting their responses into a
population vector, calculating the vector’s direction decoding
accuracy, and averaging decoding accuracies across vectors
drawn independently across 1,000 trials. The decoding accuracy
in each trial was calculated by averaging 10 decoding accuracy
values from 10-fold cross-validation tests. Then, the overall mean
and SEMwere obtained across FOVs. In this procedure, a smaller
neuropil patch size (annulus radii of 7–11µm) was chosen,
which reduced the overlap of pair-wise neuropil patches to
<0.5% of the patch area to minimize artificially generated signal
correlations.

Neuropil decoding accuracies were also compared across
a range of patch sizes: 7–11, 7–50, 7–100, . . . , 7–250µm
radii. Each patch was centered around the corresponding
cell, and thus the overlap ratio between patches increased
with patch size. As neuropil patch size increased, some
neuropil patches completely overlapped with other patches
(i.e., <0.5% for 7–11µm to >80% for 7–250µm). Therefore,
as optimal linear decoders require full ranks of data, we
removed some patches when adding a new patch in the
population vector did not increase the rank of data. Again,
all decoding accuracies were computed from 10-fold cross-
validation tests.

Direction Discriminability within Single Cells and

Neuropil-Patches
To assess direction discriminability of cell and neuropil activity,
we used d’:

d’ =

[

mean
(

xh
)

−mean(xv)
]

√

0.5
(

var(xh
)

+ var(xv))

where x represents a trial-response of either cell or neuropil-
patch conditioned on stimulus direction, which is denoted with
superscript v (vertical grating) and h (horizontal grating).

Then, we compared the spatial organization between the
d’s of cells vs. their local neuropil-patches by calculating
a spatial Pearson correlation coefficient between the
corresponding d’ values, within each FOV. To assess the
statistical significance of the spatial correlation, we built
a null distribution from correlation coefficient values
obtained from 10,000 shuffled datasets. Each shuffled
surrogate dataset was generated by randomly shuffling
the spatial order of cells, thereby destroying the spatial
relationship between cells and neuropil patches. From the null
distribution, the statistical significance of the original spatial
correlation between cell and neuropil-patch d’ values could be
assessed.
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RESULTS

Visually-Evoked Neuropil Response
Strength and Response Reliability
To explore visually evoked neuropil responses, we measured and
compared percent fluorescence change (1F/F) seen in neuropil-
patches vs. cell somata. Both neuropil and cell responses to
visual stimulation were strongly modulated compared to baseline
activity (i.e., the activity in the absence of visual stimulation),
cell responses (1F/F) being generally weaker across different
contrasts than neuropil responses (Figure 1D). Furthermore, the
ratio of cell to neuropil-patch response strength decreased with
falling contrast (Figure 1E), because somatic activity dropped
faster than neuropil activity as contrast was lowered. This was
true both in the awake state (AW) and under anesthesia (AN)
(Figure 1E).

As expected, changes in brain state affect both neuropil and
somatic responses. Specifically, light (0.7% isoflurane) anesthesia
markedly increased visually driven activity in the neuropil
(Figure 1D) and less so in the L2/3 neurons themselves. As
a result, the ratio of visual response strength in L2/3 cells vs.
adjacent neuropil patches was lower under light anesthesia than
in the quiet awake state (Figure 1E).

Response Reliability
We compared the reliability of cell responses to neuropil-patch
responses when exposed to the repeated presentation of identical
moving grating stimuli. Cell responses were highly variable
whereas neuropil responses, even for small patches, showed
much greater reliability. We calculated and compared the Fano
factors of cells vs. neuropil-patches using the calcium signal
[variance/mean calculated using the 1F/F (%) response; see
Section Materials and Methods]. The Fano factors of neuropil
annuli (radii 7–15µm from the cell soma) were 5–20 times
smaller than the Fano factor of their corresponding cell (P < 1e-
8; the main effect between cell vs. neuropil-patch in two-way
ANOVA; Figure 3A), reflecting the high reliability of aggregate
neuropil responses. This suggests that the high randomness of
cell firing results either (i) from the cells’ own internal processes,
or by (ii) sub-selecting a specific subgroup of inputs with
higher variability than seen in the aggregate neuropil activity.
Naturally, Fano factors increased as the number of pixels in the
neuropil patch decreased, but even small 5-pixel neuropil patches
(∼11µm2; covering∼ 4–7 times smaller area than the cell body)
still yielded ∼2 times smaller Fano factors than those of cells
(1.86; Figure 3B). Mean neuropil Fano factors approached the
cellular Fano factors for small (1 pixel = ∼2.25µm2) neuropil
patch sizes, but then rapidly dropped for patches of bigger sizes
(Figure 3B).

The relative reliability of neuropil to cell responses varies as
a function of visual contrast. Cell-to-neuropil Fano-factor ratios
decreased with falling stimulus contrast in L2/3 (1 and 5 pixels,
and annulus with 7–15µm radii; P < 5e-4, in Two-way ANOVA;
Figure 3B). This suggests that a fraction of the projections
included in L2/3 neuropil patches fire less reliably than local L2/3
cells do as contrast decreases. The relative reliability of cell to
neuropil responses varied less strongly as a function of brain

state. Typically, cell-to-neuropil Fano-factor ratios were slightly
higher in the quiet awake compared to the lightly anesthetized
state (Figure 3B), however significance was not reached (P > 0.5
for 1- and 5- pixels, and P = 0.06 for annulus radii with 7–15µm
in Wilcoxon rank-sum test), suggesting that changes in brain
state may affect more uniformly the local and non-local neural
processes that constitute the L2/3 neuropil patches examined.

In summary, we found that visually evoked responses of both
cells and adjacent neuropil patches depend on brain state, and
that the ratio of cell to neuropil response magnitude is much
larger during quiet wakefulness than under light anesthesia.
Neuropil patch responses to drifting gratings were always more
reliable than L2/3 cell responses, setting a limit on the degree
to which the spatially coherent signal carried by the neuropil,
which may arise as a projection from other areas, can fluctuate
randomly from trial to trial. Furthermore, neuropil activity does
not simply reflect the linear sum of nearby cell activity since
cell-to-neuropil fano-factor-ratios change as a function of visual
contrast.

Neuropil-to-Neuropil, Cell-to-Neuropil, and
Cell-to-Cell Noise Correlations
Noise correlation analysis is thought to provide information
about the spatial organization of shared “internal” input
modulations due to brain state fluctuations (Niell and Stryker,
2010; Ecker et al., 2014) and other global modulatory
inputs (Polack et al., 2013) that influence neuronal activity.
Noise correlations between different disjoint neuropil patches,
measured from 1F/F responses, were high (∼0.82 under light
anesthesia vs. ∼0.67 in quiet wakefulness, P < 1e-8, Wilcoxon
rank-sum test; Figure 4A, Left), in line with prior observations
that demonstrated the high spatial coherence of the neuropil
signal (Kerr et al., 2005). Notably, these values are strikingly
different from the strength of cell-to-cell noise correlation
coefficients, which were much lower (<0.1 in anesthetized,∼0.05
in the awake state; Figure 4A, Right). Note that this pattern
was preserved even when calculating cell correlations using
1F/F responses rather than the extracted spikes (Supplementary
Figure 3). This is expected since the inter-stimulus-interval
chosen was longer than the typical temporal decay (i.e., τ

= ∼1 s) of OGB events. One possible explanation for this
difference is that a local volume of neuropil integrates numerous
synaptic processes (Braitenberg and Shchuz, 1998; Chklovskii
et al., 2002) that may extend over considerable cortical distances,
providing the same signal to different neuropil patches. The
spatially coherent part of this signal may not modulate individual
units strongly. Alternatively, the aggregate activity of neuropil
processesmay contain a spatially coherent signal, which is filtered
out in pairwise cellular noise correlations by the stochastic firing
of individual units.

Despite the high spatial coherence of neuropil activity,
neuropil-patch to neuropil-patch noise correlation strength
decayed substantially as a function of cortical distance regardless
of brain state (Figure 4A). For example, neuropil patches
<60µm apart from each other had significantly stronger noise
correlations compared to patches located 180–210µm from each
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FIGURE 3 | Fano factors of cells vs. adjacent neuropil patches. Fano factors (variance/mean) were estimated in cells and nearby surrounding neuropil patches. Fano

factors were calculated based on 1F/F responses, and thus the absolute scale is different from that calculated using spike rates measured by electrophysiology. (A)

Mean Fano factor across cells (CELL) vs. adjacent annular neuropil patches (NP; radius 7–15µm). Neuropil patches show smaller Fano factors (1.4–2.4 at 100 and

40% contrast; 4.7–13 at 15% contrast) across all brain states and visual contrasts compared to cells (15–23 at 100 and 40% contrast; 28–52 at 15% contrast),

suggesting that 7–15µm neuropil-patch responses to repetitions of identical stimuli are much less variable than cellular responses. ***Denotes a significance level of

P < 1e-8 in comparison between Fano factors of cells and neuropil-patches (Two-way ANOVA). (B) Ratio of the mean Fano factor across cells vs. across neuropil

patches. Neuropil patches of different sizes are illustrated in different colors. Neuropil patches with 1 or 5 pixels were defined by randomly selecting 1 or 5 pixels within

annular neuropil patches centered around the cell extending from 7 to 10µm. A ratio of 1 is shown as a black horizontal line. Mean neuropil Fano factors approach the

cellular Fano factors for small (1 pixel = ∼2.25µm2 ) neuropil patch sizes, but then rapidly drop for patches of bigger sizes. **Indicates a significance level of P < 5e-4

across contrasts (Two-way ANOVA).

other (9 and 15% decrease for the anesthetized, awake state,
respectively; p < 0.05, one-tailed Welch’s t-test; Figure 4A,
Left). This was true both in quiet wakefulness and under light
anesthesia. In contrast to neuropil inter-patch noise correlations
(Figure 4A, Left), pairwise cell noise correlations were flatter as a
function of distance (slopes significantly different at P < 0.05
for both brain states, t-test for two slopes; Figure 4A, Right),
decreasing more slowly with increasing distances (Kerr et al.,
2007; Smith and Kohn, 2008; Golshani et al., 2009; Rothschild
et al., 2010; Denman and Contreras, 2013). Nonetheless, because
they start at a much lower value, the relative decrease of cell-to-
cell noise correlation strength was larger for the same cortical
distance (i.e., <60 vs. 180–210µm), decreasing by 29 and 18%
for the anesthetized, awake, state, respectively (Figure 4A). This
may potentially reflect a difference in the spatial organization
of neuropil processes, largely reflecting synaptic activity, vs. the
spatial organization of L2/3 cellular activity. Certainly, the large
spatially coherent component that imparts to the neuropil its
high noise correlation strength appears to be largely filtered out
in L2/3 cell output activity.

Note that, since noise correlation strength for pairs of cells
is generally close to zero, we further tested whether noise
correlation values found in our study are higher than controls,
i.e., noise correlation values estimated from shuffling trials
randomly for each cell separately within each stimulus condition.
This confirmed that, though low, the cell-to-cell noise correlation
values we estimated are highly significant (i.e., Supplementary
Figure 4).

To further explore how cell responses are related to neuropil
responses, we measured noise cross-correlations between cells
and a series of annular neuropil patches centered at increasing

distances from the cell soma. Patches were chosen to be 2µm-
thick annuli located at progressively larger distances from
the cell center. Neuropil-to-cell cross-correlation coefficients
were compared to cell-to-cell cross-correlation coefficients.
Pairwise cell-to-cell noise correlation coefficients were calculated
using spike rates estimated from the calcium signal (see
Section Materials and Methods and Figure 2). Neuropil-to-
cell noise correlations were markedly lower than neuropil-
patch to neuropil-patch ones, but still larger than cell-to-
cell noise correlations (P < 1e-30, Wilcoxon rank-sum
test; Figure 4B). This suggests that neurons efficiently filter
out the major part of the highly coherent, spatially uniform,
neuropil modulation component. We also found that coherence
between cell and neuropil responses is brain state-dependent,
yielding significantly lower noise correlation coefficients in
the quiet awake state vs. under light anesthesia (P <

1e-7, Wilcoxon rank-sum test; Figure 4B). This suggests a
more heterogeneous activity structure in the quiet awake
state.

In summary, neuropil activity exhibits much stronger spatial
coherence than cell activity during the repeated presentation
of identical stimuli, at least up to distances of ∼200µm and
likely higher. The relative decrease of noise correlation coefficient
strength as a function of distance is smaller in neuropil than in
cells, and both cell and neuropil noise correlation coefficients
depend on brain state, being smaller in quiet wakefulness vs.
light anesthesia. These observations suggest that L2/3 neurons
are capable of filtering out the main, highly coherent, spatially
uniform, neuropil modulation component, and that neuropil
activity exhibits a more heterogeneous structure in the quiet
awake state.
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FIGURE 4 | Noise correlations during identical visual stimulation. (A) Noise correlation between neuropil-patches (left; from 1F/F response) and between cells (right;

from estimated spikes) as a function of distance. In (A), each value marked with either a red circle (anesthetized) or a blue cross (awake) represent the mean

correlation across all pairs belonging to the corresponding distance bin within an FOV. Bin size = 30µm. While neuropil coefficients decay at a steeper slope than cell

coefficients, (P < 0.05, t-test for the two independent slopes), regardless of brain state, the relative (%) decrease over the same distance is ∼2 times larger for cells

(∼23% for cells vs. ∼12% for neuropil patches). (B) Noise correlation between neuropil-patches (from 1F/F response) and cells (from estimated spikes) as a function

of distance (bold line, C-NP). “C-C” refers to pairwise cell-to-cell noise correlations. Error bars indicate mean ± SEM at distances used across FOVs. For (A,B),

***indicates P < 1e-7 in Wilcoxon rank-sum test. (C) Linear contribution of single-cell response to neuropil-patch noise correlation. Mean noise correlations between

neuropil patches were compared before and after subtracting corresponding single cells’ responses (see Section Materials and Methods). **, ***P < 5e-5, P < 1e-8,

Wilcoxon rank-sum test. “Cell RSP-in”: without linear subtraction. “Cell RSP-out”: after linear subtraction. Our basic observations remain unchanged after this

correction. (D) Mean noise correlations between individual cells (C-C), between single cells and the mean response from all other cells except the cell itself (MC), and

between the mean cell response (MC) and neuropil patches (NP) as a function of neuropil patch size and its distance from the centered cell. “X-Y”, represents noise

correlation between “X” and “Y”; for example, MC-NP, correlation between MC and NP. AN, Anesthesia, AW, Quiet wakefulness. Cont.: Visual contrast. Cell responses

were measured from deconvolved spike rates. In plots, solid line (with error bar) represents the mean (with SEM) across FOV’s (n = 7 and 11 from anesthetized and

awake animals, respectively).

Contribution of Cell Responses to Nearby
Neuropil Activity
To investigate the influence of the activity of individual cells
on nearby neuropil activity, we subtracted somatic responses
weighted with a common scale value from the adjacent neuropil-
patch responses (annulus from 7 to 15µm centered around
the cell). The scale value was simply estimated across all cell-
neuropil-patch pairs using a linear regression model between a
dependent variable (i.e., the neuropil response) and a regressor
(i.e., the corresponding cell response, see Section Materials and
Methods for details). Then, we recalculated the noise correlations
between neuropil patches. This approach removed the mean
linear contribution of individual cells to neuropil activity and
allowed us to determine to what degree the spatial structure of

neuropil activity described in the previous section could have its
origin in the activity of adjacent cells, as might occur, for example,
via the back-propagation of action potentials through the cells’
own dendritic branches (Waters et al., 2003).

We found that subtracting somatic responses significantly

reduced neuropil inter-patch noise correlations only under

anesthesia (0.046 vs. 0.023, P < 5e-5 vs. P = 0.24,
Wilcoxon rank-sum test), without significantly affecting their

profile over distance (P < 1e-8, Wilcoxon rank-sum test
between the two brain-states; Figure 4C). This is consistent
with the observation that single cells are more strongly
synchronized with surrounding cell populations and neuropil
under anesthesia than in the quiet awake state (Ecker et al.,
2014).
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Figure 4B shows that neuropil-to-cell noise correlations were
considerably stronger than mean cell-to-cell noise correlations,
across all distances measured (e.g., 0.18 vs. 0.06 under anesthesia
and 0.12 vs. 0.04 for the quiet awake state, respectively, at
150µm). The high correlation values imply that neuropil patches
carry a substantial signal that is correlated with cell activity,
even for cells that are quite distant from the location of
the neuropil patch (∼150µm). Although, this might initially
appear counterintuitive, it may have an obvious reason: neuropil
responses reflect aggregate synaptic activity and are more
correlated withmean cell population activity than with individual
cell activity. Noise correlation coefficients between individual cell
responses andmean population responses were also much higher
than the average of all pairwise cell-to-cell noise correlation
coefficients. The reason is that the firing of individual cells is
stochastic, which disproportionately lowers pairwise cell-to-cell
noise correlation coefficients. To test this reasoning, wemeasured
(1) the correlation coefficient between the response of individual
cells and the mean cell response (MC) from all other cells
except the cell itself (MC-C), and (2) the correlation coefficient
between MC and individual neuropil patch responses (MC-NP).
As predicted, MC-C noise correlation coefficients were higher
than mean pairwise cell-to-cell noise correlation coefficients, and
MC-NP correlation coefficients were even higher (Figure 4D).

Noise correlations were affected by brain state, being generally
higher during anesthesia (Figure 4D, compare left to right plot).
This was particularly true for the MC-NP cross-correlation
values, which were 80% higher under anesthesia (0.74 at 50µm)
vs. in the quiet awake state (0.41 at 50µm; Figure 4D). It is
therefore likely that under anesthesia, the population of cells is
strongly driven by the activity of shared inputs. It is also likely
that in the quiet awake state, sparse andmore localized patterns of
firing activity are predominant (Greenberg et al., 2008; Sawinski
et al., 2009), leading to smaller noise correlation coefficients.

In summary, removing the neighboring cell calcium signal
component from the neuropil signal does not change the spatial
profile of the neuropil-to-neuropil noise correlation structure.
Furthermore, cell to neuropil-patch noise correlations are
significantly stronger than the mean cell-to-cell noise correlation.
This is likely due to the stochastic nature of cell firing, which
disproportionately lowers pairwise cell-to-cell noise correlation
coefficients.

Decoding Direction Information from
Neuropil Patch Populations
Mice lack orientation columns and are thought to have a
salt and pepper pattern of orientation/direction preference
(Ohki et al., 2005). However, a recent study suggests that
orientation preference may not be entirely randomly distributed
across neurons, as neighboring cells show greater similarity
in orientation preference (Ringach et al., 2016). Neuropil
neighborhoods of appreciable size contain numerous cell
processes. Assuming orientation/direction preference is
randomly distributed across these processes, neuropil-
patches surrounding neurons should show little, if any,
orientation/direction bias. Alternatively, neuropil processes may

be organized in regions with coherent orientation/direction
preference, which changes gradually along the cortical surface. In
what follows we ask whether neuropil activity conveys sufficient
information to decode visual direction and how this compares to
the direction discrimination accuracy of nearby cell populations
(see Section Materials and Methods).

We find that populations of neuropil-patches show high
decoding performance, commensurate with that of populations
of neighboring neurons (Figure 5A, Left), both in quiet
wakefulness and under light anesthesia. This high decoding
performance from neuropil-patch populations did not result just
from differences in the global modulation of aggregate neuropil
activity depending on stimulus direction since direction selective
information is essentially lost and discrimination accuracy drops
to chance levels when we average over all neuropil patches within
an FOV (Figure 5A, Right). It also did not result from the
“contamination” of neuropil activity by adjacent cell signals, since
the linear subtraction of cell signals from adjacent neuropil-patch
signals did not change decoding performance (Supplementary
Figure 5A). Finally, the similar performance between cell and
neuropil-patch population was not due to an underestimation of
cell decoding performance due to inappropriate processing of cell
data. Correcting the cell signal for neuropil contamination with
correction factor (S) within the empirically determined range
(S = 0.4–0.6) increased, rather than decreased, the decoding
performance of the cell population, particularly at 100% contrast
(Supplementary Figure 5B). The decoding performance also
increased when estimated spike data from the cell calcium signal
were used, rather than the calcium signal (i.e., 1F/F response)
itself (Supplementary Figure 5C).

To better understand the sources of high neuropil decoding
performance, we assessed whether the spatial organization of
neuropil patches for stimulus encoding is correlated with those
of adjacent cells. To this end, we first calculated the extent of
discriminability between the two stimulus directions, called d’,
for single cells and neuropil-patches, respectively (see Section
Materials and Methods). Then, we calculated a spatial Pearson
correlation coefficient between the d’ values of cells and their
local neuropil-patches within each FOV and compared it with
a null distribution generated from surrogate data, where the
cells’ spatial locations were randomly shuffled (see Section
Materials and Methods). This test showed that neuropil activity
was correlated with adjacent cell activity in terms of spatial
organization relevant to stimulus encoding (Figure 5C). In
particular, significance was only reached in the quiet awake
state (Figure 5C, Right). Nonetheless, the magnitude of this
correlation was not sufficient to explain the high neuropil
decoding performance, particularly in the anesthetized state,
in which the absolute correlation coefficient among d’ values
was weak and not significant (Figure 5C, Left). To further
investigate the reason for the high decoding performance of
neuropil activity, we measured the mean and variance of cell
and neuropil-patch d’ values within each FOV. On average,
d’ variances were significantly smaller, and mean absolute d’
values were significantly larger across neuropil-patches compared
to cells (Figure 5B). Therefore, in terms of the capacity for
information encoding, neuropil activity shows higher and more
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FIGURE 5 | Decoding performance of cell vs. neuropil responses for stimulus direction. (A) Decoding accuracy from response vectors composed of cells vs.

neuropil-patches (left) and from the mean response across cells vs. neuropil-patches within FOV’s (right). Decoding accuracy was not significantly different for

neuropil-patch vs. somatic response-vectors regardless of brain state (not significant in Two-way ANOVA). Response-averaging across population elements dropped

the decoding performance to near chance level for both cells and neuropil patches. (B) Mean of absolute d’ values (left) and variance of d’ values (right) within each

FOV, averaged across FOV’s. d’: discriminability between vertical vs. horizontal grating conditions for single cell or neuropil-patches. On average, while the mean of

absolute d’ values within an FOV is larger for neuropil-patches than for cells, the variance of d’ values is smaller across neuropil-patches. **, ***P < 5e-4, 1e-7 in

Two-way ANOVA. (C) Spatial correlation between the d’s of cells vs. their local neuropil-patches (left) and the corresponding z-score (right; see Section Materials and

Methods). Cell and neuropil patch d’ vectors are significantly spatially correlated only in the quiet awake state (P < 0.05). In all plots, “.” stands for cell, “*” for neuropil,

“+” represent the overall mean across FOVs, and error bars SEM across FOVs (n = 7, 11 for anesthetized and awake animals). AN, Anesthesia, AW, Quiet

wakefulness.

spatially uniform discriminability between the chosen stimulus
conditions than cell activity.

We also examined how direction discrimination accuracy
varies as a function of population-vector size and as a function of
neuropil patch size. As expected, we found that including more
cells or neuropil-patches increased decoding accuracy for both
cell and neuropil-patch populations (Figure 6A). Interestingly,
cell and neuropil-patch populations showed similar accuracy in
decoding the (coarse) grating drifting-direction difference we

tested across all population sizes tested. Neuropil-population
decoding accuracy decreased as neuropil patch size increased
(Figure 6B). However, regardless of brain state, the decay was
slow, and high direction discrimination accuracies (e.g., ∼75%
at 100% contrast) were still present for patches with radii as large
as 250µm. This high decoding accuracy was not directly related
with distance between cells and between neuropil-patches for at
least n = 4 within 200× 200 µm (Supplementary Figure 6). This
suggests that, due to the high response reliability of the neuropil,
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FIGURE 6 | Decoding accuracy as a function of population-vector and neuropil-patch size. (A) Decoding accuracy as a function of population-vector size. Decoding

accuracy of both cell and neuropil-patch populations increase in a similar way as a function of population-vector size. Decoding accuracies of the neuropil population

are slightly lower for n > 6, but this does not reach significance on the F-test. (B) Decoding accuracy as a function of neuropil patch size increases by enlarging the

outer annulus radius, while keeping the inner radius constant at 7µm. Note that decoding accuracy remains high well beyond neuropil patches with radius ∼100µm.

Blue: 100%, green: 40%, red: 15%. Error bars represent SEM across FOV’s. AN, Anesthetized state; AW, Awake state. Dashed lines represent the chance level of

accuracy.

even a small amount of spatial inhomogeneity is enough to
accurately decode the direction difference employed.

Finally, our results are not a byproduct of using OGB but
extend to the GCaMP class of calcium indicators. Specifically, we
repeated our analysis in area V1 of mice expressing GCaMP6s
genetically. The results were entirely consistent with the analysis
of the OGB signal (Figure 7), increasing confidence in our
findings.

DISCUSSION

We explored the properties of visually driven neuropil activity
recorded in L2/3 of mouse area V1, how it relates to the activity
of neighboring cells, and whether it can be effectively decoded to
perform coarse stimulus orientation discrimination.

Cell vs. Neuropil Visual Response Strength
and Reliability
The neuropil in layer 2/3 of mouse primary visual cortex (V1)
showed strong visually evoked responses both under anesthesia
and during quiet wakefulness. Neuropil 1F/F responses were

in fact stronger, on average, than cell 1F/F responses at all
contrasts (Figure 1). The ratio of neuronal to nearby neuropil
1F/F responses depended on brain state. Specifically, this
ratio was lower in the anesthetized compared to the awake
state (Figure 1E) suggesting that synaptic processing is less
efficient under anesthesia. Interestingly, the ratio of neuronal to
neuropil response strength was higher for high contrast stimuli
irrespective of brain state (Figures 1D,E). This also suggests
higher efficiency in synaptic processing at higher contrasts.

Neuropil patch responses were always considerably more
reliable than local L2/3 cell responses. This result may be
thought of as largely expected, since a neuropil patch represents
aggregate activity originating from the processes of many cells
(see Figure 3). However, it is not altogether trivial, since it
sets a limit on the degree to which the spatially coherent
signal carried by the neuropil (which might arise as a result
of input from other areas or subcortical structures) fluctuates
randomly from trial to trial. The higher Fano factor seen in
cell responses may result from the cell’s own internal nonlinear
processing from sub-threshold activity to spike output. For
example, this elevated randomness in cell firing may be related
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FIGURE 7 | Comparison between neuropil and cell responses from two GCaMP6 expressing animals. (A) Mean response of cells and neuropil-patches to 100% and

40% contrast. This is comparable to Figure 1D, obtained with OGB. (B) Ratio of mean somatic vs. mean neuropil responses at 100 and 40% contrast. These ratios

are plotted after correcting for neuropil contamination, and are comparable to Figure 1E. (C) Decrease of noise correlation coefficients after contamination correction

with S = 0.6, comparable to Supplementary Figure 2. (D) Decoding performance of cell and neuropil-patch response vector for stimulus direction (0 vs. 90◦).

Decoding accuracy was computed within each contrast condition and averaged across 100% and 40% contrasts. Both datasets showed high decoding accuracy for

both neuropil-patch and cell population vectors. Decoding accuracy for GCaMP6s data was obtained with n (population vector size) = 100 for Animal 1 (Ani. 1) and

44 for Animal 2 (Ani. 2). These plots demonstrate that our findings are consistent across both OGB and GCaMP experiments. Note that during this experiment the

animal was sedated (see Section Materials and Methods).

with the mechanism known as “iceberg effect,” which refers to
increased variability in cellular firing that occurs when the firing
threshold approaches the peak of stimulus-elicited membrane
potential fluctuations (Priebe and Ferster, 2008). Alternatively,
cells may sub-select a particular combination of inputs, that
displays high variability. For example, sub-threshold activity
reflects the difference between excitatory and inhibitory inputs.
This difference, particularly after thresholding, might well be less
reliable than the aggregate neuropil activity (which reflects the
sum rather than the difference between inhibitory and excitatory
inputs).

Fano factors in both neurons and neuropil-patches decrease
at higher contrast (Figure 3A). However, the relative response
variability of cells vs. neuropil-patches, quantified by the
Fano factor ratio, increases at higher contrast (see Figure 3B).
The relative increase of cell response variability at higher
contrasts may reflect contrast dependent variability in signal
integration and spiking processes internal to the neuron (e.g.,
contrast-dependent iceberg effect; Priebe and Ferster, 2008)
or heterogeneous gain control modulation across different

types of internal processes that provide input to the neuron.
In contrast, a change of brain-state from quiet wakefulness
to light anesthesia appears to have less influence over the
cell-to-neuropil Fano factor ratio (no significant increase of
the ratio in the quiet awake state compared to under light
anesthesia; Figure 3). This suggests that brain-state changes
explored here modulate the relative reliability of cell to
neuropil visual responses less strongly than changes in visual
contrast.

In summary, the neuropil shows strong visually evoked
responses that depend both on brain state and visual
contrast. Visual responses of neuropil patches with an
area >11µm2 (i.e., at least 1/5 the area of a cell soma)
were considerably more reliable than cell responses. This
suggests that the change in neuronal response variability
as a function of visual contrast may be mediated in part
by stochasticity in the cell’s own nonlinear processing.
Alternatively, cells may sub-select a particular group of
inputs, or difference between inputs, that displays higher
variability.
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Noise Correlations of Neuropil vs. Cell
Responses
Noise correlations reflect the co-modulation of responses by
internal, common, inputs (Bryant et al., 1973; Shadlen and
Newsome, 1998; Ecker et al., 2010, 2014). Neuropil-to-neuropil
noise correlations were overall very large (i.e., 0.6–0.85) even
when neuropil patches were almost 200µm apart from one
another (see Figure 4A). Assuming that both neuropil and local
field potential (LFP) reflect the aggregate synaptic activity, this
strong pair-wise neuropil correlation may be closely related to
high correlation in gamma activity of the LFP, which is >0.5 and
decreases with increasing distance between electrodes (Ray and
Maunsell, 2010).

In contrast, neuron-to-neuron pairwise noise correlations
were much lower (see Figures 4B,C). The spatial profile of
neuropil noise-correlated activity decayed linearly, dropping
by ∼11% by ∼200µm, ∼2 times less than cell-to-cell noise
correlated activity, which fell by∼20% (Figure 4A) over the same
distance. Noise correlation profiles were brain-state dependent,
showing higher correlation coefficients under light anesthesia
vs. quiet wakefulness, in agreement with (Ecker et al., 2014).
Brain-state dependent changes in noise correlation strength were
similar for noise correlations between neuropil-patches, pairs
of neurons, or between neurons and neuropil-patches. Notably,
these results remained valid even after subtracting the response
profile of single cells from the response profile of nearby neuropil
patches (Figure 4C), suggesting that local neuronal activity (or
possibly signal contamination from local neuronal somata) is not
the main cause of our observations.

In agreement with (Ecker et al., 2010, 2014), noise correlation
strength between pairs of neurons was extremely low, though
significantly different from zero (Supplementary Figure 4B).
However, neuropil-to-cell noise correlations were significantly
higher than the mean pairwise cell correlation for a range
of cortical distances from 50 to 150µm regardless of brain
state (Figure 4B). The high correlation between cell activity
and neuropil signal is reminiscent of the electrophysiology
results showing strong correlation between cell and LFP activity
(Ray and Maunsell, 2010). Interestingly, they report that the
strength of this correlation decreases with distance over a scale
of millimeters. In contrast, the correlation remains essentially
flat over the much smaller scale (∼200µm) we examined here.
Furthermore, Kerr et al. (2005) argued that spontaneous neuropil
modulations seen with OGB mostly reflect signals arising from
presynaptic axonal activity. Assuming this is correct, this implies
that high spatial coherence in the neuropil reflects inputs shared
across cells.

This shared component is also captured by the mean
activity across all cell somata (MC) in the FOV (Figure 4D).
However, because individual cells fire stochastically, pair wise
inter-neuronal correlations weaken, resulting in the following
relationships: NP-MC > MC-C ∼ NP-C >> C-C (Figure 4D).
The fact that individual cells are strongly correlated to mean
cell activity suggests that, at least up to distances of ∼200µm,
they do receive a substantial amount of shared internal input.
This finding is supported by recent studies showing that single
cell activity is coupled to population activity (Okun et al.,

2015). In addition, we find the stronger correlation between
single cell and mean cell activity found under light anesthesia
(Figure 4) consistent with prior results suggesting that stronger
co-modulation occurs across cells during anesthesia vs. quiet
wakefulness (Ecker et al., 2014).

In summary: (1) Neuropil activity in mouse V1 is highly
correlated over large cortical distances. (2) This large spatially
coherent component is predominantly but not completely
filtered out in L2/3 cell output activity (Figure 4). (3) This
is reflected in the fact that single-cell to neuropil-patch
noise correlation coefficient strength, though much lower than
neuropil-patch to neuropil-patch noise correlation coefficient
strength, remains flat as a function of distance across >150µm
(Figure 4B). (4) The stochasticity and sparseness of cell firing is
likely responsible for themuch lower cell-to-cell noise correlation
coefficient strength (Figure 4B). (5) Both neuropil and cell noise
correlation coefficients decrease in quiet wakefulness. Finally, (6)
the spatial profile of neuropil noise correlations, which likely
reflects primarily the coherence of L2/3 synaptic activity, decays
slowly over distance.

Direction Discrimination from Neuropil
Activity
Visually driven neuropil responses are both strong and reliable,
suggesting that they contain significant information about
visual stimulus contrast. It is an open question whether
they also contain significant information about stimulus
orientation/direction. We found that populations of neuropil
patches ranging in size from ∼220µm2 (radius ∼8.4µm) to
∼200,000µm2 (radius ∼250µm) discriminated moving grating
direction of motion accurately, on par with corresponding cell
populations (Figures 5, 6).

The high neuropil decoding performance was not due
to trivial contamination of the calcium signal by nearby
cell activity because: (1) the choice of neuropil patch inner
diameter (>7µm radius from the cell center) carefully
excluded the region of optical contamination in the X-
Y plane, (2) there was, at best, a weak correlation in
discriminating power (d’) between cells and nearby neuropil
patches (Figure 5C), and (3) decoding performance remained
high even for larger (>100µm in radius; Figure 6B) patches,
which aggregate multiple processes with “salt & pepper”
direction organization (Ohki et al., 2005). Rather, the high
decoding performance of neuropil activity was related to the
high neuropil response reliability and corresponding increased
sensitivity to spatially distributed information, i.e., high d’ values
(Figure 5B).

A potential caveat is that we computed neuropil
discrimination accuracies for two orthogonal directions, and it is
not clear how the observed discrimination performance would
translate to stimuli that differ by smaller orientation/direction
angles. Nonetheless, we provided clear evidence that neuropil
patches do encode sufficient direction information to distinguish
between two coarse (90◦ difference) directions (Figure 5).
Interestingly, the high decoding accuracy of neuropil-patch
populations are maintained even if we select patches of relatively
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large size (>100µm in radius), which reflect the aggregate
activity of a multitude of neuronal processes (Figure 6B).

Technical Implications of Neuropil
Contamination Correction
The empirical estimates of the contamination correction factor
from neuropil to cell ranged from [0.5 to 0.6] for OGB. In
our hands, correcting with this factor was sufficient to correct
for the variability in the optical quality of the window. In
addition, even thoughGCaMP6s expressing cells have even larger
correlation coefficients than cells labeled with OGB [∼0.3–0.5
(Figure 7C) vs. ∼0.2 (Supplementary Figure 2)] before neuropil
contamination correction, application of S = 0.6, which was
not optimized for GCaMP6s data but selected for comparison
with OGB, resulted in a similar noise correlation coefficient
(i.e., ∼0.05). These observations strongly suggest the necessity
of correcting for neuropil contamination before cell noise
correlation analysis. Particularly, this would be important for
functional connectivity analysis, in which Pearson correlation
coefficient is typically used.

CONCLUSIONS

Neuropil responses to visual stimuli (moving gratings) in layer
2/3 of mouse V1 are more reliable and more strongly modulated
than somatic responses. Stimulus independent fluctuations in
neuropil activity are strong and highly correlated across the
cortical surface up to distances of at least 200µm. This contrasts
with cell-to-cell pairwise noise correlations, which are much
weaker. Finally, despite the “salt & pepper” organization of

orientation preference across V1 neurons (Ohki et al., 2005),
neuropil-patch populations show high accuracy for performing
coarse direction discrimination, commensurate to the accuracy
of corresponding cell populations. This remains true even for
patches of radius >100µm. These observations underscore the
dynamic nature and functional organization of the layer 2/3
neuropil signal.
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