
METHODS
published: 31 July 2017

doi: 10.3389/fncir.2017.00051

TDat: An Efficient Platform for
Processing Petabyte-Scale
Whole-Brain Volumetric Images
Yuxin Li1,2, Hui Gong1,2, Xiaoquan Yang1,2, Jing Yuan1,2, Tao Jiang1,2, Xiangning Li1,2,
Qingtao Sun1,2, Dan Zhu1,2, Zhenyu Wang1,2, Qingming Luo1,2 and Anan Li1,2*

1Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong
University of Science and Technology, Wuhan, China, 2Britton Chance Center and MOE Key Laboratory for Biomedical
Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China

Edited by:
Minmin Luo,

Tsinghua University, China

Reviewed by:
Henry Lütcke,

ETH Zurich, Switzerland
Yu-Wei Wu,

Stanford University, United States

*Correspondence:
Anan Li

aali@mail.hust.edu.cn

Received: 27 March 2017
Accepted: 17 July 2017
Published: 31 July 2017

Citation:
Li Y, Gong H, Yang X, Yuan J, Jiang T,

Li X, Sun Q, Zhu D, Wang Z, Luo Q
and Li A (2017) TDat: An Efficient

Platform for Processing
Petabyte-Scale Whole-Brain

Volumetric Images.
Front. Neural Circuits 11:51.

doi: 10.3389/fncir.2017.00051

Three-dimensional imaging of whole mammalian brains at single-neuron resolution has
generated terabyte (TB)- and even petabyte (PB)-sized datasets. Due to their size,
processing these massive image datasets can be hindered by the computer hardware
and software typically found in biological laboratories. To fill this gap, we have developed
an efficient platform named TDat, which adopts a novel data reformatting strategy by
reading cuboid data and employing parallel computing. In data reformatting, TDat is
more efficient than any other software. In data accessing, we adopted parallelization to
fully explore the capability for data transmission in computers. We applied TDat in large-
volume data rigid registration and neuron tracing in whole-brain data with single-neuron
resolution, which has never been demonstrated in other studies. We also showed its
compatibility with various computing platforms, image processing software and imaging
systems.

Keywords: petabyte, terabyte, massive imageset, neuron reconstruction, software platform

INTRODUCTION

The functions of mammalian brains are based on the activity patterns of large numbers of neural
circuits (DeFelipe, 2010; Lichtman and Denk, 2011; Miyamichi et al., 2011; Markram et al., 2015).
To precisely reconstruct each neural circuit in the three-dimensional (3D) brain is a fundamental
requirement for neuroscience (Lichtman and Denk, 2011; Gong et al., 2016). Mapping these
networks requires high-resolution (single-neuron resolution) and large-volume (brain-wide)
imaging techniques (Yuan et al., 2015). Techniques for 3D imaging of whole mammalian brains
at single-neuron resolution produce several terabytes (TB) to dozens of TB of image data when
imaging a mouse brain (Li et al., 2010; Gong et al., 2013, 2016; Zheng et al., 2013), and more than a
petabyte (PB) of image data is produced when a primate brain is imaged. As a result, the generated
image datasets are too large to be processed by the typical software and computers in biological
laboratories. Processing and analyzing these large images have become a challenge (Helmstaedter
and Mitra, 2012).

Multi-resolution techniques and image block processing are common approaches for
overcoming the difficulty of processing large-volume data. As in Google Maps, only the image
data in the current view is read at a given time, thus requiring the image dataset to be divided
into several blocks and stored in a hierarchical structure with multi-resolution levels. Recently,
two innovative tools, Vaa3D-Terafly (Bria et al., 2015, 2016) and Fiji-BigDataViewer (Fiji-
BDV; Pietzsch et al., 2015), as well as the commercial tool Amira-XLVolume (FEI, Mérignac
Cedex, France), have adopted this methodology for biomedical studies. These tools enable
standard computers to process large image datasets (up to 10 TB; Pietzsch et al., 2015; Table 1)

Frontiers in Neural Circuits | www.frontiersin.org 1 July 2017 | Volume 11 | Article 51

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
https://doi.org/10.3389/fncir.2017.00051
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2017.00051&domain=pdf&date_stamp=2017-07-31
http://journal.frontiersin.org/article/10.3389/fncir.2017.00051/abstract
http://journal.frontiersin.org/article/10.3389/fncir.2017.00051/abstract
http://journal.frontiersin.org/article/10.3389/fncir.2017.00051/abstract
http://loop.frontiersin.org/people/432194/overview
http://loop.frontiersin.org/people/239791/overview
http://loop.frontiersin.org/people/462068/overview
http://loop.frontiersin.org/people/229909/overview
http://loop.frontiersin.org/people/462042/overview
http://loop.frontiersin.org/people/460908/overview
http://loop.frontiersin.org/people/426409/overview
http://loop.frontiersin.org/people/462067/overview
http://loop.frontiersin.org/people/462028/overview
http://loop.frontiersin.org/people/164865/overview
http://loop.frontiersin.org/people/241008/overview
https://creativecommons.org/licenses/by/4.0/
mailto:aali@mail.hust.edu.cn
https://doi.org/10.3389/fncir.2017.00051
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Li et al. TDat for Petabyte-Scale Volumetric Images

TABLE 1 | Software or tools for large image volume.

Name Software extendibility Custom dataset format Declared largest dataset Supported computing platforms

Amira-XLVolume no LDA N/A no
CATMAID (Saalfeld et al., 2009) no 2D tile 10 TB no
Fiji-BDV no BDV-HDF5 10 TB yes
Imaris-IMS (Bitplane) no Imaris-HDF5 N/A no
KNOSSOS (Helmstaedter et al., 2011) no KNOSSOS-format N/A no
SSECRETT (Jeong et al., 2010) no N/A N/A no
Vaa3D-terafly no TMITREE 2.5 TB no
Our proposal (TDat) yes TDat 1 PB yes

by reformatting volumetric data into a hierarchical dataset.
However, the reformatting steps involved in these tools take
more than 1 month to complete or require hundreds of GB of
memory when processing 10 TB of data. As a result, in practice,
these tools have difficulty handling dozens of TB of image data,
and processing hundreds of TB or PB of image data is nearly
impossible.

To fill this gap, we developed TDat, an efficient platform
for processing PB-scale volumetric images. Using a novel data
reformatting method, TDat efficiently reduces processing time
and computer memory consumption.We tested the performance
of TDat in reformatting and accessing data. We showed two
important applications of TDat in neuroscience, including
large-volume data rigid registration and tracing long-range
projection neurons in the whole brain. We also demonstrated
its applicability for various computing platforms and its
compatibility with general image processing software and various
imaging systems. The results indicate that TDat is a powerful
platform for processing TB- and even PB-scale image datasets.

MATERIALS AND METHODS

Architecture
The TDat platform includes four modules and several tools.
Figure 1 shows the architecture of the TDat platform. The

majority of C++ compilers can be used to program with
TDat on most operating systems. The TDat platform can be
used to develop application programs or plugins for third-
party applications. We have also provided executable files and
plugins for users who do not have programming skills. For
example, the reformatter tool can convert two-dimensional
(2D) image sequences into TDat format. The transformer tool
can be used to rotate the dataset. The reslicer tool can be
used to re-slice the TDat dataset along three orthogonal faces.
Users can employ these tools to accomplish specific tasks
and can use them as examples to develop other application
programs. In addition, we have provided plugins for Vaa3D
(version 3.055), Fiji (ImageJ 1.50b, java 1.7.0_09) and Amira
(version 6.1.1; FEI, Mérignac Cedex, France). Users can use
the TDat datasets in these software programs if they install the
plugin.

FPR Algorithm for Reformatting of the
Image Volume
A fine-grained parallel reformatting (FPR) method was used
for high-efficiency data reformatting (Figure 2). First, the
original image sequences are recursively downsampled with
different resolutions. Second, for each image sequence with
a different resolution, a region of cuboid data is read into
memory (Figure 2A). Lastly, the cuboid data is split into

FIGURE 1 | Architecture of the TDat platform. The TDat platform includes four main modules and several tools: the reformatting module, the accessing module, the
transform and re-slice module and the model data generation module. These modules provide interfaces for developers. The tools include executable programs and
plugins for other bio-imaging software.

Frontiers in Neural Circuits | www.frontiersin.org 2 July 2017 | Volume 11 | Article 51

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Li et al. TDat for Petabyte-Scale Volumetric Images

3D blocks of the same size. The blocks are organized by
their location in the data space and levels (Figure 2B). FPR
reads the cuboid data (gigabytes (GB) scale) instead of the
2D images (TB scale) for data reformatting. Since the sizes
of the cuboid data read into memory are on the order of
GB, and the data can be fully split into the 3D blocks, FPR
can substantially reduce memory consumption and prevent
repeated reading of the same data when data reformatting is
performed.

The process includes three main steps. (1) Subsampling: read
the original data (level 1) into the computer memory slice-
by-slice and then merge two slices and subsample twice to
generate a low-resolution image sequence (level 2). Similarly,
read level 2 and subsample twice to generate level 3. Recursively
generate level 3, level 4 . . . level n. When the width (X),
height (Y) and depth (Z) are less than 512 px, stop subsampling.
(2) Cuboid-reading: Read 512 continuous stripes with a total size
of WIDTH × 512 px along the Z-axis to generate a CUBOID
with a size of WIDTH × 512 × 512 px. If the height of a stripe
is less than 512 px, or the slice number (depths) is less than
512 px, assign 0 to the blank pixel. The memory consumption
when data reformatting is WIDTH × 512 × 512 × 8 or
16 bit. (3) Block splitting: For each CUBOID block in computer
memory, split the CUBOID block into 3D blocks with the size
512 × 512 × 512 px along the X-axis. If the width of a 3D block
is less than 512 px, assign 0 to the blank pixel. Write all 3D
blocks to the hard disk in TIFF file format, and then free the
memory.

The algorithm for data reformatting is as follows:

Input: V1 (the size is X1 × Y1 × Z1) input volume
Output: reformatted dataset
Subsampling: produce image sequences V2, V3. . .Vk, Vk, the size
of Vk is Xk × Yk × Zk, and X = Xk−1/2, Yk = Yk−1/2, Zk = Zk−1/2,
this produce is iterated until both of Xk, Yk, Zk≤512

for n = 1 to k do
repeat
Cuboid-reading: load cuboid volume C with Xn ×

512 × 512 pixel from Vn to RAM
BLOCK splitting: split C to 3D blocks and write to hard disk
Update position of C along Yn and Zn -axis
until all pixel of Vn is read
end for

Due to the fine-grained nature of the three steps, memory
consumption is low during reformatting. Parallel computing
can accelerate these three steps. The speed of the reformatting
process can be improved when using an efficient computing
platform.

TDat supports 8 bit or 16 bit isotropic or anisotropic image
stacks. However, FPR requires TIFF-formatted images because
the FPR method requires the image slice to be read in line-scan
mode. In this way, TDat can read cuboid data instead of reading
whole 2D images during data reformatting. Few image formats
(TIFF) support line-scan mode. Therefore, when the input
volume is not in TIFF format, TDat will automatically convert
them to TIFF format before reformatting, which will increase the
total time consumption by 30%.

When data from all levels are reformatted into 3D blocks,
these 3D blocks are organized according to a four-level hierarchy
of folders based on their location in the data space and levels
(Figure 2B). For rapid indexing, the 3D block files are named
according to x_y_z rules. For example, for a 3D block that is
named 2_3_4, its starting point position in space is (2 × 512 px,
3 × 512 px, 4 × 512 px). Reformatted data also include
metadata with ‘‘.tdat’’ as the suffix, which includes a few basic
parameters, such as the dataset size, original data resolution,
file format, bit depth, level size and file storage location, which
accesses the datasets that are required to read and parse the
metadata.

Algorithm for Data Accessing
Each pixel point in the TDat dataset can be accurately mapped
to the entire data space. According to the known data space
coordinates, TDat can obtain the value of each pixel point from
the dataset, which is the foundation of TDat dataset access. We
designed two different methods for accessing data.

The first method is sequential reading, which is a simple and
efficient means of accessing a TDat dataset in which the 3D
blocks are sequentially read and processed, and each 3D block is
read separately. This method is suitable for processing the entire
dataset.

The second method is random reading. Random reading
reads regions of interest (ROIs) from a TDat dataset. The user
defines the position and the size of an ROI; then, TDat provides
the corresponding data to the user. The ROIs can be any size
at any position in the dataset, which is a common method for
accessing a dataset. We use the read-crop strategy (Figure 3)
to achieve random reading. The strategy includes the following
steps: (1) calculate the 3D blocks that are in the ROI. The level of
3D blocks that needs to be read can be automatically calculated
by TDat or can be defined by users. (2) Read these 3D blocks
into memory. (3) Combine these 3D blocks according to their
positions in the data space and crop extra data to form the ROI
data. In practice, random reading is repeatedly called, and the
adjacent two calls often use duplicate data. Therefore, we added
a memory caching mechanism to accelerate the speed of random
reading. We cache recently used 3D blocks in memory. When
reading the 3D blocks in step (2), if the 3D block is in the
memory, then it can be directly read from the memory. After
each random reading call, the memory cache is refreshed using
the least recently used algorithm.

Parallel Computing in Different Computing
Platforms
TDat exploits the potential of different computing platforms by
parallel computing. We use fine-grained algorithms to improve
the degree of parallelism. During data reformatting, each 2D
image slice is assigned to a separate thread in the 2D image
subsampling process. The data size is on the order of GBs. In
the cuboid-reading process, to avoid reading hundreds of large
2D image slices (100 GB or TB scale), separate threads read
stripe images in parallel to form a CUBOID (GB or 10 GB
scale). After each CUBOID is split, multiple threads write the
3D blocks into storage in parallel in the block splitting process.

Frontiers in Neural Circuits | www.frontiersin.org 3 July 2017 | Volume 11 | Article 51

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Li et al. TDat for Petabyte-Scale Volumetric Images

FIGURE 2 | Principle of the fine-grained parallel reformatting (FPR) reformatting method and TDat file organization. (A) An example of three-level TDat data to
demonstrate the principle of the FPR reformatting method. The image sequence was recursively resampled to create three-level data. For each level of data, the data
were split into CUBOIDs and separately read to memory, e.g., level 2 data were split into four CUBOIDs. Each of the CUBOIDs in memory was split into 3D blocks. If
the width, depth or length was not divisible by 512, the value was set to 0. X, Y and Z represent width, height and volume depth, respectively. (B) An example of
three-level TDat file organization. 3D blocks are organized according to a four-level hierarchy of folders by their location in the data space and levels. The 3D block
files are named according to x_y_z.

FIGURE 3 | Principle of accessing TDat data. An example of three-level TDat data. When accessing the TDat data, we retrieve different levels of data depending on
the size of the region of interest (ROI). The pink ROI is the largest ROI, and we retrieve level 3 data. The blue ROI is medium-sized, and we retrieve level 2 data. The
purple ROI is the smallest ROI, and we retrieve level 1 data. The blue transparent 3D blocks need to be read into RAM when calculating the ROI. Subsequently, these
blocks are combined according to their positions in the data space, and extra data are removed to generate the ROI data. All of these 3D blocks will cache in RAM. If
the 3D blocks that need to be read have been in the RAM cache, they will be read immediately.

This process can be executed in parallel because each CUBOID
has no duplicate data. In the accessing process, every 3D block
file is independent, and the scale is only 100 MB. This process
is suitable for parallel reading and calculating. TDat uses two

open-source parallel libraries: OpenMP and MPI. OpenMP is
used to perform the thread-level parallelism in a single compute
node, and MPI is used to achieve parallel task scheduling in
multiple compute nodes. Via parallel optimization, the CPU

Frontiers in Neural Circuits | www.frontiersin.org 4 July 2017 | Volume 11 | Article 51

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Li et al. TDat for Petabyte-Scale Volumetric Images

FIGURE 4 | Workflow and illustration of 3D image transformation using TDat. (A) Workflow of 3D image transformation using TDat. (B) An example of data with a
size of 512 × 512 × 512 px was rotated 45◦ around the z-axis. This volume contained only level 1 data with one 3D block after conversion to TDat format. The
purple box represents the volume data. After rotation, the size of the new volume was 724 × 724 × 512 px. The new volume required four 3D blocks to store the
level 1 data. The pink box corresponds to four 3D blocks. The yellow box represents the 3D block that needs to be calculated every time. The blue box is calculated
according to the yellow box’s position and the inverse matrix of rotation. The blue box is read to memory and transformed. The yellow box is created according to
the coordinates. The purple 3D block is read four times to finish the transformation; however, the 3D block was read from hard drives the first time and then cached
in the memory. The next three times, it was directly read from the memory.

utilization always attains a high level with TDat, and the IO
performance tends to become the bottleneck that influences TDat
efficiency.

Due to parallel granularity optimization, TDat can be used on
almost every computing platform. On a graphic workstation, due
to the high performance of the CPU and IO bandwidth (Disk
array), TDat uses OpenMP to perform 8–16 thread-level parallel
tasks. This application platform of TDat is typical and can handle
tens of TB of data. On a high-performance computer (HPC), both
OpenMP and MPI are used to implement parallel computing.
The performance of TDat can be improved by increasing the
number of nodes, and accessing efficiency can be increased using
distributed storage. This platform is suitable for hundreds of TB
or PB of data.

Large-Volume Rigid Registration and
Re-Slicing Based on TDat
Registration and re-slicing is one of the most important
operations in biomedical image processing and visualization
(Hill et al., 2001). The imaging dataset is acquired as slices along
one of the anatomic planes. When we want to register the dataset

to a correct position or identify arbitrary anatomic planes for
processing and visualization, traditional software or methods
must read the entire dataset into memory to rotate and re-slice
the volume, which requires huge memory and time consumption
when the dataset is large.

Rigid registration assumes images to be rigid objects that
only rotate or translate (six degrees: three rotations and
three translations) with respect to one another to achieve
correspondence (Hill et al., 2001; Crum et al., 2004). This
transformation can be described by a transform matrix. The
matrix can be acquired by existing methods, e.g., Amira,
ANTS (Avants et al., 2011), etc., using a small-scale (low-
resolution) image dataset. Rigid registration based on the TDat
method (RRBT) can apply this matrix on a large-scale image
dataset.

RRBT uses the TDat format to store datasets before and
after rotation. The 3D blocks in the after-rotation dataset are
separately calculated (Figure 4). Only a small region of the data in
the original dataset is read and transformed, which corresponds
to specific 3D blocks each time, such as reading a ROI. This
process can avoid reading the entire dataset into memory. In this

Frontiers in Neural Circuits | www.frontiersin.org 5 July 2017 | Volume 11 | Article 51

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Li et al. TDat for Petabyte-Scale Volumetric Images

TABLE 2 | Detail information of whole brain imaged datasets in this study.

Animal Data
acquisition

Raw data
size

Pixels Resolution
(µm3)

Bit
depth

TDat
size

Reformatting
time(a)

Dataset1 Thy1-EGFP mouse LSM(b) 862 GB 14,080 × 19,656 × 1673 0.5 × 0.5 × 2.5 16 bits 648 GB 3.3 h
Dataset2 Thy1-EGFP mouse 2p-fMOST(c) 1.17 TB 13,913 × 18,000 × 5115 0.5 × 0.5 × 2 8 bits 561 GB 4.7 h
Dataset3 Thy1-EGFP mouse BPS(d) 2.74 TB 28,452 × 21,866 × 4834 0.32 × 0.32 × 2 8 bits 841 GB 10.3 h
Dataset4 Golgi-stained rat MOST(e) 38 TB 31,724 × 81,200 × 16,203 0.3 × 0.3 × 1 8 bits 15 TB 124 h

(a)The reformatting time for a graphic workstation with 3.1 GHz Intel E5-2687w×2, 192 GB of RAM, a disk array. (b)Light-sheet microscope. The whole brain was cleared by

the 3DISCO (Ertürk et al., 2012) method. (c)Two-photon fluorescence micro-optical sectioning tomography system. (d)Brain-wide precision imaging system. (e)Micro-optical

sectioning tomography system.

TABLE 3 | Detail information of the computers configuration in this study.

CPU RAM Storage OS

Workstation Intel E5-2687w×2 3.1 GHz 192 GB DELL MD1200 48 TB disk array RAID0 Windows 7 Professional
HPC Cluster (20 nodes) Intel E5-2660 V3×2 2.6 GHz 128 GB Inspur Lustre file system 3.08 PB(a) Linux Red Hat 6.3

(a)Each node was connected with the Lustre file system via a 10 GB Ethernet.

method, however, a small piece of data in the original dataset will
be repeatedly read when calculating the two adjacent 3D blocks
in the after-rotation dataset, thus wasting a considerable amount
of time. The memory caching mechanism of TDat solves this
problem.

The rotation process is calculated as follows: (1) according to
the metadata of TDat in the original dataset and the rotation
matrix, we can calculate the size of the after-rotation dataset.
We can also calculate the number of 3D blocks when the after-
rotation dataset is converted to TDat format, e.g., the volume
data with a size of 1000 × 1000 × 1000 px is rotated by 45◦

along the z-axis; after transformation, the new dataset becomes
1414 × 1410 × 1000 px. The original data split into eight 3D
blocks (2 × 2 × 2) on level 1, and the new dataset splits into
eighteen 3D blocks (3 × 3 × 2) on level 1. (2) For each 3D block
in the after-rotation dataset we can calculate the position of the
area that contains the 3D block in the original dataset according
to its position in the after-rotation dataset and the inverse matrix
of rotation. We can read this data area from the original dataset
to memory using random read with the TDat memory caching
mechanism. (3) We can rotate the data area according to the
rotation matrix in memory and obtain a new data area that
contains the 3D block. We can remove the 3D block from this
new data area according to the coordinates. (4) Repeat steps
2 and 3 to calculate all 3D blocks in the after-rotation dataset.
(5) Other low-resolution level data can be calculated by repeating
steps 2–4.

We compared RRBT (rotation by transforming each TDat 3D
block) with the traditional method (rotation by transforming the
entire dataset). The results (Supplementary Figure S1) showed
that RRBT does not affect the accuracy of the rotation.

Animals and Data Acquisition
Four different datasets were employed. Dataset1 is from a
Thy1-EGFP F-line transgenic mouse whose whole brain was
imaged using a light-sheet microscope (UltraMicroscope II,
Lavision Biotec GmbH). Dataset2 is from a Thy1-EGFP M-line
transgenic mouse whose whole brain was imaged using a

two-photon fluorescence Micro-Optical Sectioning Tomography
system (2p-fMOST; Zheng et al., 2013). Dataset3 is from a
Thy1-EGFP M-line transgenic mouse whose whole brain was
imaged using a brain-wide precision imaging system (BPS;
Gong et al., 2016). Dataset4 is from an Sprague-Dawley
(SD) rat whose whole brain was imaged using a Micro-
Optical Sectioning Tomography system (MOST; Li et al.,
2010). The raw data sizes of the four datasets were 862 GB,
1.17 TB, 2.74 TB and 38 TB, respectively. Details of the
four datasets are provided in Table 2. Animal care and
use was done in accordance with the guidelines of the
Administration Committee of Affairs Concerning Experimental
Animals in Hubei Province of China. All animal experiments
followed the procedures approved by the Institutional Animal
Ethics Committee of Huazhong University of Science and
Technology.

Model Dataset
To test ourmethods, we designed a physical model dataset, which
is referred to as the 3D chessboard model with Gaussian noise
(3DCM) for benchmark datasets (Supplementary Figure S2). The
3DCM used an N slice TIFF sequence in which the size of each
slice size was N × N px, each TIFF formed a 256 × 256 px
black and white grid, and the black and white colors changed
every 256 slices. To simulate the compression ratio of the
image files, we added 5% Gaussian noise to the images. We
provided a program for generating 3DCM model data that
could automatically generate a continuous image sequence. We
generated several 3DCM model datasets with different sizes for
benchmarking (100 GB to 1 PB). Details of the model datasets
are provided in Supplementary Table S1.

Environments for Benchmarking
Two computing devices were used: a graphical workstation
and a computer cluster. The workstation was equipped with
16 cores, 192 GB of RAM, and a disk array. The computer cluster
contained 20 nodes. The nodes were equipped with 20 cores,
128 GB of RAM, and 10 GB Ethernet. All nodes were connected

Frontiers in Neural Circuits | www.frontiersin.org 6 July 2017 | Volume 11 | Article 51

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Li et al. TDat for Petabyte-Scale Volumetric Images

FIGURE 5 | Performance of TDat for reformatting model data and the comparison of the reformatting principle with different methods. (A) Run time for reformatting
different sizes of model data. The numerical data can be found in Supplementary Table S2. (B) Memory consumption for reformatting different sizes of model data.
The size of the data for reformatting exponentially increased from 100 to 6400 gigabytes (GB). The numerical data can be found in Supplementary Table S2.
(C) Principle of reformatting in Fiji-BigDataViewer (Fiji-BDV). The green region in the original sequences represents the data that need to be read into memory to
generate a block. One slice is read into memory once and cached. If the cache is out of space, it is updated and the previously read data are removed. (D) Principle
of the FPR method in TDat. The original sequences were recursively subsampled; next, a CUBOID was read into memory and split into 3D blocks. (E) Principle of
reformatting in Vaa3D-TeraFly. The green region in the original sequences represents the data that need to be read into memory to generate multi-resolution tiles that
are part of the blocks. The slice number of the green region in the original sequences is 2n-1, where n represents the number of the multi-resolution level. These
slices were read into memory to ensure that one piece of a tile could be generated in the block with the lowest resolution level.

with a Lustre file system. Details of the computer configuration
are provided in Table 3.

RESULTS

The Performance of Data Reformatting
We used TDat to reformat 100–6400 GB of model data on
a graphic workstation (Intel Xeon E5-2687w×2/192 GB). The
time and memory consumption were compared to the results
from Amira-XLVolume, Fiji-BDV and Vaa3D-Terafly, which
were used on the same workstation. The results indicated that
TDat was 4–32 times faster than other methods and consumed
less memory (several GBs; Figures 5A,B and Supplementary
Table S2). For 100 GB of data, the memory consumption
of TDat was only 1 GB. When the data size increased
to 6400 GB, the memory consumption of TDat was only

approximately 5 GB (Figure 5B). Memory consumption during
data reformatting is linearly associated with the width of the
data volume. For example, the size of 6400 GB of model data
is 19,012 × 19,012 × 19,012, and the memory consumption
is 4.64 GB (19,012 × 512 × 512 × 8 bit). TDat was able to
reformat 6400 GB of data per day, and the relationship between
computational time and data size was linear (Figure 5A).
The memory consumption of Amira-XLVolume and Fiji-BDV
remained unchanged when reformatting data of different sizes
(1 GB and 16 GB); however, they were only able to reformat
200 GB and 400 of GB data in 1 day, respectively. Vaa3D-
Terafly was relatively fast and was able to reformat 1600 GB
of data in 1 day. However, the memory consumption of
Vaa3D-Terafly was huge; for 1600 GB and 6400 GB of data,
it required 18 GB and 92 GB of memory, respectively. Our
results suggest that TDat was much more efficient both in time

Frontiers in Neural Circuits | www.frontiersin.org 7 July 2017 | Volume 11 | Article 51

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Li et al. TDat for Petabyte-Scale Volumetric Images

FIGURE 6 | Performance of TDat for accessing model data. (A) TDat
sequential-read speed (file size/read time) for varying parallelism. The time
cost for reading 1728 blocks in 200 GB of model data; the total file size was
118 GB. All benchmarks were repeated three times for each experiment, and
the average speed was then calculated. (B) The run time for TDat
random-read, varying the size of the ROIs. The size of the data for accessing
consisted of 6400 GB of model data. The computer platform was a 16-core
workstation with 32 GB of RAM and a 44 terabytes (TB) disk array. All
benchmarks were repeated 20 times for each ROI size, and then the average
run time was calculated.

and memory usage during the reformatting of large-volume
data.

TDat improves the efficiency of reformatting by using
a new strategy for reformatting. It finds a balance between
large memory consumption and frequent data reading
during reformatting. TDat reads only cuboid data into
memory to control large memory consumption during
data reformatting, and It uses parallel computing to
accelerate the speed of reading/writing data during data
reformatting (Figure 5D). Vaa3D-Terafly only needs
to read the datasets once to complete the reformatting,
but with data larger than several TB datasets, memory
consumption will increase sharply (Figure 5E). Fiji-BDV
can reformat any size of data with a fixed memory usage,
but the dataset is read repeatedly when the size of dataset
is large which will increase the time consumption evidently
(Figure 5C).

The Performance of Data Accessing
We verified the TDat performance of data accessing on a
graphic workstation (Intel Xeon E5-2687w×2/8 GB). The test
included sequential reading and random reading. In sequential
reading (Figure 6A), for TDat to adopt parallel reading, each
of the 3D blocks is read into memory in parallel so that
it can make full use of the bandwidth of the storage to
improve the performance of TDat accessing. With a higher
parallelism, the speed of TDat accessing was higher. In
random reading (Figure 6B), we read four different sizes
of cubic data from TDat datasets and measured the time
consumption. The sizes of the cubes were 250 px, 500 px,
750 px and 1000 px. The results indicated that the time
consumption was only 7 s for reading cube data with a length
of 1000 px.

Whole-Brain Dataset Rigid Registration
and Re-Slicing by TDat
We consider Dataset3 (see Dataset3 in Table 2) as an example.
This dataset was composed of whole-brain images of a
Thy1-EGFP M-line transgenic mouse imaged using BPS (Gong
et al., 2016). The original voxel size of 0.32 × 0.32 × 2 µm3

was resampled to 2 × 2 × 2 µm3 and 0.5 × 0.5 × 0.5 µm3; the
sizes were 58.9 GB and 3.68 TB, respectively. The smaller-size
data were calculated by RRBT and Amira for comparison. The
larger-size data were calculated only by RRBT. The transform
matrix for rigid registration was obtained by 10 × 10 × 10 µm3

resampled data. The transform matrix was
0.868588 −0.391007 −0.30441 0
0.273509 0.89055 −0.363469 0
0.413211 0.232447 0.880467 0

0 0 0 1


We used RRBT to transform the dataset to a correct position

and to re-slice the dataset to obtain three anatomic planes
(Figure 7). RRBT used 2.4 h and only 7 GB memory to finish
transforming the dataset with 2 × 2 × 2 µm3 resolution
on a graphic workstation (Intel Xeon E5-2687w×2/192 GB).
However, Amira required 225 GB of memory and could not
complete the job. The memory consumption of Amira was far
more than what is commonly used.When we changed the dataset
to 0.5 × 0.5 × 0.5 µm3, Amira could not read such large-volume
data into memory to perform transforming. RRBT required only
7 GB of memory to finish transforming and re-slicing three
anatomic planes on a graphic workstation.

Tracing Long-Range Projection Neurons in
a Whole-Brain Dataset
The functions of mammalian brains are based on the activity
patterns of neural circuits, which consist of local connections
and long-distance connections (Miyamichi et al., 2011; Harris
and Shepherd, 2015). An increasing number of imaging methods
can map long-range connections, which is more difficult
than mapping local connections (Ragan et al., 2012; Gong
et al., 2013; Zheng et al., 2013). However, long-distance
neurons often extend through several nuclei or even span
the entire brain (Lichtman and Denk, 2011). The size of
the data that contains long-range projection neurons is far
greater than usual computer memory size; it is even difficult
to read the data into memory before tracing. Therefore,
previous methods have difficulty tracing long-range projection
neurons.

TDat converts large image data into TDat file format and adds
a data accessing module in Amira. Users need only 1 day to
convert a several-TB dataset on a graphic workstation (Intel Xeon
E5-2687w×2/192 GB) and to begin tracing neurons in the whole-
brain data. Users can apply the Filament editor module in Amira
to interactively trace neurons. We showed how the TDat-Amira
plugin can be used to continuously read ROIs from the TDat
dataset into Amira and interactively trace long-range projection
neurons (Figure 8).

Frontiers in Neural Circuits | www.frontiersin.org 8 July 2017 | Volume 11 | Article 51

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Li et al. TDat for Petabyte-Scale Volumetric Images

FIGURE 7 | Large-volume re-slicing using TDat. (A) The transparent brain indicates the position before rotating; the white brain indicates the position after rotating.
(B) Horizontal plane maximum intensity projection before and after rotating. (C) Sagittal plane maximum intensity projection before and after rotating. (D) Coronal
plane maximum intensity projection before and after rotating. The dataset is from a whole brain from a Thy1-EGFP M-line transgenic mouse imaged using brain-wide
precision imaging system (BPS; see Dataset3 in Table 2). The scale bar is 1 mm; the thickness of the projections is 256 µm.

FIGURE 8 | TDat-Amira plugin for interactive tracing of long-projection neuron morphology. The TDat-Amira plugin was used to read the ROI from the TDat dataset
into Amira. Filament editor was used to interactively trace the neuron fiber. When this ROI is traced, another ROI is read along the direction of the fiber for continuous
tracing. The ROI is a cortex from a Thy1-EGFP M-line transgenic mouse. The dataset was imaged using a two-photon fluorescence Micro-Optical Sectioning
Tomography system (2p-fMOST; see Dataset2 in Table 2).

Application to Whole-Brain Images
Acquired by Various Imaging Systems
We used TDat on three different datasets (see Dataset1, 2 and
4 in Table 2) to demonstrate the applicability of TDat for

various labeling methods and imaging systems and different
data sizes (Figure 9). The three datasets included a whole
brain from a Thy1-EGFP F-line transgenic mouse imaged using
a light-sheet microscope, a whole brain from a Thy1-EGFP

Frontiers in Neural Circuits | www.frontiersin.org 9 July 2017 | Volume 11 | Article 51

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Li et al. TDat for Petabyte-Scale Volumetric Images

FIGURE 9 | Using TDat to process different sizes of image data that were acquired by different systems. From top to bottom, the three datasets are from the whole
brains of a Thy1-EGFP F-line transgenic mouse imaged using a light-sheet microscope, a Thy1-EGFP M-line transgenic mouse imaged using a 2p-fMOST, and a
Sprague-Dawley (SD) rat imaged using MOST. The labeling method, raw data size and pixel size are given in the left-most column (see Dataset1, 2 and 4 in Table 2
for details). TDat was used to reformat the data to the TDat file format and access the ROI. From left to right, the size of the ROI continuously decreases, the TDat
level decreases, and the resolution increases. The resolution of the right-most ROI is the original resolution of the dataset.

FIGURE 10 | Performance of TDat on a workstation and a high-performance computer (HPC). (A) Run time for reformatting different sizes of model data. The data
size exponentially increased from 100 GB to 1 petabytes (PB). The numerical data can be found in Supplementary Table S3. (B) TDat sequential-read speed (file
size/read time) for varying parallelism (for the workstation, parallelism represents the number of CPU cores in parallel; for the HPC, parallelism represents the number
of processes in parallel on 20 nodes) on two platforms. The data consist of 6400 GB of model data. When using 16 or more threads to parallel read, the speed of the
sequential-read on the workstation was no longer increased because the speed was at the upper limit of the file system. This also illustrates that TDat can make full
use of hardware resources. (C) Performance of re-slicing on two platforms. The data for re-slicing were the same as the data in Figure 7. The size of the data was
3.68 TB. The details of the computer platform configuration are given in Table 3.

M-line transgenic mouse imaged using 2p-fMOST (Zheng et al.,
2013), and a whole brain from an SD rat imaged using a
MOST (Li et al., 2010). The sizes of these three datasets
were 862 GB, 1.17 TB and 38 TB, respectively. We converted
the original image data into TDat format and visualized the

ROIs. A variety of datasets with different resolutions were
read according to the size of the ROIs. When visualizing
the whole-brain data, low-resolution data were read. When
visualizing single cells or nuclear groups, high-resolution data
were read.

Frontiers in Neural Circuits | www.frontiersin.org 10 July 2017 | Volume 11 | Article 51

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Li et al. TDat for Petabyte-Scale Volumetric Images

Extending TDat to High-Performance
Computers
All studies of big data are inseparable from HPCs. TDat can
both process big image data on common desktop computers
and be used on HPCs for processing larger data. Due to the
fine-grained algorithms of TDat for reformatting and accessing
methods, we used MPI to assign computational tasks to different
compute nodes. These computational tasks are performed in
parallel, which will greatly improve the computing speed.

We tested the performance of TDat in reformatting,
accessing data and large-volume re-slicing on an HPC and
compared performance on a graphics workstation with that
on an HPC (Figure 10). The results showed that TDat
can be well applied to HPCs and that processing efficiency
was improved as expected. When TDat was running on a
workstation, the reformatting performance was 6 TB of data
per day (Figure 10A and Supplementary Table S3). The
efficiency of reformatting with an HPC was an order of
magnitude higher than that on a workstation. A 20-node HPC
required only 13.6 h and 6 days to reformat 100 TB and
1 PB data, respectively (Figure 10A); memory consumption
was only 12 GB and 25 GB for each process, respectively.
Processing speed was further improved by adding nodes. In
an accessing data test, HPCs could provide larger parallelism
and more efficient storage, thus increasing the accessing
speed (Figure 10B). The performance of re-slicing on HPC
was also an order of magnitude higher than that on a
workstation (Figure 10C). TDat provides researchers with more
opportunities to select a computing platform according to their
practical requirements.

Extending TDat to Other Image Processing
Software
We wrote plugins based on TDat to demonstrate that TDat can
enrich existing image processing software to access large-volume
data. Here, we show two typical examples: the TDat-Fiji plugin
and the TDat-Vaa3D plugin. Supplementary Figure S3 illustrates
how the TDat-Fiji plugin can be used to read the TDat dataset
into Fiji (Schindelin et al., 2012) and how the TDat-Fiji plugin
can be applied to perform image processing and cell counting.
Supplementary Figure S4 demonstrates the application of the
TDat-Vaa3D plugin to read the TDat dataset into Vaa3D
(Peng et al., 2010, 2014) and the application of the Vaa3D to
visualize the ROI and the segmentation of neurons. Due to the
compatibility of TDat with common image processing software,
researchers can use their preferred image processing software to
process large-volume image data.

DISCUSSION

In this study, we invented TDat, a platform for processing
TB and even PB-sized volumetric images. TDat uses a novel
data reformatting method by reading cuboid data and by
parallel computing during the reformatting process, thus
reducing the consumption of memory and time. TDat uses
a parallel reading and a memory caching mechanism to
achieve rapid access to reformatted datasets. It can be used

on various computing platforms and is compatible with
general image processing software. TDat enables neuroscience
researchers to process large whole-brain datasets using existing
hardware.

TDat improves the efficiency of processing big data using
a new strategy for reformatting. It solves the problem
of large memory consumption and frequent data reading
during reformatting (Figure 5). A currently available software
program, Vaa3D-Terafly, also focuses on reducing frequent
data reading while reformatting (one at a time; Figure 5E).
The methodology of Vaa3D is particularly well suited to
address small datasets, but memory consumption increases
sharply with datasets larger than several TB. Another existing
software program, Fiji-BDV, strictly controls memory usage
(Figure 5C). In theory, Fiji-BDV can reformat any size of
data with a fixed memory usage. However, the same dataset
may be read repeatedly, which becomes a serious issue when
the size of the dataset is large. The computational time of
Fiji-BDV increases sharply when the size of the dataset becomes
larger.

TDat reads only cuboid data into memory during data
reformatting. Its memory usage is linearly associated
with the width of the data volume (Figure 5D). When
reformatting 100 TB of data, only 12 GB (each process)
of memory was required for TDat. To reformat 1 PB of
model data, only 25 GB (each process) of memory was
required. By comparison, the memory usage of Vaa3D-
Terafly was exponentially associated with the number of
the multi-resolution levels of data (Figure 5E). In theory,
the reformatting methods of Vaa3D-Terafly need several
hundreds of GB or TB of memory to reformat 100 TB of
data. Although TDat needs to read the original data twice,
this process improves the efficiency via parallel computing.
Compared with the existing software, TDat is the fastest
method for data reformatting, taking full advantage of computer
hardware.

In the study of connectomics, other tools are available for
handling large-scale images, such as Ssecrett (Jeong et al.,
2010), CATMAID (Saalfeld et al., 2009), Knossos (Helmstaedter
et al., 2011), DVID (Katz, 2012), and The Open Connectome
Project (Burns et al., 2013). These tools are mainly used for
processing 3D electron microscopy image data. Most of these
tools adopt a client-server architecture that stores the image
data on the server side and lets the client request data from
the server by APIs (e.g., HTTP request handling). These data,
pushed to the client side, are 2D slices or arbitrary cross-
sections. However, these methods are not intuitive when users
need volume rendering to visualize data for processing instead
of 2D slices or arbitrary cross-sections because volume data
are usually too large to be transferred between the server
and the client. With the progress of imaging technology,
acquiring a PB-sized, high-resolution primate brain atlas
may be feasible in the near future. TDat supports large
data and thus may be highly useful in the reconstruction
of primate neuronal circuits at single-neuron resolution. Its
compatibility with various computing platforms renders TDat
capable of handling even larger datasets in the future. We

Frontiers in Neural Circuits | www.frontiersin.org 11 July 2017 | Volume 11 | Article 51

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Li et al. TDat for Petabyte-Scale Volumetric Images

believe that TDat will be a powerful tool for neuroscience
researchers.

AUTHOR CONTRIBUTIONS

QL andHG conceived the project. YL and AL designed themodel
and developed software. YL, HG, XY and QL wrote the article.
JY, TJ and DZ produced the data sets. XL, QS prepared the
specimens. YL and ZW tested software.

ACKNOWLEDGMENTS

This work was supported by the National Basic Research
Program of China (No. 2015CB755602), the Science Fund

for Creative Research Group of China (No. 61421064),
the National Natural Science Foundation of China (Nos.
91432105, 91432116, 91232000), the National Key Scientific
Instrument and Equipment Development Program of China
(No. 2012YQ030260), the director fund of the Wuhan
National Laboratory for Optoelectronics and the Seed
Foundation of Huazhong University of Science and Technology
(No. 2015XJGH004).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: http://journal.frontiersin.org/article/10.3389/fncir.2017.000
51/full#supplementary-material

REFERENCES

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., and Gee, J. C. (2011).
A reproducible evaluation of ANTs similarity metric performance in brain
image registration. Neuroimage 54, 2033–2044. doi: 10.1016/j.neuroimage.
2010.09.025

Bria, A., Iannello, G., and Peng, H. (2015). ‘‘An open-source VAA3D plugin
for real-time 3D visualization of terabyte-sized volumetric images,’’ in 12th
International Symposium on Biomedical Imaging (ISBI), 2015 IEEE (New York,
NY), 520–523.

Bria, A., Iannello, G., Onofri, L., and Peng, H. (2016). TeraFly: real-time three-
dimensional visualization and annotation of terabytes of multidimensional
volumetric images. Nat. Methods 13, 192–194. doi: 10.1038/nmeth.3767

Burns, R., Roncal, W. G., Kleissas, D., Lillaney, K., Manavalan, P., Perlman, E.,
et al. (2013). The open connectome project data cluster: scalable analysis
and vision for high-throughput neuroscience. Sci. Stat. Database Manag.
doi: 10.1145/2484838.2484870 [Epub ahead of print].

Crum, W. R., Hartkens, T., and Hill, D. L. (2004). Non-rigid image registration:
theory and practice. Br. J. Radiol. 77, S140–S153. doi: 10.1201/b10657-15

DeFelipe, J. (2010). From the connectome to the synaptome: an epic love story.
Science 330, 1198–1201. doi: 10.1126/science.1193378

Ertürk, A., Becker, K., Jährling, N., Mauch, C. P., Hojer, C. D., Egen, J. G., et al.
(2012). Three-dimensional imaging of solvent-cleared organs using 3DISCO.
Nat. Protoc. 7, 1983–1995. doi: 10.1038/nprot.2012.119

Gong, H., Xu, D., Yuan, J., Li, X., Guo, C., Peng, J., et al. (2016). High-
throughput dual-colour precision imaging for brain-wide connectome with
cytoarchitectonic landmarks at the cellular level. Nat. Commun. 7:12142.
doi: 10.1038/ncomms12142

Gong, H., Zeng, S., Yan, C., Lv, X., Yang, Z., Xu, T., et al. (2013). Continuously
tracing brain-wide long-distance axonal projections in mice at a one-micron
voxel resolution. Neuroimage 74, 87–98. doi: 10.1016/j.neuroimage.2013.
02.005

Harris, K. D., and Shepherd, G. M. (2015). The neocortical circuit: themes and
variations. Nat. Neurosci. 18, 170–181. doi: 10.1038/nn.3917

Helmstaedter, M., and Mitra, P. P. (2012). Computational methods and
challenges for large-scale circuit mapping. Curr. Opin. Neurobiol. 22, 162–169.
doi: 10.1016/j.conb.2011.11.010

Helmstaedter, M., Briggman, K. L., and Denk, W. (2011). High-accuracy
neurite reconstruction for high-throughput neuroanatomy. Nat. Neurosci. 14,
1081–1088. doi: 10.1038/nn.2868

Hill, D. L., Batchelor, P. G., Holden, M., and Hawkes, D. J. (2001). Medical image
registration. Phys. Med. Biol. 46, R1–R45. doi: 10.1088/0031-9155/46/3/201

Jeong, W. K., Beyer, J., Hadwiger, M., Blue, R., Law, C., Vazquez-Reina, A., et al.
(2010). Ssecrett and NeuroTrace: interactive visualization and analysis tools
for large-scale neuroscience data sets. IEEE Comput. Graph. Appl. 30, 58–70.
doi: 10.1109/MCG.2010.56

Katz, W. (2012). Distributed, versioned, image-oriented dataservice (DVID).
Available online at: https://github.com/janelia-flyem/dvid

Li, A., Gong, H., Zhang, B., Wang, Q., Yan, C., Wu, J., et al. (2010). Micro-optical
sectioning tomography to obtain a high-resolution atlas of the mouse brain.
Science 330, 1404–1408. doi: 10.1126/science.1191776

Lichtman, J.W., andDenk,W. (2011). The big and the small: challenges of imaging
the brain’s circuits. Science 334, 618–623. doi: 10.1126/science.1209168

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,
Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical
microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Miyamichi, K., Amat, F., Moussavi, F., Wang, C., Wickersham, I., Wall, N. R., et al.
(2011). Cortical representations of olfactory input by trans-synaptic tracing.
Nature 472, 191–196. doi: 10.1038/nature09714

Peng, H., Bria, A., Zhou, Z., Iannello, G., and Long, F. (2014). Extensible
visualization and analysis for multidimensional images using Vaa3D. Nat.
Protoc. 9, 193–208. doi: 10.1038/nprot.2014.011

Peng, H., Ruan, Z., Long, F., Simpson, J. H., andMyers, E. W. (2010). V3D enables
real-time 3D visualization and quantitative analysis of large-scale biological
image data sets. Nat. Biotechnol. 28, 348–353. doi: 10.1038/nbt.1612

Pietzsch, T., Saalfeld, S., Preibisch, S., and Tomancak, P. (2015). BigDataViewer:
visualization and processing for large image data sets. Nat. Methods 12,
481–483. doi: 10.1038/nmeth.3392

Ragan, T., Kadiri, L. R., Venkataraju, K. U., Bahlmann, K., Sutin, J., Taranda, J.,
et al. (2012). Serial two-photon tomography for automated ex vivomouse brain
imaging. Nat. Methods 9, 255–258. doi: 10.1038/nmeth.1854

Saalfeld, S., Cardona, A., Hartenstein, V., and Tomancak, P. (2009). CATMAID:
collaborative annotation toolkit for massive amounts of image data.
Bioinformatics 25, 1984–1986. doi: 10.1093/bioinformatics/btp266

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat.
Methods 9, 676–682. doi: 10.1038/nmeth.2019

Yuan, J., Gong, H., Li, A., Li, X., Chen, S., Zeng, S., et al. (2015). Visible
rodent brain-wide networks at single-neuron resolution. Front. Neuroanat.
9:70. doi: 10.3389/fnana.2015.00070

Zheng, T., Yang, Z. Q., Li, A. A., Lv, X. H., Zhou, Z. Q., Wang, X. J., et al.
(2013). Visualization of brain circuits using two-photon fluorescence micro-
optical sectioning tomography. Opt. Express 21, 9839–9850. doi: 10.1364/OE.
21.009839

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Li, Gong, Yang, Yuan, Jiang, Li, Sun, Zhu, Wang, Luo and Li.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 12 July 2017 | Volume 11 | Article 51

http://journal.frontiersin.org/article/10.3389/fncir.2017.00051/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fncir.2017.00051/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1038/nmeth.3767
https://doi.org/10.1145/2484838.2484870
https://doi.org/10.1201/b10657-15
https://doi.org/10.1126/science.1193378
https://doi.org/10.1038/nprot.2012.119
https://doi.org/10.1038/ncomms12142
https://doi.org/10.1016/j.neuroimage.2013.02.005
https://doi.org/10.1016/j.neuroimage.2013.02.005
https://doi.org/10.1038/nn.3917
https://doi.org/10.1016/j.conb.2011.11.010
https://doi.org/10.1038/nn.2868
https://doi.org/10.1088/0031-9155/46/3/201
https://doi.org/10.1109/MCG.2010.56
https://github.com/janelia-flyem/dvid
https://doi.org/10.1126/science.1191776
https://doi.org/10.1126/science.1209168
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1038/nature09714
https://doi.org/10.1038/nprot.2014.011
https://doi.org/10.1038/nbt.1612
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.1854
https://doi.org/10.1093/bioinformatics/btp266
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.3389/fnana.2015.00070
https://doi.org/10.1364/OE.21.009839
https://doi.org/10.1364/OE.21.009839
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

	TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images
	INTRODUCTION
	MATERIALS AND METHODS
	Architecture
	FPR Algorithm for Reformatting of the Image Volume
	Algorithm for Data Accessing
	Parallel Computing in Different Computing Platforms
	Large-Volume Rigid Registration and Re-Slicing Based on TDat
	Animals and Data Acquisition
	Model Dataset
	Environments for Benchmarking

	RESULTS
	The Performance of Data Reformatting
	The Performance of Data Accessing
	Whole-Brain Dataset Rigid Registration and Re-Slicing by TDat
	Tracing Long-Range Projection Neurons in a Whole-Brain Dataset
	Application to Whole-Brain Images Acquired by Various Imaging Systems
	Extending TDat to High-Performance Computers
	Extending TDat to Other Image Processing Software

	DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES

