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Previous studies have shown that multiple brain regions are involved in pain perception
and pain-related neural processes by forming a functionally connected pain network.
It is still unclear how these pain-related brain areas actively work together to generate
the experience of pain. To get a better insight into the pain network, we implanted
electrodes in four pain-related areas of rats including the anterior cingulate cortex (ACC),
orbitofrontal cortex (OFC), primary somatosensory cortex (S1) and periaqueductal gray
(PAG). We analyzed the pattern of local field potential (LFP) oscillations under noxious
laser stimulations and innoxious laser stimulations. A high-dimensional feature matrix
was built based on the LFP characters for both experimental conditions. Generalized
linear models (GLMs) were trained to classify recorded LFPs under noxious vs. innoxious
condition. We found a general power decrease in α and β bands and power increase in
γ band in the recorded areas under noxious condition. After noxious laser stimulation,
there was a consistent change in LFP power and correlation in all four brain areas among
all 13 rats. With GLM classifiers, noxious laser trials were distinguished from innoxious
laser trials with high accuracy (86%) using high-dimensional LFP features. This work
provides a basis for further research to examine which aspects (e.g., sensory, motor
or affective processes) of noxious stimulation should drive distinct neural activity across
the pain network.
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INTRODUCTION

Pain experience is a complex neural process that involves sensory, emotional and cognitive systems
(Melzack and Casey, 1968). Functional imaging studies have shown that a ‘‘pain matrix’’ consisting
of multiple functionally connected brain areas is formed during pain (Tracey and Johns, 2010).
When an external noxious stimuli are applied to a human body, multiple pathways are activated
at the same time. Somatosensory information is processed in somatic sensation-related areas
including thalamus (LeBlanc et al., 2014), primary somatosensory cortex (S1; Vierck et al., 2013;
LeBlanc et al., 2016) and secondary somatosensory cortex (S2; Timmermann et al., 2001; Hsiao
et al., 2008). Negative emotion arises from emotion-related areas like anterior cingulate cortex
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(ACC; Rainville et al., 1997; Hauck et al., 2015) while decision
and cognitive components are formed in orbitofrontal cortex
(OFC; Ochsner et al., 2006) and insula (Bastuji et al., 2016).
Pain experience is also remembered. Memory-related areas like
hippocampus and medial prefrontal cortex actively become part
of the pain network (Buzsáki, 1989; Buzsáki and Moser, 2013).
The final port of top-down regulation of pain is periaqueductal
gray (PAG; Green et al., 2009), which inhibits nociceptive input
by inhibiting nociception afferent fibers (Heinricher et al., 2009).

Recent studies have suggested that a ‘‘pain center’’ does
not exist, but instead pain-related areas form a ‘‘pain matrix’’
together (Ploner et al., 2016). Any part of this painmatrix by itself
is not pain-specific. But the network exhibits a unique pattern
during pain as a whole.

For the sparsely distributed brain areas of the pain matrix to
work together, they have to be functionally connected. Neural
oscillation provides a transient time window for different neural
assemblies to work together (Buzsáki and Draguhn, 2004).
Thus, we hypothesize that by learning the dynamic patterns of
oscillations in different brain areas, we could extract the neural
oscillation signature to get a deeper insight into the functional
dynamics of pain.

To investigate the neural oscillations among several brain
areas, extracellular electrophysiological recording is now the
best technique (Buzsáki et al., 2015). By implanting electrodes
directly to the regions of interests, local field potentials (LFPs)
can be recorded (Buzsáki et al., 2012) and used to reveal
information about local oscillatory neural activities. An LFP
signal can be further broken down into different frequency bands
of oscillation (Buzsáki and Draguhn, 2004). Each frequency band
contains both amplitude and phase information. Correlations
could be found among different frequency bands of oscillation
and between different brain areas (Buzsáki and Schomburg,
2015). Neural oscillations have been repeatedly reported to be
correlated to pain. Under noxious stimulation, decreased power
of α and β bands, increased power of γ band (Ploner et al.,
2006; Hauck et al., 2015) and increased θ—γ coherence have been
reported (Wang et al., 2011).

When LFP signals are used to study the dynamics of
a complex neural network, the high dimensionality of LFP
feature space brings a big challenge to data processing.
The power changes in pain-related areas and the coherence
changes in pain network exhibit a high dimensional feature
space. Thus it requires dimension reduction techniques for
neural computation. Dimension reduction and feature extraction
techniques are widely used in analysis of neural data (Shen and
Meyer, 2006; Wang et al., 2007; Pereira et al., 2009). Machine
learning classifiers can be used to extract useful information
hidden in the high dimensional data space (Haynes and Rees,
2006). Similarly, neural oscillation patterns within the pain
network could be extracted using a machine learning based
algorithm.

In the present study, we implanted microelectrodes in
the ACC, OFC, S1 and PAG of rats. We monitored the
neural oscillation changes under noxious laser stimulation and
innoxious laser stimulation. Generalized linear model (GLM)
classifiers were trained to classify noxious and innoxious

conditions with high accuracy. We found that noxious laser
stimulation trials were distinguished from the innoxious
laser stimulation trials with high accuracy (89%) using
high-dimensional LFP features.

MATERIALS AND METHODS

Animal and Surgery
Experiments were performed on 13 adult male Sprague-Dawley
rats provided by theDepartment of Laboratory Animal Science of
Peking University Health Science Center. All experiments were
carried on following the guidelines of the Institutional Animal
Care and Use Committee of Peking University.

Rats weighting 280–300 g were housed individually under
12-h dark-light cycle with free access to food and water.
Surgeries were performed when their body weight reached
330–350 g. During surgery, the rat was anesthetized with 1%
sodium pentobarbital (0.5 ml/kg). Supplementary doses of less
than 1/3 of the original dose were added when necessary to
maintain anesthesia. A pinch test was done to the hindpaw
of the rat to check the depth of anesthesia. The head of the
rat was fixed to the Kopf stereotaxic apparatus (David Kopf
Instruments, Tujunga, CA, USA) with ear-bars. Then the skull
was exposed. Coordinates of regions of interests were determined
according to the atlas of rat brain coordinates (Paxinos and
Watson, 2009) as follows (in mm): ACC, anterior/posterior
(A/P) + 2.3, medial/lateral (M/L) + 0.7, dorsal/ventral (D/V)
−2.2; OFC, A/P +3.7, M/L +2.7, D/V −5.3; S1: A/P −1.1,
M/L −2.6, D/V −2.0; PAG: A/P −7.6, M/L +0.8, D/V −6.0.
Six stainless screws were tightened onto the skull without
piercing through the dura. Screws acted as anchors for electrodes
stabilization, while two of them were used as ground and
reference, respectively. Small craniotomies were performed at
corresponding coordinates. Dura was removed carefully to
expose the brain tissue. Micro-wire electrode arrays (Blackrock
Microsystems Ltd., manufactured in China) were lowered
into target regions separately with a low insertion speed
(1 mm/min) and then bounded to the screws using dental
cement. Finally, all arrays were fixed to the cranium using dental
cement. After the surgery, each rat was allowed to recover for
1 week in its individual cage with free access to food and
water.

Laser Stimulation
The rat was allowed to move freely in a transparent plastic
chamber with video recording devices. The chamber floor was
a grid plate with stainless steel bars of 2 mm in diameter and
8 mm in between. Headstages were connected to the electrode
connectors on the head of the rat for electrophysiology recording.

When the rat was awake and quietly lying down, laser
stimulation was applied to its left hindpaw. A laser beam was
emitted from the guide arm of an ultra-pulse carbon dioxide
laser therapeutic machine. The tip of the guide arm kept a
distance of 2 cm to the plantar surface of the paw. Focus of
the laser beam was changed a little bit from session to session
to avoid any possible tissue damage. A synchronized video
was recorded during electrophysiology recording. The power
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of noxious laser stimulation was set to a range from 8 Watts
to 12 Watts with an emission time of 30 ms. As self-control,
innoxious laser stimulation of 4 Watts was applied to the animal
while other parameters were kept unchanged. Nociceptive
behavior was identified by observation of immediate paw
withdrawal after stimulation. Noxious stimulation power was
adjusted individually according to the occurrence of nociceptive
behavior. Noxious laser stimulation trials without paw-lifting
were excluded in the further analysis. Each recording session
contained 20 control trials and 20 noxious trials with an inter-
stimulus interval of no less than 60 s to avoid hyperalgesia. The
rat was allowed to rest for 2 days between recording sessions.
Four recording sessions were conducted for each rat.

Electrophysiology Recording
The multi-channel recording system was manufactured by
Blackrock Microsystems Limited (Salt Lake City, UT, USA).
Electrophysiological data were recorded from the implanted
micro-wire electrode arrays. Four pre-amplification headstages
were used to record from 32 electrodes. The analog signals were
filtered by a band-pass filter set between 0.3 Hz and 7500 Hz.
Then the signals were digitized by the neural signal processor.
The LFPs were recorded at 1 kHz/s sampling rate. The single
unit spikes were manually sorted online by Central, a computer
software provided by Cerebus (BlackrockMicrosystems Ltd., Salt
Lake City, UT, USA).

Histology
To verify the placement of the implanted electrodes and
biocompatibility of the system, histology was performed to all
of the implanted animals. The rat was deeply anesthetized with
urethane injection. Onemicroampere pulse was delivered to each
recording electrode to create a marker at the recording site. Then
the animal was perfused via heart with 0.9% saline followed
by 4% paraformaldehyde in 0.12 M sodium phosphate buffer
(pH = 7.4). Three-hundred microliter fixative was used per 100 g
of body weight. After perfusion, the brain was removed from
the skull, and post-fixed in the same fixative at 4◦C for more
than 24 h before moved to 10× PBS overnight. The fixed brain
was cut into 50-µm thick slices. Histology results are shown in
Supplementary Figure S1.

Data Pre-Processing
To remove movement artifacts and other correlated noise,
independent component analysis (ICA, EEGLAB toolbox) was
applied to all recorded channels first. ICA algorithm was
used to isolate sources with different spatial distribution while
conserve their temporal information. Decomposed independent
components (ICs) were inspected by both waveforms and weight
distribution across recording channels manually. ICs with slow
and large fluctuations temporally correlated to animal movement
were treated as movement artifacts and thus removed from
further analysis. ICs with uniformly distribution across multiple
areas were considered as volume conduction effect and thus
also eliminated from data (Supplementary Figure S2). We used
an open-source neural data visualizer to visualize waveforms of
each laser-triggered event (Hazan et al., 2006). Events with large

movement artifacts were ruled out from further analysis. After
source identification process, ICs were converted back to original
waveform.

Out of the eight channels from the same recording site, one
channel was selected to represent the local activity of the region
of interests. The channel with highest gamma band activity
was selected (Sirota et al., 2008). By the end of the data pre-
processing, four de-noised LFP channels were prepared for
further analysis.

Feature Extraction
Oscillation characterizations were extracted in following
steps.

1. For each laser trial, LFPs were filtered to δ (0–4 Hz), θ

(4–8 Hz), α (8–12 Hz), β (13–30 Hz), γ (30–80 Hz) and
ε (80–120 Hz) bands with a non-causal IIR filter (filtfilt in
MatLab).

2. The analytical signals were obtained by applying Hilbert
transform to the filtered data. For a temporal sequence
a(t), the corresponding Hilbert transform was calculated by
following equation (Hilbert in MatLab):

Ha(t) =
1
π
P.V .

∫
+∞

−∞

a(t)
t − τ

dτ (1)

Here, P.V. indicates that the integral is taken in the sense of
Cauchy principal values.

3. LFP power was calculated by two steps. The first step was
extracting signal envelop by taking the absolute values of the
previous calculated analytical signals. The second step was to
calculate averaged LFP powers of pre-stimulation window and
post-stimulation window by taking median values over power
envelop in the time windows of −2 s to 0 s and 0.5 s to 2.5 s.
We added an offset of 0.5 s to the post-stimulus calculation
window to avoid the effect of evoked-potentials.

4. Amplitude envelop correlation (AEC) is a straightforward
coupling detection algorithm for incoherent brain signals
(Bruns et al., 2000). For a pair of filtered signal segments a(t)
and b(t), their correspondingHilbert transforms areHa(t) and
Hb(t). AEC between a(t) and b(t) is defined by the following
equation:

AEC =

∑n
t = 1

(
|Ha(t)| − |Ha(t)|

) (
|Hb(t)| − |Hb(t)|

)
√∑n

t = 1

(
|Ha(t)| − |Ha(t)|

)2√∑n
t = 1

(
|Hb(t)| − |Hb(t)|

)2
(2)

5. To visualize the time-frequency feature of the raw data, Gabor
transform (WaveLab toolbox1) was applied to the raw data
around each event time.

In the final stage, data from all animals (N = 13)
and all recording sessions were collected and concatenated
together (N = 1622). Spatial variation of electrode, electrode
impedance and animal difference resided in the data were
non-nociception related variations and needed to be eliminated.

1http://statweb.stanford.edu/∼wavelab/
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A standardization process was applied to all recording sessions
to rule out such variations. For each recording session, all
pre-stimulation features were collected to calculate the mean
and standard deviations. Then for the specific recording session,
all features were z-scored by previously calculated mean and
standard deviations. After this step, data from all sessions were
concatenated together to build the final feature matrix. Feature
matrix is an M-by-N matrix which contains M features and
N trials. M features (M = 336) contains the average power
of each oscillation band (M1 = 4 × 6) in each brain region
and the AEC between each pair of oscillations (M2 = 312).
After pre-processing, 1622 valid trials of data were collected
in the feature matrix (control laser trials = 708, noxious laser
trials = 914).

Data Visualization with t-Distributed
Stochastic Neighbor Embedding
Extracted features were concatenated to a trial by the feature
matrix. Then the data were sent to t-Distributed Stochastic
Neighbor Embedding (t-SNE) toolbox (MatLab implementation
downloaded in t-SNE website) to get a 2D representation.

Training Generalized Linear Model
Classifiers
Generalized linear regression function in the MatLab was used
to perform all GLM training and prediction. A linear model was
adopted and a binomial link function was used to fit innoxious
trials and noxious trials. In our experiment, we trained the
models in two steps. The initial model was trained by data
from 12 rats (N = 2972) with all LFP features to check the
contribution of each LFP feature to the classification of noxious
and innoxious laser trials. Data from a separate rat was used
as a prediction dataset (N = 272). A 10-fold cross-validation
evaluation was used to test the models. Data was cut into
10 randomized subsets and each subset was using as a testing set
while others were used to train the models. After each training
process, prediction set was sent to themodel to test the prediction
accuracy. After acquiring the initial model, coefficients of each
feature dimension were calculated and sorted by their absolute
value. Then newGLMs trained with a dimension-reduced feature
matrix with an increasing number of selected features. In the
final test, the best GLM was applied to all data segments in
the whole recording dataset (92 dimensions were used). GLMs
were trained by a strict time-window around stimulus onset-
time. But in the final test, we performed a window-by-window
evaluation in which most of the data were totally new to the
models while the rest time windows around stimulus were not
aligned to the windows used in the training phase. This test
was intended to check the generalization ability of our model
because the model has never seen most of the data between laser
onsets.

Statistics
Features were normalized by computing corresponding z-scores
in a session-by-session manner. In each recording session, a
pre-stimulation window (−1 s to 0 s) and a post-stimulation

window (0.5 s to 1.5 s) were selected for each laser stimulation
trial. All pre-stimulation data were collected to calculate a
median value x and a standard deviation σ. Then data
from both time windows were normalized in the following
equation:

z =
x− x̄
σ

Two-sample t-tests were then performed to each normalized
feature to check the statistical significance. Data for t-SNE
training and GLMs were also based on this normalization
process.

RESULTS

Noxious Laser Stimulation-Evoked LFP
Changes
After the removal of movement artifacts, volume conduction
and cable-related noises by ICA decomposition, we examined
the laser-induced LFP changes. A prominent transient evoked
potential could be observed shortly after the stimulation onset
(0–500 ms). Because the evoked potential was more related to
the presence of stimulation and lasted for a relatively fixed
duration, we focused more on the neural oscillations that
followed. Laser evoked potential showed different LFP responses
under innoxious and noxious conditions (Figure 1A). The
noxious group (with noxious laser stimulation) had a more
sustained response with clearer P1, N1, P2, N2 components
than the innoxious group (with innoxious laser stimulation).
However, in our present study, evoked potentials are not our
main focus. Change of oscillatory LFP activities was the focus
in this work. We used a gabor transform showed the averaged
LFP changes in time-frequency domain (Figure 1B). The most
distinct changes were suppression in α and β bands and a
general increase in δ and γ bands after the noxious stimulation.
In the following analysis, we selected the time window from
500 ms to 1500 ms after the stimulation onset and 0 ms to
1000 ms before the stimulation onset as post-stimulus and
pre-stimulus time window, respectively. We added the 500-ms
delay in the post-stimulus window to avoid the effect of evoked
potentials.

LFP signals in the corresponding time windows were further
filtered into six oscillation bands (in Hz) including δ (0–4),
θ (4–8), α (8–12), β (12–30), γ (30–80), ε (80–120). Power
envelops were extracted by Hilbert transform. Average power
was calculated by taking average of the power envelop of
the analyzing window. Then a standardization process was
performed to maintain the relative difference between the
post-stimulus window and pre-stimulus window. Figure 2A
shows the statistic results of the post-stimulus power change
between innoxious group and noxious group. There was a
statistically significant difference between innoxious group
and noxious group among most power bands. δ, γ, ε band
power were generally increased, meanwhile α, β band power
were generally decreased. Correlations between power envelops
were also checked (Figure 2B). Among all checked envelop
pairs (n = 312), about one third of the parameter sets showed
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FIGURE 1 | Trial-averaged local field potentials (LFPs) show persistent power changes in γ band and inhibition in β band after noxious stimulation. (A) Trial-averaged
raw field potentials. Left panel shows LEPs of control innoxious laser stimulation. Right panel shows LEP of noxious stimulation. LEP lasts about 500 ms. (B) Gabor
transform of LFPs. Control group is shown in the upper panel, and Pain group is shown in the bottom panel. Persistent power changes are observed in γ band and
inhibition in β band after noxious stimulation.

a statistically significant difference between innoxious group
and noxious group (np<0.05 = 80). These results indicated that
noxious laser stimulation induced a broad impact on LFP
activities.

In order to get a more intuitive visualization of the
hidden data structure residing in the high dimension
electrophysiological feature space, a dimension reduction
technique called t-SNE was adopted. High dimensional
data was casted to a 2-D space with maximal information
entropy preserved. By doing so, we were able to visualize
the similarity between different datasets and refine our data
processing. Supplementary Figure S3 shows the t-SNE results.
Noxious post-stimulation trials gathered together while the

rest (innoxious pre-stimulation, noxious pre-stimulation and
innoxious post-stimulation) formed another cluster in the 2-D
t-SNE space.

Electrophysiological Indicators Classifying
Noxious from Innoxious Trials with High
Accuracy
After observing a consistent pattern among all noxious
stimulation trials, we moved on to check which property
contributed most to the differences between noxious and
innoxious trials. We fitted a GLM with 12 animals (trials
n = 2962). After model training, each property had a β-value
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FIGURE 2 | Laser-induced oscillatory changes between noxious and innoxious groups. (A) Averaged power difference in the post stimulus time window within brain
areas (anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), primary somatosensory cortex (S1) or periaqueductal gray (PAG)) between noxious group and
innoxious group. Different colors indicate the power difference (Blue to Red correspond to −0.5 to 0.5). Prominent power increase is observed in δ, γ and ε bands in
all recorded areas. Power decreases in α and β bands in ACC, S1 and PAG. Asterisks indicate statistical significance (∗p < 0.05, Holm-Bonferroni test). (B) Averaged
difference of amplitude envelop correlation (AEC) in the post stimulus time window among different brain areas between noxious group and innoxious group.
Normalized mean differences of AEC are indicated by different colors (Blue to Red correspond to −0.5 to 0.5, Black indicates no value for the corresponding
combination). Asterisks indicate statistical significance (∗p < 0.05, Holm-Bonferroni test).

indicating its contribution to the data classification result
(Figure 3A). As shown in Figure 3B, most properties had little
contribution to the classification while a small portion of the
properties contributed the most. To check the contribution of
each LFP feature to a accuracy classification, we trained 336 GLM

classifiers with each LFP feature as input. All classifiers showed
an accuracy between 70% and 75% (Figure 3A).

Since each property contributed differently to the overall
classification result, we would like to check how many properties
were needed to perform a good classification. Properties were
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FIGURE 3 | Coefficient values and prediction rate of generalized linear models (GLMs). (A) β-values of the initial GLM classifier which trained with the whole dataset
(Blue). Classification accuracy of GLMs trained with the corresponding LFP feature in the test set (Red). (B) Histogram of absolute β-values. Most features contribute
little to the data classification. Only a few features contribute most to the classification. Distribution of coefficient values has a nearly log-normal distribution.
(C) Prediction accuracy of the GLM models trained with different numbers of most contributing features. Training set (Blue) consists of 2962 laser trails from 12 rats
and prediction set (Red) consists 296 trails from a separate animal. Accuracy was calculated based on a 10-fold cross-validation. Classification accuracy for the test
set increases fast with input numbers of features at the beginning and slowly reaches a top accuracy with dimension numbers around 120. Then accuracy starts to
drop slowly all the way to around 86%. Shaded area indicate standard error margin. (D) Averaged noxious laser stimulation probability vs. post-stimulus time. Rates
were calculated from the most accurate GLM in the previous step. The blue line and the red line represent control stimulation and noxious stimulation, respectively.
Dash lines indicate the standard error margin. Significant increase of pain prediction probability appears in a time window of 1 s to 2 s after noxious stimulation,
indicating a robust feature of laser-induced pain. Control group kept a low value for the entire period and does not show any increase after the stimulation onset.

sorted by absolute β-values from the initial GLM training. Several
GLMs were trained with an increasing number of properties
with the largest absolute β-value. Two-thousand nine-hundred
and sixty-two trials from 12 animals were used to train the
model. Ten-fold cross-validations were applied to each GLM
to evaluate the model fitting. Two-hundred and ninty-six trials
from another animal were used as the prediction dataset. As

shown in Figure 3C, there was an increase in accuracy with
the increase of dimension numbers at the beginning. When
dimension numbers reached around 100, accuracy reached its
peak around 89% then started to decrease and finally dropped
to a plateau of 86%.

To test if the trained classifiers response uniquely to the
noxious stimulation, we sliced the whole data set into 1-s
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data segments. We calculated the nociception probability of all
segments using the GLM classifier calculated in the previous
step with the highest prediction accuracy. Figure 3D shows the
averaged nociception probability vs. post-stimulation time of all
segments. Data shows an elevated nociception probability shortly
(1–2 s) after the noxious stimulation onset, while innoxious
group kept at a low prediction value all the time.

DISCUSSION

LFP Characters of Laser-Induced Pain
In the present study, we provided evidence that oscillatory
activities of four previously reported pain related areas including
ACC, OFC, S1 and PAG could be used to indicate whether
the animal has received noxious laser stimulation. Among
336 checked LFP features, 81 features showed statistical
difference between control and noxious stimulation group
(Figure 2). We trained 336 GLM classifiers with each individual
LFP features and did not found any classifier could reach a
training accuracy higher than 75% (Figure 3A). Our results
showed that even with the most statistically significant LFP
feature, we could not build a perfectly reliable classifier. Adopting
the combined information from all four recorded brain areas
could improve the GLM classification rate greatly (Figure 3C).
This is in line with the idea that a ‘‘pain center’’ may not
exist (Ploner et al., 2016). Pain is a phenomenon that actively
integrate multiple brain areas (Bastuji et al., 2016). Without a
consolidated view of each dependency, each component only
forms a small piece of the whole picture. Even with the most
statistically significant LFP feature, we could not build a reliable
GLM classifier to tell if the animal received noxious stimulation
(Figure 3C).

In order to check if we found the robust features indicating
the onset of noxious laser stimulation, we moved on to further
tests. Among all trained GLMs, the most accurate GLM was
used to perform a window-by-window evaluation of the pain
score through the whole recording sessions. Figure 3D shows
the averaged pain prediction rate with incremental post-stimulus
time. Innoxious group remained at a low prediction pain
probability (<5%) while noxious group exhibited a peak value
of about 58% probability in 1 s to 2 s window right after
the stimulation onset. The prediction score was lower here
because of the slicing windows around laser stimulation were
not strictly aligned to the onset time. Noxious group exhibited
a higher prediction level over innoxious group across the whole
period, which might be caused by two reasons: (1) noxious laser
and innoxious laser were performed in two separated sessions
during the recording. Repeated high level stimulation caused
a certain level of expectation, fear and potential hyperalgesia;
which may explain the long-term rise of prediction level.
(2) Movement-related neural activities/artifacts. Compared to
the innoxious laser stimulation, the animal given the noxious
laser tended to be hyperactive thus moved around more. We
can only resolve this issue by introducing a movement control
group.

We inspected δ, θ, α, β, γ, ε band power in the recorded
brain areas shortly after the laser onset (Table 1). We found that

TABLE 1 | Top 20 most pain-contributing features in generalized linear
model (GLM).

Feature Coefficient

1 OFC:ε 0.59389
2 ACC:β −0.52565
3 S1:β −0.51113
4 OFC:δ 0.50112
5 S1:ε 0.46285
6 PAG:δ 0.42436
7 S1:θ 0.38355
8 S1-S1:α-ε −0.35997
9 OFC:γ 0.31415
10 ACC:ε 0.31415
11 OFC:β −0.31013
12 OFC:θ −0.30439
13 ACC-OFC:θ-ε −0.28139
14 OFC-OFC:δ-α −0.27765
15 PAG:ε 0.23902
16 S1-OFC:δ-δ −0.23640
17 OFC-ACC:δ-β 0.23201
18 S1:δ 0.23035
19 OFC-ACC:α-γ −0.22717
20 PAG-S1:α-ε −0.22656

Top 20 most pain-contributing features are listed in a descending order.
Corresponding β values are listed in the last column. A positive β value means
that an increase in the corresponding feature correlates to pain and vice versa.

decreased β band power in the ACC, OFC and S1 was most
distinguishable between noxious group and innoxious group.
It has been reported previously that β band power decreases
during phasic pain (Hauck et al., 2015; LeBlanc et al., 2016).
Another prominent change we observed was γ and ε band power
increase in the ACC, OFC and S1. γ oscillation is an indicator
of local computation (Buzsáki and Schomburg, 2015). Increased
γ oscillation in S1 has been reported during phasic pain (Hauck
et al., 2007; Gross et al., 2012).

Movement Artifact
Electrophysiology technique records voltage difference between
electrodes and reference ground ranging from several hundreds
of microvolts to several millivolts. Muscle contraction will
generate movement artifact in the electrophysiology data. Pain
related electrophysiology studies are affected by this problem
more directly. In most pain research diagrams in animals, a
certain behavior will be selected as an indicator of pain. It is
necessary to remove the movement artifact before going into any
further analysis.

In the present study, efforts were made to improve the
noise removal during data pre-processing. This task started from
careful inspection of LFPs trial by trial to remove any bad trials.
The analyzing window was also chosen carefully, i.e., the LFP
period between 500 ms and 1500 ms was used as the analyzing
window. By doing this, we avoided the spectrum contamination
from laser evoked potentials (LEPs) or from potentials related
with movement such as walking and licking (Figure 1). Then
ICA was used to remove all suspicious components (correlated
noises). ICA is a powerful tool to identify different sources
by their spatial distribution (Schomburg et al., 2014). In our
experiment set up, we had the luxury to identify the movement
noise better for the large spatial extent of electrodes. Noise
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was more ‘‘synchronized’’ in time. So it was identified as an
independent component and thus removed (Supplementary
Figure S2). But ICA could only remove the synchronized
components from signal. If there were phase differences between
recording channels, we could not remove the noise by this
method. To get a better evaluation on our model, a separate
movement control group should be added to consolidate the
results.

Neural Oscillation as a Potential Indicator
of Pain
Event-related potentials are widely applied in analyzing laser-
induced nociception signals (Iannetti et al., 2008; Bastuji et al.,
2016). Event-related potentials are low in amplitude and usually
need LFPs to be averaged over different trials. Compared to
event-related potentials, neural oscillations are more prominent
in amplitude in the LFP signals.

Neural oscillation could be easily quantified online with a
filter-based algorithm. Field potential parameters have been used
to build real-time closed-loop systems for a long time (Berényi
et al., 2012; Priori et al., 2013; Krook-Magnuson et al., 2015). Such
a system usually uses a distinct oscillation feature to control its
outputs. Closed loop cancellation of ripples is a good example of
such a device. Hippocampal ripple is a distinct oscillation feature
and closely related to episodic memory (Buzsáki, 2015). A filter-
based detector could easily quantify the amplitude of ripples.
Then a threshold could be set to decide when to give stimulation.
A classifier could use those neural oscillation measures to tell
if the subject is in pain or not. Based on our present study, we
could put the top pain-contributing parameters into an online
detecting device and give out a real-time pain-score.

In this work, we studied the laser noxious stimulation-related
LFP changes in four pain-related brain areas. Our results showed
the possibility to use neural oscillation features to predict pain.
But it is still unclear what aspects of the noxious stimuli drove the
LFP signatures we found. Multiple regions and different neural
processes may have involved in nociceptive signal processing.
With higher density of recording electrodes and a broader
coverage of recording sites, more pain-related activities could
be monitored to get a better prediction result as well as a
better source localization. The analysis framework used in this
work could be further adopted to analyze electroencephalograph
(EEG) data. In clinical practice, there is a great need of
objective pain evaluation systems. Till now, the visual analog
scale (VAS) is still being widely used (Hawker et al., 2011;
Gagliese and Melzack, 2016; Spire et al., 2017). The VAS is
a subjective pain reporting tool. It is hard to interpret under
the same standard across different subjects. An objective pain
evaluating method like the one we proposed in the present
study might help doctors to objectively evaluate whether a
patient suffered from pain and thus guide clinical practice
accordingly. Objective pain evaluating system is also critical to
animal researches. When evaluating pain in an animal, the only
way till now is through its external behaviors (Capone and
Aloisi, 2004; Pickering et al., 2006). An objective pain scoring
method could be very valuable to better understand experiment
results.

Limitations
In this work, we have only recorded from four pain-related
regions. More areas should be recorded when recording
technique is available. When analyzing coupling properties, we
did not take propagation delay into consideration to reduce
computation complexity.

We only applied a simple laser pain test in the experiment.
More stimulation types should be included in the further
experiments to narrow down the candidates for pain-indication.

For future studies, stimulation should be introduced to check
the physiology function of each correlated oscillation.
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FIGURE S1 | Local field potential (LFP) features of laser-stimulation trials in
2-D space. By adopting t-distributed stochastic neighbor embedding (t-SNE),
high dimension LFP properties were casted into a low dimension space with
maximal information entropy reserved. Trials with similar LFP properties had a
smaller distance in between the corresponding data points in 2D space. To
avoid overcrowding, comparisons were made in four sub-groups (Control vs.
Pain, Pre- vs. Post-stimulation). The overlapped grayscale images were mean
pain scores (laser trials with foot-lifting behavior). Data points were collected
by all valid trials from 13 animals. After normalization, data points were not
clustered into sub-groups by animal differences.

FIGURE S2 | LFP denoising with independent component analysis (ICA).
(A) Unprocessed LFP traces of four recorded areas (red: anterior cingulate
cortex (ACC), purple: orbitofrontal cortex (OFC), green: primary
somatosensory cortex (S1), blue: periaqueductal gray (PAG)). The vertical
black line indicates the stimulus onset. Note the large movement artifact
shows on S1 after stimulation onset. (B) ICA components of raw LFPs. Large
and slow ICAs correlated to movement are candidates for movement artifact
components. (C) LFP traces after noise elimination by ICA. (D) ICA
coefficients. ICA components with uniform distribution across different
recording channels are prone to be noise (like component 2).

FIGURE S3 | Histology confirmation of electrode location. Red arrows point to
burn marks of the electrodes in the ACC and OFC (A), S1 (B) and PAG (C).
Blue traces are overlapped with rat atlas (Paxinos and Watson, 2009).
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