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The core elements of stereotypical movements such as locomotion, scratching and

breathing are generated by networks in the lower brainstem and the spinal cord.

Ensemble activities in spinal motor networks had until recently been merely a black box,

but with the emergence of ultra-thin Silicon multi-electrode technology it was possible

to reveal the spiking activity of larger parts of the network. A series of experiments

revealed unexpected features of spinal networks, such as multiple spiking regimes and

lognormal firing rate distributions. The lognormality renders the widespread idea of a

typical firing rate ± standard deviation an ill-suited description, and therefore these

findings define a new arithmetic of motor networks. Focusing on the population activity

behind motor pattern generation this review summarizes this advance and discusses its

implications.
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1. INTRODUCTION

We often assume that neurons can be categorized in homogenous and genetically well-defined
groups, where each member behaves in more or less the same manner. In spinal motor
research, this notion is especially appealing since genetic tools have advanced the field to
the forefront of neuroscience (Machado et al., 2015; Bikoff et al., 2016; Gabitto et al., 2016;
Sternfeld et al., 2017) and the cellular identity is helpful in the search for potential specialization.
However, such genetic reductionism carries weaknesses as well as strengths. The sole focus
on cellular subtypes has the risk of failing to see the collective properties of the network.
The strategy of isolating an identified population to study its impact on behavior, for instance
with genetic knock-out or optogenetics, rests on the radical assumption that the impact of
this population only has a feedforward influence. Nevertheless, circuits operate by a delicate
interaction between neurons of different genetic origin most likely with pervasive recurrent
connectivity, where it may be fruitless to assign a role to any one member (Yuste, 2015). The
intricacy of control of one population by another has recently become evident from control
theory, i.e., the study of manipulation of dynamics on complex networks. The behavior of
such a network is difficult to control by manipulation of selected nodes and this strategy
often has counter-intuitive effects (Liu et al., 2011). A complementary investigation of the
collective population dynamics is therefore recommendable in concert with genetic analysis.
However, population spiking activity is a challenge not only to analyze, but also to acquire and
have only rarely been done in spinal motor systems (Berg et al., 2009; Auyong et al., 2011).
To achieve recordings of the population spiking activity requires multiple electrode arrays in
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preparations, which are mechanically stable. These challenges are
part of the reason for the scarce literature and slow progress on
collective properties of spinal motor networks.

Arithmetic of Population Activity
In a recent set of experiments, however, the mechanical stability
of the turtle spinal cord (Stein, 2005) was used to investigate
the neuronal population spiking activity associated with motor
pattern generation within spinal circuitry (Vestergaard and Berg,
2015; Petersen and Berg, 2016). Custom-design silicon electrode
arrays were used to study populations of interneurons and
motoneurons in the medial-ventral portions of the lumbar region
(Petersen and Berg, 2017), in order to probe the concerted
activity. This yielded insight to the complexity of population
spiking during motor behavior (rhythmic hindlimb scratching
Petersen and Berg, 2016). Neurons were not easily sorted into
discrete classes, but was rather statistically distributed as a
whole, without any identifiable clustering of simple spiking
behavior. Rather, the heterogeneous population revealed firing
rates, which were scattered in a smooth and continuous fashion
with no indication of a multimodal distribution. Further, the
distribution was not the expected normal distribution with
a symmetric spread around some mean, but was instead
strongly skewed with a fat-tail and approximately a lognormal
distribution, i.e., a normal distribution on a logarithmic x-
axis (Figure 1F). Where does this lognormality come from?
As it turns out, there is a simple explanation for the skewed
‘participation’ among spinal neurons. Lognormality can arise
by transforming normally distributed variables with a non-
linearity (Roxin et al., 2011). Here, the non-linearity is the
transformation of synaptic input to a firing rate output, i.e.,
the gain-function, and the normally-distributed variable is the
synaptic input. The net synaptic input represents the sum of
excitation and inhibition, whose relative amount (or ratio) varies
from neuron to neuron. Some neurons receive more excitatory
than inhibitory connections (excitation-dominated) and others
receive more inhibition (inhibition-dominated). Although the
distribution of synaptic connections is unknown (Koulakov
et al., 2009; Roxin, 2011) the resulting distribution of membrane
potentials over the population is Gaussian (normal) (Figure 1).
When passing such normal distribution through a non-linear
response function the firing rate distribution becomes skewed.
Whereas normal-distributions are typically associated with the
addition of random variation (synaptic currents and potentials
are roughly additive), lognormal-distributions are results of
multiplicative effects (Limpert et al., 2001). The widely held
belief that firing rates across the population are scattered with
a mean value ± standard deviation has thus proven to be
unsuitable. The network has an embedded supra-linear element.
As a consequence, the addition of multiple inputs amounts to
more than the linear sum of these inputs. These observations
define a novel arithmetic of spinal population activity, which have
previously escaped attention. As we will see below, the results
also tie together population dynamics, regimes of spiking with
stability and flexibility and reconciles neuronal activity in spinal
cord with that found in cortex and elsewhere (Mizuseki and
Buzsáki, 2013; Wohrer et al., 2013; Buzsáki and Mizuseki, 2014).

Input Is “Normal” and Output Is
“Lognormal”
Neurons receive a mixture of excitatory and inhibitory synaptic
connections. The precise number of connections and strength
of the contacts are subject to statistical variation. Some neurons
have more inhibition than excitation (Figure 1A) whereas other
neurons are biased toward more excitation (Figure 1B). As a
result, the mean synaptic current and membrane potential are
not the same from neuron to neuron, but are rather distributed
with a mean and a spread. What is the shape of this distribution?
Since synaptic inputs are additive we expect a normal distribution
according to the central limit theorem, both regarding net
synaptic current as well as membrane potential in between spikes
(Roxin et al., 2011).

Let us assume for now that the population distribution
of means is normally distributed and consider two possible
neuronal response functions (gain-curves). The most generic
gain-curve is linear and will transform the normal distribution
into a normal firing-rate distribution across the population
(Figure 1C). However, if the gain-curve is non-linear the
transformation will become skewed (Figure 1D). An exponential
gain-curve will give an exact lognormal distribution. Other non-
linearities, e.g., a power-law, will also result in skewed and
“lognormal-like” distributions, although they will not be strictly
lognormal. Therefore firing rate distributions are intricately
linked to input distributions as well as the gain-curve.

How can a gain-curve become supra-linear? The traditional
gain-curve, i.e., the frequency response to an injected current
(F-I-curve) is zero below rheobase and linear above (Gerstner
et al., 2014). This description is based on early intracellular
measurements performed on neurons in the absence of synaptic
input. Nevertheless, real input consists of rapid fluctuations and
increase in synaptic conductance, which will not only change the
rheobase (Grigonis et al., 2016), but also bend the gain-curve
(Silver, 2010). A combination of a threshold and fluctuations
in the membrane potential (or current) will thus result in an
‘expansive’ non-linearity (Hansel and van Vreeswijk, 2002; Miller
and Troyer, 2002; Priebe and Ferster, 2008). The strength of
such non-linearity has an inverse relationship with the degree
of fluctuations (Vestergaard and Berg, 2015). Until recently
nevertheless, it had not been addressed how these different
elements affect the population activity in rhythm generating
circuits of the spinal cord.

Lognormality of Spinal Population Activity
The neuronal ensemble activity of the rhythm generating
circuitry of the lumbar spinal cord was therefore investigated
in order to address the question (Petersen and Berg, 2016). The
rhythmic hindlimb scratching of the turtle preparation was used
as a model for stereotypical movement (Stein et al., 1998; Hao
et al., 2014). This movement can be generated purely by the
lumbar spinal cord network without the confounding factors
of supraspinal input. The lack of corticospinal and bulbuspinal
input also deprive the spinal circuits for certain excitatory
and inhibitory input as well as neuromodulatory input such
as serotonergic, adrenergic and peptidergic input. Nevertheless,
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FIGURE 1 | Lognormality in firing rates across neuronal population stems from a nonlinearity of the gain-curve. (A) Some neurons receive more inhibition (red) and

others receive more excitation (green, B). This creates various mean Vm (cf. bottom traces) with a normal distribution across the population. (C) A normal-distributed

input will be transformed to a normal-distributed output, if the gain-curve is linear. If the gain curve is exponential the output distribution will be skewed (D).

(E) Population spiking activity (∼ 300 neurons, raster at bottom) was recorded during rhythmic motor behavior (4 motor nerves shown at top). Cycle indicated by

green shaded region. Neurons sorted according to phase. (F) Spike count rate distribution across the population is approximately lognormal. (G) There is a nonlinear

relationship between sub-threshold membrane potential and firing rate. (H) Subthreshold membrane potential strongly fluctuates with a normal distribution.

(I) Distribution of the mean membrane potential subtracted threshold and normalized to standard deviation ((Vm − Vthres)/σ ) is normal across population. The typical

distance of the mean to the threshold is 3σ (arrow). Adapted with permission (Roxin et al., 2011; Vestergaard and Berg, 2015; Petersen and Berg, 2016).

several distinct behaviors can be evoked by somatic touch with
no overt difference from natural behaviors (Keifer and Stein,
1983; Stein, 2005). This preparation (Petersen and Berg, 2017)
offers better mechanical stability compared to in-vivo and the
anoxia-resistance of this adult reptilian nervous system permits
more physiologically intact activity than similar experiments
in the mammalian nervous system. Thus, it was possible to
monitor the spiking activity of hundreds of neurons (∼300)
while simultaneously recording the neuronal intracellular activity
together with the motor nerve output to various hindlimb
muscles (Figure 1E). The distribution of firing rates across
the population closely resembled a lognormal distribution-note
the log-scale (Figure 1F). Such lognormal-like distributions are
also present in various other parts of the nervous system
(O’Connor et al., 2010; Mizuseki and Buzsáki, 2013; Buzsáki
and Mizuseki, 2014) and could represent a ubiquitous feature
of neuronal networks. In order to verify the cause of this
lognormality, as discussed above, the gain-curve was estimated
in the subthreshold spiking (Figure 1G). The gain-curve had
an expansive non-linearity similar to an exponential as well as
a power-law. This non-linearity is likely due to the presence
of synaptic fluctuations (Figure 1H) combined with a threshold
mechanism.

Are the fluctuations, and therefore the gain-curves, different
for neuron to neuron? Yes, but it was demonstrated that the
non-linearity had a rather weak inverse dependence on the
size of the synaptic fluctuations (Vestergaard and Berg, 2015;
Petersen and Berg, 2016). This weak effect suggests that although
different neurons have different levels of fluctuations in input,
the non-linearity of the gain-curve is largely conserved across
the population of neurons. As a consequence, the normally
distributed mean membrane potential with the non-linear gain-
curve together offer an explanation of the lognormality in

firing rate distribution. To further verify the constancy of gain-
curve across members, the membrane potentials were analyzed
across a population of neurons. Since neurons have different
electrotonic morphologies and thus fluctuations and thresholds,
the distance of the mean membrane potential from the threshold
was obtained and normalized by the size of their fluctuations
(σ ). This distribution ((Vm − Vthres)/σ ) turned out to also be
normal across population (Figure 1I). Interestingly, this suggests
a universal normalization of membrane potential distribution for
the individual neuron to have a preferred distance to threshold
of 3σ (arrow, Figure 1I). This normalization also predicts a
preserved gain-curve across the population. In toto, these two
elements, the normal input and the expansive non-linearity, lend
support to a mechanistic explanation of the lognormal firing rate
distribution (Figure 1D).

Regimes of Spiking: Regular and Irregular
So far, the analysis has focused on the sub-threshold spiking,
where the gain-curve is non-linear and the spiking is driven by
subthreshold fluctuations. How typical is this type of spiking
and is there another regime of spiking? Indeed, there is another
type of spiking referred to as mean-driven spiking, where the
mean input current is larger than the rheobase (Renart et al.,
2007; Gerstner et al., 2014). Here, the gain-curve is linear
or even sub-linear (Figure 2A). The firing-rate distribution is
symmetric rather than skewed (Figure 1C) although some spinal
neurons have shown an increase in the gain-curve slope for much
higher injected currents, i.e., the ‘secondary firing range’ due
to persistent inward currents (Heckman et al., 2008; Meehan
et al., 2010). The inter-spike intervals here are more affected by
the after-hyperpolarizations (Matthews, 1996) and therefore the
spiking is more regular and at higher firing rate (Figure 2B).
This is in contrast with the fluctuation-driven spiking, which is
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FIGURE 2 | Two regimes of spiking during motor behavior. (A) The gain curve of a single neuron has two regimes. Fluctuations in input allow sub-threshold spiking

and cause a smooth transition across threshold (vertical broken line). Larger noise causes more smooth transition. (B) A spinal neuron during rhythmic motor activity

has mean-driven spiking, i.e., the mean membrane potential (blue line) is above threshold (broken line, left). Trace selected from a locomotion cycle (right) where most

spikes have low irregularity (CV2, green trace). (C) Another neuron has fluctuation-driven spiking, i.e., the mean membrane potential (blue) is below threshold (broken

line, left). Whole cycle indicates that majority of spikes are fluctuation-driven (right) and high irregularity (green curve). (D) Amount of time spent in the two regimes is

quantified by the cumulative time spent below the initial threshold (left). Neuron in (B) has only 35% of time below threshold whereas neuron in (C) has 96%. Most of

the neurons had a majority of time below threshold, i.e., in fluctuation-driven regime (total n = 68 neurons, right). Adapted with permission (Petersen and Berg, 2016).

irregular and at lower rates (Figure 2C). Some neurons spent
most of the time below threshold (96% in the shown sample
neuron), even without counting the inter-burst intervals, whereas
other neurons spent much less time (35% in the shown sample
neuron, Figure 2D). The majority of the neurons spent most of
the time below threshold, i.e., in the fluctuation-driven regime
(right, Figure 2D), which may be relevant for muscular control
since this regime represents 90% of the force modulation in
mice (Manuel and Heckman, 2011). Since the threshold has a
dependence on the firing rate (Grigonis and Alaburda, 2017) the
initial threshold, i.e., the threshold of the first spike in a trial, was
used in this analysis. It should also be noted that the impact of
intrinsic properties, such as the spike frequency adaptation, on
the spiking dynamics would be difficult to assess during the these
intense synaptic input. Nevertheless, intrinsic properties work on
slower timescales and therefore they mainly affect spiking in a
regular manner. Hence, irregularity is an indicator that can be
utilized to quantify the fraction of an ensemble found in either
of the regimes using spike times from extracellular recordings.
Multi-electrode arrays record the extracellular potential of many
neurons, and can thus more easily capture data from a larger
population. Such experiments show that the neuronal population
is almost equally divided between the two regimes (Petersen and
Berg, 2016; see below, Figure 4).

Absent Clustering and Cellular Identity
The identity of interneurons can be delineated by their genetic
origin (Goulding, 2009; Hinckley et al., 2015; Kiehn, 2016).
The spinal cord has the fortunate architecture that cells are

developmentally segregated primarily in the dorsoventral (DV)
axis of its gray matter. Therefore it is possible to probe the
physiological diversity of spinal neurons by recording along the
DV-axis. Custom-designed multi-channel electrodes (∼ 256)
were thus implanted in the lumbar spinal cord (Petersen and
Berg, 2016) and the ensemble activity recorded (Figures 3A,B).
Using trilateration and source separation combined with the
shank depth it was possible to tease apart their location
in the DV-axis (Figures 3C,D). The irregularity of individual
members, as quantified using theCV2-measure (Holt et al., 1996),
demonstrated no difference in the distribution for different
location in the DV-axis (Figures 3E,F). Their distributions had
simple Gaussian shapes with variance much larger than the
difference in mean. This suggests that the spiking activity was
equally irregular for neurons despite diversity in genetic identity.
Similar observation was obtained for the firing rate distributions.
These distributions were all lognormal and independent of
location, indicating an absence of location-specific clustering of
these simple features. Hence, there was no obvious link between
genetic identity and these simple neurophysiological aspects
that were characterized. This is not in conflict with another
investigation that demonstrated less rhythmicity in more dorsal
units (Berkowitz, 2001).

Purpose of Lognormality in Spinal
Population Activity?
A long-standing question in theoretic neuroscience has been
how neuronal networks maintain self-sustained activity while
avoiding run-away excitation (Roxin et al., 2004; Kumar et al.,
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FIGURE 3 | Spike patterns lack topological clustering in the dorso-ventral axis. (A) The multi-electrode arrays are inserted in the spinal cord gray matter along the axis

of high cellular segregation (D-V direction). (B) Spiking pattern of sorted units (∼300 neurons) concurrent with motor nerves during rhythmic movement. (C) Layout of

electrodes on a shank. (D) The recording sites (black dots) are used to locate the strongest sources along the shank using trilateration. Three sample units indicated in

colors, all units in gray. (E) The irregularity of spiking vs. depths in DV-axis. Each circle is the mean CV2 of a neuron. (F) The population distribution of mean spiking

irregularity (CV2) as a function of depth in DV-axis. A difference between the distributions could not be detected. Adapted with permission (Petersen and Berg, 2016).

2008; Renart et al., 2010; Vogels et al., 2011). This is also an
open question in spinal research. How do spinal circuits generate
activity so reliably with high sensitivity and yet stay clear of
seizures or saturation? Neural circuits most likely reach this
‘Goldilocks zone (Humphries, 2016) by stabilizing excitation
via recurrent inhibition. The purpose of such an arrangement
could be to ensure sensitivity to smaller input and curbing
the response to strong input. The gain-curve has a sigmoidal
shape, where the left part has a supra-linear summation that
can amplify weak input (Rubin et al., 2015). The input can both
represent sensory input or internally generated activity within
the network itself. Stronger input will move up the curve to
sub-linear summation, which will attenuate and stabilize activity.
Such enhancement of weak input while curbing strong activity
is beneficial for extending the dynamic range of the network
operation. The network will always be able to increase output,
although it is strenuous for stronger input. The extension of
dynamical range can thus be accomplished by the sigmoidal
shape of the gain curve, where each part represents the two

spiking regimes. How many neurons are in the either the supra-
or sub-linear part of the gain curve? The supra-linear part is
exactly the fluctuation-driven regime and the sub-linear part
represents the mean-driven spiking. It was therefore possible
to answer this question by quantifying the fraction of the
population in either of these regimes via the irregularity of
spiking. Using the CV2 metric for local irregularity the time
of each neuron spiking irregularly (CV2 > 0.5) the inverse
cumulative distribution for the whole population measures the
fraction of neurons that spike at least a certain fraction of time
(x-axis) in the irregular regime (Figure 4A). The time that half
of the population (broken line) spend in the fluctuation-driven
regime was remarkably close to 50%. This number was conserved
across animals (TIF50, inset). Similar analysis was performed for
the number of fluctuation-driven spikes (spikes in fluctuation
regime, SIF50) rather than time, since these might be different
when the firing rate changes. Nevertheless, the analysis gave
qualitatively similar results (Figure 4B). This could indicate a
kind of homeostasis for network spiking activity in redundancy
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FIGURE 4 | Fraction of population vs. time and spikes in fluctuation-driven regime. (A) Fraction of minimal time spent in the fluctuation regime (x-axis) vs. fraction of

neuronal population. About half of the population spends at least 50% in with CV2 > 0.5 (broken line), i.e., Time In Fluctuation driven-regime, TIF50. Similar numbers

for TIF50 was found for all animals tested (inset, n = 5, sample animal indicated ⋆). (B) Fraction of neurons vs. spikes in fluctuation-driven regime, and the similar metric

Spikes in Fluctuation-driven regime SIF50. Similar numbers slightly above 50% were found for all 5 animals (inset). Adapted with permission (Petersen and Berg, 2016).

with cellular mechanisms, such as homeostatic plasticity (Kline
et al., 2007; Pozo and Goda, 2010). Irregularity of spiking of
motor neurons is not expected to be a great disadvantage since
it introduces only a mild decrease in steadiness of muscle force,
due to temporal summation within the muscle fibers and spatial
summation of over neighboring muscle fibers, which both work
as low-pass filters (Dideriksen et al., 2012).

Future Directions
An outstanding question in spinal motor research is how rhythm
generation takes place in the spinal circuits (Whelan, 2010;
McLean and Dougherty, 2015; Sternfeld et al., 2017). The recent
findings of the ensemble activity, which I discussed in this
review, do not explain rhythm generation, only certain concerted
properties associated with it. Pacemaker neurons are widely
believed to be responsible for rhythm generation or at least to
be involved as a supporting mechanism for e.g., increasing the
robustness of the oscillation (Purvis et al., 2007). Nevertheless,
new findings in the respiratory field has cast doubt on pacemaker-
hypothesis (Feldman et al., 2013; Feldman and Kam, 2015)
although it is an on-going debate. The finding presented here
that a larger portion of the population is in the fluctuation-
driven regime is interesting in this context, since irregular spiking
most likely originates from balanced excitation and inhibition
(E/I) (Shadlen and Newsome, 1998; Petersen and Berg, 2016).
Balanced E/I leaves the membrane potential close to threshold
while increasing the membrane conductance sometimes several
fold (Destexhe et al., 2003; Alaburda et al., 2005; Berg et al.,
2007). Large increases in conductance are consequential since it
can shunt the intrinsic properties (Kolind et al., 2012) and thus
in principle “confiscate” the specialization of neurons (Berg and
Hounsgaard, 2009). Nevertheless, conductance increase is more
likely to only distort the kinetics of the pacemaker dynamics,
yet still present a challenge to the pacemaker hypothesis.
There are alternatives to the pacemaker-hypothesis such as
network mechanisms (Grillner, 2006; Brocard et al., 2010; Li,
2011; Ramirez et al., 2011), i.e., an emerging feature on a
level above single neurons (Yuste, 2015), but this hypothesis

needs refinement. If the rhythm is generated by the population
rather than individual pacemaker cells, ensemble recordings—as
presented in this review—are crucial for understanding rhythm
generation (Shenoy et al., 2013; Bruno et al., 2015, 2017).
Therefore, the fact that experiments on population spiking
activity are so rare suggests a research area worth while of
pursuing. Optical imaging of the calcium activity of neuronal
populations in the spinal cord (Ritter et al., 2001; Wilson
et al., 2007; Kwan et al., 2010; Johannssen and Helmchen,
2013; Renninger and Orger, 2013; Weinger et al., 2015) are an
important tool to include, especially with DNA-encoded calcium
indicators, which can specifically label subpopulations of neurons
(Muto et al., 2011; Machado et al., 2015). Obstacles in optical
imaging are the lower temporal resolution as well as the relativity
in signal (1F/F), which each prevents an analysis, similar to the
one presented here, to be performed. Functional connectivity in
association withmulti-electrode recordings can assist inmapping
the network in spinal cord behind motor pattern generation,
which is largely unknown. Although multi-electrode recordings
in mammalian spinal cord remain a challenge (Berg et al., 2009;
Auyong et al., 2011) a natural next step is to verify these findings
in the mammalian spinal cord.
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