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The spatial organization of synaptic inputs on the dendritic tree of cortical neurons is

considered to play an important role in the dendritic integration of synaptic activity.

Active electrical properties of dendrites and mechanisms of dendritic integration have

been studied for a long time. New technological developments are now enabling the

characterization of the spatial organization of synaptic inputs on dendrites. However,

quantitative methods for the analysis of such data are lacking. In order to place

cluster parameters into the framework of dendritic integration and synaptic summation,

these parameters need to be assessed rigorously in a quantitative manner. Here I

present an approach for the analysis of synaptic input clusters on the dendritic tree

that is based on combinatorial analysis of the likelihoods to observe specific input

arrangements. This approach is superior to the commonly applied analysis of nearest

neighbor distances between synaptic inputs comparing their distribution to simulations

with random reshuffling or bootstrapping. First, the new approach yields exact likelihood

values rather than approximate numbers obtained from simulations. Second and more

importantly, the new approach identifies individual clusters and thereby allows to quantify

and characterize individual cluster properties.

Keywords: synaptic input, dendritic integration, dendrite, spatial organization, synapse cluster, quantitative

analysis

INTRODUCTION

Together with the specific connectivity of neurons within a neural circuit and the dynamic
properties of their synapses, dendritic computations are considered to play an important role in
information processing. Furthermore, active dendritic properties have been suggested to increase
the memory storage capacity of neural circuits by structural plasticity (Poirazi and Mel, 2001).

Dendritic integration determines the arithmetic of synaptic summation that translates spatio-
temporal patterns of synaptic input into the spiking output of neurons. Dendritic integration
and the underlying mechanisms have been characterized using for example direct stimulation
of postsynaptic receptors at defined sets of synapses with 2-photon glutamate uncaging in form
of systematically varied spatiotemporal patterns of stimulation (e.g., Losonczy and Magee, 2006;
Branco and Hausser, 2011). Moreover, it has been shown, that neural computations depend on
active dendritic properties in vivo (Lavzin et al., 2012; Smith et al., 2013). However, little is known
about the spatial organization of synaptic inputs on the dendritic tree of cortical neurons although
it is considered to play a central role in dendritic integration. Thus, to understand how the rules of
dendritic integration as studied without any knowledge about the origin or type of the stimulated
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Scheuss Analysis of Spatial Synapse Organization

synapses (e.g., Poirazi and Mel, 2001; Losonczy and Magee,
2006; Branco andHausser, 2011) translate into neural processing,
requires to know how specific types of connections are arranged
and combined on the postsynaptic dendritic tree. Only recently
data on the spatial arrangement of synapses on the dendrites
of hippocampal or cortical pyramidal cells and other neurons
became available: Functionally defined inputs, i.e., spontaneously
active or activated by sensory stimulation, have been identified
and mapped using calcium imaging (e.g., Chen et al., 2011;
Kleindienst et al., 2011; Takahashi et al., 2012). Genetically
and anatomically defined inputs have been mapped using GFP
reconstitution across synaptic partners (GRASP, Druckmann
et al., 2014), array tomography (Rah et al., 2013) or standard
light and electron microscopy (McBride et al., 2008; da Costa and
Martin, 2011). More recently, we and others used optogenetics
and calcium imaging to identify and map functional synapses
arising from a genetically and anatomically defined input (Little
and Carter, 2012; Macaskill et al., 2012; Gökçe et al., 2016).
Furthermore, calcium imaging in vivo has been used to identify
cohorts of dendritic spines responsive to specific sensory stimuli
(Jia et al., 2010; Chen et al., 2011; Varga et al., 2011; Wilson
et al., 2016; Iacaruso et al., 2017; Scholl et al., 2017). Apart
from dendritic integration, synapse clusters are also implicated
in plasticity underlying learning and memory formation (e.g.,
Govindarajan et al., 2006; DeBello, 2008; Makino and Malinow,
2011; Fu et al., 2012).

While powerful methods have been developed for neural
circuit analysis at the level of cell-to-cell connectivity (e.g.,
Bassett and Sporns, 2017; Schroter et al., 2017), methods for
the systematic analysis of the spatial patterns of the synaptic
organization on dendrites are still in their infancy. This is despite
the importance of such methods for putting the spatial rules of
synaptic organization into the context of the rules for dendritic
integration (e.g., Losonczy andMagee, 2006; Branco andHausser,
2011) and for testing predictions on synapse clustering during
plasticity and memory formation from theoretical work (e.g.,
Kastellakis et al., 2016). To this end, it is required to go beyond
the classical analysis of pairwise nearest neighbor distances (e.g.,
McBride et al., 2008; da Costa and Martin, 2011; Rah et al.,
2013; Druckmann et al., 2014) by identifying and characterizing
individual clusters.

Here I present an analytical approach for identifying
and characterizing synapse clusters. The approach uses a
combinatorial analysis of all theoretically possible synapse
arrangements for classifying recorded arrangements to be
clusters based on their likelihood to occur. This has the advantage
over the commonly applied pairwise analysis of nearest neighbors
with reshuffling and bootstrapping that it yields exact likelihood
values and allows to identify and subsequently characterize
individual clusters containing multiple synapses and not just
pairs.

METHODS

The coefficient of variation (CV) for the likelihood estimates
obtained by random reshuffling (Figure 4B) was determined

using binomial statistics without the need for performing
simulations. If a particular pattern occurs with the probability p
then it is expected to occur within n runs of random reshuffling
n·p times and the estimated likelihood is on average L = n·p/n.
The variability in the outcome from run to run is described by
the variance of the number of times the pattern is observed in n
runs of reshuffling:

Var(n) = n · p ·
(

1− p
)

(M1)

And thus the CVL of the estimated likelihood from n runs of
reshuffling is

CVL =
√
Var(n)

n · p
=

√

1− p

n · p
(M2)

The computation time required for the combinatorial approach
and to run simulations with reshuffling was tested withMATLAB
code (see Supplementary Material; MATLAB version R2013b;
MathWorks, Natick, MA, USA) on a standard desktop computer
(dual core processor, 2.13 GHz, 8 GB RAM, Windows 7 64-bit
operating system).

RESULTS

Figure 1 shows examples of dendrograms of layer 5 pyramidal
cells where the spines targeted by inputs originating from
neighboring layer 5 pyramidal cells have been mapped (red
spines; Gökçe et al., 2016). Here, a quantitative approach is
described for analyzing the spatial organization of inputs on
the dendrite. Particular focus is put on testing for the presence
of a clustered distribution and identifying individual input
clusters. Figure 3A shows schematically examples for a random
distributed and a clustered spatial organization. The non-random
clustered arrangement is defined by specific characteristics,
which is a concentration or accumulation of inputs within a
certain stretch of dendrite. Nevertheless, even in the case of
a random distribution patterns can arise by chance, which
resemble non-random patterns. Thus to decide whether or not
the spatial organization is random or non-random one needs
to compare the probability of observation of the patterns found
in the data vs. the likelihood of occurrence of those patterns in
case of a random distribution. The cluster detection and analysis
proceeds in 6 steps (see workflow in Figure 2 and example in
Figure 8):

1) Identification of input ensembles based on the ensemble
criterion

2) Calculation of the specific ensemble likelihood for the
particular ensembles within the dendritic segments or
branched trees

3) Classification of ensembles as cluster according to ensemble
likelihood criterion

4) Calculation of the overall cluster likelihood for any type of
cluster to occur in the dendritic segments or branched trees

5) Comparison of the observed and expected numbers of
dendritic segments or branched trees with an input cluster
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FIGURE 1 | Examples of the spatial organization of synaptic inputs on dendrograms. Example dendrograms of layer 5 pyramidal neurons in mouse primary visual

cortex, where spines receiving synapses originating from neighboring layer 5 pyramidal cells have been mapped (red; data from Gökçe et al., 2016).

FIGURE 2 | Workflow for the analysis of input clusters. The analysis proceeds

in 6 steps that are outlined in the text. An example of its application and its

results for one segment and input cluster is given in Figure 8.

6) Analysis of parameters and characteristics of individual
clusters

These steps will be discussed in the following. For clarity
the mathematical concepts will be developed first for what I

call the order based case, where synapses/inputs are simply

counted along the dendrite. In other words, this is the special

case of uniform nearest neighbor distance where there is

no need for explicitly taking this distance into account. The

transformation to the distance based case, where the real

non-uniform distances between synapses/inputs are taken into

account, will be introduced later. The derivation assumes that

all synapse locations, i.e., spine positions, are defined and the

assignment of input categories to the given synapses is known.
In real data this is not necessarily the case, first because

synapse location and input identities are often mapped only

for part of the dendritic tree and second, because a fraction of
spines/synapses might remain undetected in imaging systems

and therefore unaccounted for. If only part of a dendritic

tree can be mapped in one experiment, the best approach

is to roughly map the global input distribution and then
selecting for detailed mapping those areas with significant input

density or those of particular interest. Subsequently, separate

experiments are performed on sets of cells for each area to
be mapped. In order to be able to consider branched trees

up to the whole dendritic tree of a neuron, the original

approach restricted to individual segments as presented in short
form in Gökçe et al. (2016) is extended below to branched

trees. The fraction of undetected synapses and inputs due to
technical reasons should be low. It is reasonable to assume

that the distribution of missed synapses/inputs is uniform along

the dendrite and therefore does not significantly affect the
results.
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Step 1: Identification of Input Ensembles
Based on the Ensemble Criterion
Several criteria can be used to define ensembles of inputs
(Figure 3B):

i. A “continuous” sequence of directly neighboring inputs,
which are all of the same type.

ii. An ensemble with distance from any input to its nearest
neighbor of the same type ≤ threshold (e.g., 10µm,
Takahashi et al., 2012).

iii. An ensemble with packing ratio (ratio of number of inputs of
one type over the total number of inputs) ≥ threshold (e.g.,
60%).

Criterion (i) is more a theoretical definition with little

practical/biological relevance (but see Fu et al., 2012 for the
case of clustered spine formation). Criterion (ii) is weaker than

criterion (i) by allowing “gaps” between inputs specified by
an upper limit on the nearest neighbor distance. Biologically

this distance can be justified by the length constant for the

considered interaction between neighboring inputs such as
electrical interactions during dendritic integration (Losonczy

and Magee, 2006; Branco and Hausser, 2011) or biochemical
interactions during plasticity (Harvey and Svoboda, 2007). This

is a criterion which has been applied in conventional cluster

analysis based on nearest neighbor distances (e.g., Takahashi
et al., 2012). Criterion (iii) is again a weaker version of criterion

(ii): Their relationship is obtained by considering, that inputs

spaced at the maximum distance satisfying the distance criterion

1crit (criterion ii) would satisfy also the lowest accepted packing

ratio PRcrit (criterion iii). In this caseM = m·1crit + 1, whereM

is the total number andm the number of spines with the input of

interest in the ensemble (see Figure 3C; compare also Figure 5D

for analogous relationship between M and n). With the packing
ratio defined as ratio of the number of inputs m over allM spines
in an ensemble, this yields:

PRcrit =
m

M
=

m

m · 1crit + 1
≈

1

1crit
for largem (1)

Thus the packing ratio threshold and nearest neighbor distance
criterion are inversely related. However, it has to be noted
that packing ratio and nearest neighbor distance criterion are
not completely equivalent. For the packing ratio there is no
requirement on the internal arrangement of inputs while the
nearest neighbor distance criterion places an upper bound on the
gaps within an ensemble (Figure 3C). Here and in the following
steps, criterion (ii) is used to define input ensembles.

Step 2: Calculation of the Specific

Ensemble Likelihood on Individual
Segments
In principle, running the cluster detection on the surrogate data
generated by random reshuffling provides an estimate of the
probability of occurrence of clusters (e.g., Takahashi et al., 2012;
Yadav et al., 2012; McBride and DeBello, 2015). However, the
number of possible arrangements can be very large (Figure 4A)
and requires large numbers of reshuffling rounds. The advantage
of the combinatorial approach over estimating likelihoods using
random reshuffling is that it provides exact values for the small
likelihoods involved, for which reliable estimates would require
large numbers of rounds of reshuffling.

The total number of patterns of assigning n responsive spines
to N total spines is

(

N
n

)

(2)

FIGURE 3 | Spatial organization of synaptic inputs on a dendritic segment and cluster criteria. (A) Examples of random distributed and clustered spatial organization

of synapses of a specific type of input (red) on a dendritic segment. (B) Spatial criteria to define ensembles of synaptic inputs. (C) Comparison of nearest neighbor
distance criterion and packing ratio criterion. All possible ways of distributing two additional inputs among four spines in between the two specific inputs delimiting the

given input ensemble. While the packing ratio (4 out of 6) is the same for all cases, the nearest neighbor distance criterion 1crit (blue bar) is only fulfilled for the 3 cases

in the gray box on the left.
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FIGURE 4 | The total numbers of all possible spatial arrangements of synaptic

inputs are large. (A) Numbers of possible permutations, when assigning

increasing number of synaptic inputs to 30, 50, and 100 spines calculated

with Equation (2). (B) Coefficient of variation (CV, Equation M2) of probability

estimates obtained by simulations where surrogate distributions are generated

with random reshuffling. This describes the expected error in the estimated

likelihoods relative to the number of simulation runs.

In particular, for patterns with low likelihood, which are the
patterns of interest, the number of reshuffling rounds required
for determining their likelihood with sufficient accuracy are very
large in reshuffling simulations, where the inputs are randomly
assigned to the present synapses (Figure 4B). Therefore, I derive
together with the concept for characterizing ensembles as clusters
an analytical solution for determining ensembles likelihoods
based on combinatorial analysis.

The probability of occurrence can be calculated by
determining all possibilities of occurrences of patterns/clusters
with a similar metric and dividing their number by the total
number of all possibilities to assign the given number of inputs
n to the total number of spines/synapses N. The most intuitive
metric is the total number of spines/synapses in the ensembleM,
i.e., the cluster size, and the number of inputs in the ensemble
m. Furthermore a gap g has to be specified, which describes to
what extend the ensemble should be separated from any other
input outside the ensemble (Figure 5A). The gap parameter g
corresponds to the nearest neighbor distance criterion (see above

and Figure 5B). The number of ways to place m responsive
spines into an ensemble of sizeM is (Figure 5A):

(

M
m

)

(3a)

But we need to exclude empty edges, i.e., the first and last spine
in the ensemble must receive the specific input. This is like
distributingm–2 overM–2 slots (Figure 5A), thus

(

M − 2
m− 2

)

(3b)

The number of ways for assigning the remaining n-m inputs to
the remainingN–M− 2 g spines outside the sensemble enforcing
a leading and trailing gap (Figure 5A) is:

(

N −M − 2g
n−m

)

(4)

The product of Equations (3b) and (4) provides the number
of ways for assigning inputs to spines with the ensemble being
located in one particular position along the dendrite. However,
at least with respect to combinatorial statistics I assume that all
possible positions are equivalent. The obvious solution would
then be to multiply Equations (3) and (4) with the number of
locations a patch of M synapses can be placed onto a dendritic
segment with N total synapses (Figure 5C)

N −M + 1 (5)

However, this is not completely correct, because at patch
locations close to the ends of the dendritic segment the numbers
of synapses to remain unoccupied are smaller than the required
gap size and this difference has to be taken into account with
respect to the number of synapses, which can be assigned with
inputs outside of the ensemble (Figure 5C):

2

g− 1
∑

i= 0

(

N −M − g − i
n−m

)

+
(

N −M − 2g + 1
)

(

N −M − 2g
n−m

)

(6)
Here the first term sums those cases one by one, where leading
or trailing gap consist of fewer synapses than the gap size, in
other words, where none of the n-m inputs can be placed at
the beginning of the dendritic segment in front of or at the
end behind the ensemble patch, respectively. The second term
describes the remaining N – M - 2g + 1 cases where full leading
and trailing gaps have to be considered (see Figure 5C). Thus the
likelihood to find an ensemble with M and m is the product of
Equations (3b) and (6) divided by Equation (2):

pN,n

(

M,m, g
)

=



2

g− 1
∑

i= 0

(

N −M − g − i
n−m

)

+ (N −M − 2g + 1)

(

N −M − 2g
n−m

)





(

M − 2
m− 2

)

(

N
n

) (7)
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FIGURE 5 | Combinatorial analysis of input ensemble likelihood. (A) Left, one example of a dendritic segment with N = 30 spines. n = 5 spines receive input from a

specific presynaptic population, m = 4 of which are part of an input ensemble of size M = 6. The ensemble is flanked by gaps of g = 2 spines, which do not receive

the specific input. Top right, all possible arrangements of m = 4 inputs in an ensemble of M = 6 spines. Bottom right, all possible arrangements of the remaining

n-m = 1 inputs over the spines outside ensemble and leading as well as trailing edge. (B) Relationship between nearest neighbor distance criterion and gap

parameter 1crit = gap, exemplified for 1crit = gap = 2: The distance between spine a and b is just above the nearest neighbor distance criterion of 1crit = 2 and the

gap between them in terms of spines is gap = 2. (C) All possibilities to place the ensemble of size M = 6 into the dendritic segment with N = 30. At positions close to

the beginning and end of the segment, the leading or trailing gap, respectively, are not fully realized. In the extreme cases, when the ensemble is positioned at the

beginning or the end of the segment, no leading or trailing edge, respectively, is necessary to delineate the ensemble. In these cases with reduced gap sizes, the

number of spines corresponding to the difference between regular and reduced gap size add to the number of spines outside ensemble and gaps over which the

inputs are distributed that are not contained in the ensemble. (D) Example of the dependence of the maximal cluster size M on the total number of inputs n for a

gap/nearest neighbor distance criterion of 2. (E) Examples of all ensemble types possible with a total of n = 5 inputs and a gap/nearest neighbor distance criterion of 2.

I now define an ensemble type as the subset of ensembles
having M synapses, of which m or more receive input from
the presynaptic population of interest. The rationale behind this
is that any specific biological mechanisms that depends on the
number of clustered inputs can be assumed non-operational
with fewer but operational with more inputs than the particular
number. The likelihood to observe a particular ensemble type,
which I refer to as specific ensemble likelihood (SEL), is then

SELN,n

(

M,m, g
)

=
min(n,M)
∑

i=m

pN,n

(

M, i, g
)

(8)

Alternative Step 2: Calculation of the
Specific Ensemble Likelihood for Branched
Trees
This section concerns the extension of the approach from
analyzing individual dendritic segments to analyzing a branched
tree of segments up to the whole dendritic tree of a neuron.
This extension comprises a modification of Equation (7) for the
likelihood for finding an ensemble within an individual segment
of the tree and in addition calculating the likelihood for finding
ensembles located on the individual branching points between
the segments.

The total number Ntot of spines across all segments in the tree
is

Ntot =
∑

x

Nx (9)

where the index x denotes the branch indices as defined in
Figure 6A. Likewise the total number ntot of inputs on the tree
is

ntot =
∑

x

nx (10)

For calculating the likelihood to find an ensemble in an
individual segment of the tree in analogy to Equation (7) requires
distinguishing two cases: The segment arising at the soma and
the terminal segments have at one end a branch point and at
the other end terminate without any further synapses existing
beyond that point (e.g., segments x= 1, 3, 4, 6, 8, 9 in Figure 6A).
All other segments lie between two branch points such that
further synapses exist beyond their endpoints (e.g., segments
x = 2, 5, 7 in Figure 6A). These synapses have to be taken
into account when determining the leading or trailing gap of
ensembles located close to the segment ends. I term the end
of a segment, where no further synapses existing beyond that
point closed end. Examples are shown in Figure 6B top row. The
closed end condition corresponds to the leading and trailing gap
conditions in the treatment of individual segments (section Step
2: Calculation of the Specific Ensemble Likelihood on Individual
Segments) and is contained in the sum in the first term of
Equation (7) that describes the number of ways inputs can be
arranged outside ensemble and gaps. In the other case, I term the
end of a segment open end, where further synapses exist beyond
that point on the adjacent segments at the given branch point.
Examples are shown in Figure 6B bottom row. In the open end
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FIGURE 6 | Combinatorial analysis of input ensemble likelihood in branched trees. (A) Example of a branched tree of segments. Segment number 1 has a closed end
at the soma and segments number 3, 4, 6, 8, and 9 at their terminal ends. All other segments have open ends on both sides. The branch point between segment

numbers 1, 2, and 5 is indicated by a dotted square. (B) Arrangement of the gaps delimiting an ensemble in the closed end (top) and open end condition (bottom).

Example with ensemble size M = 6 and gap size g = 2. Red bracket, ensemble; black bracket, spines outside ensemble and gaps; dotted line, gap. In the open end
condition the gap extends beyond segment x to the adjacent segments y and z. (C) Example of all possible placements of an ensemble of size M = 6 at a branch

point. Ensembles are marked here by the spines that receive the specific input at the edges of the ensemble. Note the cases where the ensembles cover only two or

all three segments.

condition the gap has to extend into both adjacent segments to a
degree that depends on how close the ensemble is located to the
end point of the segment. If i spines of the gap of size g are located
on the segment itself then gaps with g-i spines have to be located
on each of the adjacent segments. The number of spines that are
part of the gap is therefore:

2
(

g − i
)

+ i = 2g − i

To arrive at the number of ways inputs can be arranged outside
ensemble and gaps in the open end case, this equation replaces the
stepwise reduced number g-i of gap spines in the sum in the first
term of Equation (7). Thus the likelihood psx to find an ensemble
withM andm on segment x is in analogy to Equation (7) with all
inputs not contained in the ensemble being distributed over the
whole tree outside ensemble and gaps:

psx
(

M,m, g
)

=



δclosed end
x

g−1
∑

i=0

(

Ntot −M − g − i

ntot −m

)

+ δ
open end
x

g−1
∑

i=0

(

Ntot −M − 2g + i

ntot −m

)

+ (Nx −M − 2+ 1)

(

Ntot −M − 2g

ntot −m

)





(

M − 2

m− 2

)

(

Ntot

ntot

) (11)

with

δclosed end
x =

{

0 if dendritic segment is not an initial/terminal segment

1 if dendritic segment is an initial/terminal segment

and

δ
open end
x =

{

1 if dendritic segment is an initial/terminal segment

2 if dendritic segment is not an initial/terminal segment

It has to be noted, that Equation (11) assumes in the open
end condition that the gap extending onto adjacent segments
is completely contained in these segments and does not extend
further to the next segments, i.e., for the number of spinesNy and
Nz on the adjacent segments holds Ny ≥ g and Nz ≥ g. However,
if gaps would have to extend to further segments Equation (11)
would still yield an upper estimate of the likelihood, because
the fraction of the gap extending further would cover two
segments instead of one such that the number of ways of
distributing the synapses outside of the ensemble would be
reduced. Treating such special cases explicitly in Equation (11)
would be complex and blur the presentation of the principle.
Nevertheless, algorithms for calculation the likelihoods from data
should account for such cases.

Ensembles located at branch points occupy at least two or all
three adjacent segments. The ensemble definition at a branch
point is as defined for ensembles along a segment that the
ensemble contains M spines in total. The cases that the given
ensemble covers only two or all three segments have to be
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distinguished. If the ensemble spans two segments, it has two
ends and the first and last spine need to receive the specific input
as in Equation (3b). The number of ways an ensemble of size M
can span two segments at a branch point is given by (see example
withM = 6 in Figure 6C)

2 (M − 1) +M − 1 = 3 (M − 1)

This is derived by considering that there are M−1 ways to place
an ensemble of size M on a segment such that ≥1 spines are
located on one of the adjacent segments and multiplying this by
two since there are two adjacent segments (first term on left hand
side). In addition there areM−1ways for placing the ensemble on
these two segments alone (second term on left hand side). If the
ensemble spans three segments, it has three ends and three spines,
one at each end, need to receive the specific input in analogy to
Equation (3b). The number of ways an ensemble of size M can
span three segments at a branch point is given by the binomial
coefficient (see example withM = 6 in Figure 6C)

(

M
3

)

=
M!

3! (M − 3)!
=

(M − 2) (M − 1)

2

The likelihood p
bp
x,y,z to find an ensemble with parametersM and

m at the branch point between segments x, y, z is with all inputs
not contained in the ensemble and gaps being distributed over
the whole tree outside ensemble and gaps:

p
bp
x,y,z

(

M,m, g
)

=
(

3 (M − 1)

(

M − 2

m− 2

)

+
(M − 2) (M − 1)

2

(

M − 3

m− 3

))

(

Ntot −M − 3g

ntot −m

)

(

Ntot

ntot

)

(12)

The first term in the sum of Equation (12) covers the case of
two occupied segments and the second term the case of three
occupied segments. In any case three gaps, one on each of the
adjacent segments, are required, such that the inputs not part
of the ensemble have to be distributed over all spines outside
the ensemble and three gaps (compare Equation 6). Similar to
Equation (11) as discussed above, Equation (12) assumes that the
ensemble and the adjoining gaps are completely contained in the
segments at the branch point and do not extend via neighboring
branch points to the next segments. Algorithms for calculating
the likelihoods from data should account for such cases.

Summation of Equations (11) and (12) over all segments and
branch points yields the likelihood to find an ensemble with M
andm on the tree:

ptreeNtot ,ntot

(

M,m, g
)

=
∑

x

psx
(

M,m, g
)

+
∑

xyz

p
bp
x,y,z

(

M,m, g
)

(13)

In analogy to Equation (8) the specific ensemble likelihoodwithin
the tree is given by

SELtreeNtot ,ntot

(

M,m, g
)

=
min(ntot ,M)
∑

i=m

ptreeNtot ,ntot

(

M, i, g
)

(14)

Step 3: Classification of Ensembles as
Cluster According to Ensemble Likelihood
Criterion
In this step, ensembles are classified as clusters if their specific
ensemble likelihood is below or equal to an empirical upper
likelihood threshold. The rationale is that local aggregations of
inputs are considered as clusters only if their probability to
occur by chance is low. In Gökce et al., we used an upper
likelihood threshold of 1% to classify input ensembles as clusters.
In a similar approach a likelihood threshold of 2.5% was
proposed (Bendels et al., 2010). The appropriateness of the
chosen likelihood threshold can be tested based on the overall
cluster likelihood calculation (Step 4) and statistically testing the
hypotheses of random vs. clustered input distributions (step 5).

Apart from the likelihood threshold, classification as cluster
might be restricted by additional criteria. For example, the
additional rules can be imposed, e.g., that clusters have to
contain at least a certain number of inputs, e.g., 3 inputs,
and have at least a certain size. Furthermore, in cases where
ensembles encompasses an entire dendritic segment, these can
be excluded from classification as cluster. In other words, subsets
of ensembles, which would qualify as cluster based on the specific
ensemble likelihood threshold, but have parametersM andmwith
N ≥M ≥ N-2g andm=n would be excluded.

Step 4: Calculation of the Overall Cluster

Likelihood
The forth step is concerned with the likelihood to observe
any cluster on a given dendritic segment or branched tree,
which I refer to as overall cluster likelihood (OCL). This
likelihood is determined by considering all possible ensemble
types, calculating their specific ensemble likelihoods, and adding
up those that are equal or below the specific ensemble likelihood
of the cluster actually present:

OCLN,n

(

M∗,m∗, g
)

=
(n−1)· g+1
∑

M=2

min(n,M)
∑

m=2

SELN,n

(

M,m, g
)

· δN,n

(

M,m, g
)

δN,n

(

M,m, g
)

=







1 if SELN,n

(

M,m, g
)

≤ SELN,n

(

M∗,m∗, g
)

< SELN,n

(

M,m− 1, g
)

0 otherwise

(15)

For calculating OCLNtot,ntot for a branched tree SELN,n in
Equation (15) is replaced by SELNtot,ntot from Equation (14) and
N and n are replaced by the total number of spinesNtot and inputs
ntot , respectively. The upper limit in the outer sum is the largest
ensemble size M that is possible for any given total number of
inputs n and gap size g (see Figure 5D). The factor δN,n(M,m,g)
takes care for not counting any arrangement more than once
since the specific ensemble likelihood of a particular ensemble
type defined by M and m is the sum of the probabilities over
all ensembles with M spines and m, m+1, m+2 . . . ≤ M inputs
(Equations 8 or 14). Thus from all specific ensemble likelihoods
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TABLE 1 | Specific ensemble likelihoods for the example in Figure 5 as basis for the calculation of the overall cluster likelihood.

m\ M 2 3 4 5 6 7 8 9

2 0.37 0.38 – – – – – –

3 – 0.046 0.088 0.12 – – – –

4 – – 0.0040 0.01 0.021 0.034 – –

5 – – – 1.8e−04 7.0e−04 0.0017 0.0033 0.0056

Bold, ensemble likelihood values ≤ 1% that are added over all M to yield the overall cluster likelihood.

below the cluster criterion for any cluster of size M only the
largest has to be considered, i.e., the one for the smallest number
of inputs. This is because for a given cluster size M the specific
ensemble likelihood decreases with increasing number of inputs
m. In Figure 5E, all the possible ensemble types for the example
with N = 30, n = 5 and gap/distance criterion of g = 2 are
shown. The smallest ensemble has M = 2 and the largest, that
is possible with n = 5 and a gap/distance criterion of 2, has
M = 9. Table 1 lists the specific ensemble likelihoods of these
ensembles for different numbers of inputs. Ensembles of M = 4
spines with m = 4 inputs, of M = 5 spines with m = 4 or 5
inputs, and of M = 6 to 9 spines with m = 5 inputs each have
specific ensemble likelihoods below 1% and thus qualify as clusters.
For calculating the overall cluster likelihood the specific ensemble
likelihoods added up over all M’s are only those below 1% for
the smallest m for each M (Table 1, those in bold) in order not
to account for any cluster arrangement twice (e.g., in the case
of M = 5 in Table 1). In the example in Figure 5 and Table 1,
the overall cluster likelihood is 0.0253 (sum of bold numbers in
Table 1).

Step 5: Comparison of the Observed and
Expected Numbers of Dendritic Segments
With an Input Cluster
In the final step, the overall cluster likelihood to observe any
type of cluster on a given dendritic segment or branched tree
is used to calculate the probability to find the number c of
observed segments/trees containing a cluster in a data set of S
analyzed segments/trees. Since the overall cluster likelihood in
different segments/trees with different types of clusters differ,
I use the maximum overall cluster likelihood OCLmax in the
data set. The probability to observe exactly c segments/trees
containing clusters is then given by binomial statistics:

p (c) =
(

S
c

)

OCLmax
c(1− OCLmax)

S−c (16)

The probability to observe at least c segments/trees containing a
cluster in the data set of S segments/trees is then

P =
S
∑

x= c

p (x) =
S
∑

x= c

(

S
x

)

OCLmax
x(1− OCLmax)

S−x (17)

This represents also the P value of the binomial test for the
null hypothesis that the number of segments/trees containing a
cluster arises from a random distribution (Yadav et al., 2012).

It is possible that individual overall cluster likelihood values
occur in a dataset that are so high that the probability to observe
the given number of segments/trees with a cluster lies above the
significance threshold (e.g., Gökçe et al., 2016). In such case, the
observation of clusters might still be statistically significant. This
can be tested in the following way: The OCL values are sorted
in ascending order. Then the probability to obtain at least c
segments/trees containing a cluster with anOCL≤OCLmax(c) in
the data set of S segments/trees is calculated by binomial statistics
analogous to Equation (16) with OCLmax(c) as upper bound on
OCL:

P(c,OCLmax) =
S
∑

x= c

(

S
x

)

OCLmax(c)
x(1− OCLmax(c)

)S−x

(18)
Plotting P against c shows how many segments/trees with
a cluster lie below the significance level for supporting the
hypothesis of a clustered non-random distribution.

Step 6: Analysis of Parameters and
Characteristics of Individual Clusters
Once a clustered distribution is confirmed, the quantitative
characterization of the individual identified clusters is performed.
The two main parameters are the number of inputs contained in
the cluster and the length the cluster extends along the dendrite,
which are relevant in the context of dendritic integration and
the arithmetic rules of synaptic summation. In addition, the
number of total spines/synapses in the cluster, i.e., including
both, the spines/synapses with identified and unidentified input,
is of interest with respect to the potential combination and
integration of the specific input with other inputs. Morphological
spine/synapse properties, such as spine head size and neck length,
as well as spine/synapse density within compared to outside of
clusters are parameters related to structural plasticity and synapse
strength. Finally, the location and distance of clusters on the
dendrite relative to the soma, and whether they are randomly or
systematically distributed, plays a role in dendritic integration.

Transformation to Distance Based
Treatment for the Case of Individual
Segments
For clarity of the mathematical concepts the equations above
were developed for what I call the order based case, where
synapses/inputs are simply counted along the dendrite. In reality,
synapses and spines are not uniformly placed along the dendrite,
but rather with variable nearest neighbor distances and thus
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varying density. To take into account the actual distances
between synapses, I introduce here the transformation of the
above equations to the distance based case. The definition of an
ensemble type in the order based case above was that of a subset of
ensembles havingM synapses, of which m or more receive input
from the presynaptic population of interest. Now in the distance
based case this definition of ensemble type transfers to the subset
of ensembles of length ≤ lM , which contain ≥ M spines, of
which ≥ m receive the specific input. With this definition an
equation analogous to Equation (7) can be derived. This is done
by determining all positions along the dendritic segment, where
the conditions of the ensemble definition are satisfied. This
depends on the local spine densities and provides numbers of
spines located in the ensemble and in the gaps. Based on these
numbers the number of possible arrangements can be calculated.
In principle it is like moving along the dendritic segment spine
by spine like for Equation (7) but now checking also whether the
spatial “constraints” are obeyed, i.e., no responsive or no spines
at all in the gaps of certain length before and after an ensemble of
certain length with m or more responsive spines (Figure 7):

pN,n
(

lM ,m, lg
)

=





N
∑

i=1

(

M
lM
i (m) − 2

m− 2

)(

N −M
lM
i (m) − g

lg
i − h

lg
i

n−m

)





1
(

N

n

)

(19)

Where the number of spines in an ensemble of length lM starting
with the spine at position di is

MlM
i (m) =

{

number of spines in
[

di, di + lM
]

if number of spines in
[

di, di + lM
]

≥m

0 otherwise

and the number of spines g and h in the trailing and leading gaps
of length lg , respectively, are

g
lg
i =

{

number of spines in
[

0, di
]

if di ≤ lg
number of spines in

[

di − lg , di
]

if di > lg

h
lg
i =

{

number of spines in
[

di + lM , di + lM + lg
]

if di + lM + lg < dN
number of spines in

[

di + lM , dN
]

if di + lM + lg ≥ dN

The gap length corresponds to the nearest neighbor distance
criterion lg = 1crit since an ensemble or cluster is delimited by
those inputs, of which the prior or following input is further away
than the nearest neighbor distance criterion.

With Equation (19) the specific ensemble likelihood for the
distance based case becomes

SELN,n

(

lM ,m, lg
)

=
min(n,M)
∑

i=m

pN,n

(

lM , i, lg
)

(20)

The criterion for excluding ensembles as apparent clusters for
the reason of encompassing a whole dendritic segment (compare
above step 3) becomes dN - d1 ≥ lM ≥ dN - d1 - 2 lg andm= n.

The overall cluster likelihood in the distance based case
becomes

OCLN,n

(

l∗m,m
∗, lg

)

=
∑

lM

min(n,M)
∑

m=2

SELN,n

(

lm,m, lg
)

· δN,n

(

lM ,m, lg
)

(21)

δN,n

(

M,m, g
)

=







1 if SELN,n

(

lM ,m, lg
)

≤ SELN,n

(

l∗M ,m∗, lg
)

< SELN,n

(

lM ,m− 1, lg
)

0 otherwise

Where the outer sum is over all possible lM with the restriction
that any set of spines in any interval [di, di + lM], which satisfies
more than one lM , is counted only once.

Equations (16) and (18) for calculating the probability of
finding the number of observed dendritic segments with a
synapse cluster (step 5) remain the same in the order and
distance based cases. The same applies for the characterization
and quantification of cluster parameters in step 6.

Transformation to Distance Based
Treatment for Branched Trees
In the transformation of the analysis of branched trees
(section Alternative Step 2: Calculation of the Specific Ensemble
Likelihood for Branched Trees) to the distance based treatment,
segments and branch points are separately dealt with again. The
likelihood equation for segments can be derived by extending
Equation (19) for including the open end condition (see example
in Figure 7C):

psx
(

lM ,m, lg
)

=

(

N
∑

i=1

(

MlM
i (m) − 2

m− 2

)

(

N −MlM
i (m) − g

lg
i − h

lg
i

n−m

))

1
(

Ntot

ntot

)

(22)

Where the number of spines in an ensemble of length lM starting
with the spine at position di is as in Equation (19)

MlM
i (m)

=















number of spines in if number of spines in
[

di, di + lM
] [

di, di + lM
]

≥ m

0 otherwise

and the number of spines g and h in the trailing and leading gaps
of length lg , respectively, are as in Equation (19) for the closed end
condition with addition of the open end condition:
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g
lg
i =







































number of spines on segment x in
[

0, dxi
]

if dxi ≤ lg and closed end

sum of spines on segment x in
[

0, dxi
]

,

segment y in
[

d
y
N − lg + dxi , d

y
N

]

and segment z in
[

dzN − lg + dxi , d
z
N

]

if dxi ≤ lgand open end

number of spines on segment x in
[

dxi − lg , d
x
i

]

if dxi > lg

h
lg
i =







































spines on segment x in
[

dxi + lM , di + lM + lg
]

if dxi + lM + lg < dxN

spines on segment x in
[

dxi + lM , dxN
]

if dxi + lM + lg ≥ dxN and closed

sum of spines on segment x in
[

dxi + lM , dxN
]

,

segment y in
[

0, lg −
(

dxi + lM − dxN
)]

andsegment z in
[

0, lg −
(

dxi + lM − dxN
)]

if dxi + lM + lg ≥ dxN and open

In the open end condition the fraction of the length of the gap
lg that has to extend beyond segment x lies on the adjacent
segments y and z. At the trailing gap this is lg-d

x
i and at the

leading gap lg-(d
x
i+lM- dxN).

The likelihood for an ensemble located at the branch point
between segments x, y, and z is

p
pb
x,y,z

(

lM ,m, lg
)

=





Nx ,Ny ,Nz
∑

i,k,j

(

MlM
i,j,k (m) − δi,j,k

m− δi,j,k

)

(

Ntot −MlM
i,j,k (m) − gxi − g

y
j − gz

k

ntot −m

)





1
(

Ntot

ntot

)

(23)

with the constraint

d′xi + d
′y
j + d′zk ≤ lM

where the d
′
denote spine distances from the branch point and

not from the soma; with the number of spines in the ensemble

M
lM
i,j,k

(m) =






























sum of spines on segment x in
[

0, d′xi
]

,

segment y in
[

0, d
′y
j

]

and segment z in
[

0, d′z
k

]

if d′xi + d
′y
j + d′z

k
≤ lM

and sum of spines ≥ m

0 otherwise

with distinction of the cases where only two or all three segments
at the branch point are spanned by the ensemble

δi,j,k =

{

3 if d′xi > 0 and d
′y
j > 0 and d′z

k
> 0

2 otherwise

and with the spines contained in the gaps on each segment

gxi = spines on segment x in
[

d′xi , d
′x
i + lg

]

g
y
j = spines on segment y in

[

d
′y
j , d

′y
j + lg

]

gzk = spines on segment z in
[

d′zk , d
′z
k + lg

]

Summation of Equations (22) and (23) over all segments and
branch points, respectively, yields the likelihood to find an
ensemble of a certain length with m or more inputs on the tree:

pNtot ,ntot

(

lM ,m, lg
)

=
∑

x

psx
(

lM ,m, lg
)

+
∑

xyz

p
pb
x,y,z

(

lM ,m, lg
)

(24)

Similar to Equations (11, 12) in section Alternative Step
2: Calculation of the Specific Ensemble Likelihood for
Branched Trees, Equation (22) assumes that gaps do not
extend beyond the directly adjacent segments in the open
end condition and Equation (23) that the ensemble and the
adjoining gaps are completely contained in the segments
at the branch point and do not extend via neighboring
branch points to the next segments. Algorithms for
calculating the likelihoods from data should account for such
cases.

In analogy to Equations (20) and (21) the specific ensemble
likelihood within the whole tree in the distance based case is given
by

SELtreeNtot ,ntot

(

lM ,m, lg
)

=
min(ntot ,M)
∑

i=m

pNtot ,ntot

(

lM , i, lg
)

(25)

And the overall cluster likelihood becomes

OCLtreeNtot ,ntot

(

l∗M ,m∗, lg
)

(26)

=
∑

lM

min(ntot ,M)
∑

m=2

SELNtot ,ntot

(

lM ,m, lg
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· δNtot ,ntot

(
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)

δNtot ,ntot

(
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)

=







1 if SELNtot ,ntot

(

lM ,m, lg
)

≤ SELNtot ,ntot

(

l∗M ,m∗, lg
)

< SELNtot ,ntot

(

lM ,m− 1, lg
)

0 otherwise
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FIGURE 7 | Transformation to the distance based case. (A) Example of a dendritic segment with irregularly spaced spines. 5 spines receive the specific input (red), 4

of which are part of an ensemble (red bracket), because they comply with the nearest neighbor distance criterion 1crit (indicated by the blue bar). The length of the

leading and trailing gaps, which flank the ensemble, correspond to the nearest neighbor distance criterion. No spine located within these gaps receives the specific

input. (B) All possible placements of the given ensemble in (A) with length lM and m or more spines onto the dendritic segment. These are obtained by moving the

particular ensemble length from spine to spine (i = 1, 2, 3, … 23). Ensembles which fulfill the condition that they contain m or more spines are marked with red and

others with gray brackets, respectively. (C) Illustration of the open end condition in the distance based case. Left, situation when the ensemble is located at the

beginning of segment x and the gap extends in its full length onto segments y and z. Right, the ensemble on segment x begins with the spine at a distance of d2 such

that part of the gap is located on segment x and gaps of the remaining length are located on segments y and z. (D) Illustration of an ensemble at a branch point in the

distance based case. The ensemble occupies all three segments x, y and z. Its total extend, i.e., the summed distances of the limiting spines relative to the branch

point d’x2 + d’
y
3 + d’z2, has to fulfill the condition of being smaller or equal to the ensemble length lM. The ensemble is delimited on each segment by a gap.

Comparison of the Combinatorial
Approach and the Likelihood Estimation by
Reshuffling
The combinatorial approach provides an analytical solution that
yields exact likelihood values. For comparison the expected error
of ensemble likelihood estimates obtained by random reshuffling
are provided in Figure 4B. For example, for a pattern with a
likelihood of p = 0.01, a value that has been used to classify
ensembles as clusters (see Step 3: Classification of Ensembles
as Cluster According to Ensemble Likelihood Criterion), one
million rounds of reshuffling are required for achieving an
expected error of±1% for the likelihood estimate. Typically only
100 to 10,000 rounds of reshuffling are performed (Takahashi
et al., 2012; Yadav et al., 2012; McBride and DeBello, 2015).
Such numbers of reshuffling need to be scaled up by factors
of at least 100 to 10,000 to arrive at errors of ±1% or less.
While increasing the number of reshuffling rounds reduces
the expected error of the likelihood estimate, it increases
computation time. For comparing the combinatorial approach
and random reshuffling with respect to computation time,
I used as example data the top right cell in Figure 1 and
the single ensemble/cluster on the upper segment indicated
by the gray rectangle in Figure 8. Code was programmed in
MATLAB (see Supplementary Material) running on a standard
desktop computer. The computation time with the presented

combinatorial approach was 1.5± 0.2 s (n= 10) for determining
the ensemble likelihood within the upper segment. The ensemble
likelihood value is 0.0034 (Figure 8). Therefore, more than one
million rounds of reshuffling are required to ensure an error
of less than 1% when estimating the likelihood by reshuffling
(Figure 4B, line labeled with p = 0.01). One million rounds of

reshuffling with ensemble detection and comparison of ensemble

parameters to the parameter set of interest in each round

required 85 ± 1 s (∼ 1.4min; n = 10). The estimated likelihood

value was (3.40 ± 0.07)·10−3 in line with the predicted error

(Figure 4B). Thus in comparison, reshuffling takes a factor
of about 50 longer and yields only an estimate for ensemble

likelihood compared to the combinatorial approach. As another

example, the analysis was performed for the same ensemble,
but now for the whole mapped dendritic tree of the top right

cell in Figure 1 (and see Figure 8). The combinatorial approach

took 9.1 ± 0.1 s (n = 10) of computation time and yielded
an ensemble likelihood of 6.82·10−4. To estimate such low
likelihood with an error of less than 1% requires 10 million
rounds of reshuffling. This took 1,172 ± 4 s (∼20min) of

computation time and yielded a likelihood estimate of (6.62

± 0.04)·10−4. In this case reshuffling took about a factor of

130 longer than the combinatorial approach. In conclusion
the combinatorial approach provides a significant gain both in
accuracy and computation time.
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FIGURE 8 | Illustration of cluster detection and analysis step 1–4. Cluster detection and analysis step 1–4 are illustrated in sequence for the dendritic segment shown

on the right. Step 1 detects three ensembles (1crit = 10µm; gray boxes) as potential clusters. Step 2 provides the specific ensemble likelihood for each ensemble

(red numbers). The given values were obtained with the approach for individual segments. When the whole mapped area is considered the values are

SELtree = 6.8·10−4, 0.35, 0.26 (top semgment right, left, bottom segment). Step 3, only the ensemble nearest to the soma on the top segment has a specific
ensemble likelihood below the criterion of 1% and is classified as cluster (red star). In step 4 the overall cluster likelihood for the cluster is calculated, which is used

together with the overall cluster likelihoods of all clusters in the data set for statistically testing the hypothesis that overall the spatial organization of inputs is clustered

(step 5, not illustrated). Finally, parameters like number of inputs, length along the dendrite etc. are determined for all clusters (step 6, not indicated). The cluster in this

example contains 7 inputs and spans 17.5µm of dendritic length.

DISCUSSION

The spatial organization of synaptic inputs on the dendritic tree
of a postsynaptic neuron is considered to play an important
role in dendritic integration (Losonczy and Magee, 2006;
Branco and Hausser, 2011). While the first data on the spatial
arrangement of synapses on the dendrites of hippocampal or
cortical pyramidal cells became available (e.g., Chen et al., 2011;
da Costa and Martin, 2011; Kim et al., 2011; Kleindienst et al.,
2011; Takahashi et al., 2012; Rah et al., 2013; Druckmann
et al., 2014), methods for a systematic quantitative analysis
of the patterns of the spatial organization of synaptic inputs
on dendrites are not well developed. One type of spatial
organization that is of particular interest are clusters of synaptic
inputs. These might give rise to superlinear summation during
synchronous activity (e.g., Mel, 1993; Larkum and Nevian,
2008; DeBello et al., 2014) and are thought to contribute
to learning and memory (Govindarajan et al., 2006; DeBello,
2008; Kastellakis et al., 2015). Here I introduced an approach
to determine the likelihood to observe cluster of synapses
based on combinatorial analysis. The rationale is that in a

random distribution of synapses, clusters of synapses occur
with low probability. In contrast, if synapse cluster formation is
mediated by some specific mechanism then they are expected
to occur with a higher likelihood than predicted based on a
random distribution. The first advantage of the combinatorial
approach is that it is superior to simulations for the small
likelihoods in question, because simulations require large
numbers of reshuffling rounds in order to achieve sufficient
accuracy and reliably for estimating small likelihoods. The
second advantage is that it goes beyond current approaches
for simply testing for a clustered vs. random distribution by
allowing to identify and to characterize clusters. The new
approach proceeds in six steps by first identifying ensembles
of synapses, then calculating their likelihood predicted by a
random distribution, classifying ensembles as clusters based on
a likelihood threshold, calculating the likelihood to find any type
of synapse cluster on the dendritic segments as predicted by
a random distribution, using the latter for binomial statistics
in order to test the hypotheses whether or not the inputs
are indeed clustered, and finally characterizing the obtained
clusters.
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Published data on the spatial organization of synaptic
inputs has been quantified in various ways so far. At the
level of the whole dendritic tree the distribution of synapse
distances from the soma has been analyzed (Rah et al., 2013;
Druckmann et al., 2014) or similarly a modified Sholl analysis
has been applied (Kleindienst et al., 2011). Furthermore, it was
quantified whether the synapses are distributed randomly or in
a structured way among dendritic segments (Druckmann et al.,
2014). The approach toward the fine structure of the synapse
distribution has been in general to determine the distribution
of nearest neighbor synapse distances (e.g., McBride et al.,
2008; Takahashi et al., 2012; Rah et al., 2013; Druckmann
et al., 2014). A left shift of this distribution, i.e., toward
smaller nearest neighbor distances, compared to the nearest
neighbor distribution obtained by simulations with random
placement, suggest clustering of synapses (Takahashi et al., 2012;
Rah et al., 2013; Druckmann et al., 2014). Synapse clustering
has been analyzed further by defining synapse ensembles or
clusters as groups of synapses, where the nearest neighbor
distances are below a certain threshold and comparing the
numbers of observed clusters in the data and of expected
clusters in simulated random distributions (Takahashi et al.,
2012; Druckmann et al., 2014). Alternatively, a clustering index
using graph theory has been calculated as ratio of the number
of connected synapse pairs based on a distance criterion over
all possible synapse pairs within a dendritic neighborhood (Rah
et al., 2013).

However, so far no methods have been described, which allow
to identify and assess individual clusters. To identify ensembles
of synapses, which potentially represent clusters, I propose to
use a nearest neighbor distance criterion as has been applied
before (Takahashi et al., 2012; Druckmann et al., 2014). The
particular value can be derived from the length scales of synaptic
interactions during dendritic integration (Losonczy and Magee,
2006; Branco and Hausser, 2011) or plasticity induction (Harvey
and Svoboda, 2007). Of all such ensembles, only those are
classified as cluster, which would occur with a low likelihood
in a random distribution. This is similar to the approach by
Bendels et al. (2010) for the detection of presynaptic input
sites with laser-scanning photostimulation, which assumes that
one presynaptic cell leads to several neighboring “clustered”
activation sites, the number of which is significantly larger
than expected in the case of statistical independence. While
the threshold on the ensemble likelihood for classification
as cluster is in principle arbitrary, it leads to a statistically
testable hypothesis by calculating the likelihood of observing
any type of cluster on a specific segment. With this likelihood
and binomial statistics, one can calculate the probability for
finding at least the number of observed dendritic segments that
carry an input cluster, among the total number of analyzed
dendritic segments. This probability corresponds to the p-value
for testing the hypotheses whether or not inputs are organized
in clusters (Yadav et al., 2012). Once synapse clusters are
identified, their properties such as length, number of inputs etc.
can be analyzed and for example compared to the parameters

reported in the context of dendritic integration (e.g., Losonczy
and Magee, 2006; Branco and Hausser, 2011) or predicted by
theories on synaptic plasticity during learning (Kastellakis et al.,
2016).

This method can be applied to any data describing the
distribution of specific anatomically or genetically defined
synapses on the dendritic tree as obtained by conventional
or large scale electron microscopy analysis (e.g., Bock et al.,
2011; Briggman et al., 2011; da Costa and Martin, 2011;
Morgan et al., 2016), GFP reconstitution across synaptic partners
(GRASP, e.g., Druckmann et al., 2014), array tomography
(e.g., Rah et al., 2013) or optogenetics in combination with
2-photon calcium imaging in dendritic spines (Little and Carter,
2012; Macaskill et al., 2012; Gökçe et al., 2016). Likewise,
it can be applied to data on the distribution of functionally
defined synapses on the postsynaptic dendrite (e.g., Chen
et al., 2011; Kleindienst et al., 2011; Takahashi et al., 2012;
Iacaruso et al., 2017) as well as clustered spine formation
and compartmentalized synaptic plasticity during learning and
experience-dependent plasticity (Makino and Malinow, 2011;
Fu et al., 2012). In general, it can be applied to any other
data regarding the spatial organization of structures along a
one dimensional axis such as for example the distribution of
presynaptic boutons along an axon (e.g., Schuemann et al.,
2013).

So far simultaneous synapse mapping of two or more different
types or cohorts of inputs has not been published to my
knowledge. Technically this is feasible using spectral variants
of Channelrhodopsin for distinguishing various inputs when
combining optogenetics and calcium imaging for mapping
functional synapses (Yizhar et al., 2011; Little and Carter,
2012; Macaskill et al., 2012; Klapoetke et al., 2014; Hooks
et al., 2015; Gökçe et al., 2016) or spectral variants of GFP
and other fluorescent markers when using GFP reconstitution
across synaptic partners (GRASP, Druckmann et al., 2014; Li
et al., 2016) or array tomography (Rah et al., 2013). Large-
scale reconstructions by electron microscopy will also provide
such data (e.g., Bock et al., 2011; Briggman et al., 2011; Morgan
et al., 2016). Functional mapping the responsiveness of individual
dendritic spines to specific sensory stimuli in vivo yields already
data, where different spine cohorts are distinguished (Jia et al.,
2010; Chen et al., 2011; Varga et al., 2011; Wilson et al., 2016;
Iacaruso et al., 2017; Scholl et al., 2017). Thus, in the future it
will be important to extend the presented approach to multiple
types of synaptic inputs for quantitatively analyzing their spatial
organization and mutual combination on the dendritic tree
of the target neuron in order to understand the structural
rules underlying the dendritic integration of multiple types of
inputs.
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