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Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful tool for in

vivo non-invasive whole-brain mapping of neuronal activity. Mn2+ enters active neurons

via voltage-gated calcium channels and increases local contrast in T1-weighted images.

Given the property of Mn2+ of axonal transport, this technique can also be used for

tract tracing after local administration of the contrast agent. However, MEMRI is still not

widely employed in basic research due to the lack of a complete description of the Mn2+

dynamics in the brain. Here, we sought to investigate how the activity state of neurons

modulates interneuronal Mn2+ transport. To this end, we injected mice with low dose

MnCl2 2. (i.p., 20 mg/kg; repeatedly for 8 days) followed by two MEMRI scans at an

interval of 1 week without further MnCl2 injections. We assessed changes in T1 contrast

intensity before (scan 1) and after (scan 2) partial sensory deprivation (unilateral whisker

trimming), while keeping the animals in a sensory enriched environment. After correcting

for the general decay in Mn2+ content, whole brain analysis revealed a single cluster

with higher signal in scan 1 compared to scan 2: the left barrel cortex corresponding to

the right untrimmed whiskers. In the inverse contrast (scan 2 > scan 1), a number of

brain structures, including many efferents of the left barrel cortex were observed. These

results suggest that continuous neuronal activity elicited by ongoing sensory stimulation

accelerates Mn2+ transport from the uptake site to its projection terminals, while the

blockage of sensory-input and the resulting decrease in neuronal activity attenuates

Mn2+ transport. The description of this critical property of Mn2+ dynamics in the brain

allows a better understanding of MEMRI functional mechanisms, which will lead to more

carefully designed experiments and clearer interpretation of the results.

Keywords: manganese-enhanced MRI, neuroimaging, brain connectomics, Mn2+ transport, barrel-cortex,

whiskers, sensory deprivation

INTRODUCTION

The dissection of neuronal pathways involved in specific brain networks underlying distinct
behavioral outputs is of outmost interest to modern neuroscience. Currently employed methods
in basic research include local brain injections of neuronal anterograde (Gerfen and Sawchenko,
1984; Veenman et al., 1992) and retrograde tracers (Arvidson, 1977; Schmued and Fallon, 1986;
Quattrochi et al., 1989) or viral vectors (Wickersham et al., 2007; Zeng et al., 2017; Zingg et al.,
2017). They rely on the investigation of the pathways post-mortem, via histological analysis of
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brain slices or cleared brains when employing CLARITY based
protocols for example (Chung et al., 2013). Moreover, these
methods are limited to pre-defined regions of interest, given that
they require targeted brain injections. A lot has been learned
about neuronal circuits employing these tools, however, a non-
invasive technique that would allow follow-up investigations
comparing the same animals overtime is still desirable. Here,
we focus on manganese-enhanced magnetic resonance imaging
(MEMRI) as a powerful alternative.

MEMRI has the potential to non-invasively map whole-brain
activity and identify structures related to a specific task (Chen
et al., 2007, 2013; Bissig and Berkowitz, 2009; Eschenko et al.,
2010; Bangasser et al., 2013; Hoch et al., 2013; Tang et al.,
2016; Laine et al., 2017) since Mn2+ enters active neurons
through voltage-gated calcium channels (Drapeau andNachshen,
1984) (e.g., Cav1.2; Bedenk et al., 2018), and is transiently
kept intracellularly (Gavin et al., 1990). Mn2+ shortens the T1

relaxation time of water (Spiller et al., 1988; Nordhøy et al., 2004)
leading to a contrast increase in T1-weigthed images (Pautler
and Koretsky, 2002). Brain structures that accumulate Mn2+

can be detected as hotspots in T1-weighted images, indicating
higher neuronal activity in these areas (Lin and Koretsky, 1997).
This technique modality is also referred to as activation-induced
manganese-dependent MRI (AIM-MRI) (Tambalo et al., 2009).
If the integrity of the blood-brain barrier is disrupted, even
dynamic accumulation of Mn2+ can be observed in a single
experimental session (DAIM-MRI) (Aoki et al., 2002).

MEMRI is also used for tract-tracing (for review see
Pautler, 2004), since Mn2+ can be axonally transported to
neuronal terminals after local MnCl2 administration (Sloot and
Gramsbergen, 1994; Pautler et al., 1998), revealing the underlying
circuitry of the injection target. During this process, Mn2+ may
cross one or more synapses (Pautler et al., 1998).

We have recently shown thatMn2+ preferentially accumulates
in projection terminals of the active entrance sites after systemic
MnCl2 administration (Bedenk et al., 2018). This feature of
Mn2+ allows for the combination of activity-induced dissection
of structures related to a specific behavior, and the connectomics
analysis of the neuronal pathways underlying these brain
structures. In that way, MEMRI does not only provide a snapshot
of the structures active in response to a given task, but also
reveals the downstream connectivity of these brain structures.
This results in a functional connectivity map. Furthermore, the
possibility of scanning the same animals at different time points
allows for dynamic investigations of the functional circuitry in
a within-subject fashion, thus reducing the number of required
subjects while increasing the power of such studies (3-Rs
principle for ethical use of animals in testing).

Despite those features, MEMRI is still not widely used,
partially due to toxic side effects, but also due to insufficient
information regardingMn2+ dynamics in the brain, confounding
the interpretation of the results. Some properties, such as activity-
dependent entrance into cells via voltage-gated calcium channels
(Drapeau and Nachshen, 1984), transient intracellular storage
(Gavin et al., 1990), and preferential accumulation in projection
terminals (Bedenk et al., 2018) have previously been reported.
However, other properties such as the influence of neuronal

activity state on intracellular Mn2+ storage and axonal transport
have been debated in the literature with inconclusive findings.
Therefore, a complete description of Mn2+ dynamics in the brain
is still lacking.

To address this, we conducted a longitudinal within-subject
study to investigate whether, following systemic injections of
MnCl2, the transport of Mn2+ is dependent on neuronal activity
elicited by sensory stimulation. As a model pathway for this
study we chose the whiskers-barrel cortex system, based on
its well-described and defined connectivity (for examples see
Chmielowska et al., 1989; Aronoff et al., 2010; Zakiewicz et al.,
2014) and the property of sensory stimulation by whisking
resulting in a strong and specific increase on neuronal activity
at the corresponding contralateral barrel cortex (Woolsey and
Van der Loos, 1970; Axelrad et al., 1976; Peron et al., 2015).
As such, we aimed to compare the contrast patterns observed
with MEMRI (i) following systemic MnCl2 injections in mice
with intact whiskers in enriched sensory housing conditions,
and (ii) after the same mice were partially sensory deprived
(unilateral whisker trimming). We hypothesized that ongoing
sensory input would lead to accelerated clearance of Mn2+ in the
corresponding barrel cortex with a concomitant relative increase
in Mn2+ accumulation in efferent structures.

MATERIALS AND METHODS

All experiments were carried out according to the
European Community Council Directive 2010/63/EEC. All
experimental procedures were approved by the local government
of Upper Bavaria (AZ 142-12). Every effort was done to keep the
number of experimental subjects at a minimum and to avoid
animal suffering.

Animals
Adult male C57BL/6Nmice (n= 9) from our local breeding stock
(Max Planck Institute of Biochemistry, Martinsried, Germany)
were kept in groups of 3 per cage with food and water ad
libitum, under a 12 h dark/light inverted cycle (lights on at
07h30), in a room with controlled temperature and humidity.
After transfer to the local animal facility at the Max Planck
Institute of Psychiatry, mice were allowed to get accustomed to
the holding conditions (standard macrolon cages type II; 267 ×

207 × 140mm, floor area 370 cm2; Tecniplast, Italy) for at least
10 days before experiments started. Mice were 3 to 4 months old
at the time of experiments. Intraperitoneal injections described
next were conducted between 16h00 and 20h00.

Drugs
- MnCl2 × 4H2O (Sigma-Aldrich, Steinheim, Germany) was
dissolved in 0.9% NaCl to a final concentration of 50mM
(4947.5 mg−500mL saline). The pH was adjusted to 6.95 with
HCl and NaOH.

- Ketamine+ xylazine solution: 138mg of ketamine and 6.8mg
of xylazine/10mL solution (0.9% NaCl).
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Experimental Procedures
Mice (3/cage) were housed in large type III cages (425 × 266
× 155mm, floor area 820 cm2; Tecniplast, Italy) enriched with
extra nesting material, plastic hair curlers of two different sizes (2
big, 36mm radius; 3 medium, 36mm radius), used as texturized
tunnels (textures on the inner and outer part), and a hanging
thread at the metal lid with a another small hair curler/tunnel
(28mm radius). Mice were kept in the same group under this 8.
condition for 8 days, until scanned (scan 1), followed by another
7 days of enriched housing and a second scan (scan 2).

All mice received intraperitoneal injections of 20 mg/kg
MnCl2 (Sigma-Aldrich, Steinheim, Germany) every 24 h for eight
consecutive days (8 x 20/24 h), in order tominimize physiological
side effects (adapted from Grünecker et al., 2010; Bedenk et al.,
2018). Mice were always weighted immediately before injections
to monitor animal’s health status and to guarantee the correct
dose would be injected every day.

On day 8, animals (3 per day) were individually anesthetized
with a mixture ketamine and xylazine (i.p., injection of 0.1
mL/10 g mice) and transferred to the MRI room. With ketamine
we aimed to block NMDA receptors (Anis et al., 1983) and
thus, to avoid further Mn2+ neuronal entrance (Itoh et al., 2008)
during the transport of the animals between rooms. For the
scanning procedure, see below.

Immediately after scan 1, and still under sedation, animals had
all their whiskers trimmed close to the skin on the left side of the
snout. The right side was untouched. After trimming, animals
were put back in the enriched cages. The trimming procedure
was repeated every 2 days (under light isoflurane anesthesia) to
avoid re-growth of the whiskers. After scan 1, animals received
no further MnCl2 injections.

On the last day of enrichment after scan 1, animals (3 per day)
were again individually anesthetized with a mixture of ketamine
and xylazine (i.p., injection of 0.1 mL/10 g mice) and transferred
to the MRI room for scan 2. For graphic representation of the
experimental design see Figure 1A.

Manganese-Enhanced Magnetic
Resonance Imaging (MEMRI)
Twelve to twenty-four hours after the last of 8 daily MnCl2
injections, a first MRI scanning took place (scan 1). Seven days
after scan 1, the second MRI scanning took place (scan 2).

All MEMRI experiments were conducted on a 7T Avance
Biospec 70/30 scanner (Bruker BioSpin, Ettlingen, Germany). In
brief, essentially as described before (Bedenk et al., 2018), mice
were fixed in supine position on a saddle-shaped receive-only
coil. Head fixation was achieved using a stereotactic device and
the frontal teeth were fixed with a surgical fiber. Once fixed
in the coil, mice were kept anesthetized with an isoflurane-
oxygen mixture (1.0–1.5 vol %, with an oxygen flow of 1.2–1.4
L/min) (Delta Select, Germany). A rectal thermometer was used
for body temperature monitoring (Thermalert TH-5, Physitemp
Instruments, USA). Body temperature was kept between 36.5
and 37.5◦C using a water-based heating pad. Pulse rate was
continuously monitored by a plethysmographic pulse oxymeter
(Nonin 8600V, Nonin Medical Inc., USA).

T1-weighted (T1w) brain images were acquired using a 3D
gradient echo pulse sequence [TR = 50ms, TE = 3.2ms, matrix
size = 128 × 106 × 106 zero filled to 128 × 128 × 128, field of
view (FOV) = 16 × 16 × 18 mm3, number of averages = 10,
resulting in a spatial resolution of 125× 125× 140.6 µm3].

MRI Data Post-processing
Images were reconstructed in Paravision (Bruker, BioSpin,
Ettlingen, Germany) and transferred to standard ANALYSE
format. Further post-processing was performed using SPM
8 (www.fil.ion.ucl.ac.uk/spm). T1w-images were bias-corrected
using the algorithm implemented in SPM8, minimizing the
entropy of the image histogram. In this way we could remove
intensity gradients introduced by differences in the distance
between surface receiver coil and the brain structures (Milchenko
et al., 2006). For each individual subject the brain was then
extracted using the RATS software (https://www.estima.com/
ratsmain.shtml). Images were spatially normalized in two steps:
In the first step, we generated a study-specific group template.
For this purpose, we initially normalized all individual brain
extracted images to a representative single subject image of good
quality. The study-specific template image was then calculated as
the mean image of all normalized images of this first step. In a
second normalization step, this study-specific template was then
used as the new target image for normalization. Doing so, we
aimed atminimizing individual regional discrepancies in the final
normalized images (Huang et al., 2010). Finally, all normalized
images were smoothed with a Gaussian kernel of eight-times
the image resolution (1.0 × 1.0 × 1.124 mm3 at full-width half
maximum). Data were analyzed using a paired t-test (scan 1
and scan 2), along with cerebrospinal fluid (CSF) intensities as
a nuisance regressor. To account for unspecific global intensity
changes due to Mn2+ wash-out between the two measurements
(Grünecker et al., 2013), global image intensities were added
as another nuisance regressor. Calculation of the global mean
regressor was automatically performed in the generation of the
ANCOVA model in SPM8: the global mean is calculated as the
mean intensity of all voxel inside the standard analysis mask. By
default, this mask includes all voxels which show an intensity
larger than 1/8∗(mean of all image voxels).

Definition of Brain Structures
All the brain structures shown in Figure 1 and listed in
Table 1 were defined using the Allen Mouse Brain Atlas
(Lein et al., 2006) (http://mouse.brain-map.org/experiment/
thumbnails/100048576?image_type=atlas) as a reference. The
only exception is the “islands of Calleja,” defined based on “10.
The Mouse Brain in Stereotaxic Coordinates” (Franklin and
Paxinos, 2007).

Statistics and Data Presentation
We interrogated the contrast scan 1 > scan 2 using a strict
family-wise error corrected threshold of pFWE,cluster < 0.05, with
a collection threshold of puncorrected < 0.001 (Woo et al., 2014),
which is in accordance with other MEMRI studies (Lutkenhoff
et al., 2012; Laine et al., 2017). Due to expected dilution of Mn2+

concentrations after cessation of the MnCl2 injections, relative
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FIGURE 1 | MEMRI contrast differences after unilateral sensory deprivation. (A) Graphic representation of experimental design. Mice were treated with MnCl2 (20

mg/kg; i.p.) for 8 days, while housed in a sensory enriched environment, until scan 1. Immediately after scan 1, mice had their left whiskers trimmed (procedure

repeated every 2 days) and remained in the sensory enriched environment for 7 more days without further MnCl2 injections, until scan 2. (B) Representative coronal

brain slices indicating the structures showing differential MEMRI signal in scans 1 and 2 (yellow: scan 1 > scan 2; blue: scan 2 > scan 1). Brain structures indicated in

the figure: 1, olfactory bulb; 2, orbital area; 3, islands of Calleja; 4, supplemental somatosensory area; 5, barrel cortex; 6, medial thalamic nuclei; 7, caudoputamen; 8,

temporal association area; 9, anterior pretectal nucleus; 10, nucleus of the optic tract; 11, anterolateral visual area; 12, perirhinal area; 13, temporal association area +

ectorhinal area + perirhinal area; 14, subiculum—ventral part; 15, dentate gyrus—ventral part; 16, pontine nuclei; 17, retrosplenial area; 18, superior vestibular

nucleus; 19, cerebellum. Plate numbers under brain slices correspond to the reference plate of the Allen Mouse Brain Atlas used to define the structures.
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TABLE 1 | List of structures showing differential MEMRI signal between scans 1 and 2, ipsi or contralateral to the reference point (left barrel cortex).

MEMRI signal 6= Barrel cortex efferent?*

Brain structures # on Figure 1 ipsi (L) contra (R) ipsi (L) contra (R)

Olfactory bulb—anterior 1

Olfactory bulb—posterior 1

Orbital area 2

Islands of Calleja (striatum) 3

Supplemental somatosensory area 4

BARREL CORTEX 5

Medial thalamic nuclei—anterior 6

Medial thalamic nuclei—posterior 6

Caudoputamen 7

Temporal association areas 8

Lateral posterior nucleus of the thalamus 6

Dorsal part of the lateral geniculate complex 6

Parafascicular nucleus 6

Posterior complex of the thalamus 6

Anterior pretectal nucleus 9

Lateral posterior nucleus of the thalamus 6

Nucleus of the optic tract 10

Anterolateral visual area 11

Perirhinal area 12

Ectorhinal area 13

Subiculum—ventral part 14

Dentate gyrus—ventral part 15

Pontine nuclei 16

Retrosplenial area 17

Superior vestibular nucleus (medulla) 18

Cerebellum 19

MEMRI signal 6= Barrel cortex efferent?*

Brain structures # on Figure 1 ipsi (L) contra (R) ipsi (L) contra (R)

Olfactory bulb—anterior 1

Olfactory bulb—posterior 1

Orbital area 2

Islands of Calleja (striatum) 3

Supplemental somatosensory area 4

BARREL CORTEX 5

Medial thalamic nuclei—anterior 6

Medial thalamic nuclei—posterior 6

Caudoputamen 7

Temporal association areas 8

Lateral posterior nucleus of the thalamus 6

Dorsal part of the lateral geniculate complex 6

Parafascicular nucleus 6

Posterior complex of the thalamus 6

Anterior pretectal nucleus 9

Lateral posterior nucleus of the thalamus 6

Nucleus of the optic tract 10

Anterolateral visual area 11

Perirhinal area 12

Ectorhinal area 13

Subiculum—ventral part 14

Dentate gyrus—ventral part 15

Pontine nuclei 16

Retrosplenial area 17

Superior vestibular nucleus (medulla) 18

Cerebellum 19

Scan 1 > Scan 2 1st order efferents

Scan 2 > Scan 1 2nd order efferents

*based on the following references: White and DeAmicis, 1977; Ohara et al., 1980; Montero and Scott, 1981; Ohara and Lieberman, 1981, 1985; Hoogland et al., 1987, 1991; Cornwall

and Phillipson, 1988; Welker et al., 1988; Chen et al., 1992; Raos and Bentivoglio, 1993; Bourassa et al., 1995; Hazrati et al., 1995; Pinault et al., 1995; Pinault and Deschenes, 1998;

Veinante et al., 2000; Wright et al., 2000; Wang et al., 2005; Aronoff et al., 2010; Zakiewicz et al., 2014; Tang et al., 2016; Guo et al., 2017; Sumser et al., 2017.
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local increases of Mn2+ accumulation in the second scan (scan
2 > scan 1) were only assessed qualitatively at an uncorrected
threshold of p < 0.05 (cluster extent 20).

Voxel-wise analysis of theMR images was performed in SPM8
(www.fil.ion.ucl.ac.uk/spm). Graphics of activation maps have
been created in MRICro (www.cabiatl.com/mricro). All images
were ultimately arranged in Adobe Illustrator 10.0.3 (Adobe
Systems Inc., NY, USA).

RESULTS

After correcting for the unspecific global decrease of Mn2+

between the experimental time points, we identified only a single
cluster showing higher Mn2+ intensity in the first scan compared
to the second (scan 1 > scan 2). This cluster was located in the
left barrel cortex (pFWE,cluster = 0.009, cluster extent 236 voxel),
representing activity of the untrimmed whiskers (Figure 1B;
Table 1).

In the inverse contrast (scan 2 > scan 1), a number of brain
structures could be detected to show a stronger intensity at
time point 2 (Figure 1B; Table 1), mainly located in the left
hemisphere.

The higher signal in the left barrel cortex (corresponding to
the untrimmed whiskers) in scan 1 compared to scan 2, and the
lack of difference in the right barrel cortex (corresponding to the
trimmed whiskers) suggests that the sensory blockage by whisker
trimming attenuated theMn2+ transport to projection terminals.
This hypothesis is further supported by the clusters showing
higher Mn2+ intensity in the second measurement compared to
the first (scan 2 > scan 1), which include a large number (85%
of total) of efferents of the left barrel cortex (Table 1). Therefore,
we conclude that Mn2+ is transported from the uptake site to its
projection terminals, in an activity-dependent manner.

DISCUSSION

Here we show that, after systemic MnCl2 injections, both intra-
and interneuronal transport of Mn2+ is accelerated by the
continuous activity of the afferent cells in the brain, when
compared to a unilaterally sensory deprived pathway. This
conclusion was based on the following observations: (i) only the
barrel cortex of the corresponding untrimmed whiskers showed
higher MEMRI signal in scan 1 compared to scan 2; (ii) most
of the structures that showed higher MEMRI signal in scan 2
compared to scan 1 are efferent to the barrel cortex (Table 1;
Figure 2).

The Whisker-Barrel Cortex System
The mouse barrel-cortex system was chosen as a model due to its
well characterized connectivity (Woolsey andVan der Loos, 1970;
Welker, 1976) and because of its property of strong and defined
neuronal activation in the barrel cortex contralateral to its specific
sensory input (Woolsey and Van der Loos, 1970; Axelrad et al.,
1976; Peron et al., 2015). Therefore, it is the perfect model system
to study changes in neuronal activity due to sensory stimulation
or deprivation, and the underlying Mn2+ dynamics related to
neuronal activation. This pathway was already used elsewhere

to map tactile sense-evoked activity with MEMRI (Weng et al.,
2007), BOLD (Lu et al., 2004; de Celis Alonso et al., 2012) and
CBV fMRI (Lu et al., 2004) after mechanical whisker stimulation
in rats; also with MEMRI after blood-brain barrier ultrasonic
disruption and mechanical whisker stimulation in mice (Howles
et al., 2010).

For the sake of simplicity, in our conclusion scheme (Figure 2)
we represented neurons of the barrel cortex as cell 1 (reference
point). These neurons are the cortical representation of a
mouse’s contralateral whiskers (Woolsey and Van der Loos, 1970;
Ferezou et al., 2006). However, it is worth highlighting that
after stimulation of the whiskers, sensory information is initially
processed by the trigeminal nuclei of the brainstem, followed,
in parallel, by the ventroposterior medial (VPM)—lemniscal
and extralemniscal pathways—and the posterior medial (POm)
nuclei of the thalamus—paralemniscal pathway—before reaching
the barrel cortex (for review Petersen, 2007; Diamond et al.,
2008). Therefore, the barrel cortex cells are already downstream
to other brain structures which may take up Mn2+ in an activity-
dependent manner.

Most of the brain structures which showed higher Mn2+

levels in scan 2 compared to scan 1 turned out to be efferent
to the left barrel cortex, including monosynaptic (1st order)
and polysynaptic (2nd order) projection sites (Table 1). This
connectivity analysis and assignment was made taking the vast
barrel cortex connectivity data in the literature into account
(for examples see Aronoff et al., 2010; Zakiewicz et al., 2014).
Second order efferents were here defined as the projections from
either of the two main outputs of the barrel cortex, namely:
the thalamic reticular nucleus and the posterior complex of the
thalamus (Hoogland et al., 1987; Wright et al., 2000). Some brain
structures, especially medial thalamic nuclei, are both 1st and 2nd
order efferents. In these cases, they were just assigned as 1st order
efferents.

An important point to mention is that most of the whisker-
barrel connectivity literature is based on rat experiments. Large
part of this data (Ohara et al., 1980; Montero and Scott, 1981;
Ohara and Lieberman, 1981, 1985; Cornwall and Phillipson,
1988; Chen et al., 1992; Raos and Bentivoglio, 1993; Bourassa
et al., 1995; Hazrati et al., 1995; Pinault et al., 1995; Pinault and
Deschenes, 1998; Veinante et al., 2000; Wright et al., 2000; Wang
et al., 2005; Zakiewicz et al., 2014) was included in our analysis to
assign structures as barrel cortex efferents. Given the similarities
of the rat and mouse nervous system, we do not believe that
inter-species differences could falsely or significantly impact the
connectivity analysis presented here. However, we acknowledge
that small differences between the barrel system connectivity of
these species were already reported (Kichula and Huntley, 2008).

The results shown here included most, but not all the barrel
cortex efferents previously described. In fact, some of its main
outputs, such as the motor cortex or the thalamic reticular
nucleus, did not show a differential MEMRI signal in scan 2
compared to scan 1. This might be ascribed to the fact that
Mn2+ can be transsynapticaly transported, as already reported
elsewhere (Saleem et al., 2002; Pautler et al., 2003; Murayama
et al., 2006; Bearer et al., 2007), and also shown here by the
geniculate and parafascicular nuclei of the thalamus, which
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FIGURE 2 | Schematic explanation for the differences in Mn2+ accumulation observed after unilateral sensory deprivation. In the end of sensory enriched housing

with intact whiskers and repeated MnCl2 injections, MEMRI (scan 1) reveals equal bilateral accumulation of Mn2+ in the barrel cortices. 1 week later (scan 2) after

unilateral sensory deprivation (left side), Mn2+ is cleared from the left but not right barrel cortex (cell 1), due to ongoing sensory inputs from the intact whiskers of the

contralateral right side. At the same time, Mn2+ is accumulated in efferent brain structures downstream to the left barrel cortex (cell 2) following activity-dependent

axonal/transsynaptic transport. For simplicity reasons, this scheme does not depict the afferences from brain stem structures and the thalamus which relay sensory

information from the whiskers to the barrel cortex.

represent 2nd order efferents from the barrel cortex and 1st
order efferents from the reticular nucleus. This might lead to an
additional dilution of the Mn2+ contrast, hindering its detection
by voxel wise brain analysis. Another possibility is that the
MEMRI signal might have been filtered out in large structures
which receive diffused rather than focused projections, such as
the motor cortex, because the signal intensity tends to be higher
in compact and densely connected structures (Aoki et al., 2004;
Bedenk et al., 2018).

It is important to note that our protocol of partial sensory
deprivation (whisker trimming) was applied to adult mice only
(3–4 months old) and did not include follicle removal or
cauterization. Moreover, considering the short duration of the
deprivation (7 days), we do not believe that the results of
this study are a consequence of cortical map plasticity, widely
described in neurodevelopmental and plasticity studies using
the barrel-cortex system model (Van der Loos and Woolsey,
1973; Woolsey and Wann, 1976; Levin and Dunn-Meynell, 1991;
Dunn-Meynell et al., 1992; Siucinska and Kossut, 1994; Melzer

and Smith, 1996; Kossut and Juliano, 1999; Fox, 2002; Allen et al.,
2003; Rema et al., 2003; Schierloh et al., 2003; Shepherd et al.,
2003; Dubroff et al., 2005; Fox and Wong, 2005; Shoykhet et al.,
2005; Frostig, 2006; Lee et al., 2007; Schubert et al., 2007; Drew
and Feldman, 2009; Wu et al., 2011; Gainey et al., 2016; Jacob
et al., 2017).

Mn2+ Administration, Toxicity, and Decay
MEMRI studies have already employed different routes for Mn2+

administration, such as intracerebral injections (Pautler et al.,
2003; Watanabe et al., 2004; Yang et al., 2011), intranasal aerosols
(Henriksson et al., 1999; Pautler and Koretsky, 2002; Lehallier
et al., 2012), intravitreal injection (Pautler et al., 1998; Bearer
et al., 2007; Luo et al., 2012), and topic eye application (Lin
et al., 2014). These methods are however invasive and often
toxic (Bearer et al., 2007; Luo et al., 2012; Lin et al., 2014).
Systemic injections have a reduced risk of toxicity if fractionated
(Grünecker et al., 2010), or continuously delivered with osmotic
mini pumps (Sepulveda et al., 2012; Poole et al., 2017). The
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delayed and limited diffusion of Mn2+ to the brain should also
be considered. In each case, care must be taken to find an optimal
balance between a sufficient dose to reach the best contrast while
minimizing the potential side/toxic effects of Mn2+ in the brain.
The use of systemic methods for delivering of MnCl2 has clear
advantages, e.g., in case of prolonged behavioral procedures. In
some cases, however, systemic treatment has to be combined
with the disruption of the blood-brain barrier (BBB), e.g., by
mannitol injection (Lin and Koretsky, 1997; Aoki et al., 2002)
or by ultrasound (Howles et al., 2010), in order to allow the
Mn2+ to quickly reach the brain. In these cases, a single MnCl2
spike injection can be applied. Even with the use of relatively
small doses for a single shot that did not cause major apparent
side/toxic effects, small impairments as transient motor deficit
in skilled reaching, rears, and activity was already described
in rats (Alaverdashvili et al., 2017). This limitation should be
considered, especially when designing studies with behavioral
experiments where fine motor skills are necessary. For longer
term investigations (from many hours to days) the disruption
of the BBB is not necessary (Yu et al., 2005; Kuo et al., 2006),
given thatMn2+ can reach the brain and accumulate in a activity-
dependent manner in the structures related to the challenge/task
performed at least few hours before. This applies in particular
to the paradigm used here, where we “pre-loaded” the cells with
Mn2+ before the experimental intervention (whiskers trimming).
Our data suggest this procedure might also be used for acute
behavioral challenges where mice could be first treated with
MnCl2 to reach sufficient contrast, followed by repeated scanning
before and after the challenge.

One should also not overlook clearance of Mn2+in the brain
when scans are performed long (more than 24 h) after the MnCl2
injections have stopped. We previously reported that the half-life
of Mn2+, after an 8 × 30 mg/kg MnCl2 injection protocol, is
about 5–7 days, depending on the brain structures (Grünecker
et al., 2013). This point was taken into consideration in our
analysis comparing scans 1 and 2, which were performed 1 week
apart.

The Interplay of Neuronal Activity and
Mn2+ Axonal and Transsynaptic Transport
Previous studies already investigated the possible role of neuronal
activity in Mn2+ axonal and transsynaptic transport in specific
pathways with different protocols and obtained, somewhat,
contradicting results. For instance, it was shown that Mn2+ is
co-released with neurotransmitters after stimulation with high
K+ (Takeda et al., 1998), indicating that Mn2+ transport is
dynamically linked to neural signaling. Later, many groups
mapped sensory system activation in response to specific odors
(Pautler et al., 1998; Pautler and Koretsky, 2002; Chuang et al.,
2009; Lehallier et al., 2012), visual (Bissig and Berkowitz,
2009), or acoustic stimulation (Yu et al., 2005), supporting
the idea that Mn2+ transport is activity-dependent. One of
these studies (Bearer et al., 2007) employed transgenic blind
mice to investigate activity-dependency in Mn2+ dynamics
after intravitreal MnCl2 injection and concluded that “Mn2+

is not transmitted efficiently across synapses in the absence of
electrical activity in this system,” whereas uptake and axonal
transport remained intact. This last conclusion is supported

by the results of Lowe et al. (2008) showing no difference in
MEMRI signal intensity in the visual system between groups
treated with MnCl2 only or in combination with cell activity
blockers (APB or TTX). On the other hand, accelerated Mn2+

transport after MnCl2 co-treatment with AMPA was already
described (Wang et al., 2015), indicating that axonal transport
of Mn2+ is dynamically modulated by neuronal activity. In fact,
pharmacological blockage of calcium channels also blocked this
accelerated transport (Wang et al., 2015). Using the song control
system in song birds as a model of neuronal plasticity (for review
see Van der Linden et al., 2004), Tindemans et al. (2003) were able
to show an activity dependent transsynaptic transport of Mn2+

from the site of local cerebral injection ofMn2+ in the HVC (high
vocal center; a relay region of the song control system) to more
downstream regions [such as the nucleus robustus arcopallialis
(RA) and the striatal area X]. Using dynamicMEMRI, the authors
reported that both regions showed a more rapid accumulation of
Mn2+ in the stimulated birds. After about 10 h, this difference
to non-stimulated birds vanished only for RA, but not for area
X, suggesting a differential functional connectivity of the two
regions in the song circuitry. Considering these previous reports
and the results presented here, we conclude that, even in the case
of systemic MnCl2 injection, axonal and transsynaptic transport
of Mn2+ is modulated by the activity state of the neuronal
pathway. Our results further suggest that reduced neuronal
activity due to blockage of sensory inputs attenuates the transport
of Mn2+ from its initial accumulation site, while continuous
neuronal activity promotes the transport of Mn2+ between
neurons.

Ketamine and NMDA Receptor Blockage
We used ketamine in an anesthetic dose (138 mg/kg) (Buitrago
et al., 2008) in order to block NMDA receptor-related neuronal
activity (Anis et al., 1983) and, thus, to avoid further entrance of
Mn2+ in neurons (Itoh et al., 2008), which might be caused by
transportation of the animals from the vivarium to the scanning
room and/or their fixation inside the scanner. We are aware of
the fact that ketamine has complex and not fully understood
mechanisms of action and might lead to unspecific effects which
are unrelated to anesthesia such as hyperlocomotion (Hayase
et al., 2006) or antidepressant-like effects in low doses (Kavalali
and Monteggia, 2012). However, in the present study we can
exclude that ketamine has affected MEMRI signal intensities by
itself, due to: (i) MnCl2 treatment was given chronically for 8
days and finished at least 12 h before ketamine injection; (ii)
there was only a short interval (∼30min) between ketamine
administration and the scanning procedure; and (iii) the within-
subject design used here (ketamine treatment before both first
and second scans).

CONCLUSION

Taken together, we provide evidence for neuronal activity-
dependent accelerated transport of Mn2+ to projection terminals
and across synapses. This observation allows for a more careful
design of the experiments using systemic MnCl2 treatment. At
the same time, it adds another layer of components to the
interpretation of the results obtained by MEMRI.
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