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Cortical processing is dynamically modulated by different neuromodulators.
Neuromodulation of the cerebral cortex is crucial for maintaining cognitive brain
functions such as perception, attention and learning. However, we do not fully
understand how neuromodulatory projections are organized in the cerebral cortex to
exert various functions. The basal forebrain (BF) cholinergic projection and the locus
coeruleus (LC) noradrenergic projection are well-known neuromodulatory projections
to the cortex. Decades of studies have identified anatomical and physiological
characteristics of these circuits. While both cholinergic and noradrenergic neurons
widely project to the cortex, they exhibit different levels of selectivity. Here, we
summarize their anatomical and physiological features, highlighting selectivity and
specificity of these circuits to different cortical regions. We discuss the importance
of selective modulation by comparing their functions in the cortex. We highlight key
features in the input-output circuits and target selectivity of these neuromodulatory
projections and their roles in controlling four major brain functions: attention,
reinforcement, learning and memory, sleep and wakefulness.

Keywords: neuromodulation, cerebral cortex, cholinergic projection, noradrenergic projection, basal forebrain,
locus coeruleus

INTRODUCTION

The cerebral cortex is divided into distinct areas that compute specific sensory, motor, or other
cognitive information. As the cortex develops into a wide and thick structure, each sub-region of the
cortex can work as a module. Depending on the task demand, an animal needs to devote a particular
cortical region to process specific information. Neuromodulatory inputs to the cortex are known to
play important roles in guiding the transition of cortical processing (McCormick, 1992; Hasselmo,
1995; Gu, 2002; Lee and Dan, 2012). Neuromodulation of the proper cortical region is critical for an
animal to perform optimal behaviors (Hasselmo, 1995; Harris and Thiele, 2011; Lee andDan, 2012).
For example, attention modulates a subset of cortical modules that receive and process the attended
stimuli selectively. In contrast, global modulation of the cortex is more important for the transition
from sleep to wakefulness. How does this cortical modulation occur in distinct patterns in different
brain states? To answer this, we need to explore how neuromodulatory projections are organized in
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FIGURE 1 | Projections and functions of basal forebrain (BF) cholinergic and locus coeruleus (LC) noradrenergic neurons to forebrain regions. Function of each
projection is summarized in a box. (A) Projections of BF cholinergic neurons to the prefrontal cortex (PFC), the sensory cortex and the hippocampus. Green, the
nucleus basalis (NB) and its projection; blue, the horizontal diagonal band nucleus (HDB) and its projection; red, the medial septal nucleus (MS) and its projection.
(B) Projections of LC noradrenergic neurons to the BF, the PFC, the sensory cortex and the hippocampus.

the cortex. The mammalian brain has an increased capacity and
performs many cognitive functions. Accompanying the larger
brain, is a larger cerebral cortex with thick cortical layers and
complex circuits. Mediating transitions in cortical processing
is a complicated multi-modal function, thus necessitating an
intricate structure of neuromodulatory projections.

Among the many neuromodulatory projections, cholinergic
and noradrenergic inputs to the cerebral cortex have been
studied extensively. Both neuromodulators are critical for
cognitive behaviors in mammals, such as attention, arousal,
learning and memory (Hasselmo, 1999, 2006; Sara, 2009; Sarter
et al., 2009; Sara and Bouret, 2012; Schwarz and Luo, 2015;
Ballinger et al., 2016). Interestingly, within the cortex, these
two neuromodulatory systems show distinct characteristics in
their anatomical and physiological features, even though they
have common target regions from prefrontal to sensory cortices
(Loughlin et al., 1986; Woolf, 1991). Here, we summarize and
compare the anatomical and functional features of cholinergic
and noradrenergic projections in the cortex (Figure 1). We first
discuss how selective these projections are in terms of their
axonal divergence in the cortex, target cell and receptor types.
We further compare input convergence to the cholinergic and
the noradrenergic systems and their mutual connectivity. At the
end, we examine important functions of these two modulatory

systems in relation to the selectivity of their projections to the
cortex.

ACETYLCHOLINE

Anatomical Organization of the
Cholinergic System
Central cholinergic systems in the mammalian brain are
largely divided into the basal forebrain (BF) and the midbrain
cholinergic nuclei. The BF cholinergic neurons send projections
to the entire cerebral cortex in both primates and rodents
(Mesulam et al., 1983; Rye et al., 1984; Woolf, 1991). The BF
encompasses several nuclei of the medial septal nucleus (MS), the
vertical diagonal band nucleus (VDB), the horizontal diagonal
band nucleus (HDB), the nucleus basalis (NB) and the substantia
innominata (SI). Different nuclei send cholinergic projections to
distinct cortical areas. For example, VDB cholinergic neurons
project to the medial part of the cortex including the cingulate
and retrosplenial cortex (Rye et al., 1984; Woolf, 1991; Mechawar
et al., 2000). The HDB sends cholinergic projections to the
cingulate, the retrosplenial, the entorhinal, the perirhinal and the
visual cortex (Rye et al., 1984; Woolf, 1991; Kim et al., 2016).
The medial and rostral parts of the NB project to the cingulate
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FIGURE 2 | Comparing anatomical selectivity of BF cholinergic and LC noradrenergic projections to the cortex in rodents. (A) Projection patterns of BF cholinergic
and LC noradrenergic projections to the primary sensory cortices in a mouse brain. The neurons in the NB and the HDB show selective innervation to the primary
sensory cortices whereas LC neurons show diverging innervation (Kim et al., 2016). (B) Projection patterns of the BF and the LC neurons to the PFC in a rat brain.
The NB neurons send more diverging projections than the LC neurons (Chandler et al., 2013).

and the somatosensory cortex, and the posterior part projects
to the temporal area and auditory cortex (Woolf, 1991; Kim
et al., 2016; Chavez and Zaborszky, 2017). The HDB cholinergic
neurons mainly project to the visual cortex, while the anterior
and posterior parts of the NB project to the somatosensory and
the auditory cortex, respectively (Eggermann et al., 2014; Kim
et al., 2016). Thus, BF cholinergic projections to the cortex seem
to be topographically segregated within the selective projection
to the discrete area in the cortex.

The selective projection of BF cholinergic neurons has a high
potential for selective modulation of the cortex. For example,
it has been shown that acetylcholine (ACh) concentration in
the sensory cortex of the anesthetized rat increases when the
animal receives sensory stimuli whereas ACh concentration in
the medial prefrontal cortex (mPFC) does not show any changes
(Fournier et al., 2004). On the other hand, when the animal
performs a detection task that requires high levels of attention,
ACh concentration increases selectively in the mPFC but not in
the motor cortex (Parikh et al., 2007). These results suggest the
sensory stimuli can drive cholinergic neurons that innervate a
particular sensory cortex, while the top-down attention to the
potential stimuli can drive the cholinergic neurons that innervate
the mPFC. Interestingly, the cholinergic projection to the PFC
is less selective than the cholinergic projection to the sensory
cortices (Figure 2). The sensory cortex receives modality-
selective inputs from the BF cholinergic neurons (Kim et al.,
2016). On the contrary, more than 80% of the NB cholinergic
neurons project to multiple areas in the PFC including the
anterior cingulate cortex (ACC), themPFC, and the orbitofrontal
cortex (OFC; Chandler et al., 2013). However, this study did not
examine the projection of cholinergic neurons in other BF nuclei,

and it is possible that the anterior BF nuclei such as the VDB or
the HDB might show selective projection to the sub-regions in
the PFC (Gaykema et al., 1990).

Cholinergic Transmission in the Cerebral
Cortex
There are two modes of cholinergic transmission in the cortex.
One is the classical synaptic transmission, which mediates
specific and tight modulation of the postsynaptic neurons. The
other is the volume transmission, which can occur more globally
and slowly in the cortex. It is still controversial which type of
transmission is predominant in the cortex (Sarter et al., 2009;
Ballinger et al., 2016). Although the en passant axonal boutons
of cholinergic neurons can mediate volume transmission broadly
in the cortex, acetylcholinesterase (AChE) restricts the diffusion
of ACh by enzymatic hydrolysis after the release (Sarter et al.,
2009). Indeed, the ACh concentration is elevated by 60 times
in AChE knock-out mice compared to the wild-type mice
(Hartmann et al., 2007). Thus, the cholinergic transmission
in the cortex can be highly selective within the local cortical
region.

Transmission selectivity in the cortical space is also tightly
related to the distribution of ACh receptors (AChRs; Figure 3A).
The metabotropic AChR (mAChR) has five subtypes, m1–5. The
m1, m3 and m5 subtypes are coupled with Gq proteins that
trigger the inositol phosphate pathway. The m2 and m4 subtypes
are coupled with Gi proteins, which suppress adenylyl cyclase
activities (Felder, 1995). The m1 and m2 subtypes are found at
the cholinergic synapses as well as the non-cholinergic synapses
(Mrzljak et al., 1993). Moreover, the m1 AChR subtype is found
over the somatodendritic membrane (Yamasaki et al., 2010).
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These expression patterns suggest that volume transmission of
ACh might occur through the m1 and m2 receptors. In addition,
the m2 and m4 receptors are found in presynaptic terminals
and work as autoreceptors. These autoreceptors can regulate
the release of ACh from presynaptic terminals (Zhang et al.,
2002).

The nicotinic AChRs (nAChRs) are ionotropic receptors
that can generate fast excitatory postsynaptic potentials. In
the macaque primary visual cortex (V1), nAChRs are found
in thalamic axons of excitatory neurons in layer 4c as well
as in inhibitory interneurons (Disney et al., 2007). Treatment
of nicotine into V1 can suppress visual responses of neurons
other than the layer 4c neurons receiving thalamic inputs, and
this effect can enhance visual gain and reduce the detection
threshold of layer 4c neurons. Similarly, in the rat cortex,
nAChRs have been found in axon terminals of thalamic afferents
(Lavine et al., 1997; Metherate, 2004) and a subset of GABAergic
neurons including the vasoactive intestinal peptide-positive
(VIP+) GABAergic neurons (Porter et al., 1999). Electrical
stimulation of the BF can facilitate thalamocortical transmission
(Metherate and Ashe, 1993) and activate VIP+ neurons in the
cortex (Alitto and Dan, 2013). VIP+ GABAergic neurons mainly
inhibit other types of GABAergic neurons in the cortex (Lee
et al., 2013; Pi et al., 2013). Therefore, cholinergic activation of
VIP+ neurons can induce disinhibition on pyramidal neurons,
which can mediate the locomotion-induced enhancement in
visual responses and orientation selectivity in V1 neurons (Fu
et al., 2014). Moreover, activation of BF cholinergic neurons
causes disinhibition in the auditory and somatosensory cortices
as well (Froemke et al., 2007; Kruglikov and Rudy, 2008; Letzkus
et al., 2011), suggesting disinhibition is a general feature of
cholinergic modulation in the cortex. In the auditory cortex,
however, GABAergic neurons than VIP+ interneurons are also
found to receive mono-synaptic inputs from the BF cholinergic
neurons (Letzkus et al., 2011; Nelson and Mooney, 2016).
Furthermore, parallel modulation of all types of GABAergic
neurons by cholinergic inputs can be critical for the context-
dependent cortical processing (Kuchibhotla et al., 2017). Future
studies are required to fully understand function of cell-type-
specific cholinergic modulation in other cortical areas.

NORADRENALINE (NOREPINEPHRINE)

Anatomical Organization of the
Noradrenergic System
Noradrenaline (NA) regulates a number of brain functions,
such as sleep/wakefulness and attention, and it has the potential
of modulating wide brain regions including the hippocampus,
the amygdala, the thalamus, and the cerebral cortex (Foote
et al., 1983; Sara and Bouret, 2012). The locus coeruleus (LC),
which is located in the brainstem, is the exclusive source of
NA in the central nervous system (CNS; Dahlstroem and Fuxe,
1964; Swanson, 1976). The LC is composed predominantly by
a population (90%) of noradrenergic neurons with a small
proportion of non-noradrenergic cells such as serotonergic and
GABAergic neurons (Iijima, 1989, 1993). Several studies have

reported that noradrenergic neurons co-express neuropeptides
such as galanin and neuropeptides Y (NPY; Olpe and Steinmann,
1991; Schwarz and Luo, 2015). Despite the small numbers of
noradrenergic neurons (∼1500 and ∼5000 per each hemisphere
in mouse and monkey, respectively) and tiny size of the LC,
most of the cortical regions are known to receive extensive
noradrenergic innervations from the LC (Sturrock and Rao,
1985; Sara, 2009). Thus, the noradrenergic neurons in the LC
naturally have a higher potential of divergence in their projection.

Early anatomical studies identified the axonal projections
of the LC neurons by injecting radioisotopes or anterograde
tracers into the LC and via immunostaining of the noradrenergic
fibers against the dopamine-beta-hydroxylase (DBH; Morrison
et al., 1978, 1982; Verney et al., 1984; Audet et al., 1988;
Doucet et al., 1988). Axon terminals of the LC neurons are
observed ubiquitously across the cerebral cortex (Jones and
Moore, 1977; Jones et al., 1977; Jones and Yang, 1985; Loughlin
et al., 1986; Samuels and Szabadi, 2008). Interestingly, there
is regional variation of noradrenergic fiber densities among
the different cortical areas. The fiber density of noradrenergic
neurons is higher in the frontal cortex than in the motor and
the sensory cortex (Agster et al., 2013). In addition, within
the PFC sub-regions, the fiber density is not homogeneous
(Lewis and Morrison, 1989). Thus, despite widespread cortical
distribution of noradrenergic axon terminals, some cortical
regions might receive denser noradrenergic inputs and show
stronger modulation by NA.

Does a single LC noradrenergic neuron project to multiple
cortical areas? Retrograde tracing studies have shown divergence
of noradrenergic efferent fibers and proved that substantial
amounts of LC noradrenergic axons bifurcate to different cortical
regions (Figure 2; Swanson and Hartman, 1975; Porrino and
Goldman-Rakic, 1982; Kim et al., 2016). Recent viral tracing
results also confirmed diverging projections of the noradrenergic
LC neurons (Schwarz et al., 2015). In contrast, Waterhouse
et al. (1990) proposed the possibility of selective projections
of LC neurons. By injecting retrograde tracers into different
sub-regions of the PFC, they found only 4% of the LC neurons
send diverging projections into the PFC sub-regions (Chandler
and Waterhouse, 2012; Chandler et al., 2013). Taken together,
the presence of widespread and divergent axonal projections
suggest LC noradrenergic neurons can play an important role
in the global regulation of cortical activities, such as sleep,
wakefulness, and arousal. Conversely, LC projection to the
confined cortical area proposes a potential role in selective
attention. In summary, the anatomy of LC noradrenergic
neurons shows a heterogeneous nature including both divergent
and selective projections (Kebschull et al., 2016), which implies a
functional diversity and complexity.

Noradrenergic Transmission in the
Cerebral Cortex
Efferent noradrenergic axon terminals arising from the LC
release NA, which binds to adrenergic receptors composed of
the α1, α2 and β receptor families (Molinoff, 1984; Ramos
and Arnsten, 2007). These receptors co-exist across the cortical
areas, showing overlapping expression patterns. These receptor
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families, which are all classified as G-protein coupled receptors
(O’Donnell et al., 2012), have several subtypes showing distinct
expression patterns in the CNS (Ramos and Arnsten, 2007).
First, the α1 family of receptors show an intermediate binding
affinity to NA and are coupled to Gq proteins (Hieble et al.,
1995; Sirviö and MacDonald, 1999). There are three subtypes
of α1 in the cortex: α1A, B, D receptors. Among them, the
α1D receptors show the highest cortical expression with laminar
preference of the superficial layer (Goldman-Rakic et al., 1990;
Pieribone et al., 1994). Second, the α2 receptors have the highest
binding affinity to NA and are coupled to the Gi proteins (Ramos
and Arnsten, 2007). Among the α2 receptor subtypes, including
α2A∼C receptors, the α2A receptor is the most abundant in
the cerebral cortex (Scheinin et al., 1994). This receptor is also
expressed more in the superficial layer (Goldman-Rakic et al.,
1990). Finally, β adrenergic receptors are coupled to Gs proteins
and comprise the β1∼3 subtypes. They have the lowest binding
affinity to NA (Minneman et al., 1981). The β1 and β2 subtypes
show the most prevalent expression in the cortex, mostly in
layer 4. Taken together, different adrenergic receptors recruit
different intracellular signaling pathways, which can result in
distinct modulation effects on the cortical neurons.

In addition to the classical synaptic transmission, NA is
also released non-synaptically and diffuses across the broad
extracellular space (Agnati et al., 1995, 2010). This volume
transmission of NA can modulate target neurons in the broader
area for a longer time (Sara, 2009; O’Donnell et al., 2012). The
α2A and β receptors are found in both the dendritic spines
and non-synaptic areas including the axons and the dendritic
shafts, supporting the non-synaptic volume transmission of NA
(Herkenham, 1987; Nicholas et al., 1993; Aoki et al., 1998).
The axonal expression of α2A and β receptors suggests their
function as an autoreceptor or a heteroreceptor that regulates
the release of neurotransmitters including NA itself (Starke,
2001). Adrenergic receptors expressed in the dendritic shafts
often do not overlap with the noradrenergic axonal fibers
(Seguela et al., 1990). These receptors might be activated by
the diffused NA from the releasing terminals (Vizi et al., 2004).
Future studies are required to understand the function of
these non-synaptic NA receptors within the complicated cortical
circuits in vivo.

Since α1 and α2 adrenergic receptors have different levels
of affinity to NA, the local concentration of NA released
from noradrenergic neurons can activate these receptors
differentially (Figure 3B). More α1 receptors are activated at
higher concentration of NA, while mild concentrations of NA
preferentially activates α2 receptors (Ramos and Arnsten, 2007).
As α1 adrenoceptors are excitatory, whereas α2 adrenoceptors
are inhibitory and suppress the synaptic release (Szabadi, 2013),
activation of different NA receptors in the cortex can induce
quite opposite modulatory effects. Accordingly, when the NA
neurons show high levels of tonic and phasic firing activity,
such as when the animal is under strong stressors, high
levels of NA can be released in the cortex. This can activate
α1 adrenergic receptors, which can lead to the impairment
of cortical function (Arnsten et al., 1999). Conversely, when
NA neurons show moderate activity in normal conditions,

α2 receptors are preferentially activated and cortical function can
be improved (Figure 3B; Arnsten and Li, 2005; Arnsten, 2009).

BEYOND THE SELECTIVE PROJECTIONS:
COMPLETE UNDERSTANDING OF THE
INPUT-OUTPUT CIRCUITS

Although it has been known that BF cholinergic cells and LC
noradrenergic cells receive inputs from diverse regions and
show differential projection patterns, the exact input-output
relation of each system has been ambiguous. As we discussed
above, BF cholinergic neurons show selective projections to
the cortex. If these selective projections indeed modulate the
cortical sub-regions independently in the intact and naturally
functioning brain, the inputs to BF cholinergic neurons must
be segregated and activated in an output-specific manner.
Supporting this idea, cortical inputs to the BF are segregated,
as BF neurons show selective responses to electrical stimulation
of the PFC (Golmayo et al., 2003). In this study, only 42%
of recorded BF cells responded to electrical stimulation of the
cingulate cortex and only 33% of them responded to that of the
secondary motor cortex, whereas the rest of them responded
to stimulation of both. Although it has been reported that
most of the BF neurons that receive the PFC inputs are
GABAergic (Zaborszky et al., 1997), the local inhibition might
control the cholinergic output selectively (Xu et al., 2015).
Other important inputs to the BF are the neuromodulatory
neurons. The dopaminergic neurons from the VTA (Zaborszky
et al., 1997) and serotonergic neurons in the dorsal raphe
nucleus have been found to project to the BF (Jones and
Cuello, 1989). LC noradrenergic neurons also show strong
projection to the BF (Espana and Berridge, 2006). Neurons in the
striatum and the amygdala project to the BF as well (Hu et al.,
2016; Gielow and Zaborszky, 2017). Future studies are required
to determine whether these neuromodulatory projections are
selective into the BF.

Similar to BF neurons, LC noradrenergic neurons receive
converging inputs from various brain areas including the cortex,
the amygdala, the hypothalamus, the thalamus, the pons, the
medulla and the cerebellum (Aston-Jones and Cohen, 2005a;
Szabadi, 2013; Schwarz et al., 2015). Recent studies using cell-type
specific and monosynaptic retrograde tracing with pseudo-
typed rabies virus investigated the input-output relations of
cholinergic neurons in the BF (Gielow and Zaborszky, 2017)
and noradrenergic neurons in the LC (Schwarz et al., 2015).
Interestingly, these studies have shown that BF cholinergic cells
receive selective inputs depending on their projection regions,
whereas LC noradrenergic cells receive converging inputs that
are not segregated to the neurons projecting to different areas
(Figure 4). This implies BF cholinergic neurons may be able
to work as separate streams depending on the input conditions
and the demands of selective cholinergic modulation. The
LC noradrenergic neurons receive converging inputs and send
diverging projections to the cortex, and this might be able to
mediate the holistic modulation of the brain during arousal and
the switch from sleep to wakefulness.
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FIGURE 3 | Modulatory effects of acetylcholine (ACh) and Noradrenaline (NA)
on cortical processing through different types of receptors. (A) Schematic
description of cholinergic modulation in the primary sensory cortex. 1© Broad
distribution of metabotropic ACh receptor (mAChR) mediates modulation of
both excitatory and inhibitory neurons across the layers (Alitto and Dan, 2013).
2© nicotinic AChRs (nAChRs) are expressed in the thalamocortical axon
terminals, and cholinergic activation of them causes increase in sensory
responses of neurons in the input layer (Lavine et al., 1997; Metherate, 2004;
Disney et al., 2007). 3© nAChRs are expressed in the vasoactive intestinal
peptide-positive (VIP+) neurons, which elicit disinhibition of pyramidal neurons
by inhibiting SST+ or PV+ inhibitory neurons (Harris and Mrsic-Flogel, 2013;
Lee et al., 2013; Pi et al., 2013). Cholinergic activation of VIP+ neurons can
increase the sensory gain via this disinhibitory circuit (Porter et al., 1999; Fu
et al., 2014). (B) Modulatory effects of ACh and NA. (Left) ACh released from
the BF enhances cortical processing via both mAChRs and nAChRs.
Activation of mAChR enhances cortical coding capacity of sensory stimulus
(Goard and Dan, 2009), while activation of nAChRs increases the sensory gain
in the visual cortex (Metherate, 2004; Disney et al., 2007). (Right) Two distinct
modes of the noradrenergic modulation. LC neurons show either phasic or
tonic activity patterns depending on the states. Sensory stimuli evoke phasic
responses of NA neurons whereas stressful stimuli evoke both phasic and
tonic responses (Aston-Jones et al., 1999). When the animal shows focused
attention or engages in the task, the NA neurons show phasic activity.
Conversely, NA neurons show tonic responses when the animal is distracted
or shows flexible behaviors. The amount of NA released from noradrenergic
neurons determines the activation of different types of adrenoceptors, which
modulate the PFC function in an opposite manner (Ramos and Arnsten,
2007). A moderate amount of the NA preferentially activates the
α2 adrenoceptor, which has a higher binding affinity for the NA, and improves
the PFC function such as working memory and focused attention (Li and Mei,
1994; Li et al., 1999). In contrast, when a higher concentration of NA is
released, the α1 adrenoceptors are activated as well, which can lead to the
impairment of PFC function (Arnsten et al., 1999; Mao et al., 1999; Ramos
and Arnsten, 2007).

One interesting characteristic of the BF and the LC circuits
is the unidirectional projection of LC noradrenergic neurons
to the BF. In the BF, cholinergic neurons express both
α1 and β1 adrenoceptors whereas GABAergic neurons express

α2 adrenoceptors (Manns et al., 2003; Szabadi, 2013; Schwarz and
Luo, 2015). The adrenergic activation of α1 receptors activates
the neurons expressing the receptors, while the activation
of α2 adrenoceptors suppresses the neurons. Thus, the net
modulation effect by noradrenergic inputs to the BF is the
enhancement of ACh release in the cortex (Schwarz and Luo,
2015). As the LC noradrenergic neurons play crucial roles in
changing the global brain states, the BF cholinergic neurons
receiving these noradrenergic inputs might contribute to the
changes in global brain states. Supporting this, both the LC
noradrenergic neurons and the BF cholinergic neurons are most
active during wakefulness and play critical roles in controlling
sleep (Carter et al., 2010; Xu et al., 2015). Further studies are
required to understand how selective the LC projections are
into the BF and how these two distinct neuromodulators work
together throughout the cortex during the sleep-wake cycle.

FUNCTIONAL COMPARISON OF THE
CHOLINERGIC AND THE
NORADRENERGIC PROJECTIONS

Attention
Visual attention is an important brain function that requires
modulation of the sensory cortex. The ACh is proposed as one
of the key modulators for modulation of the cortex during
attention. Indeed, lesion on cholinergic neurons in the BF caused
impairments of selective attention in animals performing tasks
(Voytko et al., 1994; McGaughy et al., 2002). Treatments with
cholinergic agonists or antagonists enhance or suppress visual
attention in humans (Furey et al., 2008). In macaque monkeys,
spatial attention induces ACh release in the V1, and this leads to
activation of mAChRs that is critical for visual attention (Herrero
et al., 2008; Thienel et al., 2009). Electrical stimulation of the BF
can enhance information processing of V1 neurons via activation
of mAChRs (Goard and Dan, 2009). Furthermore, optogenetic
activation of either cholinergic neurons or cholinergic fibers in
the V1 improves the discrimination of low-contrast visual stimuli
in mice (Pinto et al., 2013). Thus, cholinergic modulation of the
visual cortex is critical for the animal to increase spatial attention
to the important visual stimuli in the environment.

In addition to the sensory cortices, the PFC is also known to be
modulated by ACh during attention. In trials of a cued-appetitive
response task with the reward delivered randomly into one of
two reward ports, the ACh concentration is increased in the
mPFC when an animals shows sustained attention (Parikh et al.,
2007). Thus, unlike visual attention that modulates the visual
cortex, sustained attention requires cholinergic modulation of
the PFC. It is still unknownwhether these two types of attentional
modulation are mediated by the segregated BF cholinergic
neurons. Similar to cholinergic modulation, several studies have
shown that noradrenergic modulation is also important for
attention (Smith and Nutt, 1996; Aston-Jones et al., 1999; Aston-
Jones and Cohen, 2005b). Inflicting a lesion on the dorsal
noradrenergic bundle that induces NA depletion in the neocortex
and the hippocampus causes clear behavioral deficits in rats
performing 5-choice serial reaction tasks, which are known to
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FIGURE 4 | The input-output circuits of the BF-ACh neurons and the LC-NA neurons. (A) BF cholinergic neurons project selectively to different brain regions based
on their input regions (Gielow and Zaborszky, 2017). Each color represents the selective input-output relationship of the BF ACh neurons. Cortical and subcortical
inputs are shown in the gray boxes. (B) LC noradrenergic neurons receive converging inputs and show diverging projections to various brain areas (Schwarz et al.,
2015). The PFC is one of the strong cortical inputs, although the cortical afferent to the LC is relatively weaker than the subcortical afferent. The asterisk (∗) refers the
Figure 2B where the noradrenergic projection to the PFC is selective rather than diverging in rats (Chandler et al., 2013).

require attention in rats (Carli et al., 1983). Rats with the lesion
show a decrease in the choice accuracy and an increase in trial
omissions. When the firing activity of LC neurons was measured
in animals performing the attentional tasks, the LC neurons show
higher responses to the task-relevant cues, while weakly or not
responding to the distractors (Usher et al., 1999). Thus, both BF
cholinergic neurons and LC noradrenergic neurons are active
and important for the attentional modulation of the cortex.

Interestingly, the LC neurons exhibit phasic firing activity in
most of the correct trials, whereas they show tonic discharges
during the incorrect trials when the rat performs the attention
tasks (Usher et al., 1999). Based on these results, the ‘‘inverted
U-shape’’ response pattern of LC neurons has been proposed
on the relationship between LC neuron activity and the level
of attention: when the animal is more attentive, LC neurons
show phasic activity, and when they are less attentive and
possibly aroused, LC neurons maintain tonic firing activity
(Aston-Jones et al., 1994, 1997; Rajkowski et al., 1994). Future
studies are required to fully understand how the firing pattern
of LC noradrenergic neurons determines the mode of cortical
modulation by recruiting different adrenoceptors in the cortex
(Carter et al., 2010).

Reinforcement
Recent studies have proposed that BF cholinergic neurons might
bemore active during reinforcement rather than during attention
(Hangya et al., 2015). The BF neurons that show correlated
firing activity with sustained attention in a trial-to-trial manner
are mainly identified as non-cholinergic neurons (Nguyen and
Lin, 2014; Hangya et al., 2015). Furthermore, the optogenetically
identified cholinergic neurons show strong responses to the
reinforcement (either the reward or the punishment) in the same

animal performing attentional tasks (Hangya et al., 2015). In
this study, both the HDB and NB cholinergic neurons show
stronger responses to the negative reinforcements than to the
positive ones. In another study, it has also been shown that BF
cholinergic projections to the V1 is necessary for the acquisition
of reward timing in behaving rats, supporting the idea that
BF cholinergic neurons are strongly involved in delivering the
reinforcement signal to the cortex (Chubykin et al., 2013).
Interestingly, the LC neurons also show strong responses to
the reinforcement (Bouret and Sara, 2004). Thus, responses of
cholinergic neurons to reinforcements can be originated from
the LC noradrenergic neurons that project to the BF cholinergic
neurons (Espana and Berridge, 2006). Otherwise, a common
input such as dopaminergic projections to both BF and LC
might activate them together when reinforcements are presented
(Ornstein et al., 1987; Jones and Cuello, 1989; Woolf, 1991; Sara,
2009). Many behavioral experiments, however, use rewards or
punishments to train animals, and these reinforcements naturally
make animals pay more attention to the relevant sensory stimuli
and facilitate their learning. Thus, it is difficult to dissociate the
reinforcement-related activity from the attention-related activity
in many brain areas (Maunsell, 2004), and this can be true
in neuromodulatory systems. It is also possible that a subset
of cholinergic or noradrenergic neurons are more activated by
external stimuli such as rewards or punishments rather than by
changes in internal states such as attention. This needs to be
clearly understood in future studies.

Learning and Memory
A large body of literature has shown that there is a significant
correlation between Alzheimer’s disease and degeneration of
cholinergic fibers in the forebrain (Whitehouse et al., 1981; Coyle

Frontiers in Neural Circuits | www.frontiersin.org 7 June 2018 | Volume 12 | Article 47

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Rho et al. Selectivity of Cholinergic and Noradrenergic Modulation in the Cortex

et al., 1983; Terry and Buccafusco, 2003). Indeed, cholinergic
modulation of cortex and hippocampus is well-known to be
critical for learning and memory in mammals (Power et al.,
2003). Early studies have shown that electrical stimulation of
the NB paired with tone stimuli changes the cortical map
and reorganizes the receptive field structures in the auditory
cortex (Bakin and Weinberger, 1996; Kilgard and Merzenich,
1998). In more recent studies, Froemke et al. (2007, 2013)
have further shown that this network-level plasticity is clearly
linked to synaptic level plasticity in the auditory cortex as
well as perceptual improvements with learning. Like other
neuromodulators, cholinergic modulation induces synaptic
plasticity via activating secondary messenger systems (Seol et al.,
2007) and ACh and NA are key neuromodulators that induce
long-term synaptic modification in the visual cortex during
ocular dominance plasticity (Bear and Singer, 1986). Thus,
synaptic plasticity induced by neuromodulatory inputs to the
cortex might be a common underlying mechanism for different
forms of perceptual learning.

In addition to the sensory cortex, cholinergic modulation of
the PFC is important for working memory. Injection of mAChR
antagonist scopolamine into the ACC and the prelimbic cortex
(PL) of rats induces impairment of the working memory even
though the rats detected the visual signal correctly (Chudasama
et al., 2004). Cholinergic projection from the medial septum
to the hippocampus releases ACh in the hippocampus and
modulates the network to a state of memory consolidation
(Hasselmo, 1999). The m2 and m4 AChR knock-out mice
show dysregulation of the ACh release in the hippocampus and
impairments in the cognitive behavior (Tzavara et al., 2003). The
hippocampus receives cholinergic inputs mainly from the VDB
and MS of the BF (Nyakas et al., 1987), and the lesion of the MS
cholinergic neurons induces memory deficits in rats performing
the radial-arm maze task with random delays. It has also been
shown that the theta oscillation in the hippocampus is important
for learning and memory, and this theta oscillation is mainly
induced by the cholinergic efferent to the hippocampus (Buzsáki,
2002).

Sara and colleagues have shown the role of noradrenergic
modulation of the cortex during learning and memory (Sara,
2009; Sara and Bouret, 2012). They found that local inactivation
of the β adrenergic receptors in the PL of the rats after the
operant learning induces memory deficits, suggesting that the
noradrenergic modulation of the PL is necessary for memory
consolidation (Sara et al., 1999; Tronel et al., 2004). Supporting
this idea, they measured the extracellular NA level in the PL and
found that it is increased in the learned animal (Tronel et al.,
2004). Other studies have reported that working memory can be
modulated by the NA in the PFC. Local infusion of the α2 agonist
into the PFC of the rat enhances its performance in the working-
memory task (Tanila et al., 1996), whereas microinjection of the
α2 antagonist into the dorsolateral PFC disrupts spatial working
memory of the monkey (Li and Mei, 1994). Conversely, the local
infusion of the α1 adrenoceptor agonist into the PFC impairs
spatial workingmemory in bothmonkeys and rats (Arnsten et al.,
1999; Mao et al., 1999). Under the same condition, pretreatment
of the α1 receptor antagonist rescues the impairment, indicating

the specific role of the α1 receptor (Mao et al., 1999). Collectively,
the noradrenergic system plays a crucial role in learning and
memory, and different types of adrenergic receptors show
opposite functions in it. In particular, the α1 receptor impairs
working memory, whereas the α2 receptor enhances it (Arnsten
et al., 1998). Interestingly, unlike the working memory task,
activation of the α1 receptor is required for the attentional
set shifting task (Lapiz and Morilak, 2006). Working memory
requires the animal to retain the information just acquired,
whereas attentional set shifting requires the animal to abandon
the current information and move on to the novel sensory
information (Lapiz and Morilak, 2006). Thus, the activation of
the α1 receptors by the high level of the NA might not be always
negative and necessary for the better performance depending
on the cognitive demand of the tasks. It will be interesting to
study whether the selective projection of the LC noradrenergic
neurons to the PFC plays any role in these functions (Chandler
and Waterhouse, 2012).

Sleep and Wakefulness (Global Brain
States)
Although the cholinergic neurons show selective innervation
to the cortex, it has also been known that the cholinergic
neurons can be involved in modulation of the global brain
states during sleep. The BF cholinergic neurons are highly
active during wakefulness and paradoxical sleep but show low
activity during slow-wave sleep (Lee et al., 2005). Burst firing
activity of cholinergic neurons induces broad theta oscillations
in the hippocampus and the cortex (Lee et al., 2005). A recent
study showed that the cholinergic neurons are active during
wakefulness and rapid-eye-movement sleep in mice, and showed
that artificial activation of cholinergic neurons in the BF induces
the transition from sleep to wakefulness (Xu et al., 2015).
However, it is still unclear whether any specific population
of corticopetal BF cholinergic neurons is responsible for this
induction of wakefulness. Furthermore, as shown in human
studies, it might be critical to maintain the reduced level of ACh
during slow-wave sleep for the consolidation of the declarative
memory in rodents (Gais and Born, 2004). It will be interesting
to examine whether activity of the BF cholinergic neurons during
sleep is important for memory consolidation (Power et al., 2003).

The LC noradrenergic system is also known to be involved
in controlling sleep (Aston-Jones and Bloom, 1981; Berridge and
Waterhouse, 2003; Atzori et al., 2016). The LC neurons show
less firing activity during non-rapid eye movement (NREM)
sleep and become almost silent during rapid eye movement
(REM) sleep. During wakefulness, the LC neurons show either
tonic firing activity at 1–3 Hz in quiet wakefulness or phasic
firing activity at 8–10 Hz bursts when the animal receives
salient stimuli (Hobson et al., 1975; Foote et al., 1980; Aston-
Jones and Bloom, 1981; Rasmussen et al., 1986; Eschenko
et al., 2012). The transition of the LC firing activity precedes
the switch in the behavioral states, and the pharmacological
administration of α1 and β receptor antagonists elicit an increase
in slow-wave activity and a reduction in behavioral activities
(Schmeichel and Berridge, 2013). A recent study showed that
optogenetic activation of LC noradrenergic neurons at phasic
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(10 Hz) and at tonic (3 Hz) activity induces immediate
sleep-to-wakefulness transitions, whereas inactivation of these
neurons cause the reduction of wakefulness (Carter et al., 2010).
Therefore, the activity of the LC noradrenergic neurons is critical
for the induction and maintenance of wakefulness. Furthermore,
many studies have shown a strong correlation between the LC
activity and pupil size, which represents the level of arousal in
an awake animal (Aston-Jones and Cohen, 2005b; Murphy et al.,
2014; Joshi et al., 2016). Interestingly, the rapid pupil dilation
is caused by phasic activity of LC noradrenergic neurons, and
long-lasting dilation of the pupil during locomotion is more
correlated with sustained activity of cholinergic neurons (Reimer
et al., 2016). These results indicate that elevated activity in
the LC noradrenergic neurons can mediate global brain state
transitions to wakefulness and rapid arousal. As discussed earlier,
the diverging and extensive innervation of the LC noradrenergic
neurons to the cortex may support this function.

CONCLUSION

The BF cholinergic and LC noradrenergic systems share
common features: broad cortical innervations and regulation
of cognitive functions such as arousal, attention, learning,
and sleep. However, they clearly show distinct anatomical
and physiological characteristics. First, the BF is constructed
with multiple sub-nuclei, which project to distinct regions in
the brain (Figure 1A). The LC, however, is a small nucleus
with noradrenergic neurons that project to wider brain areas
(Figure 1B). Thus, the level of divergence of these projections
must be different between the systems. Second, the topographic
distribution of the axonal projections in the cortex is different
between these two systems. Although both neuromodulatory
systems modulate the sensory cortices (Figure 1; Waterhouse
et al., 1990; McLean and Waterhouse, 1994; Manunta and
Edeline, 1997; Disney et al., 2007; Goard and Dan, 2009; Pinto
et al., 2013; Fu et al., 2014), the cholinergic neurons show

selective projections, whereas the noradrenergic neurons show
diverging projections to the sensory cortex (Figure 2A; Chaves-
Coira et al., 2016; Kim et al., 2016). Their projection to the PFC
shows opposite patterns (Figure 2B; Chandler and Waterhouse,
2012; Chandler et al., 2013). Third, the cell types and receptor
types that receive the modulation is distinct between the systems.
Downstream signaling pathways can be either excitatory or
inhibitory depending on the receptor types. The activity pattern
of the cholinergic and the noradrenergic neurons must be
considered to fully understand the level of modulation in the
cortex (Figure 3). Finally, the inputs to the BF and the LC can
show different levels of selectivity (Figure 4). Recent studies have
begun to map the whole-brain inputs to the neuromodulatory
systems (Schwarz et al., 2015; Gielow and Zaborszky, 2017).
To fully understand the function of these neuromodulatory
projections in the cortex, it is necessary to examine how the
selective inputs and their outputs are linked together to induce
a particular activity pattern in the population of the cholinergic
and noradrenergic neurons and how they exert specific brain
functions that require their neuromodulation: attention, arousal,
learning and transition in the global brain states.
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