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Most elementary behaviors such as moving the arm to grasp an object or walking into

the next room to explore a museum evolve on the time scale of seconds; in contrast,

neuronal action potentials occur on the time scale of a few milliseconds. Learning rules

of the brain must therefore bridge the gap between these two different time scales.

Modern theories of synaptic plasticity have postulated that the co-activation of pre- and

postsynaptic neurons sets a flag at the synapse, called an eligibility trace, that leads to a

weight change only if an additional factor is present while the flag is set. This third factor,

signaling reward, punishment, surprise, or novelty, could be implemented by the phasic

activity of neuromodulators or specific neuronal inputs signaling special events. While the

theoretical framework has been developed over the last decades, experimental evidence

in support of eligibility traces on the time scale of seconds has been collected only during

the last few years. Here we review, in the context of three-factor rules of synaptic plasticity,

four key experiments that support the role of synaptic eligibility traces in combination with

a third factor as a biological implementation of neoHebbian three-factor learning rules.

Keywords: eligibility trace, hebb rule, reinforcement learning, neuromodulators, surprise, synaptic tagging,

synaptic plasticity, behavioral learning

1. INTRODUCTION

Humans are able to learn novel behaviors such as pressing a button, swinging a tennis racket,
or braking at a red traffic light; they are also able to form memories of salient events, learn to
distinguish flowers, and to establish a mental map when exploring a novel environment. Memory
formation and behavioral learning is linked to changes of synaptic connections (Martin et al., 2000).
Long-lasting synaptic changes, necessary for memory, can be induced by Hebbian protocols that
combine the activation of presynaptic terminals with a manipulation of the voltage or the firing
state of the postsynaptic neuron (Lisman, 2003). Traditional experimental protocols of long-term
potentiation (LTP) (Bliss and Lømo, 1973; Bliss and Collingridge, 1993), long-term depression
(LTD) (Levy and Stewart, 1983; Artola and Singer, 1993) and spike-timing dependent plasticity
(STDP) (Markram et al., 1997; Zhang et al., 1998; Sjöström et al., 2001) neglect that additional
factors such as neuromodulators or other gating signals might be necessary to permit synaptic
changes (Gu, 2002; Reynolds and Wickens, 2002; Hasselmo, 2006). Early STDP experiments that
involved neuromodulators mainly focused on tonic bath application of modulatory factors (Pawlak
et al., 2010) with the exception of one study in locusts Cassenaer and Laurent (2012). However, from
the perspective of formal learning theories, to be reviewed below, the timing of modulatory factors
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is just as crucial (Schultz and Dickinson, 2000; Schultz, 2002).
From the theoretical perspective, STDP under the control of
neuromodulators leads to the framework of three-factor learning
rules (Xie and Seung, 2004; Legenstein et al., 2008; Vasilaki et al.,
2009) where an eligibility trace represents the Hebbian idea of
co-activation of pre- and postsynaptic neurons (Hebb, 1949)
while modulation of plasticity by additional gating signals is
represented generically by a “third factor” (Crow, 1968; Barto,
1985; Legenstein et al., 2008). Such a third factor could represent
variables such as “reward minus expected reward” (Williams,
1992; Schultz, 1998; Sutton and Barto, 1998) or the saliency of an
unexpected event (Ljunberg et al., 1992; Redgrave and Gurney,
2006).

In an earlier paper (Frémaux and Gerstner, 2016) we reviewed
the theoretical literature of, and experimental support for, three-
factor rules available by the end of 2013. During recent years,
however, the experimental procedures advanced significantly
and provided direct physiological evidence of eligibility traces
and three-factor learning rules for the first time, making an
updated review of three-factor rules necessary. In the following,
we—a group of theoreticians—review five experimental papers
indicating support of eligibility traces in striatum (Yagishita et al.,
2014), cortex (He et al., 2015), and hippocampus (Brzosko et al.,
2015, 2017; Bittner et al., 2017). We will close with a few remarks
on the paradoxical nature of theoretical predictions in the field of
computational neuroscience.

2. HEBBIAN RULES VS. THREE-FACTOR
RULES

Learning rules describe the change of the strength of a synaptic
contact between a presynaptic neuron j and a postsynaptic
neuron i. The strength of an excitatory synaptic contact can be
defined by the amplitude of the postsynaptic potential which
is closely related to the spine volume and the number of
AMPA receptors (Matsuzaki et al., 2001). Synapses contain
complex molecular machineries (Lisman, 2003, 2017; Redondo
and Morris, 2011; Huganir and Nicoll, 2013), but for the sake of
transparency of the arguments, we will keep the mathematical
notation as simple as possible and characterize the synapse by
two variables only: the first one is the synaptic strength wij,
measured as spine volume or amplitude of postsynaptic potential,
and the second one is a synapse-internal variable eij which is
not directly visible in standard electrophysiological experiments.
In our view, the internal variable eij represents a metastable
transient state of interacting molecules in the spine head or a
multi-molecular substructure in the postsynaptic density which
serves as a synaptic flag indicating that the synapse is ready for
an increase or decrease of its spine volume (Bosch et al., 2014).
The precise biological nature of eij is not important to understand
the theories and experiments that are reviewed below. We refer
to eij as the “synaptic flag” or the “eligibility trace” and to wij

as the “synaptic weight,” or “strength” of the synaptic contact. A
change of the synaptic flag indicates a ‘candidate weight change’
(Frémaux et al., 2010) whereas a change of wij indicates an actual,
measurable, change of the synaptic weight. Before we turn to

three-factor rules, let us discuss conventional models of Hebbian
learning.

2.1. Hebbian Learning Rules
Hebbian learning rules are the mathematical summary of
the outcome of experimental protocols inducing long-term
potentiation (LTP) or long-term depression (LTD) of synapses.
Suitable experimental protocols include strong extracellular
stimulation of presynaptic fibers (Bliss and Lømo, 1973; Levy
and Stewart, 1983), manipulation of postsynaptic voltage in the
presence of presynaptic spike arrivals (Artola and Singer, 1993),
or spike-timing dependent plasticity (STDP) (Markram et al.,
1997; Sjöström et al., 2001). In all mathematical formulations
of Hebbian learning, the synaptic flag variable eij is sensitive to
the combination of presynaptic spike arrival and a postsynaptic
variable, such as the voltage at the location of the synapse. Under
a Hebbian learning rule, repeated presynaptic spike arrivals at
a synapse of a neuron at rest do not cause a change of the
synaptic variable. Similarly, an elevated postsynaptic potential in
the absence of a presynaptic spike does not cause a change of
the synaptic variable. Thus, Hebbian learning always needs two
factors for a synaptic change: a factor caused by a presynaptic
signal such as glutamate; and a factor that depends on the state
of the postsynaptic neuron.

What are these factors? We can think of the presynaptic factor
as the time course of glutamate available in the synaptic cleft
or bound to the postsynaptic membrane. Note that the term
“presynaptic factor” that we will use in the following does not
imply that the physical location of the presynaptic factor is inside
the presynaptic terminal–the factor could very well be located
in the postsynaptic membrane as long as it only depends on the
amount of available neurotransmitters. The postsynaptic factor
might be related to calcium in the synaptic spine (Shouval et al.,
2002; Rubin et al., 2005), a calcium-related second messenger
molecule (Graupner and Brunel, 2007), or simply the voltage at
the site of the synapse (Brader et al., 2007; Clopath et al., 2010).

We remind the reader that we always use the index j to refer to
the presynaptic neuron and the index i to refer to the postsynaptic
one. For the sake of simplicity, let us call the presynaptic factor
xj (representing the activity of the presynaptic neuron or the
amount of glutamate in the synaptic cleft) and the postsynaptic
factor yi (representing the state of the postsynaptic neuron). In a
Hebbian learning rule, changes of the synaptic flag eij need both
xj and yi

d

dt
eij = η fj(xj) gi(yi)− eij/τe (1)

where η is the constant learning rate, τe is a decay time constant,
fj(xj) is an (often linear) function of the presynaptic activity
xj and gi(yi) is some arbitrary, potentially nonlinear, function
of the postsynaptic variable yi. The index j of the function fj
and the index i of the function gi indicate that the rules for
changing a synaptic flag can depend on the type of pre- and
postsynaptic neurons, on the cortical layer and area, but also on
some heterogeneity of parameters between one neuron and the
next.
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According to Equation 1 the synaptic flag eij acts as a
correlation detector between presynaptic activity xj and the state
of the postsynaptic neuron yi. In some models, there is no
decay or the decay is considered negligible on the time scale
of one experiment (τe → ∞). The flag variable eij could be
related to a calcium-based coincidence detection mechanism in
the spine such as CaMKII (Lisman, 1989; Shouval et al., 2002)
or a metastable state of the molecular machinery in the synapse
(Bosch et al., 2014).

Let us discuss two examples. In the Bienenstock-Cooper
Munro (BCM) model of developmental cortical plasticity
(Bienenstock et al., 1982) the presynaptic factor xj is the firing rate
of the presynaptic neuron and g(yi) = (yi − θ) yi is a quadratic
function with yi the postsynaptic firing rate and θ a threshold
rate. Thus, if both pre- and postsynaptic neurons fire together
at a high rate xj = yi > θ then the synaptic flag eij increases. In
the BCM model, just like in most other conventional models, a
change of the synaptic flag (i.e., an internal state of the synapse)
leads instantaneously to a change of the weight eij −→ wij so that
an experimental protocol results immediately in a measurable
weight change. With the BCM rule and other similar rules (Oja,
1982; Miller and MacKay, 1994), the synaptic weight increases
if both presynaptic and postsynaptic neuron are highly active,
implementing the slogan “fire together, wire together” (Lowel and
Singer, 1992; Shatz, 1992) cf. Figure 1Ai.

As a second example, we consider the Clopathmodel (Clopath
et al., 2010). In this model, there are two correlation detectors
implemented as synaptic flags e+ij and e−ij for LTP and LTD,

respectively. The synaptic flag e+ij for LTP uses a presynaptic

factor x+j (related to the amount of glutamate available in the

synaptic cleft) which increases with each presynaptic spike and
decays back to zero over the time of a few milliseconds (Clopath
et al., 2010). The postsynaptic factor for LTP depends on the
postsynaptic voltage yi via a function g(yi) = a+[yi − θ+]ȳi
where a+ is a positive constant, θ+ a voltage threshold, square
brackets denote the rectifying piecewise linear function, and
ȳi a running average of the voltage with a time constant of
tens of milliseconds. An analogous, but simpler, combination of
presynaptic spikes and postsynaptic voltage defines the second
synaptic flag e−ij for LTD (Clopath et al., 2010). The total change

of the synaptic weight is the combination of the two synaptic
flags for LTP and LTD: dwij/dt = de+ij /dt − de−ij /dt. Note that,

since both synaptic flags e+ij and e−ij depend on the postsynaptic

voltage, postsynaptic spikes are not a necessary condition for
changes, in agreement with voltage-dependent protocols (Artola
and Singer, 1993; Ngezahayo et al., 2000). Thus, in voltage-
dependent protocols, and similarly in voltage-dependent models,
“wiring together” is possible without “firing together”-indicating
that the theoretical framework sketched above goes beyond a
narrow view of Hebbian learning; cf. Figure 1Aii.

If we restrict the discussion of the postsynaptic variable
to super-threshold spikes, then the Clopath model becomes
identical to the triplet STDP model (Pfister et al., 2006) which
is in turn closely related to other nonlinear STDP models (Senn
et al., 2001; Froemke and Dan, 2002; Izhikevich and Desai, 2003)
as well as to the BCM model discussed above (Pfister et al., 2006;

Gjorjieva et al., 2011). Classic pair-based STDP models (Gerstner
et al., 1996; Kempter et al., 1999; Song et al., 2000; van Rossum
et al., 2000; Rubin et al., 2001) are further examples of the general
theoretical framework of Equation (1) and so are some models of
structural plasticity (Helias et al., 2008; Deger et al., 2012, 2018;
Fauth et al., 2015). Hebbian models of synaptic consolidation
have several hidden flag variables (Fusi et al., 2005; Barrett et al.,
2009; Benna and Fusi, 2016) but can also be situated as examples
within the general framework of Hebbian rules. Note that in most
of the examples so far the measured synaptic weight is a linear
function of the synaptic flag variable(s). However, this does not
need to be the case. For example, in some voltage-based (Brader
et al., 2007) or calcium-based models (Shouval et al., 2002; Rubin
et al., 2005), the synaptic flag is transformed into a weight change
only if eij is above or below some threshold, or only after some
further filtering.

To summarize, in the theoretical literature the class of
Hebbian models is a rather general framework encompassing all
those models that are driven by a combination of presynaptic
activity and the state of the postsynaptic neuron. In this view,
Hebbian models depend on two factors related to the activity
of the presynaptic and the state of the postsynaptic neuron. The
correlations between the two factors can be extracted on different
time scales using one or, if necessary, several flag variables. The
flag variables trigger a change of the measured synaptic weight.
In the following we build on Hebbian learning, but extend the
theoretical framework to include a third factor.

2.2. Three-Factor Learning Rules
We are interested in a framework where a Hebbian co-activation
of two neurons leaves one or several flags (eligibility trace) at
the synapse connecting these neurons. The flag is not directly
visible and does not automatically trigger a change of the synaptic
weight. An actual weight change is implemented only if a third
signal, e.g., a phasic increase of neuromodulator activity or an
additional input (signaling the occurrence of a special event) is
present at the same time or in the near future. Theoreticians refer
to such a plasticity model as a three-factor learning rule (Xie and
Seung, 2004; Legenstein et al., 2008; Vasilaki et al., 2009; Frémaux
et al., 2013; Frémaux and Gerstner, 2016). Three-factor rules have
also been called “neoHebbian” (Lisman et al., 2011; Lisman, 2017)
or “heterosynaptic (modulatory-input dependent)” (Bailey et al.,
2000) and can be traced back to the 1960s (Crow, 1968), if not
earlier. To our knowledge the wording “three factors” was first
used by (Barto, 1985). The terms eligibility and eligibility traces
have been used in (Klopf, 1972; Sutton and Barto, 1981, 1998;
Barto et al., 1983; Barto, 1985; Williams, 1992; Schultz, 1998) but
in some of the early studies it remained unclear whether eligibility
traces can be set by presynaptic activity alone (Klopf, 1972; Sutton
and Barto, 1981) or only by Hebbian co-activation of pre- and
postsynaptic neurons (Barto et al., 1983; Barto, 1985; Williams,
1992; Schultz, 1998; Sutton and Barto, 1998).

The basic idea of a modern eligibility trace is that a synaptic
flag variable eij is set according to Equation (1) by coincidences
between presynaptic activity xj and a postsynaptic factor yi. The
update of the synaptic weight wij, as measured via the spine
volume or the amplitude of the excitatory postsynaptic potential
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FIGURE 1 | (A) Two Hebbian protocols and one three-factor learning protocol. (i) Hebbian STDP protocol with presynaptic spikes (presynaptic factor) followed by a

burst of postsynaptic spikes (postsynaptic factor). Synapses in the stimulated pathway (green) will typically show LTP while an unstimulated synapse (red) will not

change its weight (Markram et al., 1997). (ii) Hebbian voltage pairing protocol of presynaptic spikes (presynaptic factor) with a depolarization of the postsynaptic

neuron (postsynaptic factor). Depending on the amount of depolarization the stimulated pathway (green) will show LTP or LTD while an unstimulated synapse (red)

does not change its weight (Artola and Singer, 1993; Ngezahayo et al., 2000). (iii) Results of a Hebbian induction protocol are influenced by a third factor (blue) even if

it is given after a delay d. The third factor could be a neuromodulator such as dopamine, acetylcholine, noreprinephrine, or serotonin (Pawlak et al., 2010; Yagishita

et al., 2014; Brzosko et al., 2015, 2017; He et al., 2015; Bittner et al., 2017). (B) Specificity of three-factor learning rules. (i) Presynaptic input spikes (green) arrive at

two different neurons, but only one of these also shows postsynaptic activity (orange spikes). (ii) A synaptic flag is set only at the synapse with a Hebbian co-activation

of pre- and postsynaptic factors; the synapse become then eligible to interact with the third factor (blue). Spontaneous spikes of other neurons do not interfere. (iii) The

interaction of the synaptic flag with the third factor leads to a strengthening of the synapse (green).

(EPSP), is given by

d

dt
wij = eijM

3rd(t) (2)

where M3rd(t) refers to the global third factor (Izhikevich,
2007; Legenstein et al., 2008; Frémaux et al., 2013). Therefore,
according to Equation 2, a non-zero third factor is needed
to transform the eligibility trace into a weight change; cf.
Figure 1Aiii. Note that the weight change is proportional to
M3rd(t). Thus, the third factor influences the speed of learning. In
the absence of the third factor (M3rd(t) = 0), the synaptic weight
is not changed.We emphasize that a positive value of the synaptic
flag in combination with a negative value M3rd < 0 leads to a
decrease of the weight. Therefore, the third factor also influences
the direction of change.

In the discussion so far, M3rd(t) in Equation (2) can take
positive and negative values. Such a behavior is typical for
a phasic signal which we may mathematically define as the
deviation from a running average. We may, for example, think
of the third factor as a phasic neuromodulatory signal. However,
the third factor could also be biologically implemented by positive
excursions of the activity using two different neuromodulators
with very low baseline activity. The activity of the first modulator
could indicate positive values of the third factor and that of the
second modulator negative ones - similar to ON and OFF cells in
the retina. Similarly, the framework of neoHebbian three-factor
rules is general enough to enable biological implementations with

separate eligibility traces for LTP and LTD as discussed above in
the context of the Clopath model (Clopath et al., 2010).

What could be the source of such a third factor, be it
a single neuromodulator or several different ones? The third
factor could be triggered by attentional processes, surprising
events, or reward. Phasic signals of neuromodulators such as
dopamine, serotonin, acetylcholine, or noradrenaline are obvious
candidates for a third factor, but potentially not the only ones.
Note that axonal branches of most dopaminergic, serotonergic,
cholinergic, or adrenergic neurons project broadly onto large
regions of cortex so that a phasic neuromodulator signal arrives
at many neurons and synapses in parallel (Schultz, 1998). Since
neuromodulatory information is shared by many neurons, the
variable M3rd(t) of the third factor has no neuron-specific index
(neither i nor j) in our mathematical formulation. Because of
its nonspecific nature, the theory literature sometimes refers to
the third factor as a “global” broadcasting signal, even though
in practice not every brain region and every synapse is reached
by each neuromodulator. The learning rule with the global
modulator, as formulated in Equation 2 will be called Type 1 for
the remainder of this paper.

To account for some neuron-specific aspects, three-factor
learning rules of Type 2,

d

dt
wij = eij hi(M

3rd(t)) , (3)

contain a neuron-specific function hi that determines how the
global third factor M3rd influences synaptic plasticity of the
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postsynaptic neuron i. Including an index i in the function
hi(M

3rd) keeps the theory flexible enough to set (for example)
hi(M

3rd) ≡ 0 for the subset of neurons i that are not reached
by a given neuromodulator. In this case, the classification of a
given learning rule as Type 1 and Type 2 is somewhat arbitrary
as it depends on whether a population of neurons with a three-
factor learning rule is embedded in a larger network with static
synapses or not. But there are also existing models, where the
implementation of a certain function requires the possibility
that one subpopulation has plasticity rules under a third factor
whereas another one does not (Brea et al., 2013; Rezende and
Gerstner, 2014).

The framework of Equation 3 also includes networks where
the distribution of neuromodulatory information to different
neurons is done with fixed, but random feedback weights bi
(Lillicrap et al., 2016; Guerguiev et al., 2017); we simply need

to set hi

(

M3rd
)

= h
(

biM
3rd

)

. It does not, however, include

the general case of supervised learning with backpropagation of
errors.

One of the important differences between supervised and
reinforcement learning is that in most modern supervised
learning tasks, such as auto-encoders, the target is, just like the
input, a high-dimensional vector. For supervised learning of
high-dimensional targets, we need to generalize Equation (3)
further, to three-factor learning rules of Type 3,

d

dt
wij = eijM

3rd
i (t) , (4)

where M3rd
i is now a neuron-specific (hence non-global) error

feedback signal. For the case of standard backpropagation in
layered networks, M3rd

i is calculated by a weighted sum over the
errors in the next layer closer to the output; a calculation which
needs a well-tuned feedback circuit from the output back to
previous layers (Roelfsema and van Ooyen, 2005; Lillicrap et al.,
2016; Roelfsema and Holtmaat, 2018). Interestingly, learning
similar, but not identical, to backpropagation is still possible with
feedback circuits, where the direct feedback from the output
is replaced with fixed random weights (Lillicrap et al., 2016;
Guerguiev et al., 2017), or in networks with a single hidden layer
and winner-take-all activity (one-hot coding) in the output layer
(Roelfsema and van Ooyen, 2005; Rombouts et al., 2015). In the
latter case, the neuron-specific third factorM3rd

i further factorizes

into a global modulator M3rd and an attention signal Ai, which
leads to a four-factor learning rule (Roelfsema and Holtmaat,
2018).

2.3. Examples and Theoretical Predictions
There are several known examples in the theoretical literature
of neoHebbian three-factor rules. We briefly present four of
these and formulate expectations derived from the theoretical
framework which we would like to compare to experimental
results in the next section.

2.3.1. Reward-Based Learning
As a first example of a Type 1 three-factor learning rule,
we consider the relation of neoHebbian three-factor rules to

reward-based learning. Temporal Difference (TD) algorithms
such as SARSA(λ) or TD(λ) from the theory of reinforcement
learning (Sutton and Barto, 1998) as well as learning rules
derived from policy gradient theories (Williams, 1992) can be
interpreted in neuronal networks in terms of neoHebbian three-
factor learning rules. The resulting plasticity rules are applied
to synapses connecting “state-neurons” (e.g., place cells coding
for the current location of an animal) to “action neurons” e.g.,
cells initiating an action program such as “turn left”) (Brown
and Sharp, 1995; Suri and Schultz, 1999; Arleo and Gerstner,
2000; Foster et al., 2000; Xie and Seung, 2004; Loewenstein
and Seung, 2006; Florian, 2007; Izhikevich, 2007; Legenstein
et al., 2008; Vasilaki et al., 2009; Frémaux et al., 2013); for a
review, see (Frémaux and Gerstner, 2016). The eligibility trace
is increased during the joint activation of “state-neurons” and
“action-neurons” and decays exponentially thereafter consistent
with the framework of Equation (1). The third factor is defined
as reward minus expected reward where the exact definition of
expected reward depends on the implementation details. A long
line of research byWolfram Schultz and colleagues (Schultz et al.,
1997; Schultz, 1998, 2002; Schultz and Dickinson, 2000) indicates
that phasic increases of the neuromodulator dopamine have the
necessary properties required for a third factor in the theoretical
framework of reinforcement learning.

However, despite the rich literature on dopamine and reward-
based learning accumulated during the last 25 years, there is scant
data on the decay time constant τe of the eligibility trace eij in
Equation (1) before 2015 (except the locusts study Cassenaer
and Laurent, 2012). From the mathematical framework of
neoHebbian three-factor rules it is clear that, in the context of
action learning, the time constant of the eligibility trace (i.e., the
duration of the synaptic flag) should roughly match the time span
from the initiation of an action to the delivery of reward. As
an illustration, let us imagine a baby that attempts to grasp her
bottle of milk. The typical duration of one grasping movement is
in the range of a second, but potentially only the third grasping
attempt might be successful. Let us suppose that each grasping
movement corresponds to the co-activation of some neurons in
the brain. If the duration of the synaptic flag is much less than a
second, the co-activation of pre- and postsynaptic neurons that
sets the synaptic flag (eligibility trace) cannot be linked to the
reward 1 s later and synapses do not change. If the duration of the
synaptic flag is much longer than a second, then the two “wrong”
grasping attempts are reinforced nearly as strongly as the third,
successful one which mixes learning of “wrong” co-activations
with the correct ones. Hence, the existing theory of three-factor
learning rules predicts that the synaptic flag (eligibility trace for
action learning) should be in the range of a typical elementary
action, about 200 ms to 2 s; see, for example, p. 15 of Schultz
(1998)1, p.3 of Izhikevich (2007) 2, p.3 of Legenstein et al. (2008)3,

1“Learning ... (with dopamine) on striatal synapses ... requires hypothetical traces

of synaptic activity that last until reinforcement occurs and makes those synapses

eligible for modification ...”
2“(The eligibility trace c ) decays to c = 0 exponentially with the time constant

τc = 1 s.”
3“The time scale of the eligibility trace is assumed in this article to be on the order

of seconds.”
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p. 13327 of Frémaux et al. (2010)4, or p. 13 of Frémaux et al.
(2013)5. An eligibility trace of <100 ms or more than 10 s would
be less useful for learning a typical elementary action or delayed
reward task than an eligibility trace in the range of 200 ms to 2 s.
The expected time scale of the synaptic eligibility trace should
roughly match the maximal delay of reinforcers in conditioning
experiments (Thorndike, 1911; Pavlov, 1927; Black et al., 1985),
linking synaptic processes to behavior. For human behavior,
delaying a reinforcer by 10 s during ongoing actions decreases
learning compared to immediate reinforcement (Okouchi, 2009).

2.3.2. Surprise-Based Learning
As a second example of a Type 1 three-factor learning rule,
we consider situations that go beyond standard reward-based
learning. Even in the absence of reward, a surprising event might
trigger a combination of neuromodulators such as noradrenaline,
acetylcholine and dopamine that may act as third factor for
synaptic plasticity. Imagine a small baby lying in the cradle
with an attractive colorful object swinging above him. He
spontaneously makes several arm movements until finally he
succeeds, by chance, to grasp the object. There is no food reward
for this action. However, the fact that he can now turn the
object, look at it from different sides, or put it in his mouth is
satisfying because it leads to many novel (and exciting!) stimuli.
The basic idea is that, in such situations, novelty or surprise
acts as a reinforcer even in complete absence of food rewards
(Schmidhuber, 1991; Singh et al., 2004; Oudeyer et al., 2007).
Theoreticians have studied these ideas in the context of curiosity
(Schmidhuber, 2010), information gain during active exploration
(Storck et al., 1995; Schmidhuber, 2006; Sun et al., 2011; Little and
Sommer, 2013; Friston et al., 2016), and via formal definitions
of surprise (Shannon, 1948; Storck et al., 1995; Itti and Baldi,
2009; Friston, 2010; Schmidhuber, 2010; Faraji et al., 2018). Note
that surprise is not always linked to active exploration but can
also occur in a passive situation, e.g., listening to tone beeps or
viewing simple stimuli (Squires et al., 1976; Kolossa et al., 2013,
2015; Meyniel et al., 2016). Measurable physiological responses to
surprise include pupil dilation (Hess and Polt, 1960) and the P300
component of the electroencephalogram (Squires et al., 1976).

If surprise can play a role similar to reward, then surprise-
transmitting broadcast signals should speed-up plasticity. Indeed,
theories of surprise as well as hierarchical Bayesian models
predict a faster change of model parameters for surprising
stimuli than for known ones (Yu and Dayan, 2005; Nassar
et al., 2010; Mathys et al., 2011, 2014; Faraji et al., 2018)
similar to, but more general than, the well-known Kalman
filters (Kalman, 1960). Since the translation of these abstract
models into networks of spiking neurons is still missing,
precise predictions for surprise modulation of plasticity in the
form of three-factor rules are not yet available. However, if
we consider noradrenaline, acetylcholine, and/or dopamine as
candidate neuromodulators signaling novelty and surprise, we

4“Candidate weight changes eij decay to zero with a time constant τe = 500ms.

The candidate weight changes eij are known as the eligibility trace in reinforcement

learning.”
5“The time scales of the eligibility traces we propose, (are) on the order of hundreds

of milliseconds, .. Direct experimental evidence of eligibility traces still lacks, ...”

expect that these neuromodulators should have a strong effect
on plasticity so as to boost learning of surprising stimuli. The
influence of tonic applications of various neuromodulators on
synaptic plasticity has been shown in numerous studies (Gu,
2002; Reynolds and Wickens, 2002; Hasselmo, 2006; Pawlak
et al., 2010). However, in the context of the above examples, we
are interested in phasic neuromodulatory signals. Phasic signals
conveying moments of surprise are most useful for learning if
they are either synchronous with the stimulus to be learned (e.g.,
passive listening or viewing) or arise with a delay corresponding
to one exploratory movement (e.g., grasping). Hence, we predict
from these considerations a decay constant τe of the synaptic flag
in the range of 1 s, but with a pronounced effect for synchronous
or near-synchronous events.

2.3.3. Synaptic Tagging-and-Capture
As our third example of a Type 1 three-factor learning rule,
we would like to comment on synaptic consolidation. The
synaptic tagging-and-capture hypothesis (Frey and Morris, 1997;
Reymann and Frey, 2007; Redondo and Morris, 2011) perfectly
fits in the framework of three-factor learning rules: The joint
pre- and postsynaptic activity sets the synaptic flag (called “tag”
in the context of consolidation) which decays back to zero over
the time of 1 h. To stabilize synaptic weights beyond 1 h an
additional factor is needed to trigger protein synthesis required
for long-term maintenance of synaptic weights (Reymann and
Frey, 2007; Redondo and Morris, 2011). Neuromodulators
such as dopamine have been identified as the necessary third
factor for consolidation (Bailey et al., 2000; Reymann and
Frey, 2007; Redondo and Morris, 2011; Lisman, 2017). Indeed,
modern computational models of synaptic consolidation take
into account the effect of neuromodulators (Clopath et al., 2008;
Ziegler et al., 2015) in a framework reminiscent of the three-
factor rule defined by Equations (1, 2) above. However, there
are two noteworthy differences. First, in contrast to reward-based
learning, the decay time τe of the synaptic tag eij is in the range
of 1 h rather than 1 s, consistent with slice experiments (Frey and
Morris, 1997) as well as with behavioral experiments (Moncada
and Viola, 2007). Second, in slices, the measured synaptic weights
wij are increased a few minutes after the end of the induction
protocol and decay back with the time course of the synaptic tag
whereas in the simplest implementation of the three-factor rule
framework as formulated in Equations (1, 2) the visible weight
is only updated at the moment when the third factor is present.
However, slightly more involved models where the visible weight
depends on both the synaptic tag variable and the long-term
stable weight (Clopath et al., 2008; Ziegler et al., 2015) correctly
account for the time course of the measured synaptic weights in
consolidation experiments (Frey andMorris, 1997; Reymann and
Frey, 2007; Redondo and Morris, 2011).

2.3.4. Supervised Learning With Segregated

Dendrites
A recent study proposes a mechanism for implementing 3-factor
rules of Type 3 in the context of supervised learning (Guerguiev
et al., 2017). Instead of neuromodulators, they propose that top-
down feedback signals from the network output to the apical
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dendrites of pyramidal neurons serve as the 3rd factor in the 3-
factor rule. If the output units have a stationary value yk when
driven by the feedforward network input and a stationary value
ŷk when shunted to the target value, then the changes of a weight
wij from neuron j onto the soma (or basal dendrites) of neuron i is
governed by Equation (4) with a third factorMi =

∑

k bik(ŷk−yk)
where bik are random feedback weights from the output neuron
k to the apical dendrite of neuron i (Guerguiev et al., 2017). The
authors assume relatively weak electrical coupling between the
apical dendrite and the soma and suggest that bursts in the apical
dendrite could transmit the value of the third factor to synapses
onto the soma or basal dendrites (Guerguiev et al., 2017).

Similarly, the Urbanczik-Senn rule for supervised learning can
be interpreted as a three-factor rule of Type 3 (Urbanczik and
Senn, 2014). Target input to a neuron in the output layer is given
at the soma and leads to a spike-train Si(t) while feedforward
input from other neurons in the network arrives in a dendritic
compartment where it generates a voltage yi. The third factor
M3rd

i (t) = Si(t) − φ(yi(t)) compares the actual spike train
(including the somatic drive by the target) with the firing rate
expected from dendritic input alone (Urbanczik and Senn, 2014).
The authors assume relatively strong electrical coupling between
the dendrite and the soma. Interestingly, the same learning rule
can also be used in the absence of target information; in this case
we prefer to interpret it as a Hebbian two-factor rule, as discussed
in the next paragraph.

2.3.5. Summary
The Clopath rule discussed in the paragraph onHebbian learning
rules contains terms that combine a presynaptic factor with
two postsynaptic factors, one for instantaneous superthreshold
voltage and the other one for low-pass filtered voltage (Clopath
et al., 2010). However, despite the fact that it is possible to
write the Clopath rule as a multiplication of three factors, we do
not classify it as a three-factor rule but rather as a two-factor
rule with a nonlinear postsynaptic factor. The main difference
to a true three-factor rule is that the third factor M3rd should
be related to a feedback signal conveying information on the
performance of the network as a whole. As we have seen, this
third factor can be a global scalar signal related to reward or
surprise or a neuron-specific signal related to the error in the
network output. With this nomenclature, the Urbanczik-Senn
rule is, just like the Clopath rule (Clopath et al., 2010), a Hebbian
two-factor rule if used in unsupervised learning (Urbanczik and
Senn, 2014), but the same rule must be seen as a three-factor rule
with a neuron-specific (non-global) third factor in the supervised
setting.

In summary, the neoHebbian three-factor rule framework has
a wide range of applicability. The framework is experimentally
well-established in the context of synaptic consolidation where
the duration of the flag (“synaptic tag”) extracted from slice
experiments (Frey and Morris, 1997) is in the range of 1 h,
consistent with fear conditioning experiments (Moncada and
Viola, 2007). This time scale is significantly longer than what
is needed for behavioral learning of elementary actions or
for memorizing surprising events. In the context of reward-
based learning, theoreticians therefore hypothesized that a

process analogous to setting a tag (“eligibility trace”) must
also exist on the time scale of 1 s. The next section discusses
some recent experimental evidence supporting this theoretical
prediction.

3. EXPERIMENTAL EVIDENCE FOR
ELIGIBILITY TRACES

Recent experimental evidence for eligibility traces in striatum
(Yagishita et al., 2014), cortex (He et al., 2015), and hippocampus
(Brzosko et al., 2015, 2017; Bittner et al., 2017) is reviewed in the
following three subsections.

3.1. Eligibility Traces in Dendritic Spines of
Medium Spiny Striatal Neurons in Nucleus
Accumbens
In their elegant imaging experiment of dendritic spines of nucleus
accumbens neurons, Yagishita et al. (2014) mimicked presynaptic
spike arrival by glutamate uncaging (presynaptic factor),
paired it with three postsynaptic spikes immediately afterward
(postsynaptic factor), repeated this STDP-like pre-before-
post sequence ten times, and combined it with optogenetic
stimulation of dopamine fibers (3rd factor) at various delays
(Yagishita et al., 2014). The ten repetitions of the pre-before-
post sequence at 10Hz took about 1 s while stimulation of
dopaminergic fibers (10 dopamine pulses at 30Hz) projecting
from the ventral tegmental area (VTA) to nucleus accumbens
took about 0.3 s. In their paper, dopamine was counted as
delayed by 1 s if the dopamine stimulation started immediately
after the end of the 1 s-long induction period (delay =
difference in switch-on time of STDP and dopamine), but for
consistency with other data we define the delay d here as
the time passed since the end of the STDP protocol. After
15 complete trials the spine volume, an indicator of synaptic
strength (Matsuzaki et al., 2001), was measured and compared
with the spine volume before the induction protocol. The
authors found that dopamine promoted spine enlargement
only if phasic dopamine was given in a narrow time window
during or immediately after the 1 s-long STDP protocol; cf.
Figure 2A.

The maximum enlargement of spines occurred if the
dopamine signal started during the STDP protocol (d = −0.4
s), but even at a delay of d = 1 s LTP was still visible. Giving
dopamine too early (d = −2 s) or too late (d = +4 s) had
no effect. Spine enlargement corresponded to an increase in
the amplitude of excitatory postsynaptic currents indicating that
the synaptic weight was indeed strengthened after the protocol
(Yagishita et al., 2014). Thus, we can summarize that we have in
the striatum a three-factor learning rule for the induction of LTP
where the decay of the eligibility trace occurs on a time scale of 1 s;
cf. Figure 2A.

To arrive at these results, Yagishita et al. (2014) concentrated
on medium spiny neurons in the nucleus accumbens core, a part
of the ventral striatum of the basal ganglia. Functionally, striatum
is a particularly interesting candidate for reinforcement learning
(Brown and Sharp, 1995; Schultz, 1998; Arleo and Gerstner,
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FIGURE 2 | Experimental support for synaptic eligibility traces. Fractional weight change (vertical axis) as a function of delay d of third factor (horizontal axis) for

various protocols (schematically indicated at the bottom of each panel). (A) In striatum medium spiny cells, stimulation of presynaptic glutamatergic fibers (green)

followed by three postsynaptic action potentials (STDP with pre-post-post-post at +10ms) repeated 10 times at 10 Hz yields LTP if dopamine fibers are stimulated

during the presentation (d < 0) or shortly afterward (d = 0 s or d = 1 s) but not if dopamine is given with a delay d = 4 s; redrawn after Figure 1 of Yagishita et al.

(2014), with delay d defined as time since end of STDP protocol. (B) In cortical layer 2/3 pyramidal cells, stimulation of two independent presynaptic pathways (green

and red) from layer 4 to layer 2/3 by a single pulse combined with a burst of four postsynaptic spikes (orange). If the pre-before-post stimulation was combined with a

pulse of norepinephrine (NE) receptor agonist isoproterenol with a delay of 0 or 5 s, the protocol gave LTP (blue trace). If the post-before-pre stimulation was

combined with a pulse of serotonin (5-HT) of a delay of 0 or 2.5 s, the protocol gave LTD (red trace); redrawn after Figure 6 of He et al. (2015). (C) In hippocampus

CA1, a post-before-pre (1t = -20 ms) induction protocol yields LTP if dopamine is present during induction or given with a delay d of 0 or 1 min, but yields LTD if

dopamine is absent or given with a delay of 30 min; redrawn after Figures 1F, 2B, and 3C (square data point at delay of 1 min) of Brzosko et al. (2015). (D) In

hippocampus CA1, 10 extracellular stimuli of presynaptic fibers at 20 Hz cause depolarization of the postsynaptic potential. The timing of a complex spike (calcium

plateau potential) triggered by current injection (during 300 ms) after a delay d, is crucial for the amount of LTP. If we interpret presynaptic spike arrival as the first, and

postsynaptic depolarization as the second factor, the complex spike could be associated with a third factor; redrawn after Figure 3 of Bittner et al. (2017). Height of

boxes gives a very rough estimate of standard deviation - see original papers and figures for details.

2000; Doya, 2000a; Daw et al., 2005) for several reasons.
First, striatum receives highly processed sensory information
from neocortex and hippocampus through glutamatergic
synapses (Mink, 1996; Middleton and Strick, 2000; Haber
et al., 2006). Second, striatum also receives dopamine input
associated with reward processing (Schultz, 1998). Third,
striatum is, together with frontal cortex, involved in the
selection of motor action programs (Mink, 1996; Seo et al.,
2012).

On the molecular level, the striatal three-factor plasticity
depended on NMDA, CaMKII, protein synthesis, and dopamine
D1 receptors (Yagishita et al., 2014; Shindou et al., 2018). CaMKII
increases were found to be localized in the spine and to have
roughly the same time course as the critical window for phasic
dopamine suggesting that CaMKII could be involved in the
“synaptic flag” triggered by the STDP-like induction protocol,
while protein kinase A (PKA) was found to have a nonspecific
cell-wide distribution suggesting an interpretation of PKA as a
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molecule linked to the dopamine-triggered third factor (Yagishita
et al., 2014).

3.2. Two Distinct Eligibility Traces for LTP
and LTD in Cortical Synapses
In a recent experiment of He et al. (2015), layer 2/3
pyramidal cells in slices from prefrontal or visual cortex
were stimulated by an STDP protocol, either pre-before-post
for LTP induction or post-before-pre for LTD induction. A
neuromodulator was applied with a delay after a single STDP
sequence before the whole protocol was repeated; cf. Figure 2B.
Neuromodulators, either norepinephrine (NE), serotonin (5-
HT), dopamine (DA), or acetylcholine (ACh) were ejected
from a pipette for 10 s or from endogenous fibers (using
optogenetics) for 1 s (He et al., 2015). It was found that NE
was necessary for LTP whereas 5-HT was necessary for LTD.
DA or ACh agonists had no effect in visual cortex but DA had
a positive effect on LTP induction in frontal cortex (He et al.,
2015).

For the STDP protocol, He et al. (2015) used extracellular
stimulation of two presynaptic pathways from layer 4 to layer
2/3 (presynaptic factor) combined with a burst of 4 postsynaptic
action potentials (postsynaptic factor), either pre-before-post or
post-before-pre. In a first variant of the experiment, the STDP
stimulation was repeated 200 times at 10 Hz corresponding to
a total stimulation time of 20 s before the NE or 5-HT was
given. In a second variant, instead of an STDP protocol, they
paired presynaptic stimulation (first factor) with postsynaptic
depolarization (second factor) to –10 mV to induce LTP, or to –
40 mV to induce LTD.With both protocols it was found that LTP
can be induced if the neuromodulator NE (third factor) arrived
with a delay of 5 s or less after the LTP protocol, but not 10 s.
LTD could be induced if 5-HT (third factor) arrived with a delay
of 2.5 s or less after the LTD protocol, but not 5 s (He et al., 2015).

A third variant of the experiment involved optogenetic
stimulation of the noradrenaline, dopamine, or serotonin
pathway by repeated light pulses during 1 s applied immediately,
or a few seconds, after a minimal STDP protocol consisting of
a single presynaptic and four postsynaptic pulses (either pre-
before-post or post-before-pre), a protocol that is physiologically
more plausible. The minimal sequence of STDP pairing and
neuromodulation was repeated 40 times at intervals of 20 s.
Results with optogenetic stimulation were consistent with those
mentioned above and showed in addition that application of NE
or 5-HT immediately before the STDP stimulus did not induce
LTP or LTD. Overall these results indicate that in visual and
frontal cortex, pre-before-post pairing leaves an eligibility trace
that decays over 5–10 s and that can be converted into LTP
by the neuromodulator noradrenaline. Similarly, post-before-pre
pairing leaves a shorter eligibility trace that decays over 3 s and
can be converted into LTD by the neuromodulator serotonin; cf.
Figure 2B.

Functionally, a theoretical model in the same paper (He
et al., 2015) showed that the measured three-factor learning
rules with two separate eligibility traces stabilized and prolonged
network activity so as to allow “event prediction.” The authors

hypothesized that these three-factor rules were related to reward-
based learning in cortex such as perceptual learning in monkeys
(Schoups et al., 2001) or mice (Poort et al., 2015) or reward
prediction (Shuler and Bear, 2006). The relation to surprise was
not discussed but might be a direction for further explorations.

Molecularly, the transformation of the Hebbian pre-before-
post eligibility trace into LTP involves beta adrenergic receptors
and intracellular cyclic adenosine monophosphate (cAMP)
whereas the transformation of the post-pre eligibility trace
into LTD involves the 5-HT2c receptor (He et al., 2015). Both
receptors are anchored at the postsynaptic density consistent with
a role in the transformation of an eligibility trace into actual
weight changes (He et al., 2015).

3.3. Eligibility Traces in Hippocampus
Two experimental groups studied eligibility traces in CA1
hippocampal neurons using complementary approaches. In
the studies of Brzosko et al. (2015, 2017), CA1 neurons in
hippocampal slices were stimulated during about 8 min in
an STDP protocol involving 100 repetitions (at 0.2 Hz) of
pairs of one extracellularly delivered presynaptic stimulation
pulse (presynaptic factor) and one postsynaptic action potential
(postsynaptic factor) (Brzosko et al., 2015). Repeated pre-
before-post with a relative timing +10 ms gave LTP (in the
presence of natural endogenous dopamine) whereas post-before-
pre (–20 ms) gave LTD. However, with additional dopamine
(third factor) in the bathing solution, post-before-pre at –20 ms
gave LTP (Zhang et al., 2009). Similarly, an STDP protocol with
post-before-pre at –10 ms resulted in LTP when endogenous
dopamine was present, but in LTD when dopamine was blocked
(Brzosko et al., 2015). Thus dopamine broadens the STDP
window for LTP into the post-before-pre regime (Zhang et al.,
2009; Pawlak et al., 2010). Moreover, in the presence of ACh
during the STDP stimulation protocol, pre-before-post at +10ms
also gave LTD (Brzosko et al., 2017). Thus ACh broadens the LTD
window.

The crucial experiment of Brzosko et al. (2015) involved a
delay in the dopamine (Brzosko et al., 2015). Brzosko et al.
started to perfuse dopamine either immediately after the end of
the post-before-pre (-20ms) induction protocol or with a delay.
Since the dopamine was given for about 10 min, it cannot be
considered as a phasic signal – but at least the start of the
dopamine perfusion was delayed. Brzosko et al. found that the
stimulus that would normally have given LTD turned into LTP if
the delay of dopamine was in the range of 1 min or less, but not
if dopamine started 10 min after the end of the STDP protocol
(Brzosko et al., 2015). Note that for the conversion of LTD into
LTP, it was important that the synapses were weakly stimulated
at low rate while dopamine was present. Similarly, a prolonged
pre-before-post protocol at +10 ms in the presence of ACh gave
rise to LTD, but with dopamine given with a delay of <1 min the
same protocol gave LTP (Brzosko et al., 2017). To summarize, in
the hippocampus a prolonged post-before-pre protocol (or a pre-
before-post protocol in the presence of ACh) yields visible LTD, but
also sets an invisible synaptic flag for LTP. If dopamine is applied
with a delay of<1min, the synaptic flag is converted into a positive
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weight change under continued weak presynaptic stimulation; cf.
Figure 2C.

Molecularly, the conversion of LTD into LTP after repeated
stimulation of post-before-pre pulse pairings depended on
NMDA receptors and on the cAMP - PKA signaling cascade
(Brzosko et al., 2015). The source of dopamine could be in the
Locus Coeruleus which would make a link to arousal and novelty
(Takeuchi et al., 2016) or from other dopamine nuclei linked
to reward (Schultz, 1998). Since the time scale of the synaptic
flag reported in Brzosko et al. (2015, 2017) was in the range of
minutes, the process studied by Brzosko et al. could be related
to synaptic consolidation (Frey and Morris, 1997; Reymann and
Frey, 2007; Redondo andMorris, 2011; Lisman, 2017) rather than
eligibility traces in reinforcement learning where shorter time
constants are needed (Izhikevich, 2007; Legenstein et al., 2008;
Frémaux et al., 2010, 2013). The computational study in Brzosko
et al. (2015) used an eligibility trace with a time constant of 2 s
and showed that dopamine as a reward signal induced learning
of reward location while ACh during exploration enabled a fast
relearning after a shift of the reward location (Brzosko et al.,
2017).

The second study combined in vivo with in vitro data (Bittner
et al., 2017). From in vivo studies it has been known that CA1
neurons in mouse hippocampus can develop a novel, reliable,
and rather broadly tuned, place field in a single trial under the
influence of a “calcium plateau potential” (Bittner et al., 2015),
visible as a complex spike at the soma. Moreover, an artificially
induced complex spike was sufficient to induce such a novel place
field in vivo (Bittner et al., 2015, 2017).

In additional slice experiments, several input fibers from
CA3 to CA1 neurons were stimulated by 10 pulses from
an extracellular electrode during 1 s. The resulting nearly
synchronous inputs at, probably, multiple synapses caused a total
EPSP that was about 10mV above baseline at the soma, and
potentially somewhat larger in the dendrite, but did not cause
somatic spiking of the CA1 neuron. The stimulated synapses
showed LTP if the presynaptic stimulation was paired with a
calcium plateau potential (complex spike) in the postsynaptic
neuron. LTP occurred, even if the presynaptic stimulation
stopped 1 or 2 s before the start of the plateau potential or if
the plateau potential started before the presynaptic stimulation
(Bittner et al., 2017). The protocol has a remarkable efficiency
since potentiation was around 200% after only 5 pairings. Thus,
the joint activation of many synapses sets a flag at the activated
synapses which is translated into LTP if a calcium plateau potential
(complex spike) occurs a few seconds before or after the synaptic
activation; cf. Figure 2D. Molecularly, the plasticity processes
implied NMDA receptors and calcium channels (Bittner et al.,
2017).

Functionally, synaptic plasticity in hippocampus is
particularly important because of the role of hippocampus
in spatial memory (O’Keefe and Nadel, 1978). CA1 neurons
get input from CA3 neurons which have a narrow place field.
The emergence of a broad place field in CA1 has therefore
been interpreted as linking several CA3 neurons (that cover for
example the 50 cm of the spatial trajectory traversed by the rat
before the current location) to a single CA1 cell that codes for

the current location (Bittner et al., 2017). Note that at the typical
running speed of rodents, 50 cm correspond to several seconds
of running. The broad activity of CA1 cells has therefore been
interpreted as a predictive representation of upcoming events or
places (Bittner et al., 2017). What could such an upcoming event
be? For a rodent exploring a T-maze it might for example be
important to develop a more precise spatial representation at the
T-junction than inside one of the long corridors. With a broad
CA1 place field located at the T-junction, information about the
upcoming bifurcation could become available several seconds
before the animal reaches the junction.

Bittner et al. interpreted their findings as the signature of
an unusual form of STDP with a particularly long coincidence
window on the behavioral time scale (Bittner et al., 2017).
Given that the time span of several seconds between presynaptic
stimulation and postsynaptic complex spike is outside the
range of a potential causal relation between input and output,
they classified the plasticity rule as non-Hebbian because the
presynaptic neurons do not participate in firing the postsynaptic
one (Bittner et al., 2017). As an alternative view, we propose
to classify the findings of Bittner et al. as the signature of
an eligibility trace that was left by the joint occurrence of a
presynaptic spike arriving from CA3 (presynaptic factor) and a
subthreshold depolarization at the location of the synapse in the
postsynaptic CA1 neuron (postsynaptic factor); cf. Figure 2D. In
this view, the setting of the synaptic flag is caused by a “Hebbian”-
type induction, except that on the postsynaptic side there are
no spikes but just depolarization, consistent with the role of
depolarization as a postsynaptic factor (Artola and Singer, 1993;
Ngezahayo et al., 2000; Sjöström et al., 2001; Clopath et al., 2010).
In this view, the findings of Bittner et al. suggest that the synaptic
flag set by the induction protocol leaves an eligibility trace which
decays over 2 s. If a plateau potential (related to the third factor)
is generated during these 2 s, the eligibility trace caused by the
induction protocol is transformed into a measurable change of
the synaptic weight. The third factor M3rd(t) in Equation (2)
could correspond to the complex spike, filtered with a time
constant of about 1 s. Importantly, plateau potentials can be
considered as neuron-wide signals (Bittner et al., 2015) triggered
by surprising, novel or rewarding events (Bittner et al., 2017).
In this view, the results of Bittner et al. are consistent with
the framework of neoHebbian three-factor learning rules. If the
plateau potentials are indeed linked to surprising events, the
three-factor rule framework predicts that in vivo many neurons
in CA1 receive such a third input as a broadcast-like signal.
However, only those neurons that also get, at the same time,
sufficiently strong input from CA3 might develop the visible
plateau potential (Bittner et al., 2015).

The main difference between the two alternative views is that,
in the model discussed in Bittner et al. (2017), each activated
synapse is marked by an eligibility trace (which is independent
of the state of the postsynaptic neuron) whereas in the view
of the three-factor rule, the eligibility trace is set only if the
presynaptic activation coincides with a strong depolarization
of the postsynaptic membrane. Thus, in the model of Bittner
et al. the eligibility trace is set by the presynaptic factor alone
whereas in the three-factor rule description it is set by the
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combination of pre- and postsynaptic factors. The two models
can be distinguished in future experiments where either the
postsynaptic voltage is controlled during presynaptic stimulation
or where the number of simultaneously stimulated input fibers is
minimized. The prediction of the three-factor rule is that spike
arrival at a single synapse, or spike arrival in conjunction with a
very small depolarization of <2 mV above rest, is not sufficient
to set an eligibility trace. Therefore, LTP will not occur in these
cases even if a calcium plateau potential occurs 1 s later.

4. DISCUSSION AND CONCLUSION

4.1. Policy Gradient vs. TD-learning
Algorithmic models of TD-learning with discrete states and in
discrete time do not need eligibility traces that extend beyond
one time step (Sutton and Barto, 1998). In a scenario where
the only reward is given in a target state that is several action
steps away from the initial state, reward information shifts, over
multiple trials, from the target state backwards, even if the one-
step eligibility trace connects only one state to the next (Sutton
and Barto, 1998). Nevertheless, extended eligibility traces across
multiple time steps are considered convenient heuristic tools
to speed up learning in temporal difference algorithms such as
TD(λ) or SARSA(λ) (Singh and Sutton, 1996; Sutton and Barto,
1998).

In policy gradient methods (Williams, 1992) as well as
in continuous space-time TD-learning (Doya, 2000b; Frémaux
et al., 2013) eligibility traces appear naturally in the formulation
of the problem of rewardmaximization. Importantly, a large class
of TD-learning and policy gradient methods can be formulated
as three-factor rules for spiking neurons where the third factor
is defined as reward minus expected reward (Frémaux and
Gerstner, 2016). In policy gradient methods and related three-
factor rules, expected reward is calculated as a running average
of the reward (Frémaux et al., 2010) or fixed to zero by choice of
reward schedule (Florian, 2007; Legenstein et al., 2008). In TD-
learning the expected reward in a given time step is defined as
the difference of the value of the current state and that of the
next state (Sutton and Barto, 1998). In the most recent large-scale
applications of reinforcement learning the expected immediate
reward in policy gradient is calculated by a TD-algorithm for
state-dependent value estimation (Greensmith et al., 2004; Mnih
et al., 2016). An excellent modern summary of Reinforcement
Learning Algorithms and their historical predecessors can be
found in (Sutton and Barto, 2018).

4.2. Supervised Learning vs.
Reinforcement Learning
The experiments in Bittner et al. (2015, 2017) provide convincing
evidence that plateau potentials are relevant for the described
plasticity events and could be related to the third factor in three-
factor rules. But in view of the difference between Equations (2)
and (4) the question arises whether the third factor in the Bittner
et al. experiments should be considered as a global or as a neuron-
specific factor. Obviously, a plateau potential is neuron-specific.
The more precise reformulation of this question therefore is
whether this specificity is covered by a Type 2 factor written as

hi(M
3rd) (see Equation 3) or whether it needs the more general

Type 3 formulation with M3rd
i (see Equation 4). We see two

potential interpretations.

(i) A surprise- or novelty-related global (scalar)
neuromodulator M3rd is capable of pushing all CA1
neurons into a state ready to generate a plateau potential,
but only a fraction of the neurons actually receive this
message and stochastically generate a plateau potential. The
term hi(M

3rd) expresses the heterogeneity of this process.
However, amongst the subset of neurons with hi(M

3rd) > 0
only those neurons that have a nonzero eligibility trace
will implement synaptic plasticity. Thus the third factor is
initially global, but triggers in the end very specific plasticity
events limited to a few neurons and synapses only.

(ii) A (potentially high-dimensional) mismatch-related error
signal is randomly projected onto different neurons,
including those in CA1. The effect is a neuron-specific
third factor M3rd

i with index i. This second possibility
is particularly intriguing because it relates to theories of
attention-gated learning (Roelfsema and Holtmaat, 2018)
and learning with segregated synapses (Guerguiev et al.,
2017) as instantiations of approximate backpropagation of
errors. The high-dimensional signal could be related to the
mismatch between what the animal expects to see and what it
actually sees in the next instant. In this second interpretation,
we leave the field of generalized reinforcement learning and
the experiments in Bittner et al. (2015, 2017) can be seen as a
manifestation of supervised learning.

4.3. Specificity
If phasic scalar neuromodulator signals are broadcasted over
large areas of the brain, the question arises whether synaptic
plasticity can still be selective. In the framework of three-factor
rules, specificity is inherited from the synaptic flags which are
set by the combination of presynaptic spike arrival and an
elevated postsynaptic voltage at the location of the synapses.
The requirement is met only for a small subset of synapses,
because presynaptic activity alone or postsynaptic activity alone
are not sufficient; cf. Figure 1B. Furthermore, among all the
flagged synapses only those that show, over many trials, a
correlation with the reward signal will be consistently reinforced
(Loewenstein and Seung, 2006; Legenstein et al., 2008).

Specificity can further be enhanced by an attentional feedback
mechanism (Roelfsema and van Ooyen, 2005; Roelfsema et al.,
2010) that restricts the number of eligible synapses to the
“interesting” ones, likely to be involved in the task. Such an
attentional gating signal acts as an additional factor and turns
the three-factor into a four-factor learning rule (Rombouts et al.,
2015; Roelfsema and Holtmaat, 2018). Additional specificity can
also arise from the fact that not all neurons react in the same way
to a modulator as implemented by the notation hi(M

3rd) of Type
2 rules (Brea et al., 2013; Rezende and Gerstner, 2014); as well as
from additional factors that indicate whether a specific neuron
in a population spikes in agreement with the majority of that
population (Urbanczik and Senn, 2009). Maximal specificity is
achieved with a neuron-specific third factor M3rd

i (Type 3 rules)
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as in modern implementations of supervised learning (Lillicrap
et al., 2016; Guerguiev et al., 2017).

4.4. Mapping to Neuromodulators
A global third factor is likely to be related to neuromodulators,
but from the perspective of a theoretician there is no need
to assign one neuromodulator to surprise and another one
to reward. Indeed, the theoretical framework also works if
each neuromodulator codes for a different combination of
variables such as surprise, novelty or reward, just as we can use
different coordinate systems to describe the same physical system
(Frémaux andGerstner, 2016). Thus, whether dopamine is purely
reward related or also novelty related (Ljunberg et al., 1992;
Schultz, 1998; Redgrave and Gurney, 2006) is not critical for the
development of three-factor learning rules as long as dimensions
relating to novelty, surprise, and reward are all covered by the set
of neuromodulators.

Complexity in biology is increased by the fact that dopamine
neurons projecting from the VTA to the striatum can have
separate circuits and functions changing from reward in ventral
striatum to novelty in the the tail of striatum (Menegas et al.,
2017). Similarly, dopaminergic fibers starting in the VTA can
have a different function than those starting in Locus Coeruleus
(Takeuchi et al., 2016). Furthermore, findings over the last decade
indicate that midbrain dopamine neurons generally show a high
diversity of responses and input-output mappings (Fiorillo et al.,
2013; Roeper, 2013). Finally, the time scale of eligibility traces
could vary from one brain area to the next, in line with the
general idea that higher cortical areas show more persistent
activity than primary sensory areas (Wang and Kennedy, 2016).
If the time scale of eligibility traces is slower in higher areas,
we speculate that temporal links between more abstract, slowly
evolving concepts could be picked up by plasticity rules. The
framework of three-factor rules is general enough to allow for
these, and many other, variations.

4.5. Alternatives to Eligibility Traces for
Bridging the Gap Between the Behavioral
and Neuronal Time Scales
From a theoretical point of view, there is nothing—apart from
conceptual elegance—to favor eligibility traces over alternative
neuronal mechanisms to associate events that are separated by
a second or more. For example, memory traces hidden in the
rich firing activity patterns of a recurrent network (Maass et al.,
2002; Jaeger and Haas, 2004; Buonomano and Maass, 2009;
Susillo and Abbott, 2009) or short-term synaptic plasticity in
recurrent networks (Mongillo et al., 2008) could be involved
in learning behavioral tasks with delayed feedback. In some
models, neuronal, rather than synaptic, activity traces have
been involved in learning a delayed paired-associate task (Brea
et al., 2016) and a combination of synaptic eligibity traces with
prolonged single-neuron activity has been used for learning on
behavioral time scales (Rombouts et al., 2015). The empirical
studies reviewed here support the idea that the brain makes use
of the elegant solution with synaptic eligibility traces and three-
factor learning rules, but do not exclude that other mechanisms
work in parallel.

4.6. The Paradoxical Nature of Predictions
in Computational Neuroscience
If a neuroscientist thinks of a theoretical model, he often
imagines a couple of assumptions at the beginning, a set
of results derived from simulations or mathematical analysis,
and ideally a few novel predictions–but is this the way
modeling works? There are at least two types of predictions in
computational neuroscience, detailed predictions and conceptual
predictions. Well-known examples of detailed predictions have
been generated from variants of multi-channel biophysical
Hodgkin-Huxley type (Hodgkin and Huxley, 1952) models
such as: “if channel X is blocked then we predict that ... ”
where X is a channel with known dynamics and predictions
include depolarization, hyperpolarization, action potential firing,
action potential backpropagation or failure thereof. All of
these are useful predictions readily translated to and tested in
experiments.

Conceptual predictions derived from abstract conceptual
models are potentially more interesting, but more difficult to
formulate. Conceptual models develop ideas and form our
thinking of how a specific neuronal system could work to solve a
behavioral task such as working memory (Mongillo et al., 2008),
action selection and decision making (Sutton and Barto, 1998),
long-term stability of memories (Crick, 1984; Lisman, 1985; Fusi
et al., 2005), memory formation and memory recall (Willshaw
et al., 1969; Hopfield, 1982). Paradoxically these models often
make no detailed predictions in the sense indicated above. Rather,
in these and other conceptual theories, the most relevant model
features are formulated as assumptions which may be considered,
in a loose sense, as playing the role of conceptual predictions.
To formulate it as a short slogan: Assumptions are predictions.
Let us return to the conceptual framework of three-factor rules:
the purification of rough ideas into the role of three factors is
the important conceptual work - and part of the assumptions.
Moreover, the specific choice of time constant in the range of 1
s for the eligibility trace has been formulated by theoreticians as
one of the model assumptions, rather than as a prediction; cf. the
footnotes in section “Examples and theoretical predictions.”Why
is this the case?

Most theoreticians shy away from calling their conceptual
modeling work a “prediction,” because there is no logical
necessity that the brain must work the way they assume in
their model–the brain could have found a less elegant, different,
but nevertheless functional solution to the problem under
consideration; see the examples in the previous subsection.
What a good conceptual model in computational neuroscience
shows is that there exists a (nice) solution that should ideally
not be in obvious contradiction with too many known facts.
Importantly, conceptual models necessarily rely on assumptions
which in many cases have not (yet) been shown to be true.
The response of referees to modeling work in experimental
journals therefore often is: “but this has never been shown.”
Indeed, some assumptions may look far-fetched or even in
contradiction with known facts: for example, to come back to
eligibility traces, experiments on synaptic tagging-and-capture
have shown in the 1990s that the time scale of a synaptic flag
is in the range of one hour (Frey and Morris, 1997; Reymann
and Frey, 2007; Redondo and Morris, 2011; Lisman, 2017),
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whereas the theory of eligibility traces for action learning needs
a synaptic flag on the time scale of one second. Did synaptic
tagging results imply that three-factor rules for action learning
were wrong, because they used the wrong time scale? Or, on
the contrary, did these experimental results rather imply that a
biological machinery for three-factor rules was indeed in place
which could therefore, for other neuron types and brain areas,
be used and re-tuned to a different time scale (Frémaux et al.,
2013)?

As mentioned earlier, the concepts of eligibility traces and
three-factor rules can be traced back to the 1960s, from
models formulated in words (Crow, 1968), to firing rate models
formulated in discrete time and discrete states (Klopf, 1972;
Sutton and Barto, 1981, 1998; Barto et al., 1983; Barto, 1985;
Williams, 1992; Schultz, 1998; Bartlett and Baxter, 1999), to
models with spikes in a continuous state space and an explicit
time scale for eligibility traces (Xie and Seung, 2004; Loewenstein
and Seung, 2006; Florian, 2007; Izhikevich, 2007; Legenstein
et al., 2008; Vasilaki et al., 2009; Frémaux et al., 2013). Despite
the mismatch with the known time scale of synaptic tagging
in hippocampus (and lack of experimental support in other
brain areas), theoreticians persisted, polished their theories,

talked at conferences about these models, until eventually
the experimental techniques and the scientific interests of
experimentalists were aligned to directly test the assumptions
of these theories. In view of the long history of three-factor
learning rules, the recent elegant experiments (Yagishita et al.,
2014; Brzosko et al., 2015, 2017; He et al., 2015; Bittner et al.,
2017) provide an instructive example of how conceptual theories
can influence experimental neuroscience.
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