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A key problem in systems neuroscience is to characterize how populations of neurons

encode information in their patterns of activity. An understanding of the encoding

process is essential both for gaining insight into the origins of perception and for the

development of brain-computer interfaces. However, this characterization is complicated

by the highly variable nature of neural responses, and thus usually requires probabilistic

methods for analysis. Drawing on techniques from statistical modeling and machine

learning, we review recent methods for extracting important variables that quantitatively

describe how sensory information is encoded in neural activity. In particular, we discuss

methods for estimating receptive fields, modeling neural population dynamics, and

inferring low dimensional latent structure from a population of neurons, in the context

of both electrophysiology and calcium imaging data.

Keywords: neural coding, calcium imaging, population code, brain-computer interfaces, generalized linear model,

Gaussian process, factor analysis

1. INTRODUCTION

An animal’s perceptual capabilities critically depend on the ability of its brain to form appropriate
representations of sensory stimuli. However, the neural activity induced by a specific stimulus
is highly variable, suggesting that neural encoding is a fundamentally probabilistic process.
Characterizing the neural code thus requires statistical methods for relating stimuli to distributions
of evoked patterns of activity. Modern techniques for recording such neural activity include
multi-electrode arrays, which provide access to the behavior of populations of neurons at
millisecond resolution, and optical imaging with genetically encoded calcium (Chen et al., 2013)
and voltage indicators (Abdelfattah et al., 2018), which allow thousands of neurons to be recorded
simultaneously (Ahrens et al., 2013; Chen et al., 2018). However, while improvements in multi-
neuron recording allow us to probe neural circuits in great detail, they are accompanied by a need
for computational techniques that scale to entire neural populations.

A statistical model for neural coding describes how a stimulus is mathematically related
to a pattern of neural activity. By fitting the model one can extract important variables that
quantitatively describe the encoding procedure taking place. For instance, such models enable
the estimation of receptive fields and/or interneuronal coupling strengths. In contrast to other
methods for inferring these variables, an approach based on statistical models situates the task
of estimating salient parameters in a coherent mathematical framework, often with proof of
asymptotic optimality or computational efficiency. By making explicit assumptions about how the
data was generated, statistically principled approaches are often capable of identifying patterns in
neural data which are challenging to find with simpler methods.
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Linear and generalized linear models are among the
most straightforward classes of statistical models for spike
trains and assume that a neuron’s activity is a noisy linear
combination of the stimulus features. These models are
highly effective at explaining the structure of sensory
receptive fields and are computationally tractable, but do
not explicitly model the temporal structure of the recorded
signal and have difficulty accounting for correlations between
neurons in short time windows. An important aspect of
these correlations is their tendency to be modular, with
distinct groups of neurons showing cofluctuating activity.
Latent factor models attempt to uncover the low dimensional
structure that gives rise to this correlated variability, and recent
efforts have focused on extracting low dimensional structure
that evolves smoothly through time using a latent linear
dynamical system or Gaussian process (Cunningham and Byron,
2014).

A further challenge is presented by calcium imaging,
which provides only indirect access to neural activity through
recorded fluorescence levels that reflect the concentration
of calcium within a neuron. Often this data can be more
difficult to interpret than electrophysiological recordings as
there are a number of biophysical stages between stimulus
presentation and fluorescence imaging where noise can enter
and information can be lost. Using a generative model for
calcium imaging data, however, one can explicitly account for
the process through which action potentials are transformed
into fluorescence levels. Fitting the generative model amounts
to deconvolving the fluorescence signal to estimate the
underlying spike train timeseries, and conventional encoding
models can then be applied to deconvolved data. However,
the ability to obtain spike counts from fluorescence data
is highly constrained by experimental conditions, which
motivates the development of encoding models specific to
calcium imaging that do not necessarily involve spike train
deconvolution.

While previous reviews have focused on estimating stimulus-
response functions (Paninski et al., 2007; Pillow, 2007; Meyer
et al., 2017), neural decoding (Paninski et al., 2007; Quiroga
and Panzeri, 2009), and conceptual overviews of models
and data analysis techniques (Cunningham and Byron, 2014;
Paninski and Cunningham, 2018), this review instead discusses
a range of recent exemplary models and their successful
application to experimental data. Our goal is to provide
sufficient mathematical detail to appreciate the respective
strengths and weaknesses of each model, while leaving formal
treatment of their associated fitting algorithms to their original
sources.

2. LINEAR AND GENERALIZED LINEAR
MODELS

We first briefly review now-standard material on models for
single-neuron spike trains, primarily to develop the theory,
terminology, and notation necessary for more recent work
focused on multivariate models.

2.1. The Linear-Gaussian Model
Among the simplest probabilistic models for a neuron’s response
r to a stimulus vector s is the linear-Gaussian model (Figure 1A),
which assumes that a neuron linearly filters the features of s as

r = w⊤s+ ǫ, ǫ ∼ N (0, σ 2) (1)

where the vector w is the stimulus filter, ǫ is an additive noise
variable, andN (0, σ 2) is a Gaussian distribution with mean 0 and
variance σ 2 (see Table 1 for a table of notation). In the case of
visual processing the stimulus s is a vector of pixel intensities for
each point in the visual field, the stimulus filter w corresponds to
the classical visual receptive field, and the response r is either the
spike count or firing rate within some time window following the
stimulus. Assuming stimuli s1, . . . , sK are presented over K trials
yielding responses r1, . . . , rK with independent and identically
distributed noise as in Equation 1, the maximum likelihood
estimate (MLE, see Table 2 for a table of abbreviations) for the
filter w is given by

ŵ = argmax
w

K
∏

k=1

p(rk|sk,w). (2)

Since the noise model is Gaussian, the solution to Equation (2) is
simply the ordinary least squares solution (Bishop, 2006)

ŵ = (S⊤S)−1S⊤r (3)

where S = (s1, . . . , sK)
⊤ is the stimulus design matrix and r =

(r1, . . . , rK)
⊤ is the vector of neuron responses.

A common interpretation of the estimator in Equation (3) is in
terms of the spike-triggered average (STA) of the stimulus, which
is the filter obtained by averaging over the stimuli that elicited a
response,

ŵSTA =
1

N
S⊤r (4)

where N is the total number of spikes. When the stimulus
ensemble follows a multivariate Gaussian with independent
dimensions (and is therefore not biased toward any particular
region of the feature space) the STA is the optimal filter
(Chichilnisky, 2001; Dayan and Abbott, 2001; Simoncelli et al.,
2004) and is proportional to the MLE. In general, the MLE
pre-multiplies the STA by the inverse of the autocorrelation
matrix S⊤S of the stimulus ensemble to correct for bias in the
presented stimuli, and thus corresponds to a whitened STA.
Further discussion of the STA and its connection to the MLE can
be found in Simoncelli et al. (2004) and Meyer et al. (2017).

2.2. The Linear-Nonlinear-Poisson Model
While a linear model can recover basic receptive field structure,
it fails to capture the nonlinear changes in firing rate observed
in electrophysiological recordings in cortex. In addition, the
assumption of Gaussian noise leads to continuous (and possibly
negative) estimates of spike counts. The linear-nonlinear-Poisson
(LNP) model addresses these shortcomings by equipping the
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FIGURE 1 | Generalized linear encoding models. (A) Basic linear-Gaussian model. A neuron’s response is modeled as a linear combination of the stimulus

components with additive Gaussian noise. In this example, the stimulus filter represents a two-dimensional visual receptive field. (B) The LNP model extends the

linear-Gaussian model with a static nonlinearity applied to the filtered stimulus, together with Poisson observations to directly model spike counts. (C) Multi-neuron

GLM encoding model used in Pillow et al. (2008). (D) Center (red) and surround (blue) components of temporal (left) and spatial (right) stimulus filters for the GLM fitted

to an example ON retinal ganglion cell. (E) Same as (D), but for an example OFF cell. In contrast to the ON cell, the OFF cell has an inhibitory effect on spiking. (F)

Schematic of Bayesian decoding process. The encoding model p(r|s) is first fit by maximum likelihood. Then stimuli are decoded as the mean of the posterior stimulus

distribution p(s|r) obtained by Bayes rule. (G) Performance of various decoders. Decoding using a GLM with interneuronal coupling filters (full model) substantially

increases performance over models that do not account for interaction effects (linear, Poisson, and uncoupled models). (C–G) Adapted with permission from Pillow

et al. (2008).

generative model with a static nonlinearity following the linear
filtering, and a Poisson noise model to directly model the number
of spikes generated within a fixed time-window (Figure 1B)
(Chichilnisky, 2001). Let t = 1, . . . ,T index over time bins. The
LNP model assumes spikes follow an inhomogeneous Poisson
process with time-varying firing rate λ(t),

λ(t) = g(w⊤s(t)), r(t) ∼ Pois(λ(t)) (5)

where g is a nonlinear activation function. While this
nonlinearity can be estimated nonparametrically for each neuron
(Simoncelli et al., 2004), it is often chosen to be g(x) = exp(x)
as this ensures a non-negative intensity λ and tractable model
fitting. Note that the specified firing rate λ(t) will depend on the
width 1 of the time bins or imaging rate, but for clarity here and
for the remainder of the paper we omit explicit dependence of
λ(t) on 1.

Assuming g(x) = exp(x) and that the responses r(t) are count
data, the MLE for the LNP model is the solution

ŵ = argmax
w

T
∏

t=1

p(r(t)|s(t),w) = argmax
w

T
∑

t=1

(

r(t) ln λ(t)− λ(t)
)

(6)

where the second equality follows by substituting the Poisson
mass function and taking logarithms. The LNP model can
be fit by standard gradient-based optimization methods since
the intensity function λ(t) is differentiable with respect to the
filter parameters w and the log-likelihood function is concave
(Paninski, 2004).

Regularization is a commonly used technique in machine
learning for preventing a model from overfitting the training
data. When maximizing the log-likelihood function for the LNP
model with regularization, one penalizes the filter components
whenever they deviate from zero

ŵ = argmax
w

T
∑

t=1

(r(t) ln λ(t)− λ(t))− η||w||p (7)

where || · ||p denotes the Lp norm and η > 0 is a penalty
coefficient. Setting p = 1 or p = 2 corresponds, respectively, to
LASSO and ridge regression (Friedman et al., 2001), encouraging
a sparse filter w. Maximizing the penalized log-likelihood is
equivalent to performing posterior inference in a Bayesian
regressionmodel wherew has a Laplacian (for p = 1) or Gaussian
(for p = 2) prior (Wu et al., 2006). In many circumstances,
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TABLE 1 | Table of notation.

Symbol Parameter

r Response

s Stimulus

w Stimulus filter

S Stimulus design matrix

λ Intensity, mean

ǫ, ξ , ξhℓ
Gaussian noise variable

σ , σs, ν Noise standard deviation

µ,µs Baseline activity, mean

h Spike history vector

Jij Spike history coupling filter

x Latent factor

9s Diagonal variance matrix

3, 3s Factor loading matrix

6s Covariance matrix

τ Gaussian process timescale

n Spike count

c Calcium concentration

γ Autoregressive coefficient

α Fluorescence scale

β Baseline fluorescence level

f Fluorescence level

p Spike probability

hℓ Refractory term

kd Dissociation constant

N Gaussian distribution

Pois Poisson distribution

Bern Bernoulli distribution

A subscripted s indicates stimulus-specific parameters.

such as when the data exhibits high noise levels, the ordinary
(unpenalized) MLE cannot recover realistic receptive fields and
needs to be constrained by regularization or priors (Sahani
and Linden, 2003). Such Bayesian methods become highly
effective in regimes of high noise, and a number of Bayesian
extensions of receptive field inference invoke more subtle
machine learning methods. For example, automatic relevance
determination (Sahani and Linden, 2003) places a Gaussian prior
on each element wi of the filter and iteratively updates the prior
variance until the filter components corresponding to irrelevant
stimulus features effectively vanish from the model. Automatic
locality determination, on the other hand, involves constructing
receptive field priors encoding the information that receptive
fields tend to be localized in space, time relative to the stimulus,
and spatiotemporal frequency (Park and Pillow, 2011).

2.3. Extensions of the LNP Model
The LNP model is a special case of a generalized linear model
(GLM): a class of encoding models that generalize the simple
linear-Gaussian model to models that follow linear filtering with
a static nonlinearity and any noise model from the exponential
family. While there is in general no probability mass function
for a multivariate extension of the Poisson distribution, the GLM
framework allows one to incorporate interaction effects between
different neurons, thereby allowing statistical models for single

TABLE 2 | Table of abbreviations.

Abbreviation Meaning

MLE Maximum likelihood estimate

STA Spike-triggered average

LNP Linear-nonlinear-Poisson

GLM Generalized linear model

FA Factor analysis

EM Expectation maximization

GP Gaussian process

GPFA Gaussian process factor analysis

PLDS Poisson linear dynamical system

neurons to be used for entire populations. The LNP model is
extended by the addition of spike-history filters Jij for all pairs
of neurons i and j, intended to capture refractory effects for
individual neurons (i.e., when i = j) and interaction effects
between neurons (i 6= j), giving

λi(t) = exp



w⊤
i s(t)+

N
∑

j=1

J⊤ij hj(t)



 , ri(t) ∼ Pois(λi(t))

(8)

where wi is the stimulus filter for neuron i, hj(t) = (rj(t −

1), . . . , rj(t − τ ))⊤ is a vector of neuron j’s spike history, and τ

determines the length of the spike history window. The addition
of the coupling filters allows the GLM to model the correlation
structure within a population of neurons, as opposed to a model
consisting of independent LNP neurons. Note, however, that the
GLM is only well defined for coupling filters that act on the recent
spike history of other neurons within the population, and cannot
model correlations that arise from coactivity with zero time-lag
(Macke et al., 2011). This motivates the use of latent variable
models (see below), where simultaneous correlations arise among
neurons whose activity is concurrently modulated by a shared
factor.

Nonetheless, the GLM has been successfully applied to many
data sets (Pillow et al., 2005, 2008; Park et al., 2014). Notably,
Pillow et al. (2008) applied the GLM to a population of retinal
ganglion cells from the fly (Figures 1C–E), obtained a complete
characterization of the network’s spatiotemporal correlation
structure, and showed how incorporating these correlations
yields a ∼20% increase in estimated information about the
presented visual scene (Figures 1F,G).

3. LATENT FACTOR MODELS

3.1. Encoding With Factor Analysers
A frequent observation when recording population responses to
the repeated presentation of identical stimuli is that variability
tends to be correlated among groups of neurons. Such correlated
variability (also known as shared variability or noise correlations)
can substantially impact the efficacy of a neural code depending
on the particular correlation structure (Abbott and Dayan, 1999;
Schneidman et al., 2006; Lin et al., 2015), and suggests that there
may be factors present that comodulate the responses of groups
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of neurons. Factor analysis (FA), a probabilistic generalization of
principal components analysis, is a classical model for inferring
the latent group structure that can give rise to correlated
variability.

In a Gaussian coding scheme with independent neurons, a
population response r to a fixed stimulus s has a probability
density given by

p(r|s) = N (r|µs, σ
2
s IN) (9)

where the vector µs is the mean population response, σ 2
s is a

noise variance common to each neuron, and IN is the N × N
identity matrix. While this model is analytically tractable with
closed-form expressions for µs and σs, the diagonal covariance
matrix means it fails to account for the correlation structure that
may be present in the data. As shown in e.g., Pillow et al. (2008),
this additional information can considerably influence decoding
accuracy.

On the other hand, a Gaussian model with an unconstrained
covariance matrix 6s yields a density of the form

p(r|s) = N (r|µs,6s), (10)

which, in principle, could outperform the Gaussian version
that uses an unrealistic assumption of independently acting
neurons (Santhanam et al., 2009). However, the covariance
matrix 6s has (N

2+N)/2 parameters to be learned per stimulus,
requiring an amount of data that is impractically large to obtain
experimentally for large N.

FA is a more moderate approach that attempts to capture
shared variability in population activity by specifying a tractable
parameterization of the covariance matrix. For FA the covariance
matrix is defined as 6s = 3s3

⊤
s + 9s, where 9s ∈ R

N×N is a
diagonal matrix,3s ∈ R

N×q is a factor loadingmatrix (analogous
to the component loading matrix in principal components
analysis), and q < N determines the rank of 3s3

⊤
s . Hence the

population response r is distributed as

p(r|s) = N (r|µs,3s3
⊤
s + 9s). (11)

This decomposes 6s into two matrices that capture separate
aspects of the response variability: 3s3

⊤
s is a low-rank matrix

that captures the variability that is shared across neurons,
whereas the diagonal matrix 9s captures variability private to
each neuron (Churchland et al., 2010). A critical observation is
that the FA covariance matrix only requires (q+ 1)N parameters,
which is less than (N2 + N)/2 whenever q < (N − 1)/2. Since q
is usually chosen to be small, the FA covariance matrix requires
much fewer parameters to be learned from the data.

An equivalent formulation of FA models the population
response to a stimulus s as the projection from a low dimensional
space of latent factors into the N-dimensional population space.
This low dimensionality constraint forces any variability that the
latent factors account for to be shared across groups of neurons,
which leads to a modular correlation structure in the population
recording. The generative model for the population response rs
given a stimulus s is

rs = 3sxs + µs + ǫs (12)

xs ∼ N (0, Iq) (13)

ǫs ∼ N (0,9s), (14)

where xs ∈ R
q denotes the vector of latent factors, which

are assumed to be independent with a Gaussian prior. These
factors are intended to reflect unobserved brain states and could
be physiologically realized as, e.g., shared gain modulation by
downstream circuits. Note that the formulation of FA in Equation
(11) can be recovered from Equations (12–14) by marginalizing
over the latent factors.

Maximum likelihood estimation of the FA parameters θs =

(µs,9s,3s, σs) is complicated by the presence of latent variables
x, as the MLE θ̂s depends on an estimated x̂, and vice versa.
FA thus uses the Expectation Maximization (EM) algorithm, an
iterative procedure for fitting latent variable models (Dempster
et al., 1977; Ghahramani et al., 1996). One must also choose
the dimensionality q of the latent space, typically with a
standard model selection procedure such as a comparison of the
cross-validated log-likelihood or with an information criterion
(Schwarz, 1978).

The FA method was applied to rhesus monkeys with brain-
computer interfaces implanted in area PMd (Santhanam et al.,
2009). Monkeys were trained on reaching tasks and the authors
attempted to infer the intended target from electrophysiological
data using a decoder based on the FA encoding model. By fitting
the factor analyser, the decoder inferred the latent factors that
comodulated neurons’ responses. Incorporating this information
led to substantial improvements in decoding accuracy over
decoders based on independent Gaussian and Poisson encoding
models.

3.2. Gaussian Process Factor Analysis
The peristimulus time histogram averages spike trains over many
trials to robustly estimate the aggregate effect of presenting a
stimulus. Similarly, the FA encoding model is fit by pooling
responses across trials to estimate the parameters θs. While this
across-trial synthesis is necessary for fitting model parameters
accurately, it will fail to reveal possibly important subtleties in
neural activity within individual trials (Churchland et al., 2007,
2010; Afshar et al., 2011).

One way to adapt FA to single-trial analysis is to model the
temporal evolution of the latent factors. A common technique
in machine learning for enforcing temporal structure (or
smoothness more generally) is Gaussian process (GP) regression,
a Bayesian technique for nonparametric statistical modeling
that places a GP prior on the latent variables (Williams and
Rasmussen, 2006). The Gaussian process factor analysis (GPFA,
Figure 2A) model (Yu et al., 2009) defines a GP for each
dimension of the latent state ℓ = 1, . . . , q, which, in the case
of discretely indexed time, reduces to a collection of multivariate
Gaussians

x(ℓ) ∼ N (0,K). (15)

Here each x(ℓ) = (x(ℓ)(1), . . . , x(ℓ)(T))⊤. Elements of the
covariance matrix K are typically determined by the squared
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FIGURE 2 | GPFA model of neural population activity. (A) Schematic of the GPFA model, which adapts FA by including a GP prior on the evolution of the latent

factors. Colored lines above label “Gaussian process dynamics” represent individual latent factors evolving smoothly through time. Each neuron’s firing rate is obtained

by linearly combining the latent factors at each time point. (B) Inferred latent factors from 20 trials of population recordings from anesthetized macaque primary visual

cortex. Each recording (indexed by numbers to the left of each column) was best explained by a single factor (red curves) that evolved independently of the stimulus

(black curves above each column). At high firing rates, this single factor explained as much as 40% of the variance of individual neuron activity. Panel adapted with

permission from Ecker et al. (2014).

exponential kernel for encouraging smoothness

Kt1 ,t2 = σ 2
f exp

(

−
(t1 − t2)

2

2τ 2

)

+ σ 2
n δ(t1, t2) (16)

where δ is the Kronecker delta function and σf and σn are
parameters controlling the variance of the GP. The observed
responses are then modeled as in FA,

r(t) = 3x(t)+ µ + ǫ(t) (17)

ǫ(t) ∼ N (0,9) (18)

where x(t) is the latent state at time t, 3 is the factor loading
matrix, and µ is a baseline activity level. GPFA can be viewed
as a sequence of factor analysers (one for each time point) whose
dimensions are linked together by smooth GPs. Note that while
we have specified a single GP timescale τ , one can also assign
distinct timescales τi to each dimension at the cost of an increase
in computational overhead.

An advantage of GPFA is that the posterior over latent
states x(ℓ) can be written down analytically because both the
prior and likelihood are Gaussian, which form a conjugate pair
(Bishop, 2006). This naturally leads to model fitting with the
EM algorithm, where the updates for the parameter estimates
are analogous to EM for FA (Ghahramani et al., 1996; Yu et al.,
2009). Other examples of GP-based latent factor models are given
in Nam (2015), Zhao and Park (2017), and Wu et al. (2017).

In a study of opioid anesthesia in macaque primary visual
cortex, Ecker et al. (2014) used GPFA to investigate stimulus-
driven patterns of population activity. The fitted model possessed

a single latent dimension that unmasked spontaneous transitions
between periods of inactivity and highly elevated activity
(Figure 2B). This single factor explained the observed increase
in noise correlations and accounted for 40% of the variance
of individual neuron firing rates. The extracted latent factors
spanned a range of timescales, with some data best described by
a latent factor whose strength changed slowly, on the order of
several minutes. Similar up and down states had previously been
seen only with non-opioid anesthetics.

3.3. The Poisson Linear Dynamical System
An alternative approach for latent trajectory modeling is to
estimate the underlying linear dynamics of the latent state
(Macke et al., 2011; Churchland et al., 2012; Pandarinath et al.,
2018a). While the classical Kalman filter is the most thoroughly
developed method for estimating the transition matrix in a
linear dynamical system, a more appropriate generative model
for neurons is the Poisson linear dynamical system (PLDS,
Figure 3A) (Macke et al., 2011), which substitutes Poisson
observations for the Gaussian emissions in the Kalman filter to
directly model observed spike counts. The latent state xk(t) ∈ R

q

on trial k at time bin t follows linear Markovian dynamics

xk(t + 1) = Axk(t)+ b(t)+ ǫk(t + 1) (19)

xk(1) ∼ N (0,Q1) (20)

ǫk(t) ∼ N (0,Q) (21)

where A is the dynamics matrix, Q is the noise covariance for
the latent linear dynamics, and Q1 is the covariance of the initial
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FIGURE 3 | PLDS model of neural population activity. (A) Schematic of the PLDS model. Analogous to GPFA, the PLDS model places a linear dynamical system prior

over the latent factors. The activity of the factors is combined linearly, rectified by a nonlinearity, and determines Poisson spiking intensity for each neuron.

Experimental parameters, spike history, and gain variables are often incorporated as covariates in the linear combination stage. (B) Averaged cross-correlations for

latent dynamical system models with Gaussian observations (GLDS), Poisson observations (PLDS), and Poisson observations with spike history dependence (PLDS

100 ms). Groups of colored lines represent the average cross-correlation for the most correlated group of neurons (top group, brown) to the least correlated group

(bottom group, yellow). Latent dynamical systems models have cross-correlations that align closely with the recorded data. (C) Same as (B), but for GLMs with spike

history filters of varying duration. Misalignment between the cross-correlations obtained from the model and the recorded data indicate that GLMs struggle to account

for correlations at short time lags, in contrast to latent factor models where they arise naturally. (B,C) Adapted from Macke et al. (2011).

state. The latent dynamics are driven by a variable b(t) that
captures stimulus-specific effects. Note that the PLDS model is
formulated with explicit dependence on the trial index k, so
that b(t) accounts for stimulus effects that are trial-independent.
Similar to the LNPmodel, the observed spike responses on trial k
then follow a Poisson distribution with mean λi,k(t) derived from
the latent state. For neuron i this takes the form

λi,k(t) = g(3(i)xk(t)+ µi), ri,k(t) ∼ Pois(λi,k(t)). (22)

Here the latent state influences an individual neuron i according
to a row 3(i) of the factor loading matrix 3, and the
low dimensionality of the latent state leads to the correlated
variability as in the discussion of FA. Common choices for the
nonlinearity include g(x) = exp(x) (Macke et al., 2011) and
g(x) = ln(1+ exp(x)) (Buesing et al., 2017).
This model can be modified in various ways to suit the data.
For example, the stimulus drive term b in Equation (19) can
be moved within the nonlinearity in Equation (22), so that
the latent dynamics are decoupled from the stimulus and only

reflect changes internal to the brain. The intensity can be further
extended by adding terms for, e.g., multiplicative gain (Buesing
et al., 2017) and spike history (Macke et al., 2011) to capture
refractory effects. A major advantage of latent factor models is
their ability to account for correlations within short time intervals
(Figure 3B), which GLMs struggle to match (Figure 3C).

The PLDS model is fit using a modified EM algorithm, which
requires computing the posterior over the latent variables. Due to
the Poisson observation model an analytic form of this posterior
is unavailable. Typically one replaces the exact posterior by
its Laplace approximation, which accelerates model fitting but
violates some assumptions of the EM algorithm, resulting in an
approximate inference framework (Macke et al., 2011).

An application of PLDS to multi-electrode recordings from
songbird auditory cortex by Buesing et al. (2017) revealed that
responses are modulated by shared variability with a single
latent state, a similar result to Ecker et al. (2014). Buesing et al.
histologically traced the locations of the recording sites and
found a spatial gradient in the strength of the latent states.
Shared variability was stronger (i.e., neurons were more strongly
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coupled to the latent state) in deeper regions of auditory cortex.
Interestingly, this strength was much weaker for certain stimulus
classes than others, suggesting that deeper neurons selectively
decouple from the latent state according to their stimulus
preference. Other examples of dynamical systems-based latent
factor models are given in Paninski et al. (2010), Buesing et al.
(2012), Pfau et al. (2013), Semedo et al. (2014), Buesing et al.
(2014), Archer et al. (2014), Kao et al. (2015), Gao et al. (2016),
and Pandarinath et al. (2018b).

4. GENERATIVE MODELS FOR CALCIUM
IMAGING DATA

4.1. Autoregressive Calcium Dynamics and
Spike Deconvolution
The potential utility of large scale simultaneous neural recordings
is constrained by our ability to make use of sophisticated
techniques (such as latent factor methods) to analyse the data.
While calcium imaging provides access to such large scale
data, the models discussed so far assume that the data being
analyzed is electrophysiological; i.e., that the neurons’ responses
are spike counts (for Poisson noise models) or firing rates
(e.g., for Gaussian noise models). Their application to calcium
imaging thus requires knowledge of how the optically recorded
fluorescence signals are related to the underlying spiking activity.
One approach to solving this problem involves constructing a
generative statistical model where the spike counts are latent
variables that are subsequently inferred from the fluorescence
levels.

The presentation of a stimulus elicits a sequence of spikes
across a population of neurons. For an individual neuron, we
have assumed that the number of spikes within a time bin is
sampled from a Poisson distribution with mean λ according to
its particular receptive field. Each action potential is associated
with a stereotypical rise and decay of the intracellular calcium
concentration c(t), usually modeled by an autoregressive process
of order p (suppressing initial conditions for clarity) (Vogelstein
et al., 2009),

c(t) =

p
∑

i=1

γic(t − i)+ n(t), n(t) ∼ Pois(λ) (23)

where the Poisson-distributed random variable n(t) models the
generation of spikes within a time bin and γ1, . . . , γp are the
autoregressive coefficients that govern the rise and decay of the
fluorescence levels. The observed fluorescence signal f (t) is then
obtained by a linear transformation of the calcium levels with
additive noise,

f (t) = αc(t)+ β + ǫ(t), ǫ(t) ∼ N (0, σ 2) (24)

where α sets the scale of the fluorescence signal and β accounts
for a baseline fluorescence that may be unique to the imaging set-
up or due to specific biophysical properties of individual neurons.
The Gaussian noise model is intended to encompass variability
due to, e.g., light scattering and shot noise (Delaney et al., 2018).

Note that this model does not set parameters for the scale or
baseline of the calcium transient in Equation (23), as they are
absorbed by α and β when the calcium is transformed to obtain
the fluorescence (Vogelstein et al., 2009). An illustration of the
generative model is given in Figures 4A,B.

For imaging systems where the rise time of the indicator
is fast relative to the imaging rate a first-order autoregressive
process is typically used, corresponding to an instantaneous
rise and exponential decay of the calcium concentration. An
autoregressive process of order 2 is used in situations where the
rise time is slow relative to the imaging rate, in which case the
calcium transient appears to approach its maximum amplitude
gradually (Pnevmatikakis et al., 2016).

Models based on Equations (23, 24) have been used for spike
train deconvolution (Vogelstein et al., 2009, 2010; Friedrich and
Paninski, 2016; Pnevmatikakis et al., 2016). Let the vector θ =

(α,β , λ, σ , {γi}
p
i=1) denote the model parameters, and let f =

(f (1), . . . , f (T))⊤ and n = (n(1), . . . , n(T))⊤. Following Bayes’
rule, the maximum a posteriori estimate for the spike train is

n̂ = argmax
n(t)∈N0 ∀t

p(n|f, θ) = argmax
n(t)∈N0 ∀t

p(f|n, θ)p(n|θ) (25)

where N0 is the set of non-negative integers. Given the spike
sequence n, the fluorescence levels f (t) are independent and
depend only on the calcium concentration c(t), hence the
likelihood factorizes as

p(f|n, θ) =

T
∏

t=1

p(f (t)|c(t), θ) =

T
∏

t=1

N (f (t)|αc(t)+ β , σ 2). (26)

Substituting Equation (26) into (25) and taking logarithms, the
optimal sequence of spikes is then

n̂ = argmax
n(t)∈N0 ∀t

T
∑

t=1

{

−
1

2σ 2
(f (t)− αc(t)− β)2 + n(t) ln λ

− ln(n(t)!)
}

.

(27)

This is a difficult optimization problem because it requires
searching through an infinite discrete space of spike trains.
As noted in Vogelstein et al. (2010), even imposing an
upper bound on the number of spikes within a frame
yields an optimization problem with exponential computational
complexity. One approach for overcoming this intractability
involves approximating the Poisson distribution in Equation
(25) by an exponential distribution, which leads to a concave
objective function but with continuous estimates of n̂ (Vogelstein
et al., 2010). This approximation also allows for a time-varying
intensity function λ(t), but does not explicitly model the
transformation from stimulus to spiking intensity.

Runyan et al. (2017) applied a combination of the methods
described in this review to study the timescales of population
codes in cortex. 2-photon calcium imaging of auditory and
posterior parietal cortices was performed while mice completed
a sound localization task. The resulting fluorescence data
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FIGURE 4 | (A) Generative model architecture for fluorescent calcium imaging data. The stimulus sets the spiking intensity according to a neuron’s receptive field. The

resulting number of spikes within the timebin are drawn from a Poisson distribution, lead to rises in the intracellular calcium concentration, and are observed through

noisy fluorescence levels. (B) Example fluorescence trace generated by a time-varying intensity function, first-order autoregressive calcium dynamics, and parameter

values α = 1.25, β = 0.1, γ1 = 0.9, σ = 0.25 with an imaging rate of 8 Hz. The intensity λ(t) was determined by filtering the input stimulus s(t) by a Gaussian tuning

curve centered at 0.25.

was deconvolved according to the exponential-approximation
approach described above to estimate firing rates (Vogelstein
et al., 2010). They then fitted a GLM encoding model to
populations from each cortical area that included coupling
filters and various experimental and behavioral covariates. The
fitted model was used in a decoding analysis that quantified
the contribution of interneuronal coupling in the two cortical
areas, and showed that stronger coupling was associated with
population codes that had longer timescales. This provided
evidence for a coding mechanism where tightly coupled
populations of neurons prolonged the representation of stimuli
through their sequential activation.

4.2. A Generalized Model for Calcium
Dynamics
The calcium kinetics in Equation (23) are deterministic given
the spike counts. In reality the concentration of calcium may
be subject to many sources of variability, and analyses of some
data sets may benefit from explicitly accounting for this noise.
Vogelstein et al. (2009) modeled this by driving the calcium levels
by both Bernoulli-distributed spikes and additive Gaussian noise,

c(t) = γ c(t − 1)+ n(t)+ ξ (t) (28)

n(t) ∼ Bern(p(t)) (29)

ξ (t) ∼ N (0, ν2) (30)

where Bern(p(t)) is the Bernoulli distribution with time-
dependent trial-success probability p(t), γ < 1 is an
autoregressive coefficient, and ν2 is the calcium noise variance.
A simplifying assumption in models based on Equations (23)
and (24) is that spikes are generated independently of their spike
history. However, the spike probability can be more generally
modeled with a GLM (Vogelstein et al., 2009)

p(t) = 1− exp
(

−g
(

w⊤s(t)+ J⊤h(t)
))

(31)

where g is a selected nonlinearity. Unlike the standard GLM
structure of Equation 8, the spike history term here takes the form
h(t) = (h1(t), . . . , hL(t))

⊤, where each hℓ is an exponentially
decaying refractory term that jumps following each spike

hℓ(t) = γhℓ
hℓ(t − 1)+ n(t)+ ξhℓ

(t), ξhℓ
(t) ∼ N (0, ν2hℓ

).

(32)

Finally, rather than a simple linear relationship between f (t) and
c(t), Vogelstein et al. (2009) and Vogelstein et al. (2010) also
consider saturating fluorescence levels using a nonlinear Hill
function with dissociation constant kd

f (t) = α
c(t)

c(t)+ kd
+ β + ǫ(t), ǫ(t) ∼ N (0, σ 2). (33)

Importantly, saturation of the fluorescence signal causes the
spike-triggered fluorescence transients to become progressively
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smaller during a train of action potentials, and failure to account
for this detail may limit the accuracy of spike deconvolution
algorithms. The model defined by Equations (28–33) is fit
using a sequential Monte Carlo method (Vogelstein et al.,
2009). By including explicit stimulus and spike history filters,
Vogelstein et al. (2009) could accurately infer spike times from
fluorescence data with temporal superresolution; i.e., could
identify when within an imaging frame each spike occurs. Some
other example methods for spike deconvolution are based on
compressed sensing (Pnevmatikakis and Paninski, 2013), fully
Bayesian inference (Pnevmatikakis et al., 2013), and variational
autoencoders (Speiser et al., 2017).

5. DISCUSSION

Probabilistic modeling provides a practical, interpretable, and
theoretically grounded framework for probing how networks
of neurons process information. Many of the statistical models
discussed in this review are abstract mathematical descriptions
of how stimuli are related to patterns of neural activity. Often
the mathematical operations that define the models do not
necessarily attempt to align with real biological functions or
behavior. Rather, such models are intended to serve as tools to
uncover interpretable patterns and relationships that may not
be detectable by other approaches. On the other hand, there
are cases where the goal is to infer biophysical variables, as
in e.g., models for calcium imaging data or for the anatomical
architecture of a neural circuit, and then greater care must be
taken to constrain the model by relevant physiological data
(Paninski et al., 2007; Real et al., 2017; Latimer et al., 2018).

Recent advances in statistical models of spike train data
have focused on incorporating more general nonlinear
transformations of the latent state, including the use of
neural networks (Gao et al., 2016; Pandarinath et al., 2018b)
and GPs (Wu et al., 2017). This is in contrast to e.g., the FA and
GPFA encoding models, where the mean spiking intensity of
a neuron is obtained by a simple linear transformation of the
latent state. Bayesian methods, such as latent factor modeling,
are a powerful way to incorporate prior knowledge when making
inferences about the behavior of a system. While GPFA places a
smoothness prior on the evolution of latent factors to encourage
some degree of temporal structure, other methods place priors
on, e.g., network structure for connectivity inference (Linderman
S. et al., 2016) and the latent states of a hidden Markov model
with Poisson observations (Linderman S. W. et al., 2016).

Although there has been a rapid expansion in the number
of models for extracting receptive fields, interneuronal
coupling strengths, and latent structure from multivariate
electrophysiological recordings, similar models for calcium
imaging data are only beginning to emerge (Aitchison et al.,
2017; Khan et al., 2018). A common approach for analysing
calcium imaging data involves first deconvolving fluorescence
traces and then fitting conventional models, but deconvolution
methods only provide coarse estimates of firing rates. Spike
trains obtained by highly optimized algorithms typically only
agree with ground truth recordings with a correlation coefficient
less than ∼0.75, even with substantial training data, suggesting
that there is an unavoidable loss of information associated with

spike deconvolution (Pnevmatikakis et al., 2016; Berens et al.,
2018). An advantage of GPFA over earlier methods for estimating
trajectories of population activity is that it condenses the two
stages of dimensionality reduction and smoothing into a single
stage of posterior inference. Similarly, probabilistic analysis of
calcium imaging data can have the two stages of deconvolution
and model fitting merged into a single step by marginalizing
over possible spike trains (Ganmor et al., 2016), mitigating
some of the information loss accompanied by deconvolution.
Neural encoding models for calcium imaging data that avoid
an explicit intermediate step of spike inference are likely to be
an important future development in this area (Aitchison et al.,
2017).

Many studies consider the amplitude of an evoked calcium
transient as a measure of a neuron’s response. This has been
widely used in zebrafish larvae, for which there has been
significant interest in recent years. For example, 2-photon
calcium imaging of the zebrafish optic tectum has led to new
insights into the circuit architecture determining selectivity to
size, location, and direction of motion (Del Bene et al., 2010;
Gabriel et al., 2012; Grama and Engert, 2012; Nikolaou et al.,
2012; Lowe et al., 2013; Preuss et al., 2014; Avitan et al., 2016;
Abbas et al., 2017), and light-sheet microscopy has allowed
for the creation of brain-wide functional circuit models for
motor behavior driven by vision (Naumann et al., 2016) and
thermosensation (Haesemeyer et al., 2018). Similar studies in the
future provide further opportunities for model-based analyses.

The techniques described in this review were developed for
spike train or calcium imaging data, but some approaches are
broadly applicable across systems neuroscience. For instance,
suitably adapted latent factor models have been successfully
applied to recordings of the local field potential, where
it was found that the activity of particular latent factors
could discriminate vulnerability to stress-induced behavioral
dysfunction in mouse models of major depressive disorder
(Gallagher et al., 2017; Hultman et al., 2018).

As the scale of multi-neuron data continues to grow, the
creation of new models and their associated fitting algorithms
may be spurred more by efficiency and scalability considerations
than the level of statistical detail they are able to extract from
experimental data (Zoltowski and Pillow, 2018). In some cases
the computational issues associated with neural data analysis
are more profound than simply needing a larger computer
cluster. Neuropixel electrode arrays (Jun et al., 2017), for
example, are capable of recording from hundreds of channels
simultaneously, and may put inference algorithms under strain
if computational efficiency is not sufficiently addressed. When
combined with fluorescent sensors of neural activity, optogenetic
photostimulation grants the ability to manipulate neural circuits
in real time, and models are now beginning to explicitly
integrate the effect of photostimulation on calcium transients
(Aitchison et al., 2017). Moreover, genetically encoded voltage
indicators operate on a timescale of tens of milliseconds (Knöpfel
et al., 2015), overcoming one of the principal drawbacks of
calcium imaging; namely, the slow binding kinetics of the
indicator relative to the timescale of action potential generation.
Combining these emerging technologies with models designed
to capture their associated generative processes thus promises
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to greatly improve our capacity to uncover how patterns of
neural activity represent and process features of the external
world.
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