
TECHNOLOGY REPORT
published: 05 February 2019

doi: 10.3389/fncir.2019.00005

Frontiers in Neural Circuits | www.frontiersin.org 1 February 2019 | Volume 13 | Article 5

Edited by:

Yoshiyuki Kubota,

National Institute for Physiological

Sciences (NIPS), Japan

Reviewed by:

Daniel Haehn,

Harvard University, United States

William Silversmith,

Princeton University, United States

Matthias Georg Haberl,

University of California, San Diego,

United States

Jingpeng Wu,

Princeton University, United States

*Correspondence:

William T. Katz

katzw@janelia.hhmi.org

Received: 25 July 2018

Accepted: 14 January 2019

Published: 05 February 2019

Citation:

Katz WT and Plaza SM (2019) DVID:

Distributed Versioned Image-Oriented

Dataservice.

Front. Neural Circuits 13:5.

doi: 10.3389/fncir.2019.00005

DVID: Distributed Versioned
Image-Oriented Dataservice
William T. Katz* and Stephen M. Plaza

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States

Open-source software development has skyrocketed in part due to community tools like

github.com, which allows publication of code as well as the ability to create branches

and push accepted modifications back to the original repository. As the number and

size of EM-based datasets increases, the connectomics community faces similar issues

when we publish snapshot data corresponding to a publication. Ideally, there would

be a mechanism where remote collaborators could modify branches of the data and

then flexibly reintegrate results via moderated acceptance of changes. The DVID system

provides a web-based connectomics API and the first steps toward such a distributed

versioning approach to EM-based connectomics datasets. Through its use as the

central data resource for Janelia’s FlyEM team, we have integrated the concepts of

distributed versioning into reconstruction workflows, allowing support for proofreader

training and segmentation experiments through branched, versioned data. DVID also

supports persistence to a variety of storage systems from high-speed local SSDs to

cloud-based object stores, which allows its deployment on laptops as well as large

servers. The tailoring of the backend storage to each type of connectomics data leads to

efficient storage and fast queries. DVID is freely available as open-source software with

an increasing number of supported storage options.

Keywords: versioning, connectomics, EM reconstruction, dataservice, big data, datastore, collaboration,

distributed version control

1. INTRODUCTION

Generation of a connectome from high-resolution imagery is a complex process currently rate-
limited by the quality of automated segmentation and time-consuming manual “proofreading,”
which entails examination of labeled image volumes and correction of errors (Zhao et al., 2018).
Advances in the acquisition and segmentation of high-throughput volume electron microscopy
(VEM) create larger data sets (Kornfeld and Denk, 2018) that stress data management tools due
to the volume of data, the need to support proofreading as well as automated, high-throughput
batch operations, and the sharing and integration of results from different research groups. While
many data distribution systems focus on large numbers of relatively small datasets or file-based
distribution (Dutka et al., 2015; Viljoen et al., 2016), VEM reconstructions are not easily distributed
and usable to researchers through file distribution. For teravoxel to petavoxel datasets, centralized
data services can provide low latency access to areas of interest without requiring the download of
much larger volumes of data (Saalfeld et al., 2009; Burns et al., 2013; Haehn et al., 2017; Kleissas
et al., 2017).

As reconstructions increase in both number and size, more data will be published after
automated segmentation and a decreasing portion of the reconstructions will be manually
proofread due to the flood of new data. Research groups around the world should be able to

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2019.00005
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2019.00005&domain=pdf&date_stamp=2019-02-05
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles
https://creativecommons.org/licenses/by/4.0/
mailto:katzw@janelia.hhmi.org
https://doi.org/10.3389/fncir.2019.00005
https://www.frontiersin.org/articles/10.3389/fncir.2019.00005/full
http://loop.frontiersin.org/people/130110/overview
http://loop.frontiersin.org/people/136993/overview

Katz and Plaza DVID

download regions of interest and edit them locally to further
improve reconstructions to higher levels of accuracy. However,
no connectomics data system exists that allow remote or post-
publication editing on data copies with the option to easily
integrate these changes with other copies, including the original,
centralized data repository. Distributed version control systems
for software, like git and the collaborative website github.com
(Blischak et al., 2016), provide workflow examples of how
scientific data could be shared, forked, and collaboratively edited,
even if git is not a viable system for handling large VEM
reconstructions.

Connectomics data is also quite heterogeneous. In addition to
the large volumes of grayscale and segmentation images, there
can be agglomeration information in the form of supervoxels
and merge/split trees as well as synapse and workflow data useful
to managing the reconstruction process. Low latency retrieval of
neuron data will probably require denormalizations of data such
that segmentation is not only held across multiple resolutions
but also separated into neuron-specific sparse volumes (i.e.,
compressed binary representations that can span large volumes).
The various forms of data can be mapped onto different storage
systems based on requirements for data size, latency, and cost
per terabyte. Data services should be available in isolated,
small compute environments like laptops as well as institutional
clusters and multi-region clouds.

Over time, connectomics researchers will create a variety of
tools that need access to the data despite possible changes in
how the data is stored. A high-level Science API, focused on
connectomics operations, can shield clients from infrastructure
changes and allow easier support of multiple tools.

DVID1 has made several contributions to the state of the
art. First, it provides a simple mechanism that efficiently adds
branched versioning to storage systems that provide key-value
store interfaces (Figure 1). Our branched versioning system
permits instantaneous viewing of older versions, novel workflows
for training proofreaders, and git-like methods of distributing
data and updating remote stores. It allows one to treat committed
nodes as immutable data and leaf nodes as mutable. Under this
model, most of the connectome data will be immutable. The
use of storage via a key-value interface allows us to exploit a
spectrum of caching and storage systems including in-memory
stores, embedded databases, distributed databases, and cloud
data services. By partitioning data into key-value pairs, we
efficiently handle versioning by only storing new key-value
pairs covering modifications and not copying all data for each
version.

DVID introduces the idea of typed data instances that provide
a high-level Science API, translate data requirements to key-
value representations, and allow mapping types of data to
different storage and caching systems. The Science API provides
a reliable connectomics interface for clients and frees them
from requiring specific database technology or reimplementing
domain-specific processing. The mapping system allows DVID
to assign some data to very low-latency storage devices like
Non-Volatile Memory Express (NVMe) SSDs while exploiting

1http://github.com/janelia-flyem/dvid

FIGURE 1 | Key-value stores are among the simplest databases with few

operations. Because of their simplicity, many storage systems can be mapped

to key-value interfaces, including file systems where the file path is the key and

the value is the file data.

cheap, petabyte-scale cloud stores and efficient caching systems
for immutable grayscale data.

DVID provides a publish/subscribe mechanism for messaging
between data types so changes in one data instance can
trigger modifications in another. For example, if a segmentation
changes, associated synapses will be automatically modified so
that requests for all synapses in a particular label will be correct.

DVID was introduced in 2013 as an open-source project
and became the principal data system for the FlyEM team
at Janelia Research Campus for several of the largest, dense
VEM reconstructions done to date. Over the course of its
use, we added a number of features driven by reconstruction
demands including multi-scale segmentation, regions of interest,
automatic ranking of labels by synapse count, supervoxel and
label map support that provides quick merge/split operations,
and a variety of neuron representations with mechanisms
for updating those denormalizations when associated volumes
change. This paper discusses some of the issues and interesting
benefits that we discovered in using a branched versioning system
for our research.

2. SYSTEM DESIGN

The DVID system is a highly customizable, open-source
dataservice that directly addresses the issues encountered by
image-driven connectomics research. DVID provides versioning
and distribution inspired by software version control systems,
customizable domain-specific data types (e.g., grayscale and label
volumes, synapse annotations) accessible via a HTTP API, and

Frontiers in Neural Circuits | www.frontiersin.org 2 February 2019 | Volume 13 | Article 5

http://github.com/janelia-flyem/dvid
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

Katz and Plaza DVID

TABLE 1 | Sample of science HTTP API.

Datatype Endpoint (URL starts with /api/node/f8a0...) HTTP action

Labelmap /name/raw/128_128_128/0_0_0 GET returns and POST stores

1283 voxel subvolume at offset (0, 0, 0).

/name/specificblocks?blocks=23,23,10,23,24,10 GET returns compressed block data

for blocks (23, 23, 10) and (23, 24, 10).

/name/label/100_100_47 GET returns JSON for the uint64 label

at voxel (100, 100, 47).

/name/size/3171 GET returns JSON for the number of

voxels in label 3171.

/name/sparsevol/3171?format=rles&minz=60 GET returns run-length encoded list

of voxels with z > 60 in label 3171.

/name/merge POST merges labels given in POSTed

JSON array [target,label1,label2,...].

/name/split/3171 POST splits label 3171 using a POSTed

sparse volume.

Annotation /name/elements POST stores 3D point annotations given in

POSTed JSON.

/name/elements/200_200_200/0_0_0 GET returns JSON of annotations within

2003 voxel subvolume at offset (0, 0, 0).

/name/move/38_21_33/46_23_35 POST moves the annotation at voxel

(38, 21, 33) to (46, 23, 35).

/name/label/3171 GET returns JSON of annotations in voxels

with label 3171.

Keyvalue /name/key/somedata GET returns and POST stores arbitrary

data with key “somedata.”

/name/keyvalues GET returns and POST stores arbitrary

key-value data using protobuf serialization.

/name/keyvalues?jsontar=true GET returns a tarball of key-value data for

keys given in the query body as a JSON

string array.

Each datatype implements its own HTTP endpoints although similar datatypes (e.g., ones dealing with image volumes) can reuse interfaces like the first “raw” endpoint.

flexibility in choosing underlying storage engines, allowing its use
on laptops, institutional clusters, and the cloud.

DVID persists data through an abstract key-value interface
that is satisfied by a number of swappable storage engines. We
started with a key-value interface because (1) there are a large
number of high-performance, open-source caching and storage
systems that match or can be reduced to a key-value API, (2)
the surface area of the API is very small, even after adding
important cases like bulk loads or sequential key read/write,
and (3) versioning can be easily added by modifying keys to
incorporate a version identifier.

From a user’s perspective, the DVID system can be described
through its two major interfaces. The first is a client-facing
Science API that provides a rich set of connectomics operations
through a REST (Level 2 of Richardson Maturity Model2) HTTP
API (Table 1). The second is a Storage API that provides a limited
set of key-value operations (Figure 2).

2https://martinfowler.com/articles/richardsonMaturityModel.html

From a developer’s perspective, pluggable data type code
packages (e.g., a uint8blk type that supports uint8 image volumes
like VEM grayscale data) expose a data type-specific HTTP/RPC
API on the user-facing side and processes data in the form of
key-value pairs that get persisted through the storage interface.
The storage interface is handled by pluggable storage engine code
packages that can obtain version and data instance IDs from
the key and store the key-value pair in a reasonable way for the
particular storage system. Data types also can be constructed that
simply proxy requests to a backend service like bossDB (Kleissas
et al., 2017) at the cost of versioning.

2.1. Example Usage
Before detailing how DVID implements the Science API and
versioned data, we will describe how DVID is used in an example
reconstruction and connectome analysis workflow.

DVID administration can be performed through a DVID
command in a terminal, sending a HTTP request through

Frontiers in Neural Circuits | www.frontiersin.org 3 February 2019 | Volume 13 | Article 5

https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

Katz and Plaza DVID

FIGURE 2 | High-level view of DVID. Data types within DVID provide a Science API to clients while transforming data to meet a primarily key-value Storage API or

proxy data to a connectomics service.

tools like curl or httpie3, or using the DVID Console web
application4. Using one of those three methods, we first create
a new repository, and then add a uint8blk data instance called
grayscale and a labelmap data instance called segmentation.

Due to the large scale of our image volumes, FlyEM employs
python scripts that load strips of grayscale data using HTTP
POST requests to the grayscale instance. These HTTP requests
are typically handled by libdvid, a C++ library with python
bindings5. Similarly, scripts load the automatically segmented
label data (64-bit unsigned integer per voxel) (Januszewski et al.,
2018) into the segmentation instance using strips of highly-
compressed DVID blocks (see section 2.5). Both grayscale and
segmentation voxel data can be loaded into DVID, letting DVID
do the image pyramid generation as well as the label indexing
(i.e., determining the blocks spanned by each label). However,
for very large volumes, it is more efficient to offload the image
downsampling and label indexing to a cluster and then directly
ingest the results. We have published Spark (Zaharia et al., 2010)
tools that can be used for large-scale processing6.

After ingestion of the image volume and segmentation, we
commit (lock) the root version and create a new version for
our manual proofreading. Additional data instances are typically
created, such as a synapses instance of annotation to hold
synapse point annotations and various keyvalue instances to hold
proofreader assignments, generated skeletons, and other data
useful to the various clients and scripts used for reconstruction
and connectome analysis. In each case, python, C++, or
Javascript clients connect with DVID through the languages’
built-in HTTP library or intermediate libraries like libdvid.

Proofreaders use tools like NeuTu (Zhao et al., 2018),
Neuroglancer7, and various scripts to edit the segmentation, view

3https://httpie.org/
4https://github.com/janelia-flyem/dvid-console
5https://github.com/janelia-flyem/libdvid-cpp
6https://github.com/janelia-flyem/DVIDSparkServices
7https://github.com/google/neuroglancer

2D image sections, 3D sparse volumes, meshes, and skeletons,
andmanage data necessary for our proofreader workflows. HTTP
traffic to DVID can easily exceed 100,000 requests perminute and
include server metadata queries that return within microseconds
as well as sparse volume requests for massive bodies that take tens
of seconds.

At some point in time, we may decide to create a snapshot of
all the data so we commit the current version and create a new
one. The state of the data at the time of that commit will always
be available for instantaneous viewing.

2.2. Versioned Data
Versioning can be modeled in at least two ways: branched
versioning using a directed acyclic graph (DAG) as in the git
software version control system, or a linear timeline that can be
thought of as one path through the DAG. Current connectomics
data services use no versioning or linear versioning where there
is one head, the current state. The underlying storage can be
optimized for access of the current state while any changes are
recorded into a log, which will be likely accessed less frequently
than the head (Al-Awami et al., 2015).

A DAG-based approach is more powerful, allowing branching
and merging, and has been shown to be very effective for
collaborative efforts like distributed software development.While
branched versioning is already showing utility for proofreader
training as described below, we believe its utility will be more
obvious as published reconstructions increase in both number
and size and the portion of manually proofread data decreases.
As discussed in FutureWork, specialists in various neural circuits
will be able to improve reconstruction accuracy of published
regions, maintain their own private branch until publishing
results, and then optionally merge edits back into the central
repository.

The DAG, in one way or another, will be dictated by post-
publication manual proofreading as well as any collaborative
editing involving decentralized data storage. Each edited clone
is essentially a branch, even if described as a control layer

Frontiers in Neural Circuits | www.frontiersin.org 4 February 2019 | Volume 13 | Article 5

https://httpie.org/
https://github.com/janelia-flyem/dvid-console
https://github.com/janelia-flyem/libdvid-cpp
https://github.com/janelia-flyem/DVIDSparkServices
https://github.com/google/neuroglancer
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

Katz and Plaza DVID

over linear versioning, and attempts to merge results require
a DAG for provenance tracking. Aside from edits due to
continued reconstruction improvements, full-fledged branching
and merging is also important for collaborative data analysis
(Huang et al., 2017). The drawback of a DAG is its complexity,
but even if a versioning system uses a DAG internally, its clients
could show a single selected branch unless handling operations
that need to expose that complexity.

Distributed software version control systems like git use the
nodes in a DAG to represent each committed version of data.
A commit is a snapshot of data at that time, and as such,
would include an accumulation of changes since the last commit.
Provenance is kept at the commit level, not the change level, so if
a line in a file were changed three times since the last commit,
only its final state would be recorded and not the individual
changes between the commits. While it would be nice to have a
complete record of all changes to data, there could be a significant
storage overhead for storing every change regardless of its
importance. For this reason, fine-grain provenance, if desired, is
delegated to the data type implementation while commit-level
versioning is standard for all versioned data instances. Many
data types publish each mutation to an Apache Kafka system,
a distributed logging system that can be used to inform other
services of changes to data (Wang et al., 2015). In addition
to Kafka logging, the data type labelmap always provides fine-
grained provenance by logging all mutation operations like
merges and splits to an append-only file. This log is used on server
restart to populate an in-memory label map, which provides
supervoxel id to agglomerated label mappings.

At its core, DVID adopts the DAG view of versioning used
by software version control systems like git. Unlike git, DVID
partitions data not in files but in data instances of a data
type, for example, there could be segmentation-param1 and
segmentation-param2 instances of data type labelmap, which
supports label volumes and label-specific sparse volume retrieval
and operations. DVID also allows access to any version of the data
at any time.

A dataset in DVID is described as a “repository” and
corresponds to a single DAG. Each node is a version identified by
a RFC4122 version 4 UUID8, a 32 character hexadecimal string
that can be generated locally and is unique globally. Datasets are
typically identified by the UUID of the root. At each node of
the DAG, users can store a description similar to git’s commit
message as well as append to a node-specific log.

DVID requires each branch of the DAG to have a unique
string name. By default, the root node is part of the “master”
branch that uses the empty string for a name. For each committed
node, we can create one child that extends the parent branch or
any number of children with new branch names.

The ability to easily branch and handle distributed editing
is a significant advantage of a DAG approach. Proofreaders
can branch their own versions to allow training and testing
(Figure 3). As described below, branching requires little
additional storage cost since onlymodifications need to be stored.
Also, no modification to tools are required since DVID clients

8https://tools.ietf.org/html/rfc4122

FIGURE 3 | Versioning can help train proofreaders without requiring any

changes to proofreading tools. After full proofreading (version 8d65f), an

interesting neuron is selected and its precursor at the root version c78a0 is

assigned for training. Each trainee gets her own branch off the root version,

and the reconstructed neuron (e.g., the one depicted in training version a6341)

can be compared to version 8d65f.

can simply specify the UUID of a training version and leave the
current “master” data unaffected.

Over the past 3 years, the FlyEM team has used DVID
during reconstructions of seven columns of medulla (Takemura
et al., 2015) and the mushroom body (Takemura et al., 2017)
of Drosophila. The reconstruction process produced large
DAGs with regions of heavy branching due to proofreader
training or experimental edits (Figure 4). DVID provides an
extensive HTTP API for clients to download server state and
dataset metadata, including the DAG. The DVID Console web
application provides a simple view of the master branch, and
an alternative version allows viewing of the full DAG as well as
the ability to click any node to view the log and data instances
associated with that node.

The DAG is useful for quality control and being able to look
back to previous states of our dataset as well as the comments
attached to it. If mistakes were made, we can determine where
they were introduced.While viewing historical data only requires
versioning, not necessarily branched versioning, its ease of use
requires a data service that can display all versions without a
significant time delay.

2.3. Branched Versioning of Key-Value Data
DVID implements branched versioning over different types of
key-value data by (1) keeping metadata, including the version

Frontiers in Neural Circuits | www.frontiersin.org 5 February 2019 | Volume 13 | Article 5

https://tools.ietf.org/html/rfc4122
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

Katz and Plaza DVID

FIGURE 4 | The version DAG of the mushroom body reconstruction as seen through the DVID Console’s DAG viewer. Snapshots show (A) zoomed out view showing

extent of DAG with significant proofreader training branches near root, and (B) blown up view of leaf at bottom left. Green nodes highlight the “master” branch while

the yellow leaf node is the current production version.

DAG, in memory and (2) extending keys to include data and
version identifiers. When data is modified in an uncommitted,
open node, the data type implementation retrieves and stores
key-value pairs as needed while the core DVID system modifies
the keys to include identifiers for the particular data instance
and the version. We want to emphasize that modifications in
a version usually only affect a subset of key-value pairs. For
example, the labelmap data type partitions 3D space into small
blocks (typically 64 × 64 × 64 voxels) such that each block is
a single key-value pair. Modifications of the label volume in a
new version requires only storing the affected blocks, and key-
value pairs corresponding to untouched areas will be inherited
by ancestors as described below.

The core DVID storage package uses a key composed of a data
instance identifier, the datatype-specific key, a version identifier,
and a tombstone marker, in that order by default as shown in
Figure 5. A data instance can insert multiple classes of key-value
pairs, each with different formats of datatype-specific keys and
corresponding values. For example, the labelmap and labelarray
data types (described in more detail in section 2.5) use two classes
of key-value pairs: (1) blocks or cuboids of label data where
the datatype-specific key has a scale integer prepended to the
ZYX block coordinate, and (2) label indices where the datatype-
specific key is simply a 64-bit unsigned integer label and the value
describes the blocks containing the label in question.

DVID maintains a mapping of globally unique 128-bit data
instance and version UUIDs to unsigned 32-bit integers solely
to decrease key sizes. The 32-bit identifiers are server-specific
since these identifiers could collide with identifiers in remote
DVID servers as new data instances and versions are added
locally and remotely. When key-value pairs are exchanged with

remote DVID servers, the source server identifiers are converted
to remote server identifiers by comparing the globally unique
data instance and version UUIDs.

In Figure 5, two data instances are shown: a labelmap

instance (data id 1) and an annotation instance (data id 2). The
labelmap instance has key-value pairs for label 198’s index and
two label blocks in version 0, and the annotation instance holds
a single block of annotations. A tombstone flag can mark a key-
value as deleted in a version without actually deleting earlier
versions, as shown for the last key, which marks the deletion
of annotations in block coordinate (23, 23, 10) in version 1.
The annotations for that block still exist in version 0 since a
non-tombstoned key exists.

2.3.1. Overhead of Versioning
Figure 6 shows how key-value pairs from different data instances
can be distributed across a DAG. In this example, segmentation
data for a 6,4003 voxel volume with 1,000 labels is stored in
a labelmap instance (shown in blue) at the root version 8fc4.
The segmentation requires one million key-value pairs for label
block data and another 1,000 key-value pairs for the label indices.
Additionally, synapse 3D point data is stored in an annotation

instance (shown in red). The annotation data requires key-values
for only the blocks containing synapses.

The majority of key-value pairs are ingested at the root of
the DAG and only modified key-value pairs need to be stored
for later versions. In Figure 6, three additional versions have
been created. In version e14d the synapse annotations for block
(1, 2, 3) was deleted by storing a tombstone key. Clients that
access version e14d can access all the data stored in the root
version with the exception of synapses in that one block. In

Frontiers in Neural Circuits | www.frontiersin.org 6 February 2019 | Volume 13 | Article 5

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

Katz and Plaza DVID

FIGURE 5 | Each data type persists data using datatype-specific key-value pairs. Key-value pairs for two data instances are shown: a labelmap instance (data id 1)

in blue and an annotation instance (data id 2) in red. The datatype-specific component of a key (TKey) could be a block coordinate for a block of voxels. DVID then

wraps this TKey, prepending a short data instance identifier and appending a version identifier. A tombstone flag (T) can mark a key-value as deleted in a version

without actually deleting earlier versions, as shown for the last key, which marks the deletion of annotations in block coordinate (23, 23, 10) in version 1.

FIGURE 6 | Simple example of distribution of key-value pairs across the nodes of a DAG (only keys shown). In this example, segmentation and synapse data for a

6,4003 voxel volume with 1,000 labels is stored in labelmap (blue) and annotation (red) instances at the root version 8fc4. The majority of key-value pairs are

ingested at the root and only modified key-value pairs need to be stored for later versions. Several mutation requests are shown with their modified key-value pairs.

version ec80 we splitted a small fragment from label 23, which
required modification of the label block (37, 51, 53) containing
that fragment as well as the key-value pairs for the label 23 index
and a new label 1001 index for the split voxels. In version d353we
splitted from label 23 another small fragment that spanned two

blocks, and we added a new synaptic annotation to that region.
These operations required the addition of a few more key-value
pairs that take precedence over earlier key-value pairs.

Teravoxel datasets can require more than a hundred million
key-value pairs, depending on the chosen size of a labelmap

Frontiers in Neural Circuits | www.frontiersin.org 7 February 2019 | Volume 13 | Article 5

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

Katz and Plaza DVID

instance’s block, and mutations to individual neurons will alter
a very small percentage of the key-value pairs. So rather than
duplicating unmodified data for each commit or snapshot, the
decomposition of data into more granular key-value pairs allows
efficient versioning.

One issue is determing the relevant key-value pairs for any
version of a data instance. As we saw in Figure 5, the version
identifier is typically appended to the type-specific key, which
leads to different versions of a type-specific key to be grouped
together in systems that order keys. Key-ordering occurs in
many popular key-value databases, particularly those that employ
log-structured merge trees (O’Neil et al., 1996) like leveldb9,
RocksDB10, and newer systems based on WiscKey (Lu et al.,
2016). These databases provide range queries (see Ordered Key-
Value API in Figure 1). Because the versions of a key-value pair
are grouped together, we can use range queries to sequentially
load the keys or key-value pairs into memory, and then use our
in-memory DAG to select the most recently stored ancestor of
our desired version. Sequential access provides significant speed
advantages across rotational disks, solid-state drives, and even
in-memory storage (Jacobs, 2009).

Returning to the example of 3d label data types like labelmap,
if a block was modified in N versions of that data instance, it
will require N key-value pairs. Support of versioning for that
particular block will incur the overhead of now reading N key-
value pairs instead of just one, as well as the time to calculate
the closest stored version using our in-memory DAG. However,
the cost of handling unnecessary versions is countered by the
significant speeds of both disk-based and in-memory sequential
access. The number of modified versions for a block should be
small because most regions are not constantly modified due to
manual proofreading. As seen in section 2.5, the labelmap data
type uses relatively static voxel labels (i.e., supervoxel identifiers)
and maintains supervoxel-to-neuron mappings as neurons are
split and fragments are merged.

2.3.2. Support for Non-ordered Key-Value Stores
We have also built support for non-ordered key-value stores
where range queries are either costly or not available. Google
Cloud Storage11 can be viewed as a distributed, petabyte-scale
key-value store that supports conditional writes as well as key
prefix searches, which could be used to implement range queries.
Unfortunately, these key prefix searches introduce significant
latency for each data request. We observed that key spaces can
be divided into two categories: a computable key space where
valid keys can be computed (e.g., the uint8blk data type stores
blocks of grayscale with block coordinate keys, easily calculated
for requested 3D subvolumes) or a non-computable key space
where arbitrary keys are used (e.g., the keyvalue data type that
allows user-specified keys).

In practice, we only use Google Cloud Storage for data
types with computable key spaces. Even with this restriction,
versioning requires range queries or speculative queries on all

9http://leveldb.org
10https://rocksdb.org
11https://cloud.google.com/storage/

possible key versions when retrieving a particular key-value pair
(kv).

To solve this problem, we introduced a novel strategy to
eliminate costly key searches or the need to separately maintain
an index of stored keys. For each type-specific key, we maintain a
single, versionless kv that stores the keys for all versions and the
highest priority kv, which comes from the most recent kv in the
master branch or, if no version of this key exists in master, the
most recent kv of any branch. Writes of a versioned kv start with
a conditional write to the versionless kv. If the conditional write
succeeds, it is the first write of any version to this key and we are
done. If the conditional write fails, we read the versionless kv and
compare the new kv to its stored kv. If the new key has higher
priority, the new value evicts the stored kv to its own versioned
kv. If the new key has lower priority, we write the new versioned
kv and append its version to the list of all versions stored in
the versionless kv. With this approach, we achieve the following
properties:

• Writes of the first version of any type-specific key are as fast as
an unversioned one. Since data destined for this type of store
tends to be immutable, write performance is not degraded in
most cases.

• Any read of the highest priority kv will be as fast as an
unversioned read.

• Any read of a lower priority kv will require reading the list of
versions in the versionless kv, finding the version closest to the
desired version using the version DAG, and then reading that
versioned kv.

As shown by the Google Cloud Storage example above, a
DVID storage engine can tailor the implementation of versioned
storage to the capabilities of a storage system. DVID storage
engines can also override the default key and form a version-first
representation (Bhardwaj et al., 2014) if it is more advantageous
to group all kv by version instead of by type-specific key. This
approach can be particularly useful for optimizing transmission
of kv corresponding to a subset of versions, as would happen
when synchronizing with a remote DVID server. A proposed
DVID store, described in Future Work, takes this approach since
we can create a compact, in-memory index of all stored keys in
committed, immutable versions.

2.4. Data Types
For each type of data, researchers can tailor a HTTP API and
trade-off access speed, storage space, versioning support, and ease
of programming.

DVID provides a well-defined interface to data type code that
can be easily added by users. A DVID server provides HTTP
and RPC APIs, versioning, provenance, and storage engines. It
delegates data type-specific commands and processing to data
type code. As long as a DVID type can return data for its
implemented commands, we don’t care how it is implemented.

By modifying or adding DVID data type implementations
and writing layers over existing storage systems, DVID allows
customizable actions on data via a HTTP API. We can tune
key-value representations for acceptable performance among
storage space, access speed, and ease of programming trade-offs.

Frontiers in Neural Circuits | www.frontiersin.org 8 February 2019 | Volume 13 | Article 5

http://leveldb.org
https://rocksdb.org
https://cloud.google.com/storage/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

Katz and Plaza DVID

Different types of checksum and compression can be used for
each data type at the key-value level. And we can choose among
the different key-value stores and assign the best match for each
data instance. For example, for highly compressed label data, we
can choose fast but relatively small NVMe SSDs to maximize
access speeds.
DVID supports a variety of data types including the following:
uint8blk: 3d grayscale volumes.
labelmap: 64-bit label 3d volumes, including multi-scale support
and sparse volume operations.
imagetile: multiscale 2d images in XY, XZ, and YZ orientation,
similar to quadtrees.
annotation: 3d points that can be accessed by associated label,
tags, or spatial coordinate.
roi: regions of interest represented via a coarse subdivision of
space using block indices.
keyvalue: a simple key-value pair store that can be used as a
versioned file system.

Each of the data types above use key-value pairs in different
ways. While uint8blk and labelmap both partition 3D space
into smaller blocks, the labelmap data type persists highly
compressed 64-bit supervoxel identifiers in the blocks and also
maintains other key-value pairs for label (i.e., neuron identifier)
indexing that describe the blocks and supervoxels within any
given label. The annotation data type can employ up to three
different classes of key-value pairs holding JSON-encoded points
(synapses, bookmarks, etc.) sorted by ZYX block coordinate,
underlying label, and arbitrary string tag. The keyvalue data type
is a simple pass-through to the underlying key-value store. It is
typically used for new types of data until researchers understand
the kinds of requests that will be required and whether a new data
type should be built to optimize the handling of those requests.

DVID provides a publish/subscribe mechanism for syncing
changes in one data instance with associated data instances. For
example, we can declare a segmentation instance of data type
labelmap should be synced with a synapses instance of data
type annotation. If a label in segmentation is split or merged
with other labels, the mutation will be passed to synapses, which
then updates its internal indexing used for quickly returning all
synapses in a given label.

Users can access a detailed description of each data type’s
Science API by pointing a web browser to a running DVID’s
HTTP interface. For example, the interface to the uint8blk

data type can be examined by browsing http://emdata.janelia.
org/api/help/uint8blk for a DVID server running on port 80 of
emdata.janelia.org. Any supported data type can be reviewed by
replacing the last word in the help URL with the data type name.
Since a detailed exploration of each data type is beyond the scope
of this paper, we provide a sampling of the Science API in Table 1
and refer readers to the embedded data type documentation in
the DVID github repository.

2.5. Versioning 3D Label Data
EachDVID data type provides its own portion of Science API and
method of translating the necessary data into key-value pairs. In
this section, we describe how data types can evolve by describing
the history of four 3D label data types: labelblk/labelvol,

labelarray, and finally labelmap. The implementation of each
data type impacts the speed of neuron editing, the storage
efficiency of versioning, and the functions available through its
Science API.

The first 3D label data types were labelblk and labelvol,
which handle 64-bit label arrays and each label’s sparse volume
representation, respectively. The labelblk data type allows many
ways to read and write the 64-bit unsigned integer label at
each voxel. These include reading 2D slices in XY, XZ, and YZ
orientation in a variety of formats (e.g., PNG or JPG), reading 3D
subvolumes as label arrays in any supported compression scheme
(uncompressed, lz4, gzip and/or Neuroglancer’s compression
format), querying single or multiple voxel coordinates using
JSON, and even returning 2D PNG color images where each
label has been hashed to a color. For maximum throughput, we
also allow reading by blocks so that little processing is necessary
and data is streamed from the underlying key-value store to the
HTTP connection. The labelvol data type allows reading and
editing sparse volumes for labels. Its Science API allows reading
arbitrarily clipped sparse volumes using run-length encoding
(RLE) with optional lz4 or gzip compression. Sparse volumes can
also be split or merged.

These first data types only support two scales: the original
ingested voxels or “coarse” volumes where each block of voxels
was downsampled to a single voxel. Internally, the labelblk data
type persists key-value pairs where each type-specific key is a
ZYX block coordinate that corresponds to the label array for that
block. The labelvol uses a type-specific key composed of the 64-
bit unsigned integer label prefixed to the ZYX block coordinate,
and the associated value is the sparse volume RLEs within that
block. By doing a range query on a label, the data type code can
easily retrieve all RLEs for a given label as well as clip sparse
volumes by Z coordinate.

As described in the section above, instances of these
two data types can be synchronized using DVID’s internal
publish/subscribe mechanism. Let us assume that a DVID
server is operating on port 8000 of the server mydvid.net with
a single version at UUID ee78982c87b14d008bb3f93e9e546c10.
A two-way sync can be established between a segmentation
instance of labelblk and a sparsevol instance of labelvol

by sending a JSON string {"sync":"segmentation"} to
http://mydvid.net/api/node/ee789/sparsevol/sync and a reciprocal
string to http://mydvid.net/api/node/ee789/segmentation/sync.
Note that HTTP requests only need a recognizable substring of a
UUID rather than the full 32 character hexadecimal string.

If a user merges two labels via the labelvol merge request,
a synced labelblk instance will automatically modify all voxels
affected by the merge. Similarly, if the labels of voxels are
modified through labelblk instance requests, the change will be
sent to the synced labelvol instance and the sparse volumes of
any affected label will be modified.

We could also sync a synapses instance of annotation

data type with the underlying label volume by
sending a JSON string {"sync": "segmentation"} to
http://mydvid.net/api/node/ee789/synapses/sync. This one-
way sync means changes in the label volume will automatically
modify the list of synapses corresponding to the affected labels.

Frontiers in Neural Circuits | www.frontiersin.org 9 February 2019 | Volume 13 | Article 5

http://emdata.janelia.org/api/help/uint8blk
http://emdata.janelia.org/api/help/uint8blk
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

Katz and Plaza DVID

While the first iteration of 3D label data types was successful
and allowed very fast retrieval of sparse volumes due to
its separate storage, we found that maintaining the sparse
volumes using our admitedly simple format could dominate the
underlying key-value store. So we created the labelarray data type
that consolidated both labelblk and labelvol Science APIs under
one implementation without the need for syncs.

The labelarray data type supports multi-scale representation
and primarily uses two classes of key-value pairs as described
earlier in section 2.3: label data organized into blocks and
label indices describing the blocks intersected by each label.
The storage requirement is significantly smaller than synced
labelblk/labelvol instances because potentially large sparse
volumes are replaced by an index of blocks. The new data
type also exhibits faster write and much slower sparse volume
read times since precomputed RLEs are not stored but must be
computed on-the-fly.

The most recent labelmap data type adds in-memory label
maps to the labelarray architecture and uses supervoxel
identifiers as the block label data. Many segmentation
techniques generate an initial base segmentation that tends to be
conservative followed by more aggressive agglomeration passes
(Nunez-Iglesias et al., 2014; Parag et al., 2015; Januszewski et al.,
2018). The labelmap data type supports this approach. By using
an in-memory label map, label merges are extremely fast and do
not alter the underlying supervoxel blocks.We also allow “cleave”
operations that split label bodies along supervoxel boundaries,
thereby preserving underlying supervoxel blocks as well and only
modifying the label map. Supervoxel splits require modification
of the block key-value pairs but are relatively rare compared
to merges and cleaves, particulary as both the underlying
grayscale imaging and automatic segmentation processes
improve.

For each node in the DAG, the labelmap data type stores label
edits (merges, cleaves, and supervoxel splits) in an append-only
log. Requests can cause lazy loading of all edits from the root to
the given version and population of the in-memory label map.

The newer labelmap and labelarray data types store label
data in a highly compressed format inspired by the Neuroglancer
compression scheme12, which partitions each block of data into
smaller sub-blocks. The DVID label compression format makes
the following changes: (1) adds a block-level label list with sub-
block indices into the list (minimal required bits vs 64 bits per
index in the original Neuroglancer scheme), and (2) the number
of bits for encoding values is not required to be a power of
two. A block-level label list allows easy sharing of labels between
sub-blocks, and sub-block storage can be more efficient due to
the fewer bits per index (at the cost of an indirection) and
better encoded value packing (at the cost of byte alignment).
We gain space, up to an additional 2x compression for a
given block, and simpler label updating at the cost of increased
computation andNeuroglancer’s explicit GPU support. Although
label blocks are stored in this highly compressed format, data
can be transcoded to Neuroglancer’s compressed segmentation
format during requests.

12https://goo.gl/LNMLJo

FIGURE 7 | Scalability of uncompressed grayscale image reads from Google

Cloud Store backend. As the number of DVID servers increase, simultaneously

requesting non-overlapping image subvolumes from a 16 TeraVoxel dataset,

the throughput plateaus just below 1.2 Gigavoxels or 9.6 Gigabits per second.

Servers were at the Janelia cluster with 16 real request threads per server,

connecting to a Northern Virginia Google Cloud Store through a 10 Gigabits

per second connection. The grayscale instance had only one version

corresponding to the ingested image (8-bit/voxel) volume.

Despite how differently the four data types implement 3D
label support, the HTTP APIs are mostly identical save for
optional features that were added in later data types.

2.6. Storage Backends
The use of key-value storage (KVS) systems as the underlying
store brings a number of benefits. Open source KVS systems
span from simple, embedded leveldb implementations to
strongly-consistent, globe-scale distributed systems. Once data
is immutable, there are number of distributed KVS systems for
efficiently caching the data (e.g., groupcache). This allows us to
build branched versioning systems that use different kinds of
KVS systems for different classes of data. For example, relatively
immutable, very large data like original grayscale imaging can
be assigned to extremely scalable cloud-based systems and
cached locally using off-the-shelf software due to its immutable
nature, while much more compressible and mutable data like
segmentation can be stored on fast NVMe SSD drives.

Figure 7 shows the scalability of the Google Cloud Store as a
backend for immutable, uncompressed grayscale (unsigned 8-bit
intensity per voxel) volumes. Because the data is immutable, any
number of DVID servers can be spun up and directed toward
the cloud. The maximum throughput using test servers at Janelia
requesting data from Google Cloud Storage is slightly less than
1.2 Gigavoxels (9.6 Gigabits) per second, which corresponds to
the 10 Gigabit per second connection from Janelia to the internet.
If we were looking through a sequence of grayscale images, this
would amount to approximately 4,400 (512 × 512 pixel) images
per second, or 73 proofreaders scrolling through those images at
60 fps.

Currently, the bulk of the FlyEM Team’s reconstruction and
segmentation data is held in leveldb databases on NVMe solid

Frontiers in Neural Circuits | www.frontiersin.org 10 February 2019 | Volume 13 | Article 5

https://goo.gl/LNMLJo
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

Katz and Plaza DVID

state drives and cheaper RAID-10 systems with hard disk drives.
Newer grayscale volumes are kept in Google Cloud Store and we
are experimenting with a simple key-value interface to the file
system. Contributors have recently added a storage engine for
OpenStack Swift.

2.7. Availability
DVID is freely available on github (http://github.com/janelia-
flyem/dvid) under the Janelia Open-Source Software license. The
wiki section of that github repository provides user guides as well
as installation instructions for pre-built binaries, conda builds,
and docker containers.

3. RELATED WORK

Typically, researchers have dealt with image-oriented data by
either storing it in files or writing software systems that use
a relational database to store image chunks or file pointers.
Connectomics data servers include bossDB (Kleissas et al., 2017),
OpenConnectome (Burns et al., 2013), CATMAID (Saalfeld et al.,
2009), and more visualization-focused systems like BUTTERFLY
(Haehn et al., 2017). DVID is distinguished from these other
systems by its support of branched versioning, an extensible
Science API through data type packages, and extremely flexible
storage support through a variety of key-value store drivers.

The first to support branched versioning at large scale was
SciDB (Stonebraker et al., 2011). An approach to branched
versioning in relational databases culminated in OrpheusDB
(Huang et al., 2017). Both SciDB and OrpheusDB could be
used as storage backends for DVID data types that match their
strengths. For example, SciDB is particularly adept at handling
multi-dimensional arrays and could be used for the voxel data
component of DVID label data types, while OrpheusDB could be
used for heavily indexed synapse point annotations.

The DataHub effort (Bhardwaj et al., 2014) has very similar
aims to bring a distributed versioning approach to scientific
datasets, offering an analog to github.com with a centralized
server that builds on a Dataset Version Control System (DVCS).
DataHub and DVID developed in parallel and focused on
different types of data. DVCS was designed to handle datasets
in the sub-Terabyte range without an emphasis on 3d image
data, and it’s API is a versioning query language based on SQL
so the significant connectomics-focused data layer would still be
needed. Much as OrpheusDB is a possible storage engine for
smaller data types like annotations, DVCS could be considered
a possible storage interface to DVID.

Ideally, connectomics tools would be able to use a
variety of data services. This would require the community
to develop common interfaces to standard operations.
Currently, simple operations like retrieving 2D or 3D
imagery are sufficiently similar across services so that tools
like CATMAID, Neuroglancer, and BigDataViewer (Pietzsch
et al., 2015) can use different image volume services including
DVID.

4. FUTURE WORK

Distribution of versioned data can help to efficiently synchronize
remote servers, a significant problem given the scale of VEM
data (Lichtman et al., 2014). For example, when establishing
remote copies of massive image volumes, we envision shipping
one or more disks and then synchronizing servers by sending
only data associated with new nodes in the version DAG.
The speed of such operations depend on the ability to easily
extract and transmit data from a subset of versions as well
as fast mechanisms for moving data between servers. Our
current version-last approach to key encoding makes version-
based transmission costly, since it requires scanning all keys.

FIGURE 8 | Typical EM reconstructions produce a version DAG with most changes toward the root and fewer, human-guided changes toward the leaf nodes. This

means that the bulk of data will be committed and immutable.

Frontiers in Neural Circuits | www.frontiersin.org 11 February 2019 | Volume 13 | Article 5

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

Katz and Plaza DVID

As the FlyEM Team increases our sharing of reconstructions
to researchers around the world, we expect to spend some
energy to improve data transfer rates and how version data is
organized.

One such effort is a petabyte-scale DVID-tuned datastore
now in the planning stages. Mutations are relatively expensive
since they generally require transactions and impose difficult
coordination issues when scaling operations to multiple servers.
Immutable data storage is simpler and can be accelerated through
a variety of techniques. For VEM reconstructions at Janelia, the
majority of data exists near the top of the DAG since most
of our workflows involve ingesting very large image volumes
and pre-generating segmentation for every voxel (Figure 8).
This suggests a multi-stage store where on initial ingestion and
subsequent version commits, the committed, immutable data is
transformed to optimize reads, storage size, and ease of version-
based distribution.

The bulk of our data can persist in immutable stores that
combine compact, in-memory key indexing with version-first,
append-only file storage, suitable for easy access and transmission
of version deltas. This allows us to use smaller, faster storage
solutions for the mutable portion of the DAG, namely the leaf
nodes where manual editing tends to dominate. Retrieval of data
from any version then requires concurrent retrieval from both
the immutable and mutable stores.

We want to enable researchers to work on their own
branches, optionally limit download to regions of interest, and
share changes via pull requests (Figure 9). This is particularly
appealing when considering the publication of massive
datasets where specialists may improve regions and submit
changes.

Currently, DVID provides branched versioning that meets
the needs of most of our current reconstruction workflow.
Only some work has been done on the remote distribution and
syncing aspects corresponding to the push and pull operations
of distributed versioning systems like git. DVID can push data
to remote repositories and merge nodes using simple conflict
resolution like node A always wins against node B if there is a
conflict. In order to allow more sophisticated merges, we need to
add data type-specific merge tools to the DVID ecosystem. For
example, when merging two nodes of segmentation, we would
want a merge tool to provide visualizations of conflicts and
allow a user to choose a proper merge result. DVID should be
agnostic to the form of the merge tool yet provide a conflict
resolution API that could be used to select conflicts and post
results.

Availability of amerge tool also allows the possibility of scaling
proofreading by using entirely separate DVID servers instead of
scaling up a single DVID server.

Versioning should allow downloading portions of massive
datasets since it can reference the originating UUID. While full
datasets may require large servers with many terabytes of high-
speed storage, we plan to facilitate proofreading of regions of
interest on laptops even in an offline setting. This would be
similar to standard git workflows where programmers modify
code locally and then submit pull requests of their changes to the
central server.

FIGURE 9 | As shown by software version control systems like git, distributed

versioning is an effective workflow for sharing changes via pull requests. The

figure depicts a future scenario where the root version at Janelia has been

shared with remote collaborators. After changes at the remote site, a pull

request is sent back.

In the near future, we plan on adding Badger13 and
RocksDB as drop-in replacements for the current leveldb storage
backend.

Although DVID has initially focused on key-value stores,
we are evaluating OrpheusDB (Huang et al., 2017) and may
eventually support fundamentally different types of stores
(polyglot persistence) like graph, relational, and scientific array
databases. We are currently investigating OrpheusDB as a
backend for the DVID synapse annotation data type, which
indexes synapse point annotations across space, assigned labels,
and arbitrary tags. Unfortunately, polyglot persistence comes at
the cost of increased code to extend operations like remote
distribution beyond simple key-value pairs to these new types of
stores.

5. CONCLUSIONS

The DVID system is a powerful tool that allows us to immediately
view our dataset at any commit time, and also enables training
of proofreaders so that they can handle large connectomes. It
has allowed us to flexibly store very large immutable datasets in
the cloud in conjunction with fast, smaller storage for mutable
data. This has allowed us to scale our operation and provide
regional data services to collaborators. More importantly, we
feel that distributed versioning in connectomics could be an
extremely powerful tool for collaborating with researchers

13https://github.com/dgraph-io/badger

Frontiers in Neural Circuits | www.frontiersin.org 12 February 2019 | Volume 13 | Article 5

https://github.com/dgraph-io/badger
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

Katz and Plaza DVID

around the world. As the amount of published data increases
dramatically due to advances in imaging, segmentation, and
reconstruction workflows, there will be an increasing need
to provide provenance and mechanisms for collaborative data
editing and analysis. Just as distributed versioning with its notion
of pull requests has greatly impacted the open source software
movement, we believe that it can alter the way we think of sharing
and editing connectomics data.

AUTHOR CONTRIBUTIONS

WKdesigned and implemented the core DVID system. SP helped
design DVID and implemented a labelgraph data type and the
Google Cloud Store engine.

FUNDING

This research was funded by the Howard Hughes Medical
Institute.

ACKNOWLEDGMENTS

DVID has received contributions from Stuart Berg, Oliver
Kuederle, and Ignacio Tartavull. The DVID ecosystem includes
web consoles that received contributions from Jody Clements,
Alex Weston, Jenny Xing, and Rob Svirskas.

We would like to thank the extended FlyEM Team at
Janelia for working with DVID and our collaborators at Janelia,
Dalhousie, and Harvard.

REFERENCES

Al-Awami, A. K., Beyer, J., Haehn, D., Kasthuri, N., Lichtman, J., Pfister, H., et al.

(2015). Neuroblocks - visual tracking of segmentation and proofreading for

large connectomics projects. IEEE Trans. Visual. Comput. Graph. 22, 738–746.

doi: 10.1109/TVCG.2015.2467441

Bhardwaj, A., Bhattacherjee, S., Chavan, A., Deshpande, A., Elmore, A. J.,

Madden, S., et al. (2014). DataHub: collaborative data science & dataset version

management at scale. arXiv.org.

Blischak, J. D., Davenport, E. R., and Wilson, G. (2016). A quick introduction

to version control with git and GitHub. PLoS Comput. Biol. 12:e1004668.

doi: 10.1371/journal.pcbi.1004668

Burns, R., Roncal,W. G., Kleissas, D., Lillaney, K., Manavalan, P., Perlman, E., et al.

(2013). The open connectome project data cluster: scalable analysis and vision

for high-throughput neuroscience. arXiv: 1306.3543.

Dutka, L., Wrzeszcz, M., Lichoń, T., Slota, R., Zemek, K., Trzepla, K.,

et al. (2015). Onedata - a step forward towards globalization of data

access for computing infrastructures. Proc. Comput. Sci. 51, 2843–2847.

doi: 10.1016/j.procs.2015.05.445

Haehn, D., Hoffer, J., Matejek, B., Suissa-Peleg, A., Al-Awami, A., Kamentsky, L.,

et al. (2017). Scalable interactive visualization for connectomics. Informatics

4:29. doi: 10.3390/informatics4030029

Huang, S., Xu, L., Liu, J., Elmore, A., and Parameswaran, A. (2017).

OrpheusDB: bolt-on versioning for relational databases. arXiv.org.

doi: 10.14778/3115404.3115417

Jacobs, A. (2009). The pathologies of big data. Commun. ACM 52, 36–44.

doi: 10.1145/1536616.1536632

Januszewski, M., Kornfeld, J., Li, P. H., Pope, A., Blakely, T., Lindsey, L.,

et al. (2018). High-precision automated reconstruction of neurons with

flood-filling networks. Nat. Methods 15, 605–610. doi: 10.1038/s41592-018-

0049-4

Kleissas, D., Hider, R., Pryor, D., Gion, T., Manavalan, P., Matelsky, J., et al. (2017).

The block object storage service (bossdb): a cloud-native approach for petascale

neuroscience discovery. bioRxiv [Preprint]. doi: 10.1101/217745

Kornfeld, J., and Denk, W. (2018). Progress and remaining challenges in high-

throughput volume electron microscopy. Curr. Opin. Neurobiol. 50, 261–267.

doi: 10.1016/j.conb.2018.04.030

Lichtman, J. W., Pfister, H., and Shavit, N. (2014). The big data challenges

of connectomics. Nat. Publishing Group 17, 1448–1454. doi: 10.1038/

nn.3837

Lu, L., Pillai, T. S., and Arpaci-Dusseau, A. C. (2016). WiscKey: Separating Keys

From Values in SSD-conscious Storage. Santa Clara, CA: FAST.

Nunez-Iglesias, J., Kennedy, R., Plaza, S., Chakraborty, A., and Katz, W.

(2014). Graph-based active learning of agglomeration (gala): a python

library to segment 2d and 3d neuroimages. Front. Neuroinformatics 8:34.

doi: 10.3389/fninf.2014.00034

O’Neil, P., Cheng, E., Gawlick, D., andO’Neil, E. (1996). The log-structuredmerge-

tree (LSM-tree). Acta Inform. 33, 351–385. doi: 10.1007/s002360050048

Parag, T., Chakraborty, A., Plaza, S., and Scheffer, L. (2015). A context-aware

delayed agglomeration framework for electron microscopy segmentation. PLoS

ONE 10:e0125825. doi: 10.1371/journal.pone.0125825

Pietzsch, T., Saalfeld, S., Preibisch, S., and Tomancak, P. (2015). Bigdataviewer:

visualization and processing for large image data sets. Nat. Methods 12:481.

doi: 10.1038/nmeth.3392

Saalfeld, S., Cardona, A., Hartenstein, V., and Tomancak, P. (2009). CATMAID:

collaborative annotation toolkit for massive amounts of image data.

Bioinformatics 25, 1984–1986. doi: 10.1093/bioinformatics/btp266

Stonebraker, M., Brown, P., Poliakov, A., and Raman, S. (2011). “The

architecture of SciDB,” in SSDBM 2011 Proceedings (Portland, OR), 1–16.

doi: 10.1007/978-3-642-22351-8_1

Takemura, S.-Y., Aso, Y., Hige, T., Wong, A., Lu, Z., Xu, C. S., et al. (2017). A

connectome of a learning and memory center in the adult Drosophila brain.

eLife 6:e26975. doi: 10.7554/eLife.26975

Takemura, S.-Y., Xu, C. S., Lu, Z., Rivlin, P. K., Parag, T., Olbris, D. J., et al.

(2015). Synaptic circuits and their variations within different columns in the

visual system of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 112, 13711–13716.

doi: 10.1073/pnas.1509820112

Viljoen, M., Dutka, L., Kryza, B., and Chen, Y. (2016). Towards European open

science commons: the EGI open data platform and the EGI dataHub. Proc.

Comput. Sci. 97, 148–152. doi: 10.1016/j.procs.2016.08.294

Wang, G., Koshy, J., Subramanian, S., Paramasivam, K., Zadeh, M., Narkhede,

N., et al. (2015). Building a replicated logging system with apache kafka. Proc.

VLDB Endow. 8, 1654–1655. doi: 10.14778/2824032.2824063

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010).

“Spark: cluster computing with working sets,” in Proceedings of the 2Nd

USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10 (Berkeley,

CA: USENIX Association), 10.

Zhao, T., Olbris, D. J., Yu, Y., and Plaza, S. M. (2018). Neutu:

software for collaborative, large-scale, segmentation-based connectome

reconstruction. Front. Neural Circuits 12:101. doi: 10.3389/fncir.2018.

00101

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Katz and Plaza. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 13 February 2019 | Volume 13 | Article 5

https://doi.org/10.1109/TVCG.2015.2467441
https://doi.org/10.1371/journal.pcbi.1004668
https://doi.org/10.1016/j.procs.2015.05.445
https://doi.org/10.3390/informatics4030029
https://doi.org/10.14778/3115404.3115417
https://doi.org/10.1145/1536616.1536632
https://doi.org/10.1038/s41592-018-0049-4
https://doi.org/10.1101/217745
https://doi.org/10.1016/j.conb.2018.04.030
https://doi.org/10.1038/nn.3837
https://doi.org/10.3389/fninf.2014.00034
https://doi.org/10.1007/s002360050048
https://doi.org/10.1371/journal.pone.0125825
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1093/bioinformatics/btp266
https://doi.org/10.1007/978-3-642-22351-8_1
https://doi.org/10.7554/eLife.26975
https://doi.org/10.1073/pnas.1509820112
https://doi.org/10.1016/j.procs.2016.08.294
https://doi.org/10.14778/2824032.2824063
https://doi.org/10.3389/fncir.2018.00101
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

	DVID: Distributed Versioned Image-Oriented Dataservice
	1. Introduction
	2. System Design
	2.1. Example Usage
	2.2. Versioned Data
	2.3. Branched Versioning of Key-Value Data
	2.3.1. Overhead of Versioning
	2.3.2. Support for Non-ordered Key-Value Stores

	2.4. Data Types
	2.5. Versioning 3D Label Data
	2.6. Storage Backends
	2.7. Availability

	3. Related Work
	4. Future Work
	5. Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References

