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Spatial orientation relies on a representation of the position and orientation of the

body relative to the surrounding environment. When navigating in the environment, this

representation must be constantly updated taking into account the direction, speed, and

amplitude of body motion. Visual information plays an important role in this updating

process, notably via optical flow. Here, we systematically investigated how the size

and the simulated portion of the field of view (FoV) affect perceived visual speed of

human observers. We propose a computational model to account for the patterns of

human data. This model is composed of hierarchical cells’ layers that model the neural

processing stages of the dorsal visual pathway. Specifically, we consider that the activity

of the MT area is processed by populations of modeled MST cells that are sensitive

to the differential components of the optical flow, thus producing selectivity for specific

patterns of optical flow. Our results indicate that the proposed computational model is

able to describe the experimental evidence and it could be used to predict expected

biases of speed perception for conditions in which only some portions of the visual field

are visible.

Keywords: vision, optical flow, motion perception, field of view, computational model, MST area

1. INTRODUCTION

Spatial orientation is a cognitive function based on the ability to understand, manipulate, visually
interpret, and reorganize spatial relationships (Tartre, 1990). It relies on a representation of
the position and orientation of the body relative to the surrounding environment and requires
a mental readjustment of one’s perspective to become consistent with the representation of a
visually presented object (McGee, 1979; Tartre, 1990). When navigating in the environment, this
representation must be constantly updated taking into account different aspects of body motion,
such as its direction, speed and amplitude. Spatial navigation is a complex process that requires
the integration of sensory information provided by different sensory channels such as vision,
proprioception and the vestibular system. Visual information plays a particularly important role
in this updating process, notably via the integration of optical flow information. Optical flow may
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be defined as the array of optical velocities that surround the
moving subject (Kirschen et al., 2000), and it refers to the visual
apparent motion between the body and the environment. Its
characteristics are related not only to the speed and direction
of motion, but also to the properties of the environment,
such as for instance texture gradients. Optical flow information
is particularly important for human locomotion, where it is
integrated by the central nervous system, along with visual,
vestibular, motor, kinesthetic and auditory signals, to give rise
to motion perception (Mergner and Rosemeier, 1998). The
alteration or manipulation of one of these signals may lead
to an altered perception. In fact, studies that investigated how
visual and non-visual/kinesthetic signals are integrated for speed
perception with walking (Thurrell et al., 1998; Banton et al., 2005;
Durgin et al., 2005; Kassler et al., 2010; Powell et al., 2011) and
running participants (Caramenti et al., 2018, 2019) consistently
reported an altered perception of visual speed.

One factor that has repeatedly been shown to affect
perceived visual speed is the size of the field of view (FoV).
Specifically, several studies demonstrated that peripheral vision is
fundamental for motion perception. Indeed, the size of the FoV
affects navigation abilities (Alfano and Michel, 1990; Cornelissen
and van den Dobbelsteen, 1999; Turano et al., 2005), postural
control (Dickinson and Leonard, 1967; Amblard and Carblanc,
1980; Stoffregen, 1986; Wade and Jones, 1997), speed perception
(Osaka, 1988; Pretto et al., 2009) as well as vection, i.e., the self-
motion perception induced by moving visual stimuli (Brandt
et al., 1973; Berthoz et al., 1975; Held et al., 1975). Regarding
speed perception in particular, smaller FoVs have been shown
to induce a larger underestimation of visual speed, and this with
walking (Thurrell et al., 1998; Thurrell and Pelah, 2002; Banton
et al., 2005; Nilsson et al., 2014), cycling (Van Veen et al., 1998)
and sitting still individuals (Pretto et al., 2009). Such reduction
of the FoV can occur not only with simulated optical flows,
due to the restrictions of the visualization device (e.g., screen,
head-mounted displays), but also in medical conditions such as
scotoma, in which there is a localized defect (i.e., blind spot) in
the visual field that is surrounded by an area of normal vision.

Here we present a study in which we systematically
investigated how the size and the simulated portion of the
FoV affect perceived visual speed with human observers. In
contrast to previous studies that only focused on the effect
of the size of the FoV on visual speed perception, we
also investigated the perceptual differences associated to the
visible portion of the FoV. We propose a biologically-inspired
computational model to account for the observed perceptual
patterns. Different computational models have been suggested
to qualitatively explain human visual speed perception. These
models commonly assume that the perception of visual motion
is optimal either within a deterministic framework with a
regularization constraint that causes the solution to bias toward
zero motion (Yuille and Grzywacz, 1988; Stocker, 2001), or
within a probabilistic framework of Bayesian estimation with
a prior that favors slow velocities (Simoncelli, 1993; Weiss
et al., 2002). Stocker and Simoncelli (2005) presented a refined
probabilistic model that can account for trial-to-trial variabilities
that are typically observed in psychophysical speed perception

problems. It is worth noting that these models take into account
neural mechanisms that can be related to V1 and MT neural
areas. However, to model the speed perception of motion
patterns that are common in self-motion, we have to consider
also the dorsal MST area, which encodes visual cues to self-
motion (e.g., expansion and contraction) (Duffy and Wurtz,
1991; Pitzalis et al., 2013; Cottereau et al., 2017). Thus, we
propose a computational model that takes into account the dorsal
neural pathway (Goodale and Westwood, 2004), specifically V1,
MT and MST areas, and the spatial non-linearity of log-polar
mapping (Schwartz, 1977) in order to mimic the patterns of the
perceived visual speed of human observers.

2. MATERIALS AND METHODS

2.1. Perceived Visual Speed of Human
Observers
2.1.1. Participants
Eight participants aged 19–31 (mean=24.5 ± 3.82) participated
in the experiment. All participants had normal or corrected-
to-normal vision, and they were naive as to the purpose of
the research. Written informed consent was obtained from all
participants before their inclusion in the study. The experiment
was performed in accordance with the ethical standards laid
down in the 1964 Declaration of Helsinki, and approved by
the ethical committee of the University of Tuebingen. The
participants were paid, and they had the option to withdraw from
the study at any time without penalty and without having to give
a reason.

2.1.2. Experimental Setup
The participants seated at the center of a panoramic screen
(quarter of sphere) surrounding them in order to cover almost
their entire visual field (see Figure 1). Specifically, the screen
was cylindrical with a curved extension onto the floor, which
provided a projection surface of 230◦ horizontally and 125◦

vertically. The screen surface was entirely covered by four LCD
projectors with a resolution of 1,400 × 1,050 pixels each, and
OpenWARP technology (Eyevis, Reutlingen, Germany) was used
to blend overlapping regions. The height of the seat was adjusted
so that eye height was 1.7 m for each participant. The geometry
of the visual scene was adjusted for this eye height and a
distance of 3 m of the vertical portion of the screen, i.e., the
portion that is perpendicular to the floor and to the line of sight
when looking straight ahead. These adjustments were made to
avoid geometrical distortions induced by the curved display. The
visual scene was generated using the Virtools software (Dassault
Systemes SE) version 4.1.

2.1.3. Visual Stimuli
The visual stimuli consisted of random patterns of either:

1. White dots generated as point sprites, which subtended a
visual angle of a fifth of a degree, i.e., 12 arcminutes. The visual
angle subtended by the dots (i.e., retinal size) did not change
with distance from the viewer (Dots condition).
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FIGURE 1 | Panoramic screen, 230 × 125◦ of field of view, including floor.

2. White 3D spheres, the “physical” size of which was 10 cm.
The visual angle subtended by the spheres depended on the
distance from the viewer (3D spheres condition).

Dots and 3D spheres were randomly located within a large
virtual cube. The movement of a virtual camera through the dots
induced a radial visual flow corresponding to a self-translation
along the antero-posterior axis of the subject. Note that the
eccentricity of the dots/spheres with respect to the fixation point
varied from 0 to 115◦, i.e., the half of the horizontal visual field
of the panoramic screen used for the experiment. Accordingly,
the speed profile of each dot/sphere varied from 0 m per second
at a 0◦ eccentricity to the speed of the generated flow at a 180◦

eccentricity. The near clipping plane of the camera was set at 0.5
m, and the far clipping plane at 500 m. In the Dots condition,
because the retinal size of the dots was distance-independent, the
optical flow did not provide visual expansion cues. On the other
hand, the 3D spheres provided visual expansion cues because the
retinal size of the spheres increased as they moved closer to the
viewer. A central fixation cross subtending 1.5◦ of visual angle
and located in front of the participant at eye level was visible for
the whole duration of the trials. The fixation cross corresponded
to the focus of expansion of the optical flow.

2.1.4. FoV Conditions
Soft-edge disc-shaped transparent masks were implemented in
the visual scene in order to manipulate the extent of the visible
area on the screen. In the Full field of view (FoV) condition,
the optical flow, whether consisting of Dots or 3D spheres, was
visible on the whole screen (see Figures 2A1,B1). In the other
FoV conditions, the masks were combined in order to generate
four different types of optical flow. In the 10, 40, and 70C FoV
conditions, only the central 10, 40, and 70◦ of the visual scene,
respectively, displayed the optical flow (see Figures 2A2,B2).
The 10, 40, and 70P FoV conditions corresponded to the exact
opposite, and the central 10, 40, and 70◦ of the visual scene,
respectively, were masked, so that the optical flow was visible
only in the periphery of the mask (see Figures 2A3,B3). In the

10P40C, 10P70C, and 40P70C FoV conditions, the central and
peripheral part of the visual scene were masked, and the optical
flow was visible only in a ring-shaped of 10–to–40◦, 10–to–70◦,
and 40–to–70◦, respectively (see Figures 2A4,B4). Finally, in the
10C40P, 10C70P, and 40C70P FoV conditions, both the central
and the peripheral part of the visual scene were visible, while
a ring-shaped area of 10–to–40◦, 10–to–70◦, and 40–to–70◦,
respectively, was masked, so that no optical flow was displayed
in the masked area (see Figures 2A5,B5). In all FoV conditions,
the disc-shaped masks and rings were centered on the fixation
cross, i.e., on the focus of expansion of the optical flow.

2.1.5. Procedure
The stimuli were presented using a two-interval forced-choice
(2-IFC) method. For each trial, two stimuli, namely a standard
and a comparison stimulus, were successively presented to the
participant. Both stimuli were moving at constant speed. At the
end of the trial, the participant had to indicate in which interval
(i.e., first or second) the stimulus was moving faster. For all FoV
conditions, the standard stimulus was with Full FoV and it always
moved at 5 m/s, i.e., 18 km/h. On the other hand, the speed of
the comparison stimulus varied from trial to trial. Specifically, the
speed of the comparison stimulus was determined for each trial
by a Bayesian adaptive staircase (Kontsevich and Tyler, 1999),
which took into account the speed of the previous visual stimuli
as well as the corresponding responses of the participants. This
method is based on an algorithm that optimizes the information
gained with the previous trials. The Fov of the comparison
stimulus was defined by the FoV condition (see FoV conditions).

At the beginning of each interval, the fixation cross appeared
on a dark background. Participants were instructed to gaze at the
cross and maintain the fixation until the end of the trial. 500
ms later, the first moving stimulus was presented for 700 ms,
which included a 100 ms fade-in phase at the beginning and a
100 ms fade-out phase at the end. The second moving stimulus
was presented 500 ms after the end of the first stimulus and had
the same temporal structure as the first one. The fixation cross
disappeared at the end of the second stimulus. The participant
could then give its response by pressing on one of the two buttons
of a joystick (i.e., first stimulus vs. second stimulus was faster).
The time course of trials is presented in Figure 2C.

For each combination of visual stimulus (i.e., Dots vs. 3D
spheres) and FoV condition (13 in total, see above), the adaptive
staircase of the 2IFC method consisted of 80 trials. In total, the
experiment consisted of 26 staircases of 80 trials each. The 26
staircases were split over two sessions that were run on two
different days. The 13 staircases with Dots were all run on 1 day
(Dots session), and the 13 staircases with 3D spheres (3D spheres
session) were run on another day. Half of the subjects started with
the Dots session, and the other half started with the 3D spheres
session. For each type of visual stimulus/session, the 1040 trials
(i.e., 13 staircases × 80 trials) were randomly interleaved, and
presented in 8 blocks of 130 trials each. Each block lasted about 10
min with a 5 to 10 min break in between two consecutive blocks,
so that in total, a session lasted about 2 h. During the breaks, the
lights of the experimental room were switched on and subjects
could walk and relax.
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FIGURE 2 | Illustration of the FoV condition with 3D spheres (A) and dots (B), and time course of trials (C).

2.1.6. Statistical Analyses
For each condition, the perceived speed was measured as the
Point of Subjective Equality (PSE), i.e., the speed at which
the comparison stimulus was perceived to move as fast as the
standard stimulus. Note that when the PSE is higher than the
actual speed of the standard stimulus, it indicates that the
comparison stimulus was perceived as moving slower than the
standard stimulus. Conversely, when the PSE is lower than
the actual speed of the standard stimulus, it indicates that the
comparison stimulus was perceived as moving faster than the
standard stimulus. Both for the Dots condition (i.e., optical flow
only) and for the 3D spheres condition (i.e., optical flow +
expansion cues), mean PSEs were compared using either a one-
way repeated measures analysis of variance (ANOVA) when data
was parametric, or a Friedman rank sum test when data was not
parametric. Post-hoc paired-comparisons were then performed
using either Bonferroni correction for multiple comparisons
(parametric data) or Friedman multiple comparisons test (non-
parametric data). Additionally, a linear mixed model was used to
directly compare the dots condition with the spheres condition.
For all tests (except for the linear mixed model), in order to
determine whether to use parametric (i.e., ANOVA) or non-
parametric (i.e., Friedman test) methods of mean comparison,
the normality of the residuals was assessed using the Shapiro-
Wilk test, and p-values were Huynh-Feldt-corrected when
the sphericity assumption was violated (as assessed with the

Mauchly’s test). All statistical tests were performed using the R
statistical software.

2.2. Computational Model of Motion
Processing
The proposed model, based on bio-inspired paradigms, describes
a neural architecture that mimics the psychophysical outcomes
of the previously described experiment that assess the influence
of the size of the field of view on motion perception.

The neural architecture is composed of hierarchical cell layers
that model the processing stages of the dorsal visual pathway
(Goodale and Westwood, 2004; Orban, 2008). The activity of the
MT area can be modeled by a V1-MT feed forward architecture.
In particular, we can model V1 cells by using the motion
energymodel, based on spatio-temporal filtering, andMTpattern
cells by pooling V1 cell responses (Adelson and Bergen, 1985;
Simoncelli and Heeger, 1998; Solari et al., 2015; Chessa et al.,
2016b). Then, the neural activity of the MT area is processed
by populations of MST cells that have selectivity for specific
patterns of optical flow: in particular, they can be sensitive
to the differential components of the optical flow (Grossberg
et al., 1999; Beardsley and Vaina, 2001; Chessa et al., 2013). The
selectivity of the MST cells can be related to the relative motion
between an observer and the scene, in particular to the speed of
forward translation during self-motion through the environment
(Chessa et al., 2013, 2016a).

Frontiers in Neural Circuits | www.frontiersin.org 4 October 2019 | Volume 13 | Article 68

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Solari et al. Predicting Perceived Visual Speed

FIGURE 3 | A sketch of the proposed model. (Left) The circular RFs of the model are superimposed on the visual stimulus (optical flow, expansion). The RFs tile all

the visual field: the solid line circles denote the MST RFs, and the dotted circles denote the area, where the MST activity is processed. (Right) The neural architecture

to estimate the speed of forward translation during self-motion (see text for details). The activity of MT visual area is processed by the MST RFs that perform an

adaptive template matching (in the middle inset a template is shown) to detect variation of velocity. A multi-scale approach is adopted. The population of each MST

scale is processed through a WTA, and such outputs are used in a weighted sum to estimate the forward translation motion, i.e., the perceived visual speed.

Here, we propose a novel neural model that processes the
output of the aforementioned layers (see Solari et al., 2015;
Chessa et al., 2016a,b for details) for the estimation of the
perceived visual speed. The proposed computational neural
model can be summarized as follows (see Figure 3 for a sketch
of the proposed model):

- The population of MST cells at different scales performs an
adaptive template matching (e.g., see the example of a MST RF
in Figure 3) on the MTmotion patterns that take into account
a non-linearity to describe the space-variant resolution of
retinas (Solari et al., 2012, 2014).

- An approach is adopted, in order to take into account both the
evidence thatMST RFs have different sizes and the fact that the
visual signal contains information at different spatial scales.

- The activity of the MST cells is locally processed by a Winner-
Take-All (WTA) approach: specifically, the WTA is locally
applied on the sub-populations of each scale. Moreover, a
compressive non-linearity is applied on the WTA outputs.

- In order to estimate the perception of speed of forward
translation during self-motion, the most active scale is selected
and its spatial neural activity is pooled through a weighted
sum: in particular, we consider both positive and negative
weights (i.e., there is an inhibition due to the activity in the
periphery of the visual field).

2.2.1. Modeled MST Area
The dorsal MST area is associated with the specialized function
of encoding visual cues to self-motion: in particular, there are
neurons that are selectively sensitive to specific components (i.e.,
elementary components of optical flow patterns, as expansion,
contraction, rotation, and translation) of the optical flow that
occurs during self-motion (Tanaka et al., 1989; Duffy and Wurtz,

1991; Pitzalis et al., 2013; Cottereau et al., 2017), but (Wall
and Smith, 2008) identified also two other areas sensitive to
egomotion in humans. Several biologically plausible models of
the MST functionality have been proposed (Perrone and Stone,
1994; Grossberg et al., 1999; Yu et al., 2010; Mineault et al., 2012).
Specifically, we consider the approach presented in Chessa et al.
(2013) and extend it to model the experimental data we present
in our current work.

Cortical representation We consider the representation of
optical flow as provided by a bio-inspired model (Chessa
et al., 2016b) and we model the space-variant resolution of
retinas by using the blind spot approach, i.e., log-polar mapping
(Solari et al., 2012).

The log polar mapping modifies the Cartesian polar
coordinates by applying a non-linearity on the radius ρ, as
ξ = loga(ρ/ρ0), and a normalization on the angle coordinate
θ (Schwartz, 1977; Traver and Pla, 2008; Solari et al., 2012, 2014).
The transformation of a vector field from the Cartesian domain
to the cortical domain can be expressed in terms of a general
coordinates transformation (Chan Man Fong et al., 1997; Solari
et al., 2014):

[

vx
vy

]

=
1

ρ0aξ ln(a)

[

cos θ sin θ

− sin θ cos θ

] [

vxCart
vyCart

]

, (1)

where a parameterizes the non-linearity of the mapping, and ρ0
is the radius of the central blind spot. vxCart and vyCart denote
the components along x and y axes of the Cartesian optic flow,
and the vx and vy components describe the transformed cortical
optic flow. The scalar coefficient of Equation (1) represents the
scale factor of the log-polar vector, and the matrix describes the
rotation due to the mapping. It is worth noting that Cartesian
annular regions of expansion optical flow that are centered
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FIGURE 4 | (A) Optical flows representing expansion in the Cartesian domain and the corresponding cortical optical flow. The log-polar mapping transforms Cartesian

annular regions (cyan ring-shaped area) into cortical vertical stripes. (B) Example of elementary flow components representing cardinal deformations of the optical flow.

around the fixation point, i.e., the fovea, are mapped into
vertical stripes of horizontal optical flow in the uniform cortical
representation (see Figure 4A). InAppendix some relevant optic
flow patterns and their log-polar mappings are reported.

Elementary flow components TheMST neurons are sensitive
to elementary flow components (EFCs), such as expansion, shear,
and rotation, or their combination with translation components
(Koenderink, 1986; Orban et al., 1992). Since such EFCs can be
described in terms of affine descriptions (Chessa et al., 2013), we
describe the optical flow v(x, y) as linear deformations by a first-
order Taylor decomposition, around each point: v = v̄ + Tx,
where T is the tensor composed of the partial derivatives of the
optical flow.

By describing the tensor through its dyadic components, the
optical flow can be locally described through two-dimensional
maps (m :R2 7→ R2) representing elementary flow components:

v = α
xv̄x + α

yv̄y + d
x
x

∂vx

∂x

∣

∣

∣

∣

x0

+ d
x
y

∂vx

∂y

∣

∣

∣

∣

x0

+d
y
x

∂vy

∂x

∣

∣

∣

∣

x0

+ d
y
y

∂vy

∂y

∣

∣

∣

∣

x0

, (2)

where, the first two terms are pure translations and the other
ones are cardinal deformations, basis of a linear deformation
space: for instance, α

x
:(x, y) 7→ (1, 0) and d

x
x :(x, y) 7→ (x, 0)

(see Figure 4B).
We can model the sensitivity to such deformations through

a population of MST cells whose response is obtained by an
adaptive template matching on the cortical optical flow. From the
responses of such a population we compute the first-order (affine)
description of the cortical optical flow (Koenderink, 1986; Orban
et al., 1992).

Affine flow model and motion interpretation The affine
description of optical flow is related to the interpretation of visual
motion (Chessa et al., 2013): specifically, the affine coefficients

can be combined in order to compute quantities related to the
relative motion between an observer and the scene, such as the
estimation of the 3-D orientation of the surfaces, of the time to
collision, of the focus of expansion, and of the translational speed
that is of interest for the current work.

To clarify the relationships, we can consider the following
affine description of the optical flow:

[

vx
vy

]

=

[

c1
c4

]

+

[

c2 c3
c5 c6

]

·

[

x
y

]

. (3)

The relative motion between an observer and the scene can be
described as a rigid-body motion: a 3D point X = (X,Y ,Z)T has
a motion given by Ẋ = −(T+�∧X), where T = (TX ,TY ,TZ)

T

denotes the translational velocity and � = (�X ,�Y ,�Z)
T

the angular velocity (Longuet-Higgins and Prazdny, 1980). By
considering a pinhole camera model with focal length f , we
obtain the perspective projection of the motion:

[

vx
vy

]

= f

[

−TX/Z − �Y

−TY/Z + �X

]

+

[

TZ/Z �Z

−�Z TZ/Z

]

·

[

x
y

]

+
1

f

[

xy�X − x2�Y

y2�X − xy�Y

]

. (4)

By considering a smooth surface structure, specifically we locally
approximate the surface through a planar surface, we can
describe the affine coefficients in terms of the motion quantities
of Equation (4) (Chessa et al., 2013). In particular, the affine
coefficient c2 (in the condition of the experiment considered in
this work) is proportional to TZ , i.e., the forward translation
speed in an ego-motion scenario.

The coefficient c2 can be estimated through a template
matching by using the map d

x
x that describes the MST RFs of a

population of cells. Thus, the output of such a template matching
can be considered as the MST neural activity E(p), where p =

(x, y) denotes the domain, i.e., the coordinate reference system.

Frontiers in Neural Circuits | www.frontiersin.org 6 October 2019 | Volume 13 | Article 68

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Solari et al. Predicting Perceived Visual Speed

2.2.2. Modeled Perceived Visual Speed
To take into account the experimental data about the range of
the RF size (Raiguel et al., 1997), we consider four scales (s) in
the range 10 − 50◦, thus the MST neural activity is described as
E(p, s). Moreover, we implemented a multi-scale approach also
to consider the fact that the visual signal contains information at
different spatial scales.

With the aim of obtaining an estimate of perceived forward
translation speed, the distributed neural MST activity E(p, s) is
processed through a Winner-Take-All approach. Specifically, we
locally apply a WTA on the neural sub-population of each scale:
the WTA processes the MST activity on an area W of 70◦ with
75% overlap. Moreover, a compressive non-linearity β is applied
on the WTA output:

EWTA(p, s) =

(

max
p∈W

∗ E(p, s)

)β

, (5)

where ∗ denotes that the WTA is applied by using a moving
windowW.

To exploit the information gathered by the multi-scale
approach, we model a WTA layer that selects the most active
neural sub-population among the ones of the considered scales:

EWTA(p) = max
s

E(p, s). (6)

We propose a spatial pooling of the MST activity to obtain a
scalar value Pz as an estimate of the perceived forward translation
speed. In particular, the activity in the visual periphery (areaWp)
has an inhibitory role with respect to the central area Wc (see
section 2.2.3 also), if there is an activity in a small areaWf around
the fovea:

Pz =
∑

p∈Wc

EWTA(p)+ g(EWTA(p)
p∈Wf

)
∑

p∈Wp

EWTA(p), (7)

where g(·) denotes a gating function that has a negative
value when there is an activity in the area Wf around the
fovea (otherwise it assumes a positive value). In the current
implementation, we have Wf = 5◦, Wc = 85◦ (i.e., a central
85◦ area) andWp = 25◦ (i.e., peripheral 25◦).

Comparison with human data The model estimate Pz of
the perceived forward translation speed (see Equation 7) can be
directly compared with the human estimates of the described
experiment: Figure 9 shows the model estimates Pz for the 13
visual stimulus conditions with respect to the corresponding
human data. To provide a measure of the difference between
human and model data (i.e., the simulation error), we compute
the Pz for the N = 13 visual conditions and we evaluate the
relative error emh as follows:

emh = (1/N)

N
∑

i=1

|HDi − Pzi|/HDi, (8)

where | · | denotes the absolute value, HDi denotes the average
human perception of speed for the i-th condition and Pzi the
model estimate for the same condition. All simulations were
performed using the Matlab software.

TABLE 1 | Average relative errors (Equation 8) of the proposed model with their

standard deviations as a function of the processing stages.

Removal of the processing stage emh ± its std

Full model 0.036 ± 0.034

Log-polar mapping 0.186 ± 0.135

A single scale with the smallest RF size 0.068 ± 0.059

A single scale with the largest RF size 0.107 ± 0.065

Both WTA, Equations (5) and (6) (by using an averaging) 0.229 ± 0.066

WTA, Equation (5) (by using an averaging) 0.179 ± 0.043

WTA, Equation (6) (by using an averaging) 0.090 ± 0.052

Gating function, Equation (7) 0.148 ± 0.251

2.2.3. Systematic Analysis of the Influence of

Processing Stages on the Model Performance
In order to understand how the different processing stages
affect the model performance in modeling human estimates,
we selectively remove specific processing stages of the proposed
neural model and analyze the resulting outputs with respect to
human data.

Table 1 shows the average relative error emh (see Equation 8)
of the model in replicating the human data by removing specific
processing stages. In Figure 5 the distribution of the relative
errors on the 13 stimulus conditions is shown, for the samemodel
changes as in Table 1.

The removal of the log-polar mapping affects the
performances of the model in mimicking the human data:
indeed, the average relative error is emh = 0.186 with respect
the full model that has emh = 0.036 (see Table 1). By looking
at Figure 5A we can see that the conditions 10P and 40P (also
10P70C and 40P70C) are hugely affected, indeed they are the
areas between fovea and periphery, where the log-polar mapping
mainly acts.

Conversely, to use a single scale instead of four scales
has a smaller impact on the model performances and
the effect on the different visual conditions is uniform,
Figures 5B,C. By using a single scale with the smallest
RF size (i.e., 10◦) produces an average relative error
emh = 0.068. The error is emh = 0.107 with the largest
RF (i.e., 50◦).

To change theWTA approach with an averaging affects hugely
the model performances by causing an average relative error
emh = 0.229, however the effect on the visual conditions
is uniform (see Figures 5D–F). By removing the WTA that
acts within each scale (Equation 5) has the most effect
(emh = 0.179) with respect the WTA that acts among scales
(Equation 6, emh = 0.090).

The removal of the gating function (see Equation 7) has a
medium impact on the model performances, i.e., emh = 0.148.
Nevertheless, it affects in an asymmetric way the relative errors
on the visual conditions (see Figure 5G): the visual conditions
10C40P, 10C70P, and 40C70P are the most affected. For such
conditions both the central and the peripheral part of the
visual scene are visible: this suggests that might be present an
(inhibitory) interaction between the foveal and peripheral areas.
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FIGURE 5 | Relative errors (Equation 8) of the proposed model with respect to human data as a function of the 13 visual stimulus conditions by varying the

processing stages, as in Table 1. In particular, the average relative errors by removing specific processing stages are as follows: about 4% (i.e., 0.036 by using

Equation 8) for the full model; 19% without log-polar mapping (A); 7 and 11% with a single scale, the smallest (B) and largest (C) RF size, respectively; 23% by

changing both WTA with an averaging (D); 18 and 9% by changing only one WTA (E,F); 15% without gating function (G).

3. RESULTS

3.1. Influence on the FoV on Perceived
Visual Speed With Dots (Optical Flow Only)
When the optical flow consisted of dots, the Shapiro-Wilks
test performed on the residuals indicated that data was not

normally distributed. The Friedman rank sum test indicated a
main effect of the FoV condition (i.e., the type of field of view) on
perceived visual speed [χ2

(12) = 56.60, p < 0.001]. Post-hoc tests
performed with the Friedman multiple comparisons function
indicated that in the 10C condition, the PSE was significantly
higher than in the 10P, 40P, 10P70C, and 40P70C conditions.
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FIGURE 6 | PSE mean values as a function of the FoV when the optical flow consisted of dots (i.e., optical flow only). The error bars represent the standard error of

the mean.

In other words, the optical flow was perceived as significantly
slower in the 10C condition than in the 10P, 40P, 10P70C, and
40P70C conditions. In addition, the optical flow was perceived
as significantly slower (i.e., higher PSE) in the 10C40P than in the
40P and 10P70C condition. Finally, the optical flowwas perceived
as significantly slower in the 10C70P condition than in the 40P,
10P70C, and 40P70C conditions. Figure 6 shows the PSEs for all
13 FoV conditions.

3.2. Influence on the FoV on Perceived
Visual Speed With 3D Spheres (Optical
Flow + Expansion Cues)
When the optical flow consisted of 3D spheres and included
optical expansion cues, the Shapiro-Wilk analysis indicated that
the residuals were normally distributed. The one-way ANOVA
indicated a main effect of the FoV condition on perceived visual
speed [F(12,84)=47.37, p < 0.001]. Bonferroni-corrected paired-
comparisons indicated that in the 10C condition, the optical flow
was perceived as significantly slower (i.e., higher PSE) than in
all other FoV conditions. Also, the optical flow was perceived as
significantly faster in the 40P and 70P FoV conditions than in
the 40C, 70C, 10C40P, 10C70P, 40C70P, and 10P40C conditions.
Figure 7 shows the PSEs for all 13 FoV conditions.

3.3. Direct Comparison of Perceived Visual
Speed With Dots and 3D Spheres
We then compared “directly” the Dots condition with the 3D
spheres condition. Because data was non-parametric and we had
a repeated measures design, we used a linear mixed model. The
analysis revealed that the type of visual stimulus used for the
optical flow (i.e., dots vs. 3D spheres) did not have any effect

on perceived speed (χ2
(1)=0.0004, p = 0.98). On the other hand,

there was a main effect of the type of FoV (χ2
(12)=226.06, p

< 0.0001) as well as a significant interaction between the two
main factors (χ2

(12)=58.12, p < 0.0001). Therefore, for each FoV
condition, we directly compared the PSEmeasured with dots and
the PSE measured with 3D spheres. These tests were performed
using paired t-tests or Wilcoxon signed-rank test (when data
was non-parametric). These tests were Bonferroni-corrected for
multiple comparisons. None of the 13 tests indicated a significant
difference between the PSE measured with dots and the PSE
measured with 3D spheres. The only FoV condition for which
the test was close to reaching significance (p = 0.063) was the 10C
condition. Note that using a two-way repeatedmeasures ANOVA
instead of the linear mixed model gave the exact same pattern of
result, namely no effect whatsoever of the type of stimulus (i.e.,
dots vs. 3D spheres) on perceived speed (p = 0.99), a main effect
of the type of FoV (p< 0.001) and an interaction between the two
main factors (p < 0.001). Figure 8 shows perceived speed for all
FoV conditions and with the two types of visual stimuli.

3.4. A Computational Model of Motion
Processing Accounts for the Patterns of
Human Data
Figure 9 shows the estimates of perceived visual speeds of the
proposed model (i.e., Pz, see section 2.2 for details), assessed by
using the same stimuli and procedure as the human observers.
The underestimation and overestimation of speed exhibited by
the model are very similar to the ones of human observers: in
particular, the model is able to replicate the human behavior
for 10C, 10C70P, 10P40C, 40C, and 40C70P, but 10C40P shows
a larger error, though acceptable. In general, the proposed

Frontiers in Neural Circuits | www.frontiersin.org 9 October 2019 | Volume 13 | Article 68

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Solari et al. Predicting Perceived Visual Speed

FIGURE 7 | PSE mean values as a function of the FoV when the optical flow consisted of 3D sphere (i.e., optical flow + expansion cues). The error bars represent the

standard error of the mean.

FIGURE 8 | Direct comparison of PSE mean values measured with dots (red) and 3D spheres (green). The error bars represent the standard error of the mean.

computational model shows a high level of agreement with the
human data: the average relative error emh is about 4% (i.e., 0.04
by using Equation 8).

4. DISCUSSION

Participants were presented with an optical flow constituted
of limited-life-time random dots or 3D spheres moving in

their direction along the antero-posterior axis. The size and
portion of the moving FoV was systematically manipulated.
For all FoV conditions, we did not observe any significant

difference between the two types of visual stimuli, namely

dots and 3D spheres. In other words, irrespective of the size

and portion of the displayed FoV, visual speed perception was
similar whether only optical flow information was available
(i.e., Dots condition), or additional expansion/looming cues
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FIGURE 9 | Direct comparison of the visual gains measured with the participants (Human) with the visual gains given by the model (Model), both when the visual

stimulus consisted of Dots (A) and of 3D spheres (B). The pink bars correspond to the human data, and the blue bars correspond to the model estimates. The gain

values are directly derived from the PSE values, so that gain values smaller than 1 indicate an overestimation of visual speed (relative to Full FoV), and gain values larger

than 1 indicate an underestimation of visual speed. The visual stimulus conditions are reported in the text. The average relative error is about 4% by using Equation 8.

were present (i.e., 3D spheres conditions). On the other hand,
both the size and portion of the moving visual field affected
visual speed perception. In particular, patterns in which only
the central part of the visual field was moving resulted in a
larger underestimation of flow speed. Importantly, a bio-inspired
computational model of the neural processing stages of the dorsal
pathway allowed us to predict perceived speed based on the
visible portion of the moving optical flow, and this with a 96
percent reliability.

Our results show that the size and the portion of visible
FoV significantly affect perceived visual speed. In particular,
as already described by Pretto and colleagues (Pretto et al.,
2009), the wider peripheral-only conditions (namely 40P and
70P) resulted in an overestimation of the speed of the optical
flow. However, and contrary to what was described by Pretto
et al., this overestimation was significant only when the visual
stimulus consisted of 3D spheres (i.e., when expansion cues
were provided), and not when the visual stimulus consisted of
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dots. When only the central 10◦ of FoV were displayed (i.e.,
FoV condition 10C), we also found an effect on perceived visual
speed, that was significantly underestimated as compared to most
other FoV conditions, depending on the type of visual stimulus.
With 3D spheres, the underestimation (in the 10C condition)
was significant as compared to all other FoV conditions. With
dots however, the underestimation was significant as compared
to the FoV conditions in which a small portion of the central
FoV was covered (i.e., 10P, 40P, 10P70C, 40P40C), but not as
compared to the Full FoV condition. This result is at odds
with the 2009 study by Pretto and colleagues who using dots,
found that all FoVs smaller than 60◦ gave rise to a significant
underestimation of visual speed as compared to the Full FoV
condition. Overall, our results indicate that visual speed tend
to be underestimated when only a small central portion of the
FoV is visible. Several studies have highlighted the importance of
peripheral vision for motion perception, with a direct influence
on speed perception (Pretto et al., 2009, 2012), but also on
navigation abilities (Czerwinski et al., 2002; Turano et al., 2005)
and on vection, i.e., the sensation of self-motion that derives
from a moving stimulus (Brandt et al., 1973; Berthoz et al.,
1975; Mohler et al., 2005). In line with this, the underestimation
of visual speed that we observed when the peripheral part
of the FoV was occluded likely results from the fact that in
this situation, only the low angular velocities of the visible
central portion can be used for speed estimation, thereby
“biasing” perception.

Importantly, using a biologically-inspiredmodel, we were able
to predict the influence of the size and portion of the moving
visual field on speed perception. Specifically, by providing
the appropriate parameters of the neural processing stages,
our model allowed us to predict with 96% of reliability the
perceived speed based on the visible portion of the moving
optical flow. In the past, different computational models have
been proposed to “explain/describe” the processes underlying
human perception of visual speed, mainly by focusing on local
computation of motion. Commonly, these models assumed
that the perception of visual motion is optimal in one of
two conditions: (i) in a deterministic framework with a
regularization constraint induces the solution to bias toward
zero motion (Yuille and Grzywacz, 1988; Stocker, 2001); (ii)
in a probabilistic framework of Bayesian estimations, which
a prior that favors slow velocities (Simoncelli, 1993; Weiss
et al., 2002). Other studies have shown that it is possible
to capture basic qualitative features of translational motion
perception with an ideal Bayesian observer model based on
Gaussian forms for likelihood and prior (Weiss et al., 2002).
Because the previous model deviates from human perceptual
data regarding trial-to-trial variability and the form of interaction
between perceived speed and contrast, Stocker and Simoncelli
(2005) proposed a refined probabilistic model that could account
for trial-to-trial variabilities. These authors derived the prior
distribution and the likelihood function of speed perception from
a set of psychophysical measurements of speed discrimination
and matching.

Nevertheless, in order to perceive motion patterns that are
related to visual navigation, one should consider a hierarchical

processing and a spatial integration of the local motion, as
described by previous models. Indeed, several models take into
account the MST functionality and its larger receptive fields
(Perrone and Stone, 1994; Grossberg et al., 1999; Yu et al.,
2010; Mineault et al., 2012). In their seminal work, Perrone and
Stone (1994) introduced a template-based model of self-motion
that showed similar responses properties to MST neurons. In
Grossberg et al. (1999), the model considers also log-polar
mapping, though by using a formulation that does not allow a
signal processing description as in our model. In Yu et al. (2010)
and Mineault et al. (2012), the authors analyzed different types
of neural combinations of local motion processing in order to
account for the observed stimulus selectivity of MST neurons. It
is worth noting that our model allows the prediction of perceived
visual speed considering also the size and portion of the visual
field. To obtain such a result, we have introduced several neural
mechanisms by combining them in a novel computational model.
In particular, we model a population of MST cells that perform
an adaptive template matching by considering the spatial non-
linearity produced by the log-polar mapping and multi-scale
layers. Such a template matching allows a decomposition of
motion patterns into an affine description that can be directly
related to forward speed of the observer: the results show
that the model estimates are similar to the perceived visual
speed of human observers (i.e., the average relative error is
about 4%).

Though there were some slight differences, the two types
of visual stimuli, namely dots and 3D spheres, resulted in
similar patterns of perceived visual speed. Specifically, providing
expansion cues (3D spheres condition) in addition to the optical
flow information did not alter perceived visual speed, and no
significant difference could be observed between the Dots and
the 3D spheres conditions. The only FoV condition for which
a difference coming close to significance could be observed was
the 10C condition, i.e., the FoV condition in which only the
central 10◦ of FoV were visible. Note that this “tendency” could
simply be due to the fact that in the 3D spheres condition,
optical flow information might have been reduced because
of the rapid expansion of the sprites which tended to cover
the “small” visible area. This absence of significant difference
between the Dots and the 3D spheres suggests that to estimate
visual speed, at least in the conditions of the experiment, i.e.,
with simple visual stimuli, the optical flow provides sufficient
motion information, and expansion cues do not provide much
additional “benefit.”
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APPENDIX

Figure A1 shows how the Cartesian optic flow patterns are
transformed into the cortical domain. In particular, Figure A1A
shows that constant optic flows in the Cartesian domain map
to non-linear flows in cortical domain. Whereas, expansion (see
Figure 4) and rotation (Figure A1B) flow patterns are mapped
to constant flows along the horizontal and the vertical cortical
axes, respectively. In general, a Cartesian optic flow is warped in
the cortical domain, e.g., in Figure A1C the transformation of a
Cartesian shear pattern is shown.

FIGURE A1 | Optic flow patterns in the Cartesian and cortical domains:

(A) constant, (B) rotation, and (C) shear optic flow pattern.
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