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Recent experimental literature has revealed that GABAergic interneurons exhibit

increased activity prior to seizure onset, alongside additional evidence that such activity

is synchronous and may arise abruptly. These findings have led some to hypothesize that

this interneuronal activity may serve a causal role in driving the sudden change in brain

activity that heralds seizure onset. However, the mechanisms predisposing an inhibitory

network toward increased activity, specifically prior to ictogenesis, without a permanent

change to inputs to the system remain unknown. We address this question by comparing

simulated inhibitory networks containing control interneurons and networks containing

hyperexcitable interneurons modeled to mimic treatment with 4-Aminopyridine (4-AP),

an agent commonly used to model seizures in vivo and in vitro. Our in silico study

demonstrates that model inhibitory networks with 4-AP interneurons are more prone

than their control counterparts to exist in a bistable state in which asynchronously

firing networks can abruptly transition into synchrony driven by a brief perturbation.

This transition into synchrony brings about a corresponding increase in overall firing

rate. We further show that perturbations driving this transition could arise in vivo from

background excitatory synaptic activity in the cortex. Thus, we propose that bistability

explains the increase in interneuron activity observed experimentally prior to seizure

via a transition from incoherent to coherent dynamics. Moreover, bistability explains

why inhibitory networks containing hyperexcitable interneurons are more vulnerable to

this change in dynamics, and how such networks can undergo a transition without

a permanent change in the drive. We note that while our comparisons are between

networks of control and ictogenic neurons, the conclusions drawn specifically relate to

the unusual dynamics that arise prior to seizure, and not seizure onset itself. However,

providing a mechanistic explanation for this phenomenon specifically in a pro-ictogenic

setting generates experimentally testable hypotheses regarding the role of inhibitory

neurons in pre-ictal neural dynamics, and motivates further computational research into

mechanisms underlying a newly hypothesized multi-step pathway to seizure initiated

by inhibition.
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1. INTRODUCTION

Epilepsy is a neurological condition distinguished by repeated
seizures, characterized by seemingly synchronous activity of
pyramidal neurons. Epilepsy research is typically divided into
studies focused on either seizure initiation (Miri et al., 2018),
propagation (Trevelyan et al., 2006; Ellender et al., 2014),
or termination (Schindler et al., 2007), as schematized in
Figure 1 (Jiruska et al., 2013). Historically, studies of seizure
initiation have focused on the hypothesis that hyperexcitability
of excitatory cells is the impetus for seizures (Jiruska et al., 2013)
with an associated inhibitory collapse.

More recently, studies of seizure initiation have shifted focus
to the over-activity of inhibitory interneurons. This literature
reveals that interneurons are hyperactive prior to seizure onset

(Lillis et al., 2012; Muldoon et al., 2015; Elahian et al., 2018),
alongside convincing evidence that interneurons might serve
a causal role in seizure initiation (Klaassen et al., 2006; Avoli

and de Curtis, 2011; Avoli et al., 2016; Librizzi et al., 2017;
Chang M. et al., 2018; Elahian et al., 2018; Miri et al., 2018).
Such insights underlie a novel hypothesis of seizure initiation

(a “GABAergic initiation hypothesis”) in which synchronous
activation of inhibitory interneurons can precipitate the onset

of a seizure, as diagrammed in Figure 1 (Chang M. et al.,
2018). Given the contemporary nature of this hypothesis and
increased pre-ictal interneuronal activity, the unique dynamics
exhibited by interneurons prior to seizure are an ideal target
for rigorous computational study. Here, such research aims
to propose a viable process explaining the predisposition of
inhibitory interneurons in a pro-ictogenic environment to
suddenly increase their firing as seen experimentally, potentially
alongside synchronous firing, as the system moves toward
seizure. We thus focus on modeling dynamics prior to seizure
initiation, at most including the earliest time in the transition to
seizure.

Computational studies are uniquely suited to articulate
mechanisms using the language of neural dynamics. While

FIGURE 1 | A “GABAergic initiation hypothesis” in the context of the state of epilepsy research. Epilepsy research is divided into studies focusing on seizure initiation

(e.g., Miri et al., 2018), propagation (e.g., Trevelyan et al., 2006; Ellender et al., 2014), or termination (e.g., Schindler et al., 2007). Given the focus on interneuronal

dynamics prior to seizure, this work sheds light on a “GABAergic initiation hypothesis” of seizure, diagrammed in detail here. The articulation of a potential mechanism

explaining the sudden transition of interneurons into synchrony, alongside a justification as to why networks in a seizure state are more vulnerable to this transition,

should be identified in order for this overall hypothesis of seizure initiation to be viable.

no in silico model contains the complexity of the biology,
that complexity also makes uncovering mechanisms of action
especially difficult in vivo and in vitro; indeed, the interactions
of various facets of the brain dictating overall behavior are
complex, non-linear, and multi-scale. Mathematical models
provide a powerful tool for disentangling such biological
complexity and proposing hypotheses. Such models inherently
require abstracting the biology of the system. However, when
these approximations are fully rationalized, and the conclusions
appropriately constrained by the underlying assumptions in the
in silico model, the findings from such studies can be translated
into experimentally testable hypotheses (with “a priori” support
arising mathematically or computationally) guiding future in
vitro or in vivo studies.

Networks of purely inhibitory neurons have been of great
interest to computational neuroscientists given their amenability
to study with computational and mathematical techniques.
Networks dominated by the activity and reciprocal interactions
of inhibitory interneurons exist biologically, playing a key role
in the generation of gamma rhythms (Whittington et al., 1995;
Bartos et al., 2007; Sohal et al., 2009) and sharp-wave ripples
(Schlingloff et al., 2014). However, experiments alone are often
insufficient to provide us mechanistic explanations of these
neural dynamics. Meanwhile, in silico studies are uniquely
situated to discern such mechanisms by making reasonable
approximations of these biological networks into modeled
networks. Oftentimes, this is done by “averaging” the activity
of excitatory pyramidal neurons into some external input to the
system, which allows for the direct probing of how properties of
the interneurons and their connectivity affect network dynamics.
It is worth noting that, for this study, our interest in epilepsy
does not undermine the reasonableness of this approximation,
considering that we are interested only in the system prior to
seizure onset. In this setting, when no seizure-like activity in
pyramidal cells has yet arisen, it is reasonable to approximate the
physiological activity of these neurons into a tonic external drive
to the inhibitory network.
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Of particular interest in the computational study of purely
inhibitory networks is their tendency to synchronize, which
dates back to the work of Wang and Rinzel (1992). Various
mechanisms have been proposed to explain the generation of
oscillations in purely inhibitory networks, the most prominent
of which may be the Interneuron Network Gamma (ING)
mechanism (Traub et al., 1998; Whittington et al., 2000;
Bartos et al., 2007; Tiesinga and Sejnowski, 2009; Wang, 2010;
ter Wal and Tiesinga, 2015). Previous work has shown that
inhibitory networks built to examine population activity in an
in vitro hippocampal preparation manifest “sharp transitions”
into coherent population activity caused by a small, permanent
increase to the external drive to the network (Ferguson et al.,
2013). Additional studies have explored the effect of connection
probabilities and cell characteristics manifested by classifications
of cell excitability on inhibitory network synchrony (Tikidji-
Hamburyan et al., 2015; Rich et al., 2016), and have noted that
bistability between asynchronous and synchronous firing was
possible (Rich et al., 2016). More recently, Tikidji-Hamburyan
et al. (2019) have examined in great detail the stability of
“clustered” solutions in these types of networks, noting a specific
link to the biology in both the mechanism underlying the
dynamic of interest (the phase response curve, or PRC) and the
application of the transitions between these states (which may
relate to changes in cognitive states). Further examples of how
the study of this synchrony has direct application to the brain
are found in the study of the onset of sharp wave ripples in the
hippocampus (Schlingloff et al., 2014; Gulyás and Freund, 2015).
Indeed, the computational literature studying purely inhibitory
networks is rich and has provided important insights into
the roles interneurons play in experimentally observed neural
dynamics.

The existing computational insights into inhibitory network
dynamics, combined with the experimental literature describing
the hyperactive, and potentially synchronous, activity of such
networks prior to seizure, motivate this computational study.
To explore why these dynamics might arise particularly in
pro-ictogenic settings, randomly connected, purely inhibitory
network models are developed utilizing cell models mimicking
properties exhibited by neurons treated with 4-Aminopyridine
(4-AP), a commonly used experimental model to generate
seizures (Perreault and Avoli, 1991; Williams and Hablitz, 2015),
or properties of a healthy, control interneuron. Utilizing these
tools, this investigation articulates a mechanism underlying a
sudden transition from asynchronous to synchronous firing in an
inhibitory network through which an increase in interneuronal
firing rates might arise. Crucially, this mechanism also offers
an explanation for the predisposition of hyperexcitable networks
toward this transition.

It is worth noting that, while there are a multitude
of biological effects of 4-AP beyond the hyperexcitability
induced by potassium channel blockade, we focus here on the
hyperexcitability it induces given our desire to explain our
previous observations (Chang M. et al., 2018) as well as the
plethora of contemporary studies that use the 4-AP seizure
model to understand seizure mechanisms (Perreault and Avoli,

1991; Kibler and Durand, 2011; Williams and Hablitz, 2015;
Baird-Daniel et al., 2017; Wenzel et al., 2017; Chang M. et al.,
2018; Liou et al., 2018; Chang et al., 2019; Shivacharan et al.,
2019). This feature is considered the driving force of the pro-
ictogenic properties of this acute seizure model (Chang et al.,
2019; Shivacharan et al., 2019); indeed, recent work has indicated
that 4-AP induces seizures independent of its effects on synapses
(Shivacharan et al., 2019). A specific advantage of 4-AP, noted
recently by Baird-Daniel et al. (2017), is that it preserves
inhibitory mechanisms, making it especially useful in the study
of interneuronal dynamics at seizure initiation.

Using computational modeling, we uncovered a “bistable
transition” mechanism that drives an inhibitory network into
synchrony by comparing the tendency of control and 4-AP
inhibitory networks to synchronize. We found that under 4-AP
conditions, networks are much more likely to transition from
asynchronous to synchronous dynamics following a perturbation
due to a notably larger regime of network parameters supporting
bistability. Additionally, such synchrony was accompanied by an
increased firing rate of neurons similar to what is seen in vivo.
The existence of such a bistable transition driving an inhibitory
network into synchrony expands upon existing literature probing
such mechanisms, especially in the context of epilepsy. These
findings provide a in silico mechanistic explanation for the
inhibitory dynamics observed during the transition to seizure,
providing support for the potential complicity of inhibitory
interneurons in seizure initiation (Klaassen et al., 2006; Avoli and
de Curtis, 2011; Lillis et al., 2012;Muldoon et al., 2015; Avoli et al.,
2016; Librizzi et al., 2017; Chang M. et al., 2018; Elahian et al.,
2018; Miri et al., 2018).

2. MATERIALS AND METHODS

Using optogenetic mice expressing channelrhodopsin-2 in
inhibitory interneurons under proconvulsant conditions of 4-
AP (Voskuyl and Albus, 1985), it has been shown that the
activation of inhibitory interneurons in layer 2–3 (L2/3) of mouse
somatosensory cortex can trigger ictal events (Chang M. et al.,
2018). The strategy here involved building generic inhibitory
networks that roughly approximate cortical inhibitory networks,
utilizing neuron models of both a healthy, control interneuron
and an interneuron made hyperexcitable by treatment with
4-AP. Such an undertaking was informed by a combination
of existing computational models of inhibitory interneurons,
literature describing the general effects of 4-AP, and unpublished
in-house experiments yielding data from the same interneuron in
both control and 4-AP settings.

2.1. Neuron Models
Neurons were modeled via a two dimensional system of ordinary
differential equations first described by Izhikevich (Izhikevich,
2003). This model has two variables: V , which represents the
membrane potential in mV; and u, which represents the slow
“recovery” current in pA. The model utilized here is slightly
altered in the fashion described by Ferguson et al. (2013), and
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is given by:

CmV̇ = k(V − vr)(V − vt)− u− Isyn + Iapp + Iperturb

u̇ = a[b(V − vr)− u]

if V ≥ vpeak, then V ← c and u← u+ d

where k = klow if V ≤ vt and k = khigh if V > vt

(1)

In the above equations, Cm represents the membrane capacitance
in pF, vr represents the resting membrane potential in mV, vt
represents the instantaneous threshold potential in mV, vpeak
is the spike cut-off value in mV, Isyn is sum of all incoming
synaptic current to the neuron in pA (described in detail below),
Iapp represents the external applied current in pA (described in
detail below), Iperturb represents the perturbation current in pA
(described in detail below), a is the recovery time constant of
the adaptation current in ms−1, b describes the sensitivity of
the adaptation current to subthreshold fluctuations in nS, c is
the voltage reset value in mV, d is the total current affecting the
after spike behavior in pA, and klow and khigh are scaling factors
in nS/mV.

The use of Izhikevich model neurons was motivated by
the goals of this study: namely, here we do not strictly
constrain our neuronmodel with experimental results, but rather
create a model that more “generally” matches the properties
of an interneuron in both control and 4-AP cortical settings
and highlights the key differences between them (particularly
those caused by hyperexcitability in 4-AP interneurons). This
choice allows for the detailed investigation of the mechanisms
underlying the transition into synchrony in these networks
performed here.

2.1.1. Neuron Model Parameters

Models and parameter values were based primarily on previous
Izhikevich inhibitory cell models (Ferguson et al., 2013) and
the literature describing the effects of 4-AP (Williams and
Hablitz, 2015). Unpublished in-house experiments were used
to supplement this literature and inform the modeling in areas
in which this literature was not as detailed. These experiments
highlighted specific differences in control and 4-AP settings,
particularly with regards to the rheobase and capacitance.

The model presented by Ferguson et al. (2013) was used as
a “starting point” for the models presented here, as the neurons
of interest in that study exhibit similar major properties to the
types of neurons of interest in this research. This choice informed
the values of vr , vt , c, and vpeak. The unpublished experimental
work yielded Cm values for cortical interneurons. We note that
the calculation of Cm was done identically in the control and
4-AP settings for consistency (assuming isopotentiality of the
cell) in order to yield a direct comparison; however, it is likely
that the differing Cm values measured in this fashion were
influenced by the application of 4-AP making the cell more
electrotonically compact. The measurement of the capacitance
without the isopotentiality assumption are more subtle and
involved than what was necessary for this research (Rall, 1962;
Johnston and Wu, 1994). As such, we emphasize that the Cm

values presented here are not intended to be experimentally

rigorous measurements of the cell’s capacitance in control and
4-AP settings, but rather “approximations” that are informative
for constraining our Izhikevich model neurons and matching the
experimentally observed excitability profiles.

The rest of the parameter values (a, b, d, klow, khigh) were
chosen through a parameter exploration to match the difference
in rheobase caused by treatment of 4-AP. Unpublished in-
house experiments were used for the rheobase values of control
and 4-AP interneurons, as recorded in the same cell, given
that such details are not available in the existing literature.
An increase in spike-frequency adaptation in the 4-AP setting
is also implied by the literature (Williams and Hablitz, 2015)
and correspondingly influenced the determination of these
parameters. As the model of Ferguson et al. (2013) was used
as a reasonable model of a fast-firing inhibitory cell, the
slope of the frequency-current (FI) of that neuron was used
for the control case. Except for the changes caused by a
shifted rheobase and the presence of adaptation, this slope
was kept approximately the same for the 4-AP model. With
the different rheobases, this means that the firing frequency
is larger in the 4-AP model relative to control for a given
input current.

The parameter values for both what will hereafter be
referred to as the “control” model and what will hereafter
be referred to as the “4-AP” model are included in Table 1,
alongside the primary motivating factors in the choice of said
parameter. Properties of these model neurons encapsulated
in their FI curves are illustrated in Figure 2. All modeled
neurons referred to as “control” or “4-AP” in this work use
these parameter values (i.e., every neuron within a given

TABLE 1 | Parameters used in neuron models.

Parameter Value

(Control)

Value

(4-AP)

Rationale

Cm 73 pF 49 pF Unpublished in-house experiment

vr −60.6mV −60.6mV Ferguson et al. (2013)

vt −43.1mV −43.1mV Ferguson et al. (2013)

vpeak 2.5mV 2.5mV Ferguson et al. (2013)

a 0.01 ms–1 0.01 ms–1 Parameter influences rheobase and

adaptation exhibited by model*

b −0.2 nS −0.4 nS Parameter influences rheobase and

adaptation exhibited by model*

c −67mV −67mV Ferguson et al. (2013)

d 0.75 pA 1.25 pA Parameter influences rheobase and

adaptation exhibited by model*

klow 0.6 nS/mV 0.4 nS/mV Parameter influences rheobase and

adaptation exhibited by model*

khigh 2 nS/mV 2 nS/mV Parameter influences rheobase and

adaptation exhibited by model*

*Differences in rheobase and adaptation in control and 4-AP neurons are features

shown by Williams and Hablitz (2015) as well as observed in our un-published in-

house experiment.

Frontiers in Neural Circuits | www.frontiersin.org 4 January 2020 | Volume 13 | Article 81

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Rich et al. Bistability Explains Pre-ictal Interneuronal Hyperactivity

FIGURE 2 | FI curves illustrating properties of neuron models used in this

study. FI Curves for control (blue and cyan) and 4-AP (red and magenta)

modeled neurons. Curves are shown for frequencies calculated using the initial

(blue and red) and final (cyan and magenta) inter-spike intervals to illustrate the

tendency for spike-frequency adaptation (SFA). These comparisons show that

the neuron models utilized in this study match the decreased rheobase and

increased excitability and SFA of 4-AP treated neurons in comparison to

control neurons (with the rheobases determined from unpublished in-house

experiment for control and 4-AP neurons highlighted on the figure by the

colored dots).

network is identical with the exception of its external driving
current).

We emphasize here that the parameters varied between
the control and 4-AP model (Cm, b, d, klow) act in concert to
cause the differences between the 4-AP model compared to
the control model. The parameter choices were not uncovered
by “perturbing” individual parameters in order to elicit
hyperexcitability, but rather via an investigation of the entire
parameter space that uncovered sets of parameters yielding the
desired dynamical properties. Our investigations did reveal that
the b and klow parameters are primarily responsible for the shifted
rheobase observed in the 4-AP model compared to the control
model. Similarly, the a and d values are primarily responsible for
the relative amount of spike frequency adaptation exhibited by
the two models.

2.2. Network Structure
Similar to inhibitory network models developed by Ferguson
et al. (2013), the neurons in the networks modeled here were
randomly connected by synapses utilizing a first-order kinetic
model. Each synapse is modeled by

Isyn = gsyns(V − Esyn) (2)

where gsyn is the inhibitory synaptic weight in nS, s is the gating
variable, V is the membrane potential of the post-synaptic cell in
mV, and Esyn is the inhibitory reversal potential in mV. As this
value of Esyn is set at an inhibitory value of −75 mV for every
possible synapse, this study includes only inhibitory synaptic
connections. Furthermore, gsyn is uniform for each network
studied, meaning each connection in a given network has the
same strength.

The gating variable models the proportion of open synaptic
channels, with its dynamics given by

ṡ = α[T](1− s)− βs (3)

where α represents the inverse of the rise time constant and β

represents the inverse of the decay time constant (Destexhe et al.,
1998). [T] models the concentration of neurotransmitter released
following a pre-synaptic action potential. [T] is represented as a
unitary pulse lasting 1ms, from the time of the pre-synaptic spike
(t0) to the end of the pulse (t1). With this, the dynamics of s can
be simplified to the following two equations,

s(t − t0) = s∞ + (s(t0)− s∞) e

t − t0

τs t0 < t < t1 (4)

s(t) = s(t1) e
−β(t−t1) t > t1 (5)

where s∞ =
α

α + β
and τs =

1

α + β
.

2.2.1. Network Model Parameters

A fast rise time rate constant of α = 3.7037 ms−1 is used here
as in Ferguson et al. (2013). Values for the inhibitory reversal
potential (−75 mV) and the synaptic decay rate constant (β =
0.3333 ms−1) were taken from Traub et al. (2005), and the
range of inhibitory synaptic conductances explored (0–10 nS)
encompasses cortical estimates (Traub et al., 2005).

Network size and connectivity were based on estimates
regarding the density of inhibitory cells present in the cortex
and their intra-connectivity (Markram et al., 2015). Choices
regarding network size were motivated by the size of L2/3 slices
obtained in-house (∼0.03 mm3) combined with observations
regarding the number of large basket cells (the most abundant
type of inhibitory cell in L2/3) per unit volume presented in
Markram et al. (2015). Given that a single large basket cell
synapses onto ∼23 other large basket cells in this brain region
(Markram et al., 2015), and assuming random connectivity, the
probability of connection between such cells would be at least
0.04. Considering networks with connectivity densities lower
than 0.04 would be unlikely to exhibit coherent dynamics in
a randomly connected inhibitory network (Börgers and Kopell,
2003; Rich et al., 2016), this density is used as a lower bound
for this investigation. Based on such estimations, this study
utilized networks of 500 neurons with the neurons randomly
connected with connection probabilities of 0.04, 0.08, 0.12,
and 0.16. Connection probabilities much larger than this were
not needed as they would be clearly unrealistic relative to the
biological estimations.

As done in Ferguson et al. (2013), cell heterogeneity in the
networks was implemented by varying the amplitude of the tonic
external input current, Iapp, to each neuron. The input currents
were selected from a normal distribution with a mean value of Iµ,
with the degree of heterogeneity in the input currents determined
by the standard deviation, σ . The values of Iµ range from 100
to 1,000 pA, and this value is varied in our heatmaps (described
below) along the y-axis. σ = 3, 6 and 12 pA were studied.
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2.3. Simulations
The code underlying these simulations was written in the
C programming language and run on a Linux-based high-
performance computing cluster utilizing Compute Canada
resources provided via the University of Toronto (Loken et al.,
2010). All simulations were run for 2,000 ms, with the initial
conditions randomized such that V ∈ (−70, 0) while u = 0.
Model equations were integrated using the Euler Method with
a time step dt = 0.01 ms. Spikes did not trigger synaptic current
until 100ms into the simulation (via a simple manipulation in the
code) to allow initial transients to decay.

In order to uncover other potential dynamical states of
the network, a brief, large amplitude current pulse was
delivered uniformly to each cell in the network to perturb
the system and potentially bias it toward the synchronous
dynamical state. This 2 ms pulse had an amplitude of 1,000
pA and was delivered at 1,000 ms, and is represented by the
Iperturb term in Equation (1). This is analogous to imposing
homogeneous initial conditions causing instantaneous spiking
of all neurons in the network, in contrast to the randomized
initial conditions that begin the simulations. To identify networks
that exhibited bistability between asynchronous and clustered
behavior, network dynamics established from random initial
conditions (figure panels denoted Random Initial Conditions)
and those established after the perturbation (figure panels
denoted Following Perturbation) were compared.

Heatmaps of the Synchrony Measure (described below) and
differences in the Synchrony Measure before and after the
perturbation shown in all figures display the average of these
scores over five independent simulations. The Random Initial
Conditions scores were calculated based on the network activity
from 500 to 1,000 ms, and the Following Perturbation scores
were calculated based on the network activity from 1,500 to
2,000 ms. In the heatmap plots the mean applied current value
Iµ was varied along the y-axis, while the inhibitory synaptic
weight gsyn was varied along the x-axis. Simulations (not shown
here) were run to ensure that the behaviors indicated by the
SynchronyMeasure taken over the given intervals were indicative
of stable behaviors that would persist long past the time interval
measured here.

2.4. Measures
The measure used to quantify coherent activity in the simulated
networks, here termed a Synchrony Measure, is a slight
adaptation of a commonly used measure created by Golomb
and Rinzel (Golomb and Rinzel, 1993, 1994) that quantifies the
degree of spiking coincidence in the network. This particular
implementation of this measure has been utilized in previous
studies (Rich et al., 2016, 2017, 2018).

Briefly, the measure involved convolving a Gaussian function
with the time of each action potential for every cell to generate
functions Vi(t). The population averaged voltage V(t) was then

defined as V(t) =
1

N

N
∑

i=1

Vi(t), where N is the number of cells

in the network. The overall variance of the population averaged
voltage σ and the variance of an individual neuron’s voltage σi

were defined as

σ =< V(t)2 > − < V(t) >2 (6)

and

σi =< Vi(t)
2 > − < Vi(t) >2 (7)

where < · > indicates time averaging over the interval for which
the measure is taken. The Synchrony Measure S was then defined
as

S =
σ

1

N

∑N
i=1 σi

(8)

The value S = 0 indicates completely asynchronous firing, while
S = 1 corresponds to fully synchronous pattern of network
activity. Example raster plots and the corresponding Synchrony
Measure values over an illustrative range are shown in Figure 3.

This research was interested not merely in the degree of
synchronous firing in the networks of interest (described by
the Synchrony Measure), but rather was primarily focused
on identifying a transition from asynchronous to synchronous
dynamics driven by network bistability. A straightforward way
to identify whether such a transition occurred following a
perturbation (discussed in detail above) is to compare the value
of the Synchrony Measure before and after said perturbation; in
such a comparison, large increases in the Synchrony Measure
following the perturbation are likely indicative of a transition
from asynchronous to synchronous dynamics. Further, to analyze
a network’s predisposition toward this transition over a range
of parameter values, one need only summate these individual
comparisons in an informed fashion into a single, quantitative
score. This motivated the creation of a Bistability Measure used
in this study.

This measure was calculated in three steps. First, the
difference between the Synchrony Measure following the
modeled perturbation and the Synchrony Measure from
randomized initial conditions was taken for each network in
some context (i.e., for a particular parameter range encapsulated
by a given heatmap). Second, only cases when this difference was
>0.3 were included in the summation (this choice is justified
in detail below). Finally, the sum of the Synchrony Measure
differences exceeding this threshold value was taken to yield the
final Bistability Measure.

The choice of the “threshold” value of 0.3 in the second step
above merits further explanation. The Synchrony Measure is not
a binary differentiation between asynchronous and synchronous
dynamics, but rather a quantitative measure of the degree of
synchronous firing. This means that increases in the Synchrony
Measure, particularly subtle ones, do not necessarily indicate a
differentiation of asynchrony from synchrony, but instead could
indicate the presence of qualitatively “tighter” synchrony. An
example of such a case is seen in Figure 3A. However, large
increases in the Synchrony Measure are almost always indicative
of entirely different dynamical states, as shown by the example in
Figure 3B. After a thorough investigation of the correspondence
between a qualitative assessment of synchrony (i.e., visual
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FIGURE 3 | Example raster plots illustrating the Synchrony Measure and motivating the definition of the Bistability Measure. (A) An example network that exhibits

“weak” synchronous dynamics both before and after the perturbation is delivered at 1,000 ms, resulting in a moderate value of the Synchrony Measure in each case.

Dynamics before the perturbation are shown in the left panel, while dynamics following the perturbation are shown in the right. Although the Synchrony Measure

following the perturbation is larger than that before the perturbation, this increase does not indicate a bistable transition from asynchronous to synchronous dynamics,

but rather qualitatively “tighter” synchrony. The choice of 0.3 as the “threshold value” in the articulation of the Bistability Measure prevents cases such as this from

contributing positively to the measure. (B) An example network exhibiting asynchrony before the perturbation (left panel) and very clear synchrony afterwards (right

panel), along with the corresponding Synchrony Measures. Very low synchrony measures (typically <0.25) indicate asynchrony, while higher Synchrony Measures

illustrate synchrony, with higher values indicating more structured, “tighter” synchrony.

inspection of raster plots) and the quantitative assessment
provided by the Synchrony Measure, it was determined that a
difference of at least 0.3 in the Synchrony Measure before and
after a perturbation best identified networks in which a transition
between dynamical states occurred while excluding networks in
which an increased Synchrony Measure only indicated subtle
changes in the network dynamics.

Instantiating this “threshold” value into the calculation of the
Bistability Measure ensures that the measure best quantifies the
tendency for networks to exhibit bistable transitions, rather than
naively quantifying the difference in Synchrony Measure before
and after the perturbation. This occurs in two fashions during
the calculation of the measure to further ensure robustness:
first, networks that exhibit minor changes in the Synchrony
Measure (<0.3) are completely excluded from the summation,
considering such networks are extremely unlikely to exhibit a
bistable transition; and second, the summation of the change in
the Synchrony Measure values, rather than a binary summation
of which networks exhibit a change above the threshold
value, allows networks that exhibit a larger Synchrony Measure
difference (for which one can much more confidently assert a
dynamical transition occurs) to be weighted more heavily in
the calculation of the Bistability Measure. Finally, the fact that
this value was not chosen arbitrarily is worth further emphasis:
this choice was made only after a detailed investigation into the
interpretation of various SynchronyMeasure differences and trial
calculations of the BistabilityMeasure with various choices of this
“threshold” value (not shown here), all of which that contained
flaws improved upon by the choice made for the final measure.

2.5. Ornstein-Uhlenbeck Process
The perturbation described above is motivated primarily by
the desire to uncover a mechanism for the transition from
asynchrony to synchrony from the perspective of dynamical

systems. In order to assess whether this mechanism is biologically
reasonable, an analogous perturbation that might arise in more
biologically grounded models was sought.

An Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein,
1930) is used in the literature to model background synaptic
input into a network (Destexhe et al., 2001; Piwkowska
et al., 2008), and is used in this study to determine whether
“perturbation-like” activity might arise naturally from this model
of external synaptic input. This process, used to determine
the conductance of excitatory synaptic input in this context, is
described mathematically by the following equations (Destexhe
et al., 2001) with an initial condition ge(0) = ge0:

ge(t + h) = ge0 + [ge(t)− ge0]e
−h/τe + AeN(0, 1) (9)

Ae =

√

(

Deτe

2

)

(

1− e
−2h
τe

)

(10)

where N(0, 1) is a normal random number taken from a
distribution with 0 mean and a standard deviation of 1.

The insights from Piwkowska et al. (2008) allowed for
the choice of parameters constrained by cortical data. The
parameters used in the Ornstein-Uhlenbeck process utilized in
this study were ge0 = 3 nS, τe = 2 ms, and De = 2 (a
unitless diffusion coefficient), and the integration time step was
h = 0.01 ms.

The Ornstein-Uhlenbeck process motivates an alteration to
the Iperturb current that will be described in more detail in the
Results section.

Code Accessibility
The code/software described in the paper is freely
available online at https://github.com/FKSkinnerLab/
CorticalInhibitoryNetwork.
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3. RESULTS

Synchronous interneuronal activity is implicated in oscillations
representing both physiological and pathological brain states.
Physiologically, the generation of ripples associated with sharp
waves in the hippocampus is thought to be driven by a sudden
onset of inhibitory synchrony caused by an increase in drive
from CA3 (Schlingloff et al., 2014; Gulyás and Freund, 2015).
Such data support the notion that a transition to oscillatory
dynamics can be brought about by increased external drive,
as was shown computationally (Ferguson et al., 2013; Rich
et al., 2016). Hyperexcitability in inhibitory cells might represent
an analog to this increased drive, potentially underlying the
correlation between increased interneuronal activity and the
synchronous GABAergic signaling observed prior to seizure or
an inter-ictal spike (IIS). This hypothesis is consistent with the
observation that interneuronal firing increases before pyramidal
cell firing prior to IIS generation and seizures in animal epilepsy
models (Lasztóczi et al., 2004, 2009; Gnatkovsky et al., 2008;
Muldoon et al., 2015; De Curtis and Avoli, 2016; Miri et al., 2018),
and in humans in vivo (Elahian et al., 2018).

In this work we sought an explanation for this increased
interneuronal firing prior to seizure onset. We model the
excitable state induced by 4-AP, a commonly implementedmodel
system (Perreault and Avoli, 1991; Kibler and Durand, 2011;
Williams and Hablitz, 2015; Baird-Daniel et al., 2017; Wenzel
et al., 2017; Chang M. et al., 2018; Liou et al., 2018; Chang et al.,
2019; Shivacharan et al., 2019) to study seizure dynamics, and in
which we (Chang M. et al., 2018) have shown that interneurons
are complicit in seizure onset.

3.1. Bistability Between Coherent and
Incoherent States Is Exhibited More
Robustly by 4-AP Inhibitory Networks
The concept of bistability arises primarily from the mathematical
study of dynamical systems. In this context, a “stable” state is one
which will be preserved by the system for all time in the absence
of any perturbations to the conditions defining the system. In
non-linear systems it is possible for multiple stable states to exist,
and for the network to naturally settle into any one of these stable
states depending upon a variety of factors including the initial
conditions and any perturbations that might be delivered. In a
biological system, this could manifest from the history of inputs
from different brain structures along various pathways to the
network in question. Such a system is defined to be “bistable” or
“multistable” given the existence of more than one stable solution
to the mathematical equations (Izhikevich, 2007).

The results presented in Figure 4 show that many of the
networks within the parameter regime considered in this work
exhibit bistability. In Figures 4A,B the Synchrony Measure
(described in the Materials and Methods section) was taken
for the same networks in two different states: the results from
randomized initial conditions are shown in the left panels, while
the results following a perturbation to the system (described
in the Materials and Methods section) are shown in the right
panels. Note that the parameter range shown in these heatmaps

is “zoomed in” relative to the larger parameter scan used in the
heatmaps presented in the following section in order to better
highlight the regime of bistability. Control networks are shown
in Figure 4A while 4-AP networks are shown in Figure 4B.

There appear to be a number of networks in both the control
and 4-AP settings that show a high Synchrony Measure, and
thus coherent network states, following the perturbation but
not from randomized initial conditions. This is indicative of
a bistable system in which both the coherent and incoherent
states are stable, even though the network might require a
perturbation in order to leave the incoherent stable state and
settle into the coherent stable state. This result is highlighted
by Figure 4C in which the difference between the Synchrony
Measure following the perturbation and the Synchrony Measure
from randomized initial conditions is plotted to highlight the
networks in which this difference occurs. Qualitatively, it appears
not only that the parameter regime including these type of
networks is shifted when comparing the 4-AP and control cases,
but most importantly it appears that more of these types of
networks exist in the 4-AP setting as opposed to the control case.
To quantify this observation, a Bistability Measure (as outlined
in the Materials and Methods section) was used, revealing that,
indeed, the parameter regime defining bistable networks is larger
in the 4-AP case. Raster plots highlighting an example network
that is bistable in a 4-AP network, but not in the control case, for
the same parameter values are shown below these heatmaps.

It makes sense, in the context of the study of seizure, that
both control and 4-AP networks would exhibit some bistability.
Indeed, it is well-established that all brains are capable of
generating a seizure, even though seizures are much more
likely in individuals with epilepsy (see the literature on seizures
arising in non-epileptic patients following traumatic brain injury
Verduyn et al., 1992; Schierhout and Roberts, 2001). However,
it is interesting in the context of the increased interneuronal
activity observed prior to seizure onset that 4-AP networks were
more likely to exhibit bistability than control networks. This
result supports the hypothesis that 4-AP treated, hyperexcitable
interneurons are more likely to be vulnerable to a mechanism
increasing the overall firing rate of inhibitory neurons, which in
this context is the transition from asynchronous to synchronous
firing via a “bistable transition” (the connection between
synchrony and increased firing rate is described in detail below).
It is also interesting to note that the bistable regime is both
wider (i.e., encompassing a larger range of synaptic strengths)
and includes lower driving currents for 4-AP networks, although
the latter is perhaps expected due to the lower rheobase of
4-AP neurons.

The robustness of this result was confirmed when networks
were subjected to different degrees of heterogeneity in the
external driving currents and different connection probabilities.
This is shown by the Synchrony Measure difference heatmaps
and Bistability Measures shown in Figure 5. Indeed, in all four
cases presented (varying connection probability in Figures 5A,B

and varying standard deviation of the external applied currents
in Figures 5C,D, the 4-AP networks were more likely to exhibit
bistability, as seen via a joint analysis of the Bistability Measures
and the bistable parameter regime in the heatmaps.
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FIGURE 4 | Networks containing model 4-AP neurons are more prone to bistability than networks of control neurons. (A,B) Heatmaps displaying the Synchrony

Measure for control networks (A) and 4-AP networks (B) with a connectivity probability of 0.12 and a standard deviation amongst the driving currents of 6 pA. In these

heatmaps, the inhibitory synaptic weight is varied along the x-axis and the average external applied current is varied along the y-axis. The left panel displays the

measure taken from randomized initial conditions, while the right panel displays the measure taken after a modeled perturbation. (C) Heatmaps over the same

parameter regime, but now showing the difference between the Synchrony Measure shown in the right and left heatmaps in (A,B). Control results are shown on the

left, and 4-AP results are shown on the right. 4-AP model networks are much more likely than control model networks to exhibit a change in dynamics following the

perturbation (as indicated both by more warm colors in the heatmap and by the increased Bistability Measure score shown above the panels), indicating that the

perturbation induced a transition from asynchronous to synchronous dynamics indicative of a bistability. A raster plot for both the control and 4-AP settings for a

network with an inhibitory synaptic weight of 1.25 nS and an average external applied current of 185 pA (corresponding to the outlined box in the heatmap) is shown,

providing an illustrative example of a case where the transition from asynchronous to synchronous dynamics following the perturbation, and thus the existence of a

bistability, is observed in the 4-AP but not the control case.

The analysis of these in silico networks through the lens of
the mathematical concept of bistability reveals crucial properties
of 4-AP networks that could not otherwise be identified.
However, the question remains whether a transition of this type
is biologically feasible, especially considering the perturbation
used to reveal the existence of the bistability was motivated
from dynamical systems insights rather than the underlying
biology. We address this using an Ornstein-Uhlenbeck process
[as described in the Materials and Methods section (Destexhe
et al., 2001; Piwkowska et al., 2008)] to generate a reasonable

approximation of background excitatory synaptic conductance
in the cortex. Such synaptic activity can be thought of as a
more biologically-grounded analog for the Iapp tonic driving
current used in the computational models here. The conductance
generated by the Ornstein-Uhlenbeck process is transformed into
a driving current simply by multiplying by (V−Esyn), where here
Esyn takes on an excitatory value of 0 mV and V is approximated
as the resting potential of the neuron (here−60.6 mV).

An example of such a current, generated for 1,000 ms, is seen
in Figure 6A. Zooming in on the red portion of the current
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FIGURE 5 | Networks containing model 4-AP neurons exhibit bistability more robustly than control networks for a variety of network parameters. (A–D) Heatmaps

displaying the difference between the Synchrony Measure following a modeled perturbation and from randomized initial conditions for control networks (left) and 4-AP

networks (right). In these heatmaps, the inhibitory synaptic weight is varied along the x-axis and the average external applied current is varied along the y-axis. The

Bistability Measure for each condition is shown above the corresponding panel. Results for a connection probability of 0.08 and standard deviation of 6 pA are shown

in (A), results for a connection probability of 0.16 and standard deviation of 6 pA are shown in (B), results for a connection probability of 0.12 and standard deviation

of 3 pA are shown in (C), and results for a connection probability of 0.12 and standard deviation of 12 pA are shown in (D). In all cases, 4-AP model networks exhibit a

larger parameter regime showing behaviors indicative of a bistability than analogous control networks, shown both by more warm colors in the heatmap and the

increased Bistability Measure.

(225–275 ms), a 5 ms portion of the current trace that retains
a significantly higher than average value is highlighted in green.
This current is simplified for computational implementation by
a square current pulse with an amplitude of 320 pA and a 5 ms
duration, approximated on the figure with a dotted black line.
By utilizing this square pulse as our perturbation delivered 1,000
ms into the simulation, represented in Equation (1) by the Iperturb
term, we can investigate whether a less idealized perturbation that
is more reasonable based on in vivo activity might still drive the
transition from asynchrony to synchrony.

Indeed, the “bistable transition” typified by the raster plots
in Figure 4 is preserved when the perturbation is replaced
by the current pulse motivated by the results from the
Ornstein-Uhlenbeck process, as shown in Figures 6B,C. This
result suggests that a “bistable transition” is viable in a more
biologically-grounded setting, as it can be triggered by a
perturbation that could reasonably occur due to fluctuations
in the background excitatory synaptic activity in the cortex.
Taken together with the detailed analysis presented above of
the bistability present in these networks from the perspective
of dynamical systems, it is apparent that a transition from

asynchrony to synchrony in inhibitory networks caused by a
“bistable transition” is both a computationally and biologically
plausible mechanism explaining the corresponding activity
observed experimentally prior to seizure.

3.2. Transitions From Asynchrony to
Synchrony in Inhibitory Networks
Correspond With an Increase in Firing
Frequency
To analyze the firing rate of our networks, a “Mean Firing
Frequency” measure (which involves simply summing the total
number of spikes in the network over a given time interval,
dividing by the number of cells, and then converting this value
into a frequency by dividing by the length of the time interval)
was taken over the last 500 ms of simulations performed from
random initial conditions over the parameter space used in
Figure 4. Critically, this analysis reveals that both control and 4-
AP networks show a similar increase in average firing rate when
transitioning from asynchrony to synchrony (highlighted by the
example raster plots and corresponding mean firing frequencies
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FIGURE 6 | In vivo-like excitatory background synaptic currents can also elicit “bistable transitions” in the model inhibitory networks. (A) An example of excitatory

background synaptic current (1,000 ms in the top panel) generated using an Ornstein-Uhlenbeck Process with parameters informed by cortical experimental literature.

The bottom panel zooms in on a region of interest (plotted in red) revealing a brief period (plotted in green) in which the current is significantly larger than its average

value, activity which has perturbation-like qualities. This activity is approximated by a current pulse of similar width and amplitude, plotted on the figure in a dashed

black line. (B,C) Raster plots for a control (B) and 4-AP (C) network that is identical to the examples displayed in Figure 4, where the large, brief current pulse used

as the perturbation throughout this study is replaced by a current pulse informed by the Ornstein-Uhlenbeck Process shown in (A) that represents in vivo-like activity.

Despite this change, which amounts to a wider pulse with significantly lower amplitude, the control and 4-AP networks still exhibit antithetical responses to this

perturbation; namely, control networks return to asynchronous firing following the perturbation while 4-AP networks transition into synchronous dynamics.

presented in Figure 7). This result is analogous to a similar
finding in previous work on inhibitory networks (Ferguson et al.,
2013) and indicates that the transition into synchrony described
by the “bistable transition” mechanism corresponds with an
increase in overall inhibitory cell activity, as seen in vivo and
in vitro (Lillis et al., 2012; Muldoon et al., 2015; Elahian et al.,
2018). Thus, bistability explains why 4-AP networks are more
prone to transition from asynchrony to synchrony than their
control counterparts, and also why 4-AP treated networks are
more vulnerable to the increased interneuronal activity observed
prior to seizure onset.

The results in Figure 7 also reveal that the average cell firing
frequency in control and 4-AP networks with similar network
parameters and similar dynamical states (i.e., synchrony or
asynchrony) are actually quite close (and any differences are
certainly diminished from the extreme differences seen in their
FI curves presented in Figure 2). This finding is fairly robust over
all but the weakest inhibitory synaptic weights. This implies that

the mechanism involved in the “bistable transition” involves an
interplay of cellular (potentially not only the hyperexcitability,
but also the increased adaptation, in 4-AP neurons) and network
properties, and could not be replicated merely by causing the
neurons to fire faster in some artificial fashion. Indeed, it does
not appear that the firing rate itself serves a disproportionate role
in dictating the overall network dynamics.

We note that this finding provides a potential avenue for
an experimental exploration of the results presented here:
namely, a substantial increase in firing rate following a
perturbation to an inhibitory network is likely indicative of a
transition into synchronous firing. Such behavior is likely more
easily identifiable by multi-electrode arrays than synchronous
firing itself.

Furthermore, these results shed new light on the interaction
between synchrony and increased cell firing rate in the context
of pre-ictal neuronal activity. Experimental literature commonly
shows that these dynamics (in both excitatory and inhibitory
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FIGURE 7 | Overall firing frequency is higher in networks exhibiting synchrony, relating the transition from asynchrony to synchrony to increased interneuronal activity.

(A,B) Mean Firing Frequency values, averaged over five independent simulations, for control (A) and 4-AP (B) networks. The border dividing the parameter regime

supporting synchronous dynamics (top-left) from the regime of asynchrony is depicted by the bolded black line, where this border was found using a cutoff value for the

Synchrony Measure of 0.25 (which was found to be reasonable after a rigorous investigation of a variety of raster plots and their corresponding Synchrony Measures).

Example raster plots for the networks outlined in pink and red illustrate example asynchronous and synchronous raster plots, respectively, along this border. Their

Mean Firing Frequency values illustrate the relatively large increase in network activity that is associated with the transition from asynchronous to synchronous firing.

cells) both accompany seizure onset (see, for example, the work
in humans of Schevon et al., 2012), with many of these studies
implying that increased firing rate plays a causal role in the
transition into synchrony (see, for example, the work of Elahian
et al., 2018 which reveals an increase in interneuron firing rates

prior to seizure and the corresponding synchronous dynamics).
However, the “bistable transition” described in this paper does
not require a change to the system that would increase the
average cell firing rate; rather, the increased firing rate comes
about seemingly driven by the induced synchronous firing of
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the inhibitory network. Thus, it is possible that synchrony of
inhibitory networks is permissive of an increased neural firing
rate, instead of increased firing rate causing this synchrony.
Indeed, where there is sparse sampling of interneurons, increased
firing rates of interneurons prior to a seizure may be additionally
interpreted from our modeling results to represent a transition
to synchronous interneuronal firing (Elahian et al., 2018) rather
than a firing rate increase alone.

3.3. Sharp Transitions Between Coherent
and Incoherent States Caused by
Increased External Input Are Unlikely to
Underlie Interneuronal Hyperactivity Prior
to Seizure Onset
In CA1 hippocampal inhibitory network models constrained
in size, connection probability, cellular and synaptic properties,
Ferguson et al. (2013) demonstrated “sharp transitions” between
asynchronous and synchronous firing caused by a small,
permanent increase in the external drive to the network.
This “increased drive” mechanism has both experimental and
computational support (see the discussion in the beginning of
the Results section) for explaining a transition into synchrony in
purely inhibitory networks. Given the correspondence between
inhibitory network synchrony and increased firing rate discussed
above and observed in this previous work (Ferguson et al.,
2013), we investigated “increased drive” as a potential mechanism
explaining the increased firing rate of interneurons observed
experimentally prior to seizure. Indeed, potentially eliminating
“increased drive” as a candidate mechanism would provide
additional support for the viability of the “bistable transition”
mechanism described above.

We investigated the tendency for inhibitory networks of both
control and 4-AP neurons to synchronize from randomized
initial conditions with varying connection probabilities and levels
of heterogeneity. Figure 8 shows results illustrating network
coherence for a parameter scan over a range of inhibitory
synaptic strengths that encompass physiological estimates
(Markram et al., 2015) and average external applied currents with
varied connection probabilities.

Figures 8D–F show three two-dimensional plots highlighting
the evolution of the Synchrony Measure as a function of the
average external applied current for a set value of the inhibitory
synaptic weight. Results for each connection probability are
shown jointly to facilitate comparison, with results for control
networks shown in the left panels and results for 4-AP networks
shown in the right panels. Additionally, the “sharpness” of
the transition from asynchrony to synchrony was quantified
by taking the slope of the line segment best representing
this transition, which is chosen to be that between the first
point that achieves a Synchrony Measure greater than half the
maximum Synchrony Measure observed by networks in that
panel and the point one current step earlier. The slopes for all
of the examples presented in Figures 8, 9 are shown jointly in
Table 2.

The results presented in Figure 8 show that a sharp
transition between asynchrony and synchrony caused by a

small, permanent increase in external driving current does
occur in these cortically-motivated networks over a range of
reasonable connection probabilities, both for control and 4-
AP neurons. As one would intuitively expect, the parameter
regime in which network coherence occurs grows larger as
the connection probability becomes larger (Figures 8A–C). The
two-dimensional plots (Figures 8D–F) do not show a clear
pattern between the connection probability and the sharpness
of the transition, but this is reasonable considering that large
connection probabilities were not included in our explorations
(see Methods). The differences between control and 4-AP
networks were also observed when the heterogeneity was varied
as shown in Figure 9. Heatmaps analyzing the Synchrony
Measure over the entire parameter regime are shown in
Figures 9A–C, with similar comparison between control and 4-
AP networks as in Figure 8, while analogous two-dimensional
plots to those in Figure 8 are shown in Figures 9D–F, but
with varying standard deviations as opposed to connection
probabilities in each panel. The results presented in Figure 9

show the expected effects of increased heterogeneity: namely,
as the heterogeneity increases, the size of the parameter regime
exhibiting coherent states decreases. This is shown most clearly
by comparing the results with a standard deviation of 12 pA
to both the results with a standard deviation of 3 and 6 pA,
which show similar regimes of synchronous dynamics (although
the synchrony is more pronounced over this regime when the
heterogeneity is smallest at 3 pA).

While these results show the existence of transitions caused
by increased external drive that are “sharp,” Figures 8, 9 do
not reveal any difference in the tendency for control or 4-AP
networks to exhibit this sharp transition. While 4-AP networks
exhibit a high synchronymeasure over a wider parameter regime,
particularly at lower values of the average external applied current
(explained by a combination of the hyperexcitability of 4-AP
neurons, insights from the ING mechanism, and the analysis
of sparsely connected inhibitory networks presented by Rich
et al., 2016), this does not indicate an increased tendency to
exhibit the transition from asynchrony to synchrony. Indeed,
such a transition exists almost uniformly across the inhibitory
synaptic weights studied here (which can be seen both by visually
inspecting the increase in SynchronyMeasure going up a column
in the heatmaps or looking at the two-dimensional traces),
with only the applied current value at which the transition
occurs changing.

Furthermore, any comparisons of the relative “sharpness” of
the transitions in control and 4-AP networks are qualitative
at best. In a majority of the comparisons illustrated in
the two-dimensional plots (Figures 8D–F), 4-AP networks
displayed a higher slope measure shown in Table 2 than their
control counterparts. However, this feature is not entirely
robust (see, for example, the comparison of networks with
a connection probability of 0.08 in Figure 8E and Table 2),
and there is no guarantee that the minor increases in the
slope measure are indicative of a difference in the actual
dynamics underlying the transition. Further detailed analysis
of this feature of the networks would be required to draw
any conclusions.
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FIGURE 8 | Cortically motivated inhibitory networks exhibit a “sharp transition” between asynchronous and synchronous dynamics driven by an increase in the

external drive for various connection probabilities. (A–C) Heatmaps displaying the Synchrony Measure for control networks (left) and 4-AP networks (right) with a

standard deviation amongst the driving currents of 6 pA and varying connectivity densities. In these heatmaps, the inhibitory synaptic weight is varied along the x-axis

and the average external applied current is varied along the y-axis, and the measure is taken from random initial conditions. (D–F) Two dimensional “slices” of the

heatmaps in (A–C) taken to better illustrate the sharpness of the transition between asynchronous and synchronous dynamics as well as more easily compare this

sharpness both across varying connection probabilities and between control and 4-AP conditions. (D) Shows results for an inhibitory synaptic weight of 1.25 nS, (E)

for an inhibitory synaptic weight of 2.0 nS, and (F) for an inhibitory synaptic weight of 2.5 nS. There is no major difference in the tendency for 4-AP vs. control

networks to exhibit the “sharp transition” from asynchrony to synchrony despite differences in the parameter regime supporting synchrony. Furthermore, the

differences in the “sharpness” of the transition in the two cases are not robust.

Finally, it is worth noting that a change of this sort is
unlikely to arise via an Ornstein-Uhlenbeck process modeling
background excitatory synaptic activity, in contrast to what was
shown in Figure 6 (i.e., that perturbation-like activity could arise
from this process). Indeed, the example current presented in
Figure 6 does not show any large amplitude increases in the

synaptic current lasting longer than tens of milliseconds. This
indicates that a small, permanent increase to the external drive
to the network likely requires a more consequential biological
change in the system, especially when compared to a perturbation
which can arise more naturally via fluctuations in the background
synaptic activity.
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FIGURE 9 | Varying the heterogeneity in external driving current in modeled purely inhibitory networks largely preserves the general dynamical differences and

similarities seen between the 4-AP and control cases from randomized initial conditions. (A–C) Heatmaps displaying the Synchrony Measure for control networks (left)

and 4-AP networks (right) with a connection probability of 0.12 and varying standard deviations amongst the driving currents. In these heatmaps, the inhibitory

synaptic weight is varied along the x-axis and the average external applied current is varied along the y-axis, and the measure is taken from random initial conditions.

(D–F) Two dimensional “slices” of the heatmaps in (A–C) taken to better illustrate the sharpness of the transition between asynchronous and synchronous dynamics

as well as more easily compare this sharpness both across varying connection probabilities and between control and 4-AP conditions. (D) Shows results for an

inhibitory synaptic weight of 1.25 nS, (E) for an inhibitory synaptic weight of 2.0 nS, and (F) for an inhibitory synaptic weight of 2.5 nS. Once again, there is no

significant difference in the tendency for 4-AP vs. control networks to exhibit the transition from asynchrony to synchrony, nor any significant differences in the

“sharpness” of this transition.

Taken together, these results confirm that a transition from
asynchrony to synchrony as a result of minor, permanent
increases to the external driving current can occur in these
cortically-motivated networks, similar to the results presented by
Ferguson et al. (2013) in the hippocampus. However, there is no
robust difference in the tendency for 4-AP vs. control networks to

exhibit this transition. This strongly suggests that this mechanism
is unlikely responsible for the increase in interneuronal activity
seen prior to seizure. Instead, a mechanism driven by a “bistable
transition” more plausibly explains seizure-related interneuronal
dynamics, as this mechanism is much more likely to occur in
4-AP networks rather than control networks. While transitions
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TABLE 2 | Slopes quantifying “sharpness” of the transition from asynchrony to

synchrony seen in Figures 8, 9.

Connection

probability

Standard

deviation

(pA)

Inhibitory

synaptic

weight (nS)

Control

slope

4-AP slope

1.25 0.0125 0.0135

0.08 6 2.00 0.0059 0.0047

2.50 0.0030 0.0012

1.25 0.0204 0.0172

0.12 3 2.00 0.0074 0.0096

2.50 0.0041 0.0033

1.25 0.0191 0.0211

0.12 6 2.00 0.0038 0.0057

2.50 0.0027 0.0042

1.25 0.0135 0.0138

0.12 12 2.00 0.0043 0.0074

2.50 0.0034 0.0039

1.25 0.0106 0.0162

0.16 6 2.00 0.0059 0.0108

2.50 0.0027 0.0037

For each parameter set, the larger slope is bolded for ease of reference.

into synchrony caused by minor, permanent increases to the
external drive to an inhibitory network certainly could occur in
the brain given the existing literature, this conclusion implies that
the “increased drive” mechanism is more likely to underlie non-
pathological oscillations rather than the pathological inhibitory
synchrony potentially initiating seizure.

4. DISCUSSION

Computational models at various scales and levels of detail
have proven pivotal to our understanding of various aspects of
seizure (Wendling et al., 2016). Here, we use such techniques to
provide a putative in silico mechanism explaining how increased
interneuronal activity, as well as interneuronal synchrony, might
come about in a pro-ictogenic setting driven by network
bistability. Our results provide preliminary mechanistic support
for the viability of early steps in the multi-stage “GABAergic
initiation hypothesis” of seizure. This hypothesis proposes that
synchronous activation of inhibitory interneurons is the inciting
event in an “all-or-none” phenomenon (Chang M. et al., 2018)
which leads to a cascade of events resulting in a seizure. The
immediate consequence of a sudden bolus of inhibitory drive
is the generation of rebound spiking in pyramidal cells, that
then feeds back on the inhibitory neurons resulting in a positive
feedback loop and seizure initiation (Figure 1).

In this study, inhibitory networks informed by experiments in
cortical interneurons in control and hyperexcitable settings
were constructed, with the modeled hyperexcitability
specifically mimicking the treatment of interneurons with
4-AP. Experimentally, in vivo and in vitro treatment with 4-AP

induces seizures that are preceded by interneuronal synchrony
and predominantly GABAergic IIS (Grasse et al., 2013; Muldoon
et al., 2015). Thus, 4-AP is a commonly usedmodel to study acute
ictogenesis (Perreault and Avoli, 1991; Kibler and Durand, 2011;
Williams and Hablitz, 2015; Baird-Daniel et al., 2017; Wenzel
et al., 2017; Chang M. et al., 2018; Liou et al., 2018). Although
4-AP induces a multitude of effects, we focused on modeling the
induced hyperexcitability given that this feature is thought to be
the primary mechanism underlying the pro-ictogenic nature of
this compound (Chang et al., 2019; Shivacharan et al., 2019).

GABAergic activity appears to not only play a role in seizure
initiation under 4-AP conditions, but in other seizure models as
well. Synchronous interneuronal activation has also been shown
to underlie IIS in the in vivo pilocarpine model of epilepsy
(Muldoon et al., 2015), precede seizures in both the low-Mg, high
K+ model (Lasztóczi et al., 2004, 2009) and electrical stimulation
models of seizure initiation (Velazquez and Carlen, 1999), and
more generally precede seizures in rodents (Avoli and de Curtis,
2011; Muldoon et al., 2015). Thus, given the ubiquity of the
increased inhibitory neuronal activity directly preceding seizure
onset, insights gained from this study are likely translatable to
the general study of neural dynamics prior to the initiation of
epileptiform activity.

We examined two potential mechanisms by which inhibitory
networks could suddenly transition into synchronous firing, and
in turn increase the overall interneuronal firing rate. The mere
existence of such a transition was not of primary interest in this
study; rather, we focused on identifying whether these transitions
occurred appreciably more often in hyperexcitable (i.e., 4-AP
treated) networks when compared to control networks. Indeed,
for a mechanism to be a viable candidate explaining dynamics
occurring primarily in pre-ictogenic systems, it should intuitively
be more likely to occur in a pathological, as opposed to
healthy, setting. One potential mechanism previously presented
Ferguson et al. (2013) and confirmed by other studies for
more general networks (Rich et al., 2016), proposes that small,
permanent increases in excitatory drive could cause a sharp
transition between incoherent and coherent states in a purely
inhibitory network. While transitions of this type were present
in the networks studied here, there was no difference in the
tendency for this transition to occur when 4-AP and control
networks were compared. In contrast, transitions caused by
a brief perturbation to external drive to the system, termed
“bistable transitions,” were notably more likely to occur in 4-
AP than control networks. This crucial difference implies that
“bistable transitions” are a more viable candidate mechanism
that explains the dynamics of inhibitory neurons seen in
pathological networks.

The general concept of bistability has been discussed
previously in epilepsy literature, given that epilepsy as a disease
represents the sudden transition between two seemingly stable
brain states: the “healthy” non-seizure state characterized by
largely uncorrelated neural activity and the “pathological” seizure
state characterized by synchronous neural firing (Da Silva
et al., 2003). However, in this work, the setting in which
bistability is analyzed is unique: we seek to explain a shift in
inhibitory network dynamics that is observed experimentally
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and potentially might affect the behavior of the network in
the moments prior to seizure onset. We do not assert that
the bistability studied here, nor the mechanism described in
this work, represents seizure initiation itself. Indeed, existing
studies investigate a bistability between seizure and non-seizure
states in settings, such as intact hippocampal slices (Chang
W. et al., 2018), a computational network of both excitatory
and inhibitory cells with special emphasis on the role of
extracellular potassium concentrations (Fröhlich et al., 2010),
or more general mathematical settings (Da Silva et al., 2003).
In contrast, in this study bistability is analyzed solely in an
inhibitory network, and the bistability does not in itself represent
the transition into seizure, but rather a dynamical change that
might precipitate seizure onset due to its downstream effects (as
illustrated by a “GABAergic initiation hypothesis” schematized in
Figure 1).

We also highlight an important distinction between this
work and other computational work investigating the role of
GABAergic signaling in epileptiform activity and inter-ictal
discharges (IID): while recent literature investigating this topic
makes use of the potential depolarizing capacity of GABA
(Chizhov et al., 2017, 2019), the work presented here uses purely
inhibitory GABAergic synapses. Indeed, while changes in the
GABA reversal potential are seen during seizure propagation
(Ellender et al., 2014), the changes in chloride concentrations
necessary to elicit this feature do not exist prior to or during
seizure initiation (Ellender et al., 2010; Chang M. et al.,
2018), which is the focus of this research. Moreover, the
mechanisms proposed in the work of Chizhov et al. (2017,
2019) that investigate the potential causal role of GABA in
seizure initiation do not focus on the capacity of excitatory cells
for PIR, in contrast to the “GABAergic initiation hypothesis”
discussed here.

4.1. Details of the “Bistable Transition” and
“Increased Drive” Mechanisms
The exploration of a transition driven by a small, permanent
increase to the external drive was motivated by modeling studies
(Ferguson et al., 2013) and physiological evidence (Schlingloff
et al., 2014) of inhibitory networks in the hippocampus. The
observed sharp transition in the hippocampal model networks of
Ferguson et al. (2013) was dependent on constraining the model
network from cellular, synaptic and connectivity perspectives
with the experimental data and context. The research presented
here reveals that those hippocampal insights were translatable
to a more generic, cortically-motivated network. It is thus
possible that our findings are generalizable to most fast-firing
inhibitory networks, although parameters representing external
drive and synaptic strengths would not necessarily be the same.
Additionally, considering the similarities in neural and network
properties utilized in this work and that of Ferguson et al. (2013),
it is very probable that the hippocampal networks would exhibit
bistability of some form. However, of critical importance in the
context of this study is the lack of an appreciable difference in
the tendency for 4-AP and control model networks to exhibit
this transition.

The “bistable transitions” mechanism articulated in this
paper addresses the shortcomings, in the context of seizure
initiation, of the “increased drive” mechanism (Ferguson et al.,
2013). Bistability arises on a small scale in many neuron
models, including the Hodgkin-Huxley equations, in which both
the resting state and periodic firing of action potentials are
stable solutions and the amplitude of the input to the system
determines which of these dynamics is exhibited by the model
(Izhikevich, 2007). Here, we observed bistability on a larger
scale, between network dynamics of coherent and incoherent
network states. These states were uncovered by making use of
a perturbation utilized previously in a more abstract study of
inhibitory networks (Rich et al., 2016). Critically, the transition
from asynchrony to synchrony brought about by this idealized
perturbation (motivated from a mathematical perspective to
reveal any potential bistability) persisted when a significantly less
idealized perturbation (motivated by activity that might arise
from an Ornstein-Uhlenbeck process simulating background
excitatory synaptic activity) was used. This result indicates that
this transition is potentially viable in a biologically-grounded
setting as well.

The analysis of this “bistable transition” reveals that it
is more likely to occur in 4-AP networks as opposed to
their control counterparts. While the exact mechanism for
the expansion of this bistable regime was not the focus
of this work, we note that previous investigations of this
bistability by Rich et al. (2016) revealed that this transition
was driven by an interaction between the “phase-resetting”
properties of the modeled interneurons’ Type I phase response
curves and the impetus of ING-driven inhibitory synchrony.
Interestingly, the PRCs of our 4-AP interneurons exhibit stronger
“phase-resetting” characteristics in comparison to the control
interneuron, serving as a potential mechanistic explanation of
the differential predisposition toward bistable transitions in these
networks. However, the more detailed mathematical analysis
required to support this hypothesized mechanism is outside the
focus of this work, although it provides an interesting avenue for
further research.

Nonetheless, this result indicates that bistability is a much
more likely culprit in the initial step of a “GABAergic
initiation hypothesis” of seizure than a transition brought
about by a small, permanent increase in external drive to
the network. Moreover, the physiologically-motivated Ornstein-
Uhlenbeck process input current displayed in Figure 6 illustrates
that perturbation-like activity is more likely to arise from
background synaptic excitation than longer-lasting increases
approximating a permanent increase in the external drive to
an inhibitory network. Taken together, these insights support
that dynamical changes made possible by network bistability
to explain how interneuronal populations are “hijacked” in
pathology (Beenhakker and Huguenard, 2009).

Finally, we note that in both mechanisms investigated here,
the transition from asynchrony to synchrony is associated with
increased firing rates. This not only justifies our investigation
into network synchrony in the context of explaining increased
interneuronal firing prior to seizure, but also helps to reconcile
experimental evidence showing both increased interneuronal
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firing and interneuronal synchrony prior to seizure onset.
This relationship is a particularly fertile ground for future
experimental research.

4.2. The Relationship Between the
“Bistable Transition” Mechanism and More
Theoretical Computational Studies of
Inhibitory Oscillations
The multi-scale and non-linear nature of the human brain
makes it challenging to understand its dynamics. As such,
insights from theory are needed to help guide computational
studies and inform the understanding of brain networks.
Here, models of inhibitory networks informed by cortical
data were used to explore potential mechanisms leading to
increased interneuronal firing and a transition from asynchrony
to synchrony that occurred more robustly in hyperexcitable
settings. Such synchrony primarily corresponded with fast
network oscillations.

However, networks of fast-firing interneurons can also
produce slow population output as shown in modeling studies
(Ho et al., 2012). The ability of fast-firing inhibitory networks to
produce slow population activities was shown to be possible via
individual cells having enough of a “kink” in their FI curves that
allowed a bistable network mechanism to be present (Ho et al.,
2012). The modeled slow population activity (< 5 Hz) is seen
in vitro using a hippocampal preparation (Wu et al., 2005a,b),
and a bistable network mechanism was subsequently leveraged
to explain paradoxical changes seen in Rett syndrome mice
from the perspective of these same slow population activities
(Ho et al., 2014).

A critical difference between the bistable network mechanism
of Ho et al. (2012) and bistability related to properties of the ING
mechanism (analogous to that presented here) was summarized
by Skinner and Chatzikalymniou (2017). In the work of Ho
et al. (2012), the mean excitatory drive received by inhibitory
cells in the network must be close to their spiking rheobase.
The bistability is between states with low or high numbers of
fast-firing cells, and this allows slow population activities to
come about due to excitatory fluctuations in the system. A
similar mechanism could be in play in the work of Schlingloff
et al. (2014) where an in vitro representation of sharp waves
was examined and it was suggested that sharp waves could be
generated stochastically from excitatory input. In contrast, for
an ING-related bistability, the excitatory drive to the inhibitory
cells is not close to spiking rheobase, but as shown by Rich et al.
(2016) and in the networks presented here, bistability between
synchronized high frequency firing and asynchrony is possible.

There have been numerous studies in the computational
literature probing the tendency for networks of inhibitory
neurons to synchronize, although these studies typically are
done in a more theoretical setting rather than the biologically-
motivated manner presented in this study. The interneuron
models utilized here exhibit Type I properties in their FI curves
[namely, a steep FI curve with an arbitrarily low firing frequency
(Hodgkin, 1948)], and neurons with these properties have been
a focus of many computational studies of inhibitory synchrony
(Chow et al., 1998; Bartos et al., 2002; Brunel and Hansel, 2006;

Kopell et al., 2010). As such, the coherent dynamics seen in
our inhibitory networks correspond with insights from these
more abstract computational studies. This literature contributed
to the articulation of the ING mechanism (Traub et al., 1998;
Whittington et al., 2000; Tiesinga and Sejnowski, 2009; Wang,
2010) that is most likely driving the coherent dynamics seen
in these cortical inhibitory networks. Another seminal study
on inhibitory synchrony and ING found that the synchrony
promoted by the ING mechanism is most robust when networks
are more densely connected and cellular heterogeneity is low
(Wang and Buzsáki, 1996), features replicated in the cortically-
motivated networks presented here.

In this context we note that computational studies proposing
mechanisms for synchronous network oscillations are typically
concerned either with purely inhibitory networks (as presented
here), purely excitatory networks (Hansel et al., 1995), or
networks containing inter- and intra-connected subnetworks
of excitatory and inhibitory cells (E-I networks). Crucially,
the mechanisms underlying synchrony and their dependence
on features, such as cell excitability properties [i.e., the Type
I vs. Type II distinction (Hodgkin, 1948)], external drive to
the network, and network connectivity can vary significantly
depending on the type of network studied. For example,
the results of Hansel et al. (1995) imply that an excitatory
network made up of cells of the type studied here is highly
unlikely to ever synchronize. Similarly, while the Pyramidal
Interneuron Network Gamma (PING) mechanism is commonly
cited as a mechanism causing synchronous oscillations in E-
I networks (Traub et al., 1997; Ermentrout and Kopell, 1998;
Whittington et al., 2000; Kopell et al., 2010), recent work has
revealed that the predictions of this mechanism are altered by
varying individual cellular properties and network connectivity
(Rich et al., 2017, 2018).

4.3. Limitations and Future Work
The neuron models implemented here used a simplified
Izhikevich type integrate-and-fire mathematical structure,
informed by a combination of existing literature and in-house
experiments. This simplified model has inherent limitations,
including the fact that it is a “discontinuous” model that might
obscure some physiologically observed network dynamics.
With a full repertoire of experimental recordings, one could
more fully capture neuronal features and differences, but a
consideration of the multiple inhibitory cell types as well as
network configurations and properties would also be required
to capture the entirety of the biological setting. Indeed, one
could consider designing a neuromodulation study using the
Blue Brain Project (Markram et al., 2015) to examine this given
the insights gleaned from this study; however, this additional
complexity has the potential to obscure the underlying
mechanisms explaining network activity. This trade-off is a
common theme in computational neuroscience, and the desire
to uncover a potential mechanism for the neural dynamics of
interest motivated the choice of Izhikevich neurons in this study.

The network structure used in this research, a purely
inhibitory network, is also simplified from the biology. However,
this choice is justified by the focus of this work, which
is uncovering a mechanism explaining the dynamics of
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interneurons in particular prior to seizure initiation, and (as
noted in the Introduction) studies of this kind are abundant
in the computational literature and have been successful in
expanding our understanding of experimentally observed neural
behaviors. Because we are investigating the pre-ictal period,
we can reasonably assume that no abnormal activity (i.e.,
synchrony) is present in the pyramidal cells that, in the
biological setting, drive inhibitory networks. This justifies our
choice of “approximating” this drive with a tonic external
input to the purely inhibitory network. These choices facilitate
the articulation of our mechanism explaining interneuronal
dynamics prior to seizure.

A similar argument as outlined above regarding the use of
the Izhikevich model neurons and the purely inhibitory network
can also be applied to the synaptic model utilized in this study.
One important manifestation of the simplifications inherent
in this choice is in the lack of any synaptic delay. Recent
work by Tikidji-Hamburyan et al. (2019) has illustrated that
synaptic conductance delays may serve an important role in the
synchronous dynamics, particularly the clustered dynamics, of
purely inhibitory networks. However, we note that the neurons
studied here have distinct PRC properties from those of primary
focus by Tikidji-Hamburyan et al. (2019) (Type I vs. Type II PRCs
in the classical sense), whichmay explain the lack of any observed
two-cluster states in this work. For these reasons we believe that
the addition of a synaptic delay would not significantly affect the
primary results of this study. Regardless, analyzing the effect of
this detail on the networks presented here, and particularly the
tendency to exhibit bistability, is a potentially fruitful avenue for
future research.

We also note that, while connection probability estimates
indicated a value of at least 0.04 was biologically reasonable
for these networks (see Methods), simulated networks produced
no coherent states with this connection probability. This is
perhaps not too surprising given that the cellular models
utilized here were only loosely motivated by experiments (see
Methods) so that additional estimates of network connectivity
are not expected to be precise. However, it is expected that
any differences in control and 4-AP models are meaningful
since these differences were captured in a comparable fashion
(see Methods and Figure 2).

While this mechanism does not describe the entirety of
seizure initiation, it does provide a potential avenue by
which interneurons in a pathological setting might suddenly
synchronize. This is a paramount and necessary “first step”
toward an overarching mechanism of a “GABAergic initiation
hypothesis.” By showing that this initial step is viable in silico, we
provide initial justification for further, more biologically detailed
study of this hypothesis. With this mechanism in hand, future
work can more easily investigate how the dynamics of excitatory
cells might affect or interact with this behavior amongst the
inhibitory neurons.

For the work here, we focused on differences between control
and 4-AP neurons as encapsulated in our models. It is unlikely
that utilizing a more realistic noisy synaptic input would affect
the primary results of this work, since both noisy (Skinner

and Ferguson, 2013) and deterministic (Ferguson et al., 2013)
inputs were used in previous hippocampal inhibitory network
models without changing insights regarding the transition
into synchrony.

While use of a simplified neuron model and network
structure enables extensive parameter explorations to be easily
done and dynamical aspects, like bistability, to be uncovered,
parameter interpretation relative to details of the biological
system is less straightforward. However, studies, such as this
could help leverage understanding and motivate hypothesis-
driven explorations in more detailed models. We note that
due to the relatively sparse connectivity of the cortically-
motivated inhibitory networks studied, mathematical tools, such
as reduction to phase oscillator models as in Hansel et al.
(1995) that require an assumption of all-to-all connectivity
and weak coupling cannot be easily applied to do further
theoretical analyses.

The mechanism proposed in this paper is the first of which
the authors are aware that describes the experimentally observed
shift in interneuronal activity heralding seizure onset with both
biological (Chang M. et al., 2018) and computational (this study)
support. This, in turn, provides new and convincing evidence
that may help to explain how the hyperexcitability induced by
4-AP causes the cortex to be more vulnerable to seizures, and
more generally how interneurons can be involved in the initiation
of cortical seizures clinically (Hermes et al., 2017; Honey and
Valiante, 2017).
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