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A general agreement in psycholinguistics claims that syntax and meaning are unified

precisely and very quickly during online sentence processing. Although several theories

have advanced arguments regarding the neurocomputational bases of this phenomenon,

we argue that these theories could potentially benefit by including neurophysiological

data concerning cortical dynamics constraints in brain tissue. In addition, some theories

promote the integration of complex optimization methods in neural tissue. In this

paper we attempt to fill these gaps introducing a computational model inspired in

the dynamics of cortical tissue. In our modeling approach, proximal afferent dendrites

produce stochastic cellular activations, while distal dendritic branches–on the other

hand–contribute independently to somatic depolarization by means of dendritic spikes,

and finally, prediction failures produce massive firing events preventing formation of

sparse distributed representations. The model presented in this paper combines

semantic and coarse-grained syntactic constraints for each word in a sentence context

until grammatically related word function discrimination emerges spontaneously by

the sole correlation of lexical information from different sources without applying

complex optimization methods. By means of support vector machine techniques,

we show that the sparse activation features returned by our approach are well

suited—bootstrapping from the features returned by Word Embedding mechanisms—to

accomplish grammatical function classification of individual words in a sentence. In this

way we develop a biologically guided computational explanation for linguistically relevant

unification processes in cortex which connects psycholinguistics to neurobiological

accounts of language. We also claim that the computational hypotheses established

in this research could foster future work on biologically-inspired learning algorithms for

natural language processing applications.
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1. INTRODUCTION

Given the complexity of human language, it is difficult to
understand how children can exploit its internal structure
in order to convey meaningful communicative behavior.
Nevertheless, most of them achieve such behavior successfully
within the first few years of life (Saffran et al., 2001). Some lines
of research highlight the importance of the statistical structure
underlying language in general (Romberg and Saffran, 2010;
Lopopolo et al., 2017), while others show that 11–20 month-olds
are able to acquire different aspects of abstract grammatical rules
(Cyr and Shi, 2013; van Heugten and Christophe, 2015).

Many psycho-linguistic models propose that in on-line
sentence processing, different types of constraints are
integrated very quickly in a coherent manner determining
how words are systemically combined in grammatical
sentences (Gibson and Pearlmutter, 1998). It is proposed that
qualitatively distinct constraints such as semantic/conceptual,
phonological, and syntactic structures operate alongside
on a referential binding into a discourse model (Rego
and Bryant, 1993; Lopopolo et al., 2017). In some models,
unification operations during sentence comprehension take
place in a parallel fashion at the semantic, syntactic, and
phonological levels of processing (Hagoort, 2005). During
on-line comprehension, lexical items are processed sequentially
as the time course of the input elapses. The structural frames
associated with each word are combined by means of an
incremental unification mechanism, in the order that the
input imposes.

In the present work, we introduce a bio-inspired
neurocomputational model in which each word from the mental
lexicon is associated with a structural frame. Each structural
frame consists of the combination of Distributional Semantic
(DS) (Harris, 1954) and coarse-grained syntactical word category
information—specifically function word category, content word
category, and from the last one we segregate verb word category.
The coarse-grained word category information used in this
work has been shown to emerge from phonological constraints
in early language acquisition (Shi et al., 2006; Lohmann,
2017). A structural frame used in this approach constitutes
the environment for a particular lexical item. In this model,
constituent structures are established by an unification operation
which consists of linking upDSs, phonologically grounded coarse
syntax and sequential constraints correlating them repeatedly
until constituent grammatical classification improvement
spontaneously emerges. Classification improvement emergence
in grammatical relevant information is obtained without any
kind of optimization guidance beyond the correlation of the
different constraints.

In psycho-linguistics it is proposed that only one phrasal

configuration remains active among the alternative binding

candidates. Such selection mechanism would be achieved by

means of a lateral inhibition process between two or more
alternative unification links (Hagoort, 2005). In the same way, in
our neurocomputational model, information coming from lateral
and apical dendrites constrains the massive activation of units
excited by afferent dendrites (Dematties et al., 2019). Afferent

dendrites receive Distributional Semantic (DS) constraints while
apical dendrites receive coarse-grained syntactical constraints.

In regards to the emergence of coarse-grained syntactical
constraints, phonologically-based implicit-learning mechanisms
have been shown to serve as a precursor to later grammar
learning in 4-month-old infants (Friederici et al., 2011), in such
sense phonology serves the recognition and representation of
function words in English-Learning infants (Shi et al., 2006), and
in the derivation process between nouns and verbs in English
(Lohmann, 2017). Lateral dendrites, on the other hand, receive
information from the previous activations in the same cortical
patch making the network aware of the sequence of lexical
constituents along each sentence (Figure 1).

In our computational model DS constraints from afferent
dendrites excite clusters of neurons in the Encoder Layer (EL)
stage in Figure 1. The EL may be related to a cortical patch
composed by the Brodmann Area (BA) 45 and the Brodmann
Area (BA) 44 which are believed to contribute to syntactic
processing (Friederici, 2011; Pallier et al., 2011; Hagoort and
Indefrey, 2014). The EL receives Distributional Semantic (DS)
constraints in its afferent dendrites. This simulation feature
accounts for information coming from (BA) 47 and 45 which
are involved in semantic processing (Zhang et al., 2004; Carli
et al., 2007; Newman et al., 2010; Goucha and Friederici,
2015). DSs information tends to activate clusters of units in
the EL. Such activations are massive at first, covering all the
plausible lexical hypotheses that the Distributional Semantic
(DS) information conveys. All the lexical hypotheses activated
by afferent dendrites are narrowed down by distal dendrites
receiving previous activations from the very same EL (lateral)
and by distal dendrites receiving coarse-grained word category
information (apical) which could be related to BA 44 and part
of BA 6 which have a role in phonological processing (Heim
et al., 2003, 2008; Amunts et al., 2004; Lee et al., 2012; Lima
et al., 2016). Distal connections partially depolarize specific
neural units in the EL which will get a running start on
their activations compared to neighboring units, when afferent
information arrives. Partially depolarized units will activate faster
than their counterparts, inhibiting their depolarization and, in
this way, preventing them from firing. By means of such strategy,
the EL generates Sparse Distributed Representations (SDRs) with
a 99% of sparsity, popping up only one choice among all the
alternative unification links. We propose that in such way only
one phrasal configuration remains active among the alternative
binding candidates.

Apical dendrites receive feedback connections (Petro et al.,
2014; Phillips et al., 2018; Eberhardt et al., 2019) from higher-
order to lower-order cortical areas, often related to attention,
prediction, expectation, and awareness (Marques et al., 2018).
The role of such connections is usually related to modulatory
functions which control the responsiveness to more proximal
inputs and guide the effects produced by forward connections
(Spruston, 2008; Chen et al., 2009; Marques et al., 2018). In
our current implementation, we assign coarse-grained syntax
information to the simulation of apical dendrites in the model.
With this decision we do not claim that real apical trees are
confined to this role; rather, this feature is adopted since it
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FIGURE 1 | Computational hypotheses. Connection scheme for a Cortical Column (CC) in the Encoder Layer (EL). Each cylinder in the EL and in the Cortical Layer

(CL) represents a CC in neural tissue. Each prism in Distributional Semantics (word2vec) represents a real-valued variable. This is a visualization of a CC (in red) and its

three receptive fields (lateral in yellow and afferent and apical in light gray). Adapted from https://doi.org/10.1371/journal.pone.0217966 under CC-BY license.

was the most suitable one for the model in its current state
of development (see further details in section 2). Hence we
assign DS information a forward-driving role in our model
which is modulated by previously activated information from
distal (apical and lateral) dendrites. This implies that at its
current state, and due to implementation reasons, processing
of syntax information precedes semantic information in the
model. Nevertheless, there is ample experimental evidence that
puts semantic processes as early in time as syntactic ones
(Egorova et al., 2013; Moseley et al., 2013). Even more recent
neurophysiological results indicates that semantic information
present before arrival of the linguistic stimulus actually leads
to different semantic predictions, demonstrating that semantic
processes happen concurrently with syntactic ones (Grisoni et al.,
2019). Future and more complex implementations of the model
will take this evidence into account.

Thus, in the present work, we introduce a fully unsupervised
approach in which constraints from different sources are
correlated repeatedly until grammatically related word category
generalization naturally emerges from the statistical properties
of the stimulus. Our computational model does not apply any
form of optimization guidance other than the gradual decrease of

the learning rate. It does not backpropagate errors, nor optimize
weights based on hypothetical cost functions.

An influential trend of compelling research is currently trying
to explain how Back-Propagation might be carried out by neural
tissue in the brain (Whittington and Bogacz, 2019). Biologically
questionable aspects of the Back-Propagation algorithm such as
the lack of local error representation and the need of symmetry
in forward and backward weights are addressed by sound
neurocomputational theories (Lillicrap et al., 2016; Guerguiev
et al., 2017). Although such theories contribute with powerful
arguments favoring the fact that Back-Propagation could have
been implemented by evolution in cortical tissue, empirical
evidence is far from conclusive. We believe there is still a long
way to go before we can assure that the complex requirements
imposed by credit assignment—the ultimate goal of Back-
Propagation—could be a phenomenon occurring in cortical
tissue. We are also skeptical regarding Backpropagation Through
Time (BPTT) mechanisms in cortex given the demanding
requirements they impose in its implementation. BPTT has
particular problems specifically regarded to Temporal Credit
Assignment (TCA) which are not present in feedforward
backpropagation (Lillicrap and Santoro, 2019).
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In such regard, we remain cautious, keeping our model
as simple as possible. We do not implement reinforcement
mechanisms either. Instead, we feature strong evidence from
current deep neural network approaches in which spontaneous
emergence of abstract concepts seems to be a new landmark
for Machine Learning (ML). For instance, it has been seen
that biologically-inspired deep neural networks spontaneously
gain number sense even when trained only to recognize
objects in an image (Nasr et al., 2019). Moreover, using the
same computational hypotheses than in the present work, our
group has shown how phonetic invariance and generalization
spontaneously emerges from the sequential constraints imposed
by the statistical structure of the stimulus. Avoiding the
utilization of optimization guidance mechanisms—such as
supervision or reinforcement—we could significantly improve
the Support Vector Machine (SVM) phonetic classification
performance of stimuli seriously impaired by different levels
of white noise, reverberation and changes in pitch and voices
(Dematties et al., 2019).

Unlike our previous work devoted to the analysis of cortical
activation for invariance in the phonetic classification of words,
in this research we address grammar emergence. In this paper
we approach the interaction of information from extra- and
coarse-sources injected to apical dendrites in addition to the
information delivered by proximal synapses and the sequential
information provided by distal lateral dendrites considered in
our previous work. Proximal synapses are fed with DSs in the
present research. In contrast, proximal synapses in Dematties
et al. (2019) were fed with phonetic features delivered by a
Multiresolution Spectro-Temporal Sound Analysis (MRSTSA)
algorithm inspired in Chi et al. (2005). The number of tags in the
classification challenge faced by the present research substantially
exceeds the one presented in the previous work. In fact, in
the current presentation we used the assistance provided by
additional tools—such as a natural language parser for English—
in order to obtain the grammatical categories for each sentence
in the corpora. We also conducted segregated analyses inspecting
the classification performance for each grammatical tag and
clustering the grammatically related categories in convenient
subgroups. We conducted the same performance tests for an
instance of the model without distal lateral connectivity. With
such experiments we could determine the contributions that each
dendritic compartment renders to the grammar learning task.
Finally, in the current research we also analyzed the probabilistic
prediction values returned by the classification algorithms for the
analysis of the constituents inside a single sentence.

In the present work, we advance an improved version of the
neurocomputational model previously developed in Dematties
et al. (2019). In its present form, afferent dendrites drive
Distributional Semantic (DS) Text Embedding information,
while lateral dendrites receive sequential syntactic restrictions
but, more importantly, we incorporate apical dendrites which
simulate backward connectivity from distant cortical patches
carrying coarse-grained word category information which has
been shown to be phonologically informed (Shi et al., 2006;
Lohmann, 2017). Backward connectivity has been seen to
be prevalent in brain cortex, usually related to modulatory

functions, driving effects produced by forward connections,
and transcending more than one cortical level (Chen et al.,
2009; Marques et al., 2018; News, 2018). Therefore, we show
how our model—specifically the EL—in its current form,
displays the acquisition of complex cognitive phenomena such
as grammatically relevant categories, improving the SVM
classification of grammatical functions within a sentence,
compared to current word embedding representations (Mikolov
et al., 2013a,b,c).

In this paper we researched and included some features of
the Left Inferior Frontal Gyrus (LIFG) information processing
gradient in order to settle the stream of linguistic information in
our model. Modeling the entire neurophysiology present in the
LIFG complex is beyond the scope of this research. We impose
biological constraints to such information processing stream by
means of general—and widely acknowledged—biological claims
by basing our reasoning on the homogeneity found throughout
cortical tissue in the brain (Carlo and Stevens, 2013).

2. MATERIALS AND METHODS

2.1. Computational Model
We propose a computational approach inspired in the biology
of the mammalian neocortex which simulates a patch of cortical
tissue and incorporates columnar organization, spontaneous
micro-columnar formation, Sparse Distributed Representation
(SDR) activations which have shown to be derived from partial
N-Methyl-D-aspartic acid (NMDA) dendritic depolarization
(Antic et al., 2010; Major et al., 2013; Hawkins and Ahmad, 2016),
and adaptation to contextual activations. We simulate pyramidal
cells with proximal connections from afferent dendritic branches
and distal connections from lateral and apical dendritic branches
(Dematties et al., 2019).

In our model we account for layer II/III pyramidal cells
processing and the segregation of their dendritic trees into
different confined domains. Different dendritic domains in
the cell receive distinct synaptic inputs and have synapses
with specific excitability, modulation and plasticity properties
(Spruston, 2008). The basal and proximal apical dendrites of cells
in layer II/III take inputs from layer IV cells and also receive
local-circuit excitation which process excitatory inputs from local
sources. The apical tuft—on the other hand—collects inputs from
other cortical areas and also receives nonspecific thalamic inputs
which control responsiveness to more proximal inputs (Larkum
et al., 2004).

Regarding proximal afferent connectivity in the EL, evidence
shows that layer II/III predominately accepts inter-laminar—
mostly vertically oriented—excitatory inputs from the stellate
cells in layer IV. On the other hand the use of lateral distal
connectivity accounts for layer II/III neurons which also receive
excitatory inputs from other layer II/III neurons through
extensive lateral connections (Bannister, 2005). Finally, and as an
output gateway, many layer II/III neurons project to higher levels
of cortex (Thomson and Bannister, 1998).

Hence the information from distal dendritic branches in our
model—which is lateral and apical—produces, in advance, a
partial depolarization in some cell units in a CC (Figure 1). On
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the other hand, information from proximal dendritic branches—
which is afferent—produces a complete depolarization of a
cluster of cell units in a Cortical Column (CC), but in the event
that enough afferently excited units have already been partially
depolarized by lateral and/or apical dendrites, such units would
fire before inhibiting other units in the cluster and preventing
them from firing. With this mechanism, only a reduced number
of units become active, producing a sparse pattern of activation in
our model. This neurocomputational theory has been introduced
in Hawkins and Ahmad (2016), showing continuous online and
unsupervised sequence learning capabilities (Cui et al., 2016).

Information processing in layer II/III concerns sequential state
inference which requires the interaction of their lateral and apical
connections with the bottom-up input. Evidence suggest that
neurons in layer II/III could endeavor similar computations to
the one developed by ourmodel. Yoshimura et al. (2000) reported
that long distance horizontal connections to pyramidal cells in
layer II/III exhibit different properties than those from vertical
connections. Feldmeyer et al. (2002) also suggested that the
projections of layer IV spiny neurons to layer II/III pyramidal
neurons act as a gate for the lateral spread of excitation in layer
II/III. Based on such evidence we assign DS a driving role which
is modulated by previous syntax activations from apical dendrites
and previous lateral constraints generated in the same EL.

Some important remarks in reference to our computational
approach (Dematties et al., 2019) are: (i) proximal afferent
dendrites do not determine a neuron to fire, instead, they bias
its probability of doing so, (ii) distal dendritic branches are
independent computing elements that contribute to somatic
firing by means of dendritic spikes, and (iii) prediction failures in
the network produce a phenomenon called Massive Firing Event
(MFE) which manifests with the activation of many neurons in a
CC impairing SDRs formation.

In reference to the random nature imprinted in the
computational approach, previous studies have already
incorporated stochastic forces to biologically plausible models
of neuronal dynamics (Harrison et al., 2005). In addition, the
autonomy of neural dendrites as independent elements of
computation has already been posed, showing that neuronal
dendrites exhibit a range of linear and non-linear mechanisms
that allow them to implement elementary computations
(Poirazi, 2015; Payeur et al., 2019). The compartmentalization
of individual (layer II/III) neural units in our model is not
limited to only complete dendritic configurations; we are rather
motivated by Jadi et al. (2014) who suggested that complex
interaction between inputs delivered to two different dendritic
sites could produce—for instance—exclusive OR computations.
Furthermore, recent scientific studies claim that individual
dendritic compartments can perform a specific computation—
exclusive OR—that mathematicians had previously regarded
as an unsolvable problem by single-neuron systems (Gidon
et al., 2020). Finally MFEs in the model explain integration
phenomena in which a combination of different constraints
converges incoherently and produces the massive activation of a
neuron cluster in the CCs of the Encoder Layer (EL). When the
EL cannot fluently integrate information coming from different
linguistic constraints, it activates more hypotheses—i.e., more

phrasal configurations—as to be able to easily fuse subsequent
information coming within the sequential sentence context.

An activation phenomenon such as the Massive Firing Event
(MFE) impedes SDRs formation. However,when the EL correctly
predicts the sequential stream of information coming from
different constraints, it continuously produces SDRs and the
sequential activation runs smoothly. SDRs exhibit interesting
mathematical properties which give them high noise rejection
and fault tolerance (Ahmad and Hawkins, 2015). It has been
shown that the brain uses sparse patterns of activation to process
information in all mammals, from mice to humans (Barth and
Poulet, 2012).

2.2. Afferent Distributional Semantic
Constraints
We generate Distributional Semantic (DS) constraints using
Word Embedding approaches. Word Embedding is a set of
Natural Language Processing (NLP) techniques in which words
or phrases from a vocabulary are mapped to vectors of real
numbers.We specifically use word2vec which takes a large corpus
of text as input and produces a vector space that usually has
several hundred dimensions. Each word in the corpus is assigned
to a corresponding vector in the space. The main hypothesis is
that words which recurrently appear in proximal positions in
the text will be located proximally in the semantic space (DS
vector space). The hypothesis is based onDistributional Semantic
(DS) in linguistics which is derived from the semantic theory
of language usage (Harris, 1954). The output of such model is
a semantic multi-dimensional space with compelling semantic
properties (Mikolov et al., 2013a,b,c). In this paper we used pre-
trained vectors obtained from part of Google News dataset (about
100 billion words). The model contains 300-dimensional vectors
for 3 million words and phrases (Google, 2019).

The major excitatory projection received by layer II/III
neurons is mostly vertically-oriented and, for the most part,
intra-columnar axons from layer IV neurons (Lübke and
Feldmeyer, 2007; Thomson and Lamy, 2007). Layer IV
is generally accepted as the feed forward input layer to
cortical regions (Hegdé and Felleman, 2007). Consequently
we interpret such microcircuit feature as an input gateway
from which layer II/III neurons get proximal afferent excitation
from Distributional Semantic DS.

From the above evidence we implemented afferent dendrites
by means of Self Organizing Maps (SOMs) (Kohonen, 1988,
1989). Each CC in the EL simulates one proximal afferent
dendrite using a SOM as shown in Figures 2A,B. Each CC
receives a reduced sample from the word2vec components.

The use of a SOM per CC in our model accounts for proximal
lateral intra-column interaction, Long-Term Potentiation (LTP),
Long-Term Depression (LTD), and the vertical organization
of cell bands with similar response properties (Mountcastle
et al., 1955; Haueis, 2016). In each CC in our model, clusters
of neural units responding to similar semantic constraints
emerge spontaneously from learning. This has a correlate with
the tonotopic, retinotopic, or somatotopic organization in brain
tissue. In our modeling approach we account for the concept
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FIGURE 2 | Encoder Layer (EL) proximal afferent connections. Each CC in the EL—exemplified here in red—has its receptive field over the word2vec semantic

space—in yellow. (A) A set of word2vec components—in green inside the receptive field—is randomly chosen to be connected with a CC. (B) Each neural unit in a

CC is connected with the same set of word2vec components. We based this connectivity configuration on the vertical-orientation and on the prominent

intra-columnar configuration of afferent axons received from layer IV. Adapted from https://doi.org/10.1371/journal.pone.0217966 under CC-BY license.

of cortical column as an elementary unit of organization of
the entire cerebral cortex (Mountcastle, 1957, 1978, 1997).
Each cortical column consists of a Self Organizing Map
(SOM) which lumps neurons together arranging them in mini-
columns. A mini-column denotes a thin vertical arrangement of
neurons (Buxhoeveden and Casanova, 2002) and cells within a
mini-column recognize the same feedforward patterns (Jones,
2000). The terms mini-column and micro-column are used
interchangeably in the works by Jones (2000) and Buxhoeveden
and Casanova (2002). In the present work are therefore
considered synonyms.

Figures 3, 4 show the relationship between the word2vec DS
space and each CC in the EL. In Figure 3, the CC afferent
dendrite is in its initial state and its corresponding semantic sub-
space sampled from word2vec is represented by several words
scattered in the background.

Each set of afferent connections in a CC determines a two-
dimensional lattice of 15 × 15 neural units. The sampled
semantic sub-space has 31 real valued components. In Figure 4,
once the CC afferent dendrite has been trained—the neural
lattice distributes its neural units throughout the semantic sub-
space. In such case, each word in the semantic sub-space will
have its neural resource representation and words with semantic
proximity in the semantic sub-space will be represented by
neural resources with physical proximity in the lattice. The
neighborhood preservation of self-organizing feature maps is an
important property which turns out to be useful to preserve the
original sub-space semantic relationships in the new space in the
lattice of a CC in the cortex (Villmann et al., 1997). Yet, even
more importantly, the DS remapping from word2vec subspace

to the reduced dimensionality of the neural lattice reveals hidden
relationships among the terms in the original sub-space as is the
case in Latent Semantic Analysis (LSA) (Boling and Das, 2015).

Once afferent dendrites have learned the statistical
distribution immersed in the different Distributional Semantic
(DS) sub-spaces, each CC in the EL has its private representation
of its DS sub-space from word2vec. The advent of the DS
representation from certain word in word2vec establishes a
pattern of activation in a cluster of neural units inside each CC
(Figure 4). In this way, each DS constraint from word2vec will
be represented in a distributed way throughout the EL. The
semantic representation of each word will activate a cluster of
neural units in each CC, and the DS content of such word will be
distributed in the cortical patch simulated by the EL. Significant
evidence shows that the semantic content of words is distributed
across cortical tissue (Huth et al., 2016). For example, a word
like top can not only activate a region related with clothing and
appearance, but it can also activate a region related with numbers
and measurements and perhaps a region related with buildings
and places. On the other hand, it has also been shown that
words with similar semantic content are mapped in proximal
regions of the cortex (Huth et al., 2012). For instance, in the
right temporo-parietal junction a small patch of cortex responds
to words like wife, mother, pregnant, family, friends, brother
etc, while a very near patch responds to words like family and
wife but also responds to—in certain way semantically related—
words like house, roommates, household, and owner. There are
compelling brain-inspired computational approaches which use
SDRs to simulate how cortical brain activation represents the
Distributional Semantic (DS) content of words (Webber, 2015).
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FIGURE 3 | Encoder Layer (EL) Cortical Column (CC) and its proximal afferent dendrite whose synapses are simulated by a Self Organizing Map (SOM). Each CC in

the EL—exemplified here in red—has its receptive field over word2vec as a semantic sub-space represented by words scattered in the background. SOM weights are

in their initial state. Adapted from https://doi.org/10.1371/journal.pone.0217966 under CC-BY license.

In Figure 4, we illustrate how the word hours could
activate a cluster of neural units which are representative of
time phenomena such as pm, hour, and sometime, but it
could also activate units which represent semantically related
phenomena such as tense, which has to do with the form of a
verb showing the time at which an action occurred, or the words
arrive, waiting, and finished, which are also—more
indirectly—related with time. Each CC in our approach has a
representative model of the DS space and every column in the EL
learns a complete model of such semantic representation.We rely
on compelling brain-inspired computational theories in which
every column in every region learns complete models of objects
(Hawkins et al., 2019).

One important property to highlight in Figure 4 is that the
advent of a word and its consequent semantic activation from
word2vec will not determine a neural unit to fire, instead, it
will bias the probability of such neural unit in doing so. That
is, the more excited a neural unit is by its afferent dendrite,

the more likely it is that such unit will become active. That is
why neural units which are closer to the active word vector in
the sub-space will tend to be more densely active than neural
units farther apart, as Figure 4 shows. The stochastic behavior
of cells in neural tissue is a widely used property not only in
bio-inspired models (Harrison et al., 2005) but also in Artificial
Neural Networks (ANNs) such as Deep Learning (DL) networks
by means of techniques like dropout (Srivastava et al., 2014)
which is used to reduce unwanted phenomena such as overfitting.

2.3. Lateral Sequential and Apical
Coarse-Grained Syntactic Constraints
It is generally believed that—unlike cells in layer IV that respond
to more shallow stimuli—cells in layer II/III are known to
be complex cells that respond to sequence of motion or cells
that respond to different translations of the same feature in an
invariant way (Hirsch et al., 2002; George and Hawkins, 2009;
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FIGURE 4 | A trained Self Organizing Map (SOM) in a Cortical Column (CC) proximal afferent connections. The SOM is a bi-dimensional lattice of 225 neural units (15

× 15 neural units). The SOM adapts to represent the word2vec Distributional Semantic (DS) sub-space. After it is trained, a SOM in a CC distributes its neural units

throughout the DS sub-space sampled from word2vec. The SOM algorithm keeps the semantic topology of the original DS sub-space imprinted in the lattice of neural

units. Each word in the DS sub-space has its neural representation and words with more semantic similarity are represented by neural units with a high physical

proximity in the lattice.

Antolik and Bednar, 2011). For instance, cells in layer II/III in
visual and barrel cortical areas—to a great extent—favor richer
stimuli, such as motion in the preferred direction (Hirsch and
Martinez, 2006). This is consistent with our proposal that layer
II/III cells represent different patterns in the context of different
sequences. They become active according to the context of the
correct sequence.

Distal dendrites in each neural unit in the EL are classified

in two sets: (i) lateral dendrites which connect a CC—in
red in Figure 5A—to neighboring CCs in the same cortical
patch—in green in the EL in Figure 5A. It is known that

layer II/III pyramidal neurons axons travel several millimeters

parallel to the layer II/III and/or layer IV boundary re-
entering in layer II/III to make excitatory connections to

pyramidal cells there (Lund et al., 2003; Bannister, 2005).
Then (ii) apical dendrites which link a CC in the EL to
CCs in another cortical patch. In the present work, apical
dendrites bring information from a Receptive Field (RF) which
establishes coarse-grained syntactic constraints in the system
(Figure 5A).

A distal dendrite linking two CCs as in Figure 5A implies

that each neural unit in a CC—in red in Figure 5B—is linked

to a sub-set of units in neighboring CCs in the same cortical
patch, or in other CCs in a foreign cortical patch, as shown in
green in Figure 5B. Such sub-set of neural units is determined by
the physical anatomical configurations of dendrites from the red
neural unit in Figure 5B to the yellow neural units in green CCs,
as shown in Figure 5C.
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FIGURE 5 | Distal dendrites in the EL. (A) Distal dendrites can be (i) lateral, linking neighboring CCs in the same cortical patch, and (ii) apical, which link CCs in

different cortical patches. (B) A distal dendritic branch between the red CC and a green CC entails that every neural unit in the red CC is linked to a different subset of

neural units in the green CC by means of potential connections. The subset of potential connections comes from a percentage of neural units inside the green CC.

Such percentage is a tunable parameter for the CC. (C) Physical proximity of a dendritic branch from the red cell to axonal branches from yellow cells determines

potential connections which could prosper becoming in established synapses depending on the activity among cells. Adapted from https://doi.org/10.1371/journal.

pone.0217966 under CC-BY license.

Figure 5C shows how lateral dendrites extend through cortex
to link a neural unit to other neural units in neighboring CCs
in the same cortical patch—the EL in our case. Apical dendrites
on the other hand, receive information from CCs located in
foreign cortical patches by means of extended axons which leave
their cortical domain, traveling through white matter and finally
entering the EL cortical patch up to the most superficial layer of
cortex called L1, where apical dendrites from local cells extend.

Figure 6 depicts the process of synaptic growth in distal
dendrites. The red square represents a CC whose distal dendritic
branches link its neural units to neural units in other CCs in green
in the figure.

In Figure 6A, the current and simultaneous activation of
neural units in linked CCs decreases the synaptic strength
in the potential synapses in such dendrites. In Figure 6B,
potential synapses among currently activated neural units and
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FIGURE 6 | Synaptic growth in distal dendrites in the EL. (A) Dendrites with synaptic weakening. (B) Dendrites with synaptic growing. Adapted from https://doi.org/

10.1371/journal.pone.0217966 under CC-BY license.

past activated ones are strengthened. This mechanism of synaptic
growth simulates Spike-timing dependent plasticity (STDP)
biological processes in cortex.

As already mentioned, lateral dendrites bring information
from previous activity in neighboring CCs in the EL. This
adds restrictions to the activation of neural units regarding
previous activation in the same area. This would produce
syntactic constraints which would bias the activation of certain
patterns compared to others which are less coherent regarding
the statistical sequential regularities immerse in the grammatical
structure of the stimuli.

Apical dendrites bring information from foreign cortical
patches. In order to provide such information, we generate
three Sparse Distributed Representations (SDRs) which supply
a coarse clue to the EL about three major word categories: (i)
content words, (ii) function words and from content words we
segregate, (iii) verbs. Previous research has shown that content-
function word distinction is marked acoustically, phonologically,
and distributionally in the speech infants hear in different
languages (Shi, 1995; Shi et al., 1998). Even newborn infants can
categorically discriminate word classes based solely on acoustic
and phonological cues. Furthermore, such phonological cue can
help older infants bootstrap into the acquisition of grammatical
categories and syntactic structure (Shi et al., 1999). Lohmann
(2017) empirically showed that noun-verb conversion can be
determined via phonological properties of word class. In such
regard, phonological cues can be employed for words of at
least two syllables for the determination of the directionality
of the noun-verb conversion. We consider that phonological
constraints could provide a much richer and fine-grained
correlated repertoire, yet we kept such constraints at a minimum
in order to test the model’s reaction using the minimal hint
phonology could provide.

2.4. Cortical Activation in the Encoder
Layer
The dynamics of cellular activation in the EL is depicted in
Figure 7. Repeated correlation among DS afferent, sequential
lateral and coarse-grained word category apical constraints
determines the strength of distal dendritic synapses in such a
way that certain events will be more predictable than others. As
long as the sequence of sentence constituents keeps a certain level
of predictability with respect to the training material, activation
patterns in the ELwill return enough sparsity, and a phenomenon
of repeated SDRs will be sustained throughout time. When
unlikely events—with respect to trainingmaterial—arise, sparsity
cannot be sustained by the network and a phenomenon called
Massive Firing Event (MFE) will emerge as a consequence of
the inability of the network to correctly predict such events. As
a result of the ignorance of the network to correctly predict
an event, it activates all likely hypotheses given the semantic
constraints. In this way, the EL loses the bias established by
syntactic constraints, opening more hypotheses in order to
receive subsequent lexical events in a better condition.

In Figure 7A, current activation of neural units in green CCs
plus distal dendritic synapses established after learning, partially
depolarize specific neural units in the red CC. Such partially
depolarized units are set as predictable firing units for the
arrival of the next lexical event. In Figure 7B, afferent semantic
constraints from the next sentence constituent excite specific
clusters of neural units in the red CC. On the left, such clusters
of afferently excited units contain enough partially depolarized
units which will activate before rival units in the excited clusters
and—as a consequence of that—will be able to inhibit rival units
activation as shown in Figure 7C on the left. In such way, the
current lexical event is correctly predicted by the network. On
the right side of Figure 7B, the afferently exited clusters do not
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FIGURE 7 | Dynamic cellular activation in a CC in the EL. A red cortical column is linked with two green cortical columns by means of distal dendrites. (A) Cellular

activation in green CCs—highlighted yellow cells—puts neural units in red CC in a partially depolarized—predictive state highlighted in blue. (B) Cluster of neural cells

activated by afferent inputs. Left: A substantial amount of partially depolarized cells are in the afferently excited cellular clusters. Right: There is no substantial amount

of partially depolarized cells inside afferently excited cellular clusters. (C) CC with active cellular units highlighted in yellow. Left: Sparse pattern of cellular activation.

Right: Massive pattern of activation. Adapted from https://doi.org/10.1371/journal.pone.0217966 under CC-BY license.

contain enough partially depolarized units, which implies that
the great majority of the units in the clusters are in very similar
conditions to fire. This circumstance determines that all the
units in the afferently excited clusters will fire producing a MFE
as shown in Figure 7C on the right. Such event indicates that
the network is not correctly predicting the sequence of lexical
constituents in the sentence.

2.5. Experimental Setup
The experimental setup used in this paper is depicted in
Figure 8. Our main hypothesis is that cortical activation from
the EL in response to sentence lexical constituents, will provide
better information to the supervised algorithm to classify the
grammatical function in such constituents than the information
provided by word2vec. Therefore, we used the features delivered
by word2vec and by the EL in response to each sentence
constituent in order to train both classifiers shown in Figure 8.
Then, we tested the trained algorithms using different corpora to
the one used for training.

We used supervision by means of the SVM classification
method, receiving the outputs from each algorithm. We did this
to test the generalization properties in the grammatical features
abstracted by the EL in comparison with the grammatical features
returned by word2vec (Figure 8). In the present work, we used
a package called Library for Support Vector Machine (LIBSVM)

(Chang and Lin, 2011; lib, 2016). We trained and tested the SVM
classifiers using five-fold cross-validation, and configured them
to use a linear kernel with one parameter C, which we swept to
find the best trained model for each classifier.

We implemented an EL with 225 CCs arranged in a two-
dimensional array of 15 × 15 CCs. Each CC was automatically
distributed using individual locations along its afferent, lateral,
and apical inputs in a uniform way. Each CC received afferent
information by means of two-dimensional afferent receptive
fields of 9× 29 components centered at individual locations over
a 10× 30 word2vec space. We enabled the wraparound property
in order to make each receptive field span the entire word2vec
array. We also instructed each column to receive only 31 inputs,
which is a minor percentage of such receptive field. Individual
afferent inputs for each CC were chosen randomly during the EL
initialization process.

For this model instance we used distal lateral and apical
dendritic branches. We configured each CC to have a lateral
receptive field with 9 × 9 neighboring CCs and to receive
information from 72 of the 81 CCs in the receptive field—
a 90% of the receptive field. In reference to apical dendrites,
we configured each CC to have an apical receptive field of
11 × 11 foreign CCs and to receive information from 108
of the 121 CCs in the receptive field—also a 90% of the
receptive field.
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FIGURE 8 | Experimental setup to test grammar classification task performance. Distributional Semantic (DS) constraints generated by means of word2vec are

received by the EL afferent dendrites. Coarse-grained word category constraints are SDRs received by the EL apical dendrites. Grammatically-related word

classification tasks are performed on both outputs—from word2vec and from the EL—by the SVM algorithm. Adapted from https://doi.org/10.1371/journal.pone.

0217966 under CC-BY license.

Each CC was composed of a two-dimensional array with
15 × 15 (225) neural units and each unit in a column
could be potentially connected with only six neural units from
each linked neighboring column. Each neural unit in a CC
ended up with 72 lateral dendritic branches with six potential
connections each (432 distal lateral potential synapses per
cellular unit) and with 108 apical dendritic branches with six
potential connections each (648 distal apical potential synapses
per cellular unit). That is, each neural unit in a CC ended up
having 1,080 distal potential synapses. Such potential synapses
were randomly chosen for each neural cell and for each
dendritic branch in the cell during the Encoder initialization
procedure. The EL consisted of 50,625 cellular units with
1,569,375 proximal synapses and 54,675,000 distal synapses.
It is important to highlight that distal synapses represented
potential connections from which only a small percentage
had a significant synaptic weight as to be considered as an
established connection. Weak synapses were periodically pruned
by means of homeostatic processes in the network, leaving
distal dendrites with a sparse connectivity in the receptive
fields. The sparseness in such connectivity matrices could
exceed 90%.

The fictitious Cortical Layer (CL) from which the EL received
apical constraints—in the form of coarse-grained word category
SDRs—had the same columnar and cellular configuration
than the EL.

The training procedure consisted of two stages and
for each stage the EL received the same corpus twice.
During each learning stage, certain parameters—such as
the learning rates in proximal and distal synapses and
the lateral intra-column interaction—were exponentially
and progressively decreased from an initial value. The
same parameters were also decreased for each successive
stage. An additional stage was executed with the learning
parameters fixed.

The sparsity in the activation for each CC—even CCs in
the coarse-grained word category Cortical Layer (CL)—was 99%
(just 2 neural units out of 225 could be active for normal
activation events). On the other hand, the afferent excitation
affected 10% of the units inside the clusters in each CC (22 neural
units, which could be activated in case of a MFE; Figure 7).

In order to train the model we used a corpus from the
WikiSplit dataset by Google (Botha et al., 2018). This dataset was
constructed automatically from the publicly available Wikipedia
revision history. The complete dataset contains one million
English sentences, each split into two sentences that together
preserve the original meaning, extracted fromWikipedia edits. In
order to train the model we used a corpus called test from the
dataset. The corpus has 14,980 sentences. We cleaned the corpus
erasing punctuation marks to get a file in which each sentence is
a sequence of individual words in line.

We tagged each word in the corpus with its grammatical
function in the sentence context. To that end we used Enju
natural language parser for English [Enju 2.4.4 Copyright (c)
2005-2010, Tsujii Laboratory, The University of Tokyo]. This
parser has a wide-coverage probabilistic Head-Driven Phrase
Structure Grammar (HPSG) (Miyao, 2002; Yusuke and Jun’ichi,
2002; Miyao and Tsujii, 2005, 2008; Miyao et al., 2005; Ninomiya
et al., 2006a, 2007), as well as an efficient parsing algorithm
(Tsuruoka et al., 2004; Ninomiya et al., 2005, 2006b; Matsuzaki
et al., 2007).

Enju can effectively analyze syntactic/semantic structures of
English sentences and provide the user with phrase structures
and predicate-argument structures. Those outputs would be
especially useful for high-level NLP applications, including
information extraction, automatic summarization, question
answering, and machine translation, where the “meaning” of a
sentence plays a central role (Enju, 2019).

We analyzed the complete corpus grammatically by means
of Enju in its stand-off format. In this format, the span
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TABLE 1 | SVM cross validation training results.

Word2vec (%) Encoder layer (%)

150 sentences 84.03 89.40

300 sentences 83.35 90.47

600 sentences 80.96 90.79

of each tag is represented with the position in the original
input sentence, each line representing a tag. The label of
a tag (e.g., “cons” and “tok”) is output first, and the
rest represents the attributes. A constituent is tagged by
cons while each word is tagged by tok. The attribute
“cat” represents the phrase symbol of the constituent.
The attribute “pos” represents a part-of-speech and—inside
tok—the attribute cat represents the same information as
in cons.

To tag the grammatical function of the words in each sentence
we used part of the information returned by Enju. We specifically
used tok tags from which we extracted the attributes cat
and pos. The conjunction of those two attributes formed the
grammatical function with which we tagged each word in the
sentence context for all the corpus. In this way, we ended up
having 113 different grammatical categories.

Once we had all the words in the corpus tagged, we
synchronized apical SDRs in the training stage in such a way that
nouns, adjectives and adverbs were correlated with the content
word SDR. Articles, auxiliaries, demonstratives, quantifiers,
prepositions, pronouns, conjunctions, etc, were correlated with
the function word SDR, and the rest of the tagged words were
correlated with the verb SDR.

First, we trained the model, and then we ran it in inference
mode. In such mode, the EL processed the information with its
learning properties disabled. In this manner, during inference,
the EL did not modify its synapses and just returned patterns of
activation in response to the stimuli it received. We then used the
outputs from word2vec and from the ELs in inference mode to
train the SVM classifiers using the grammatical tags we obtained
from Enju.

3. RESULTS

We used the outputs fromword2vec and from the EL in inference
mode to train the SVM classifiers shown in Figure 8. We used
the outputs from such algorithms in response to 150, 300, and
600 sentences from the corpus. The cross validation training
performances are shown in Table 1.

We then tested the classification accuracy of each SVM
algorithm—the one trained using 150 sentences, the one trained
using 300 sentences, and the one trained using 600 sentences—
using the outputs from word2vec and the EL in response to
different sentences—not used to train the classifiers. We did so
for 10 different sets of sentences in each case—i.e., 10 different
corpora with 150 sentences, 10 different corpora with 300
sentences and 10 different corpora with 600 sentences.

Figure 9 shows the average classification accuracy returned by
the tests in each case—i.e., 150, 300, and 600 sentences corpora.

We performed two-tailed paired t-tests for 10 different
corpora from the dataset. Given that we conducted three t-
tests for the grammar classification task (i.e., 150, 300, and 600
sentences), we performed Holm–Bonferroni corrections with a
correction factor of three in order to reduce the probability of
type I and type II errors in the tests (Hommel, 1988). As can
be seen in Figure 9 the EL performed significantly better than
word2vec in all the experimental conditions.

3.1. Individual Sentence Analyses
With the aim of illustrating the results showed by Figure 9,
Figure 10 shows how word2vec and the EL serve SVM
algorithms for grammar classification tasks within the context of
the sentence:

wolves feed primarily on medium to
large sized ungulates though they are
opportunistic feeders and will generally
eat any meat that is available.

In Figure 10, we highlight specific words in the sentence and
show how SVM models classify them using the information
produced by each algorithm.

The first word (wolves) is incorrectly classified by both
algorithms losing the number sense in the lexical entry which
is correctly detected by our gold standard—Enju. The second
word (feed) is a verb, non-3rd person singular present
according to our gold standard. Both algorithms incorrectly
classified such constituent too, but this time there was a clear
difference regarding the information each algorithm provided the
classifiers. On the one hand, word2vec provided features to which
the classifier assigned a maximum of 29% likelihood of being a
singular noun. On the other hand, the EL provided features to
which the classifier assigned 39% chance of being a verb in base
form, but it also assigned 30% likelihood to the same tag assigned
by the gold standard—which is the correct one for this case.

The word medium which clearly acts as an adjective in this
sentence, is missclassified by our gold standard as a singular
noun; hypothesis to which word2vec endorses. Nonetheless, the
EL provides information to the SVM such that it assigns almost
60% probability that this sentence constituent is an adjective.

The word sized acts as an adjective in this sentence too. This
constituent is correctly classified by both algorithms, but the EL
provides activation which gives the SVM algorithm more than
64% confidence about its classification, while word2vec provides
features that turns the SVM classification considerably more
undetermined: it assigned 19% to the correct tag, but in addition
it also assigned 18 and 13% to the tags “verb in past participle”
and “singular noun,” respectively.

In the words ungulates and feeders the EL provided
enough information to the SVM algorithm as to make it assign
a high probability—more than 90% for ungulates and more than
60% to feeders—to the correct tags in both cases. On the other
hand, word2vec lost the number sense attributing a singular noun
tag to both constituents.

The word eat is correctly classified by both algorithms but
the EL assigns the highest probability to the correct tag—more
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FIGURE 9 | Average classification accuracy. Average classification accuracy of grammatically grounded features returned by word2vec vs. features returned by the

EL for three experimental conditions. The p-values correspond to two-tailed paired t-tests (Holm–Bonferroni validated); each for 10 different corpora. Error bars depict

95% Confidence Interval values. Adapted from https://doi.org/10.1371/journal.pone.0217966 under CC-BY license.

than 48%—while word2vec spreads chance out along a larger
range of tags including nouns.

Finally, the word availablewas correctly classified by both
algorithms, but the EL assigned by far the highest probability
to the correct tag—more than 93%—while virtually neglecting
alternative tags as viable options. On the other hand, word2vec
assigned a scarce 25% chance to such tag, distributing the
probability throughout a much larger range of tags.

3.2. Testing an EL With Stripped Lateral
Connections
In order to analyze the contributions provided by the two
different distal dendritic trees in the model in regards to the
classification task, we tested an instance of the EL but this time
we stripped all its lateral connections—we call this EL instance
as Encoder Layer with Stripped Lateral Connections (EL SLC).
We trained and tested this instance using the same procedure
depicted above. The cross validation training performances
comparing the normal version of the EL with the new instance
without lateral connections are shown in Table 2.

As before, we tested the classification accuracy of each SVM
algorithm–the one trained using 150 sentences, the one trained
using 300 sentences and the one trained using 600 sentences—
using the outputs from the EL SLC and the EL in response to
different sentences—not used to train the classifiers.

Figure 12 shows the average classification accuracy
comparing the normal EL with the EL SLC.

Once again we performed two-tailed paired t-tests for 10
different corpora from the dataset and applied Holm–Bonferroni
corrections with a factor of 3. As Figure 11 shows, the normal EL
performs slightly better than the EL SLC. This global difference
in performance is statistically significant for all the experimental
conditions according to the t-tests. A disaggregated statistical
analysis showing how distal lateral dendrites contributes to the

classification of different syntactic categories is developed in
section 3.3.

3.3. Segregated Statistical Analyses on
Individual Grammatical Categories
We trained two SVMs—one receiving word2vec outputs and
the other receiving the EL outputs on a different corpus to the
corpora used in the previous experiments. SVM cross validation
training results on the 600-sentences-corpus were 83.04% on
word2vec and 91.74% on the EL.

We performed a segregated statistical analysis on each
grammatical category produced by Enju. We compared the
performance on word2vec vs. the EL for each category. To
that end we averaged the performance on each tag from 10
different corpora—each of 600 sentences—which were composed
by different sentences to the ones used to train the classifiers.
For each tag we computed p-values corresponding to two-tailed
paired t-tests; each for the 10 different corpora.

Figure 12 shows the results for the tests comparing word2vec
and the EL. In the figure we show a clustered version of the
grammatical categories produced by Enju. Since the frequency of
occurrence of some categories was of negligible value, they were
not included in the analysis.

The figure shows a disaggregated version of the evaluation
shown in Figure 9. From the statistical analysis, the EL bootstraps
over word2vec significantly for the verbal tags V_VBP, V_VBN,
V_VBD, V_VBZ, V_VBG, and V_VB, for the adverbial tags
ADV_RB, ADV_IN, and ADV_RBR, for the noun tags N_NN,
N_NNS, N_FW, N_PRP, N_DT, and N_CD, for the adjectives
ADJ_CD and ADJ_JJ, for the complementizers C_TO and
C_IN, for the coordination conjunction CONJ_IN and for
the prepositional tag P_IN. On the other hand the EL
gets statistically significant reduced performance respecting
word2vec for the determiner tag D_PRP$, for the subordination
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FIGURE 10 | Classification of individual constituents within the sentence: wolves feed primarily on medium to large sized ungulates though

they are opportunistic feeders and will generally eat any meat that is available.

conjunction SC_IN, for the adjective ADJ_JJS, and for the
prepositional tag P_TO.

It is important to highlight some specific cases in which
the EL gets significant classification performance without
word2vec performance from which to bootstrap. That is, in
such cases word2vec had a performance of 0%. The grammatical
categories for which this situation is given are for instance the
complementizers C_TO and C_IN, the adverbial tags ADV_IN
and ADV_RBR, the coordination conjunction CONJ_IN, and
finally the nouns N_DT and N_CD.

In Figure 13, we conduct the same procedure developed
before, but this time corresponding to a disaggregated version of
the evaluation shown in Figure 11. In this analysis we evaluate
how distal lateral dendrites contribute to the classification
performance of individual syntactic categories.

From the statistical analysis, distal lateral dendrites produce
a significant improvement in performance for the verbal tags
V_VBP, V_VBD, and V_VB, for the adverbial tags ADV_RBS,
ADV_IN, ADV_RB, and ADV_RBR, for the complementizers
C_IN andC_TO, for the noun tagsN_PRP,N_DT, andN_CD and
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for the coordination conjunction CONJ_IN. On the other hand,
distal lateral dendrites reduce the classification performance
for the determiner D_PRP$, for the noun N_NN, for the
adjective ADJ_JJR, for the verb V_VBZ, for the subordination
conjunction SC_IN, for the particle PRT_RP and for the
prepositional tag P_TO.

4. DISCUSSION

In this paper we introduced a computational model inspired
in specific features of brain cortical tissue whose outcome
mimics linguistic relevant selection mechanisms found in brain
cortex (Rego and Bryant, 1993; Gibson and Pearlmutter, 1998;
Hagoort, 2005; Lopopolo et al., 2017).

By means of the experimental results presented here
we show how the convergence of linguistic constraints
from different sources, improves the classification of
grammatical functions carried by constituents within a
sentence context.

For instance, when analyzing a specific sentence, both
algorithms lose number sense in the first word (wolves). Except
for such case, the EL catches the number sense in the rest
of the cases in which plural nouns appear (ungulates and
feeders), while word2vec continues losing number sense in
those examples too. As can be seen in Figure 12 and from the
statistical analysis conducted in section 3.3, the EL significantly
outperforms word2vec in the classification of singular and
plural nouns.

In our implementation, coarse-grained word category
constraints from apical dendrites do not provide enough
information to the EL to make such distinction. Initially our
group contemplated the possibility that syntactic constraints
coming from lateral dendritic activation within the sequence
of constituents, could fulfill the information needed by the EL
to constraint the choices among different unification options.
In such way, the EL, engaging such constraints, could have
ended up activating only the most suitable option given the
information received. In this example, Distributional Semantic
(DS) information from word2vec does not suffice to distinguish
the number attribute in nouns, but the incorporation of syntactic
constraints such as the adjectives preceding nouns could have
biased the probability toward the plural attribute. Furthermore,
larger distance dependencies such as the word are in the phrase
are opportunistic feeders, could have influenced
the classification given the sequential properties incorporated
in the EL (Cui et al., 2016). Since syntactic constraints do not
appear in the first word of the sentence, the EL could have
made the same kind of mistake than word2vec, and neither DSs
nor coarse-grained word category constraints would provided
sufficient information as to catch the plural attribute in the noun.

In order to test such hypothesis, in section 3.2 our group tested
a version of the EL without lateral dendritic arms. Figure 11
shows that lateral dendrites in our model play certain role in
the integration of sequential information given the statistical
significance returned by the experiments. Yet, a disaggregated
analysis of Figure 11—conducted in section 3.3—allowed us

TABLE 2 | SVM cross validation training results on the comparison between an

EL SLC and a normal EL.

EL SLC (%) EL (%)

150 sentences 88.03 89.40

300 sentences 89.16 90.47

600 sentences 87.07 90.79

to conclude that the improvement in the distinction between
singular and plural nouns comes from the combination of
afferent and apical constraints, and not from the sequential
information provided by lateral constraints. This phenomenon
can be seen in section 3.3, in which the performance in
the classification of singular nouns is reduced with the
incorporation of lateral dendritic trees while the performance on
the classification of plural nouns is not significantly affected.

The classification of verbs in the sentence (feed and eat),
clearly shows the importance of the coarse-grained word category
constraints from apical dendrites (Shi, 1995; Shi et al., 1998, 1999,
2006; Lohmann, 2017). In such regard, word2vec confers a very
high weight to nouns in both examples, completely misclassifying
the word feed as a singular noun and giving almost the same
probability (33.9 vs. 33.3%) to the tags verb in base form and
singular noun when the verb eat appears. The EL on the
other hand, virtually disregards the classification of such verbs
as nouns, misclassifying feed as a verb in base form although
providing a high chance to the correct tag (the second highest).
The EL also produces a correct classification of eat, providing a
high probability to the correct tag.

In section 3.3, Figure 12 shows that grammatical
constructions for verbs are classified significantly better by the
EL. The unique exception is for the case of modal verbs (V_MD)
as can be inferred from the statistical analysis. From Figure 13,
we can see that lateral dendrites contribute significantly to
the classification of verbs. From the statistical analysis specific
improvements are for the verb, non-3rd person singular present
(V_VBP), verb, past tense (V_VBD), and verb, base form (V_VB).

Adjectives are quite remarkable as can be seen in Figure 10.
Even though the adjectives sized and available are
correctly classified by both algorithms, there is a notorious
difference in such classifications which can be appreciated in the
soundness with which the EL attributes chances to the correct
tag in both cases. On the other hand, word2vec is indeterminate,
attributing a very low chance to the correct tag, especially in
the case of sized, in which the algorithm attributes almost
the same probability to the tags adjective, verb in past participle
and singular noun. Another important example is given with
the word medium. Even when the appearance of such word
counts as a success for word2vec, the reality is that the EL
produces a correct classification of it as an adjective, and such
classification is sound due to the high probability assigned to
the tag. From Figure 12, we can see that the EL improves the
classification of adjectives significantly. Figure 13 shows that this
improvement does not come from the contribution provided by
distal lateral dendrites.
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FIGURE 11 | Average classification accuracy. Average classification accuracy of grammatically grounded features returned by the EL SLC vs. features returned by the

EL for three experimental conditions. The p-values correspond to two-tailed paired t-tests (Holm–Bonferroni validated); each for 10 different corpora. Error bars depict

95% Confidence Interval values. Adapted from https://doi.org/10.1371/journal.pone.0217966 under CC-BY license.

FIGURE 12 | Segregated average classification accuracy. Average classification accuracy of grammatically grounded features returned by word2vec vs. features

returned by the EL for a coarse-grained clustered version of the grammatical tags. Error bars depict 95% Confidence Interval values. Adapted from https://doi.org/10.

1371/journal.pone.0217966 under CC-BY license.

It is important to highlight some specific cases for which the
EL builds its own classification performance from a word2vec
performance of 0%. The most prominent cases are for the
following tags: C_TO, with typical examples like ... the voice to
renew... or ... released to radio... and CONJ_IN, with typical
examples like ... as well as... or ... rather than.... Moreover, the
classification performance in such cases is completely sustained
by distal lateral dendrites as can be inferred from the statistical
analysis conducted in section 3.3.

For some adverbs, such as superlative (ADV_RBS) with
examples like the thirdmost common... or hismost serious poem...,
subordinating conjunction (ADV_IN) with examples like after
wandering around he discover... or ... soon after and adverb,
comparative (ADV_RBR) with examples like ... to better measure

future cash flow or ... her autobiography more important than
her poetry, the EL classification performance is fully sustained by
distal lateral dendrites.

Adverbs (ADV_RB) with examples like ... that is almost

completely black or it was released only in australia; are classified
significantly better by the EL and distal lateral dendrites—
even when not exclusively—contribute significantly to such
classification performance.

Compared to word2vec, the EL activates fewer phrasal
configurations, narrowing down the spectrum of alternative
binding candidates. It assigns higher probability values to fewer
tags and generally such tags are the correct ones or closer to the
correct ones. This fact is supported by the higher hit rate of the
EL compared to word2vec (Figure 9).
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FIGURE 13 | Segregated average classification accuracy. Average classification accuracy of grammatically grounded features returned by the EL SLC vs. features

returned by the EL for a coarse-grained clustered version of the grammatical tags. Error bars depict 95% Confidence Interval values. Adapted from https://doi.org/10.

1371/journal.pone.0217966 under CC-BY license.

Regarding related works in the field, Pulvermüller and
Knoblauch (2009) refuted the rule-free claim attributed to neural
networks, by demonstrating the emergence of discrete neuronal
aggregates in a brain-inspired model previously developed by the
same authors (Knoblauch and Pulvermüller, 2005). The model
includes a network of several sequence detectors and demonstrates
that associative Hebb-like synaptic plasticity rules can learn
word sequences and form neural representations of grammatical
categories. Although such a model can function as a basis of
syntactic rule application and generalization, it was not tested
on more complex sequences of syntactic constructions inside
complete sentences as the ones used in this research.

Wennekers et al. (2006) introduced a modeling approach
in which multiple area networks are built of anatomically
identical features. Similarly to the model we present in this
paper, the architecture of such network introduces cells which
include feedforward, feedback and lateral connections which
are set up by means of associative principles motivated
by Hebb’s rules (Hebb, 1950). In a more recent work,
using the same modeling principles Tomasello et al. (2017)
developed a physiologically plausible artificial neural-network
that replicated sensorimotor, multimodal, and language areas.
The experiments reported emergent semantic circuits for object-
and action-related words which exhibited category-specificity
in modality-preferential areas. Even though results from both
works can be compared with real experimental data—thanks
to the realistic neurocomputational facet of the models—
the experimental profiles were mainly centered on statistical
correlation measurements, over semantic and more limited
aspects of grammar—such as action- and content-words. The
learning of more complex syntactic structures was not in the
scope of such research. In general, Wennekers et al. (2006)
manifested the acquisition of syntactic structures as a difficult
problem in assembly networks. Furthermore, no ML like
recognition tasks were conducted, the corpora used for the

experiments were artificially generated and the models were
not tested on classification invariance. Having said that, it is
important to highlight that the use of DSs—such as word2vec—
as input to our model limits its biological plausibility in
comparison with the research conducted by Wennekers et al.
(2006). Future work in our research will be directed toward
improving this aspect.

A computational model that assigns thematic roles to
sentence constituents has been previously developed by John
and McClelland (1990). The model disambiguates words,
instantiates vague words, and elaborates implied roles. Recently,
this computational approach was used to explain the N400
event-related brain potential presenting a computationally
explicit account for the emerging representation of sentence
meaning (Rabovsky et al., 2018). The model succeeded
in capturing diverse empirical neural responses, showing
that essential aspects of human language processing can be
effectively represented by a proper connectionist approach.
Nevertheless, the model lacked a mapping of neurophysiological
characteristics in cortical dynamics and used optimization
algorithms (i.e., backpropagation) which are difficult to map
in neural tissue. While we recognize some recent progress
in using backpropagation as a plausible attribute of neural
tissue–for instance Lillicrap et al. (2016) showed that even
when the feedback and feedforward weights do not match,
backpropagation still works–our work suggests that it may not be
necessary to introduce the extra computational and algorithmic
complexity needed by such mechanisms. Furthermore, in some
cases (Bengio et al., 2017), several physiological requirements—
not proven yet; such as the fact that the average soma voltage
potential is insensitive to changes in the input firing rates when
the neuron is saturated—have to be fulfilled before considering
such research as truly plausible.

Dominey et al. (2009) on the other hand, incorporated
the functional neurophysiology of sentence comprehension
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(along with non-linguistic sequence processing), in a neural
network model whose architecture was constrained by
Cortico-Striato-Thalamo-Cortical (CSTC) neuroanatomical
connectivity and functional imaging data. The model was able to
learn and perform several types of language and artificial syntax
tasks. Their approach includes the interaction among several
BA involved in language processing–such as Brodmann Area
(BA) 47, 45, and 44/6 in the LIFG. Nonetheless, such model is
also forced to choose the correct options through supervised
error-driven learning methods. Such methodology, assumes
the existence of internal teaching signals in the brain. Teaching
signals are needed to force the output layer to the correct answer,
enabling the network to backpropagate the errors.

Michalon and Baggio (2019) developed an explicit algorithmic
implementation of a parallel processing architecture that explains
how syntactic and semantic information processing can interact
selectively during language comprehension. The architecture
advances toward the organization of language in the brain
focusing in the articulation between syntax and semantics and
the essence of prediction in language comprehension. The work is
clearly inspired by the psychology and neuroscience of language,
but it does not incorporate biologically inspired features of
cortical neural computation in its implementation.

In the present work the computational model developed,
is inspired in the biology of the mammalian neocortex and
simulates cortical tissue incorporating columnar organization,
spontaneous micro-columnar formation, SDRs, and adaptation
to contextual activation. In addition, different roles to proximal
and distal dendritic configurations simulating pyramidal cells
are assigned. We incorporate important physiological and
anatomical phenomena, such as the consideration of dendritic
branches as active and independent processing elements, the
stochastic activation of brain cells and MFEs originated by
prediction failures in the network manifesting as the activation
of many neurons in a CC impairing SDRs formation—
among others. Most ANNs, such as those used in previous
works (John and McClelland, 1990; Dominey et al., 2009;
Rabovsky et al., 2018; Michalon and Baggio, 2019), use artificial
neurons without considering active dendrites and with an
unrealistic low number of synapses, thus missing fundamental
functional properties present in the brain. Furthermore, unlike
established computational models, the model presented here
does not incorporate optimization methods such as those
found in supervised or reinforced algorithms. Even though
influential research lines underpin the idea of credit assignment
supporting backpropagation processes in cortex (Guerguiev
et al., 2017), so far there is not enough evidence to justify
the inclusion of such complex process in the brain. Moreover,
our concerns regarding backpropagation in brain tissue go
beyond the complexity of its algorithmic implementation. These
implementations require the existence of teaching signals.
Although there is evidence that animals can represent desired
behavioral outputs with internal goal representations (Gadagkar
et al., 2016), it is unknown whether teaching signals indeed
exist in the brain. On the other hand, although very new
and compelling algorithmic approaches such as BERT (Devlin
et al., 2018) and GPT-2 (Vaswani et al., 2017; Radford et al.,

2019) are making far-reaching changes in NLP in general,
they continue needing complex optimization algorithms of
difficult justification in brain cortex. Furthermore, they apply
Attention mechanism without restriction demanding the full
availability of all words in input sentences without providing
clear explanations of memory mechanisms to sustain such
phenomena in brain.

In the present work, we replace teaching signals used
in other systems–specially needed by backpropagation-like
optimization—by the uniform and simple correlation of SDRs
activation coming from different cortical patches. Our hypothesis
is that when noise is impairing the smooth individualization
of a pattern coming from one source, the brain correlates
such information with information coming from other sources
in which the noise has not been too detrimental for the
pattern that the subject seeks to classify. In the present model,
when Distributional Semantic (DS) information from afferent
dendrites is not sufficient for grammatical disambiguation of a
sentence constituent, coarse-grained word category information
from apical dendrites helps in such disambiguation. In the
case that coarse-grained word category clues cannot compensate
the lack of DS information, syntactical constraints from lateral
dendrites finally come in handy. Functional connectivity across
different cortical areas has been shown to facilitate speech
comprehension when the intelligibility of the speech signal is
reduced (Obleser et al., 2007).

On the other hand, the lack of reciprocal and/or recurrent
anatomical connectivity among some cortical areas in our
simulations is merely a feature of the model in its current
state of development. Since DSs are provided by word2vec we
are neither able to inject backward signals from the EL nor
able to implement recurrent connectivity inside such standalone
model. In the case of coarse-grained word categories, their
static SDRs are neither able to be enriched by recurrent
connectivity nor by backward connections from the EL module.
We are aware that reciprocal connectivity between different
areas as well as recurrent connectivity inside the same area
is a repeated pattern in cerebral cortex. Therefore, future and
more complex implementations of the model will include our
own Distributional Semantic (DS) preprocessor—instead of
word2vec—and coarse syntax generated from phonetic cues by
means of the utilization of the computational hypotheses settled
in Dematties et al. (2019). Such model will be enriched by
reciprocal and recurrent connectivity in all their areas.

In this research we use some features of the information
processing gradient discovered in the LIFG as a guidance to
explain a plausible interaction of different lexical constraints
in cortex. In this complex region of the neocortex information
coming from BAs 47 and 45 is involved in semantic processing
(Zhang et al., 2004; Carli et al., 2007; Newman et al., 2010; Goucha
and Friederici, 2015) and we use it as the DS input gateway to the
EL. It is important to highlight though that there are alternative
pathways—beyond BA 47—in which semantic information is
processed such as the temporal and inferior parietal lobes—
among others (Binder and Desai, 2011).

In fact, many other sources of information—which turn
out to be useful for early infant language acquisition—have
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not been yet considered in our computational approach. For
instance, it has been shown that iconic gestures boost speech
comprehension under adverse listening conditions (Holle et al.,
2010). Neurocognitive studies of motor representations of speech
sounds, action-related language, sign language, and co-speech
gestures are also tightly coupled to the language system (Willems
and Hagoort, 2007). Future work in the model will be directed
toward integrating information from more sources than the ones
presently used. We will also enrich coarse-grained word category
information from apical dendrites with direct phonological
cues to procure a more holistic linguistic integration. With
this implementation we will also be able to apply backward
connectivity possibly derived from BAs 45/44 to BA 6 and also
to include recurrence in specific stages of the model related to
coarse-grained syntax and phonology. For future developments
of this work, we will add reinforced mechanisms to the model,
including neuromodulator-like effects in the algorithm which
could significantly enhance performance.

Finally, it is important to note that some of the assumptions
claimed in this paper are computational hypotheses to be assessed
by future research in the field. For instance, the fact that our
modeling approach is inspired in differences between synapses
across neural dendrites in cortex, does not imply that the
function these synapses have in our model is the same in real
neurons, neither that it is a necessary ingredient of our model.
Specially designed experimentation has to be conducted in the
future in order to elucidate such aspects. In the same line,
the assignment of coarse-grained syntax information to apical
dendrites does not suggest a structure-function relationship
between aspects of syntax and apical dendrites in neurons. We
are gathering biologically relevant claims and accounting for
them in our model implementation. They are only comparable
features which this work suggests of interest for future research
and ML inspiration.

5. CONCLUSION

This research brings a novel modeling approach on how cortical
activation for linguistic constraints could produce grammatical
discrimination emergence in sentence constituents. The flow
of information of a linguistic processing gradient is mapped
in the cortical dynamics of a computational approach which
simulates particular characteristics evaluated as suitable for
linguistic computations in human neocortex. We introduce a
biologically inspired computational model which incorporates
specific features from the mammalian cortex. Our model utilizes
Hebbian-like rules—assisted only by the gradual decrease of
certain learning parameters. Yet, the leaning mechanisms in
the model do not involve optimization mechanisms extensively
used in prevalent Machine Learning (ML) algorithms, but of
inconclusive evidence to support its justification in cortical tissue.
We use suchmodel inspired by unification operations at semantic
and syntactic levels of language on the cortical Left Inferior
Frontal Gyrus (LIFG). We show how cortical Sparse Distributed
Representation (SDR) activation features returned by our model
are well suited to attain classification of lexical grammatical
functions of words bootstrapping Distributional Semantic (DS)
features returned by word2vec. We evaluate this research as

valuable for future and more brain-inspired ML applications of
NLP as well as a complementary validation for psycho-linguistic
theories of language processing.
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All the data in this work are available from Zendo (https://
zenodo.org/record/3653180, https://zenodo.org/record/
3374889).

Regarding datasets:
The file Corpora.txt keeps the corpus used to train the

model and the different instances of the classifier. It is basically
a text file with one sentence per line from the original corpus
called test.tsv available at https://github.com/google-research-
datasets/wiki-split.git. We eliminated punctuation marks and
special characters from the original file putting each sentence
per line.

Enju_Output.txt holds the outputs generated by Enju in
-so mode (Output in stand-off format) using Corpora.txt
as input. This file has basically a natural language English
per-sentence parse with a wide-coverage probabilistic for
HPSG grammar.

The file Supervision.txt keeps the grammatical tags of
the corpus. This file holds a tag per word and each tag is situated
in a single line. Sentences are separated by one empty line while
tags fromwords in the same sentence are located in adjacent lines.

The file Word_Category.txt carries the coarse-
grained word category information needed by the model
and introduced in it by apical dendrites. Each word in the
corpus has a word-category tag which provides additional
constraints to those provided by lateral dendrites. This
file contains a tag per word and each tag is situated in
a single line. Sentences are separated by one empty line
while tags from words in the same sentence are located in
adjacent lines.

The file SynSemTests.xlsx keeps all the grammar
classification results as well as the statistical analysis in the
classification tests.

The file ModelsComparison.xlsx keeps all the grammar
classification results as well as the statistical analysis in the
classification tests for the comparison of a normal instance of the
Encoder Layer vs. an instance of the Encoder Layer with stripped
distal lateral dendrites.

The file IndividualTaggingPerformance.xlsx
keeps all the disaggregated grammar classification results as well
as the statistical analysis in the classification tests for word2vec
vs. the Encoder Layer and for a normal instance of the Encoder
Layer vs. an instance of the Encoder Layer with stripped distal
lateral dendrites.

The fileFrontiers_Supplementary_Material.pdf
provides details about the algorithmic formulation of
the basic computational units of the EL (i.e., CCs and
cell units).

All these datasets are available at: https://zenodo.org/record/
3653180.

Regarding source code:
A GitHub repository with the code used to implement the

computational model as well as the scripts to generate and
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