
REVIEW
published: 09 June 2020

doi: 10.3389/fncir.2020.00026

Edited by:

Edward S. Ruthazer,
McGill University, Canada

Reviewed by:
Simon Chen,

University of Ottawa, Canada
Alex Dranovsky,

Columbia University, United States

*Correspondence:
Juan Facundo Morici

faq.morici@gmail.com

†These authors have contributed
equally to this work

Received: 30 January 2020
Accepted: 20 April 2020
Published: 09 June 2020

Citation:
Morales C, Morici JF, Miranda M,

Gallo FT, Bekinschtein P and
Weisstaub NV

(2020) Neurophotonics Approaches
for the Study of Pattern Separation.

Front. Neural Circuits. 14:26.
doi: 10.3389/fncir.2020.00026

Neurophotonics Approaches for the
Study of Pattern Separation
Cristian Morales1†, Juan Facundo Morici2*†, Magdalena Miranda2, Francisco Tomás
Gallo2, Pedro Bekinschtein2 and Noelia V. Weisstaub2

1Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago,
Chile, 2Instituto de Neurociencias Cognitiva y Traslacional (INCYT), Concejo Nacional de Investigaciones Científicas y
Tecnológicas (CONICET), Instituto de Neurología Cognitiva (INECO), Universidad Favaloro, Buenos Aires, Argentina

Successful memory involves not only remembering over time but also keeping memories
distinct. Computational models suggest that pattern separation appears as a highly
efficient process to discriminate between overlapping memories. Furthermore, lesion
studies have shown that the dentate gyrus (DG) participates in pattern separation.
However, these manipulations did not allow identifying the neuronal mechanism
underlying pattern separation. The development of different neurophotonics techniques,
together with other genetic tools, has been useful for the study of the microcircuit
involved in this process. It has been shown that less-overlapped information would
generate distinct neuronal representations within the granule cells (GCs). However,
because glutamatergic or GABAergic cells in the DG are not functionally or structurally
homogeneous, identifying the specific role of the different subpopulations remains
elusive. Then, understanding pattern separation requires the ability to manipulate a
temporal and spatially specific subset of cells in the DG and ideally to analyze DG cells
activity in individuals performing a pattern separation dependent behavioral task. Thus,
neurophotonics and calcium imaging techniques in conjunction with activity-dependent
promoters and high-resolution microscopy appear as important tools for this endeavor. In
this work, we review how different neurophotonics techniques have been implemented
in the elucidation of a neuronal network that supports pattern separation alone or in
combination with traditional techniques. We discuss the limitation of these techniques
and how other neurophotonic techniques could be used to complement the advances
presented up to this date.

Keywords: memory, pattern separation, optogenetics, calcium imagaing, granule cells, mossy cells, interneuron,
adult born granule cells

INTRODUCTION

Research in the memory field has been interested not only in the ability to remember over
time but also in the capacity to keep memories differentiated and resistant to confusion.
To evoke a memory, our brain needs to integrate the information it receives from
the environment. This integration is important for coding the general structure of the
environment and abstracting it from the specificities of individual events, which allows us
to generalize to novel situations. This ability to separate memory components into unique
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representations was postulated to rely on a computational
process known as ‘‘pattern separation’’ (McClelland et al.,
1995; Norman and O’Reilly, 2003). Computational models
define this process as a transformation of the correlated input
information into an orthogonal output (Marr, 1971; Treves and
Rolls, 1994; Ranganath, 2010). According to these theories, the
correct storage and retrieval of memories require the stored
of the information in nonoverlapping representations. Because
episodic memory implies learning about unique events and
avoid interference, being able to differentiate them is particularly
important for this kind of memories so that storing new
information does not lead to overwriting previously stored ones.
For this reason, pattern separation is proposed as an essential
component for the storage of differentiated representations of
episodic memories and as such has been mainly studied in the
hippocampus (HP; Ranganath, 2010).

The HP is one of the structures that constitute the medial
temporal lobe, and it has been associated with the pattern
separation process. Classically, four regions have been identified
in the HP that have distinct anatomical, physiological, and
genetic characteristics (Figure 1): the regions cornu ammonis
1, 2, and 3 (CA1, CA2, and CA3) and the dentate gyrus (DG).
Computational models first suggested the potential importance
of the DG for this cognitive function. The attractor system
present in CA3 would be favored by a previous decorrelating
process in the DG that could increase the storage capacity of the
CA3 system (Amaral et al., 1990; Rolls et al., 1998). The presence
of a highly inhibited DG structure or subregion, with a five-time
greater number of cells than the upstream entorhinal cortex (EC),
and divergent connectivity toward the CA3 region appears as the
perfect structure to be able to achieve this randomizing function
(Amaral et al., 1990; Jung and McNaughton, 1993; Chawla et al.,
2005; Leutgeb et al., 2007). The potential adaptive role of this
putative function was immediately appreciated because very
similar events could lead to different outcomes and being able
to judge this is crucial for our cognitive versatility.

Many tasks have been developed to show the relevance of
the pattern separation process for cognition (Gilbert et al., 1998,
2001; Clelland et al., 2009; Toner et al., 2009; Creer et al.,
2010; Bekinschtein et al., 2013). Gilbert et al. (2001) found
that the DG ablation leads to a deficit in the discrimination of
two similar positions based on distal cues. This deficit was not
observed if the separation between the positions was greater.
These results were confirmed in subsequent studies (Goodrich-
Hunsaker et al., 2005), strongly supporting the role of the DG in
pattern separation. The gradual observed impairment indicates a
failure in pattern separation at the behavioral level. Consistently,
McHugh et al. (2007) found, using a genetic approach, that mice
lacking the essential NR1 subunit of the N-methyl-D-aspartate
receptor (NMDA receptors; rNMDA) in GCs of the DG could
not distinguish two similar contexts during a fear-conditioning
task, although their performance in a regular task of contextual
fear conditioning was normal (McHugh et al., 2007). Thus, the
results indicate that DG participates in the discrimination of
spatial or contextual information. The experiments commented
above allowed to postulate the existence of a pattern separation
process, which can be deduced from the behavioral performance

(e.g., good execution on the pattern separation task) have
correctly occurred and can only hypothesize about the existence
of an underlying circuit-level process that supports this kind of
cognitive discrimination.

Human studies indicate that patter separation takes place in
the DG. In studies using high-resolution functional magnetic
resonance imaging to measure brain activity during incidental
memory encoding (Bakker et al., 2008; Lacy et al., 2011),
authors found that CA3/DG activity was highly sensitive to
small changes in the input. In such studies, the interpretation
is that DG amplifies the differences between highly similar
objects, thus generating highly dissimilar and nonoverlapping
representations. Then, the evidence accumulated from animal
and human studies supports the theoretical models proposed
for the DG to be involved in pattern separation. As from the
mechanism underlying this process, theoretical models proposed
that the correct occurrence of the pattern separation process
requires low excitability of GCs to induce the orthogonalization
of memory representations (Treves and Rolls, 1992; Rolls and
Kesner, 2006; Rolls, 2013) The low excitability would permit
a small number of GCs to represent an episode and then
decreasing the possibility of superposition between similar
representations (Rolls, 2013). Also, orthogonalization could be
a mechanism that forces distinct GCs to be active in the
codification of similar episodes (Rolls, 2013). Lesion studies by
electrolytic or histochemical techniques (Gilbert et al., 1998,
2001; Goodrich-Hunsaker et al., 2005; Hunsaker et al., 2008) and
traditional electrophysiological techniques (Leutgeb et al., 2007;
Neunuebel and Knierim, 2014) support this theoretical model.
However, the exact mechanism by which pattern separation
occurs remains unresolved mainly for technical limitations. Over
the last decades, the implementation of new technologies in the
study of biologically relevant questions opens a new window
of opportunity to tackle in undertaking the complexity of the
DG circuitry. Particularly, photonic techniques are one of the
most used in neuroscience research (Torricelli et al., 2014).
Their popularity comes from their characteristics, such as their
adaptability to different settings and their versatility to study
different problems, from the cellular to the behavioral level,
as well as their high temporal and structural accuracy for
cell-specific activity measurement and activity intervention (Cho
et al., 2016). In this scenario, the usage of neurophotonics has
shown some advantages over previous techniques in the study of
the DG microcircuit involved in pattern separation. Regarding
the complexity of this issue due to the cell-type variability
proposed to be involved during the pattern separation process,
it is important to try and contrast the theoretical models with the
empirical evidence. In this review article, we focus primordially
on the evidence obtained by neurophotonics techniques.

IMPLICATIONS OF MEMORY ENGRAM
THEORY IN PATTERN SEPARATION
PROCESS

Pattern separation computational models (Rolls and Kesner,
2006; Rolls, 2013) propose that orthogonalization implicates
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FIGURE 1 | Representation of the dentate gyrus (DG)-CA3 circuit. (A) Schematic representation of a coronal slice from rat brain. The hippocampus (HIP) is
constituted by cornu ammonis regions 1 and 3 (CA1 and CA3, in violet) and the DG region (DG, in orange). (B) Zoom inset from the HIP. The main inputs to the HIP
come from the layers 2/3 of the entorhinal cortex (EC) that constitute the perforant path (PP, light blue lines). The information coming from the EC could project to the
CA3 pyramidal layer directly or indirectly by making and intermediate synapse on the granule cells (GCs, green ellipse) located in the granular layer (Gr) of the DG.
Mossy cells (MCs, ligth blue rectangle) and adult-born GCs (abGC, blue circle) would be the first neurons activated and could initiate pattern separation. The abGCs
can modulate the activation of GCs through a direct connection, which is excitatory or inhibitory, depending on the activity pattern of entorhinal input. On the other
hand, abGCs and MCs can inhibit GCs by recruitment of parvalbumin containing interneurons (PV+, orange hexagon). Also, the activity of PV+ interneurons is
modulated by somatostatin containing interneurons (SOM+, pink ellipse) and by GCs itself. SOM+ interneurons can directly inhibit GCs, specifically distal dendrites,
where contextual information arrives. Thus, the interaction between the different cell types present in the DG defines the activity of GCs, which project to CA3. Finally,
the CA3 pyramidal cells project through the Schaffer collaterals to the CA1 pyramidal cells forming the main hippocampal output into layer 5 of the EC.

the activation of different GCs within the total population
in different contextual experiences. Empirical experiments
have supported this statement. Using the expression of an
activity-dependent gene, like the activity-regulated cytoskeleton-
associated protein (ARC), Chawla et al. (2005) found that
when mice were exposed to two different environments, ARC
was expressed in two different sets of neurons. Similar results
were obtained for ZIF268 in an experiment where mice
were allowed to explore the same environments but with
two different motivations (Satvat et al., 2011). Both results
indicate that in the DG an orthogonalization process occurs
not only to encode different contextual features but also
to encode differences between the experiences per se. This
activation of different cell populations appears to be specific to
situations that require differentiation because when the mice
explored the same environment with the same motivation,
the sets of zif268-positive cells obtained were significantly
overlapped (Satvat et al., 2011). This suggests a correspondence
between the behavioral experience and the subset of cells
that encode it. Interestingly, the representational differentiation
also occurs in the CA3 region but not in the CA1 region
(Leutgeb et al., 2005, 2007) of the HP, This differential
recruitment highlights the differentiation process as a DG and/or
CA3 region property.

The existence of the neural substrate of memories that
make us unique and unrepeatable individuals has been a
matter of discussion for over a century. Richard Semon
proposed the existence of physical changes in the brain
generated by the encoding of new information and called them
‘‘engrams’’ (Tonegawa et al., 2015). Engrams are commonly
defined as a set of cells that are synchronously activated
during the encoding of a particular experience resulting in
the storage of this new information (Wang, 2019). Semon’s
idea was too progressive for his time to experimentally
contrast it, although it has changed in the last decades,
when several publications supporting the engrams theory
have appeared (for a review see Bocchio et al., 2017;
Tanaka and McHugh, 2018 and Josselyn and Tonegawa,
2020). As predicted by Martin and Morris (2002): ‘‘In our
view, the final test of any hypothesis concerning memory
encoding and storage must be a mimicry experiment, in which
apparent memory is generated artificially without the usual
requirement for sensory experience, or indeed any form of
experience, during learning. [. . .] In another sense, such an
experiment would constitute a critical test that changes in
synaptic efficacy are sufficient for memory, rather than merely
necessary.’’ Neurophotonics give us, for the first time, the
opportunity to test the engram hypothesis. In the following
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section, we will try to address some of the advances made
in the engram research area by focusing on the use of
neurophotonics techniques.

Neurophotonics in the Development of
Engrams Theory
It was not until a few years ago that huge steps were taken in the
quest to identify memory engrams, thanks to the generation of
different behavioral, molecular, genetic, and optic tools (Josselyn
and Tonegawa, 2020). Particularly, optogenetics was the first
neurophotonic technique used to tackle this question. Liu et al.
(2012) injected an adenoassociated virus (AAV) AAV9-TRE-
ChR2-EYFP in the DG of a c-fos–tTA mice. The main idea
of this strategy was to express channelrhodopsin 2 (ChR2,
excitatory opsin) in the DG cells that were active during the
training phase of a fear-conditioning task (Liu et al., 2012;
c-fos will be recruited and drive the expression of tTA.) They
showed that activating this population of DG cells was enough
to trigger the reactivation of the fear response. These results
indicated that reactivating the cells recruited during the encoding
of a fear memory was sufficient to retrieve and express this
memory. This finding was supported and expanded when
Ramirez et al. (2013) were able to create a false memory.
By reactivating the DG cells recruited during the encoding
of a neutral context (context A) while the animal received a
shock at a different one (context B), the authors were able to
create a false association between context A and the delivery
of the electrical shock (Ramirez et al., 2013). Interestingly, this
phenomenon was observed in other parts of the brain, such
as the olfactory bulb (Vetere et al., 2019) and the amygdala
(Redondo et al., 2014), suggesting an underlying common neural
mechanism. To study the stability of the contextual component
of a fear memory within the neuronal representation in the
HP, Ghandour et al. (2019) performed in vivo Ca2+ imaging
of putative engram and nonengram cells in the CA1 region
of the HP at posttraining sessions. To do this, they injected
a TRE-KikGR lentivirus into the CA1 (to label engram cells)
of a Thy1-G-CaMP7 × c-fos–tTA double transgenic mice.
KikGR is a highly effective fluorescent protein that could
photoconvert from green to red upon the exposure to 365-nm
light without affecting the Ca2+ imaging signal. Its expression
was controlled in an activity and time-dependent manner (by
the c-fos–tTA construct). G-Camp7 is a very sensitive calcium
sensor. Then, by combining both tools, they could identify the
activated engram cells during the recordings. They observed that
the total activity pattern of the engram cells during learning
was more stable across postlearning memory processing than
the activity of the nonengram cells. However, as far as we
know, this kind of experiments was not yet performed in the
DG. Nevertheless, these results suggest that neurophotonics
is a powerful instrument in the quest and identification of
memory engrams and their role in the different memory
stages of normal and pathological conditions (Roy et al., 2016;
Denny et al., 2017).

The capacity of the brain to maintain differentiated
engrams could be really useful for the storage of overlapping
memories (Deng et al., 2013). Then, understanding how

a particular subset of cells is recruited to be part of
an engram is indeed important. It has been shown that
neuron excitability could be enhanced by CREB expression
(Han et al., 2009; Rao-Ruiz et al., 2019), helping with the
engram allocation into that particular subset of neurons
(Zhou et al., 2009; Kim et al., 2013; Yiu et al., 2014).
With this background in mind, Rashid et al. (2016) asked if
two fear-conditioning episodes closely in time could recruit
similar neuronal populations in the lateral amygdala. They
observed that the overlapping between arc and homer1, two
immediate early genes, mRNA increased. Moreover, there
was interest in dissecting if the excitability of a particular
neuronal ensemble was sufficient to direct the memory allocation
to those neurons. To do this, they guide the expression
of halorhodopsin (NpHR3.0, inhibitory opsin) and ChR2 to
inhibit or excite the activity of the same neuronal population
before the first fear conditioning. The main objective behind
this experimental design was to bidirectionally modulate the
excitability of the transfected neurons to enhance or decrease
the degree of overlapping between memory engrams. They
observed that the optogenetics manipulations had effects
over the engram overlapping outcomes only when the two
fear-conditioning episodes were generated within a limited
time frame. This result suggests that, depending on the
temporal proximity between two slightly different experiences,
the neuronal ensemble recruited by both of them could be
similar. This experiment suggests that, at least in the amygdala,
the time interval between two similar experiences is crucial
in the ability to generate distinct memory engrams and
implies that this structure might not have the computational
ability to use pattern separation as a disambiguating process.
This kind of experimental setting would be really useful to
dissect if pattern separation happening in the DG requires the
allocation of two similar experiences into different neuronal
ensembles. However, to tackle this idea, future experiments
should parameterize the similarity of the contexts used
during training.

More recently, it has been shown that the enhancement
of the engram cells excitability after reactivation is mediated
by the internalization of Kir2.1 inward-rectifier potassium
channels and the activation of rNMDAs (Pignatelli et al.,
2019). It was shown that K2+ inward rectifier currents are
negatively modulated by the activation of α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor (AMPA receptors)
(Houzen et al., 1998; Jones et al., 2000; Schröder et al.,
2002). Using optogenetics to tag DG engram cells associated
with a fear memory, Ryan et al. (2015) have shown that
engram cells present an enhancement of the spine density
and rAMPA/rNMDA ratios compared with nonengram cells.
Interestingly, this phenotype was depleted when the animals
received a protein synthesis inhibitor, anisomycin, classically
used to impair memory consolidation. To study more in detail
this aspect, a technique called dual-eGRASP has been developed
(Kim et al., 2012). The conventional GRASP technique requires
two complementary mutant GFP fragments, which are expressed
separately on presynaptic and postsynaptic membranes. When
the complementary GFP fragments interact within each other
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at the synaptic cleft, a functional GFP appears. Then, the
GFP signal indicates a formed synapse between presynaptic
and postsynaptic neurons. Using this approach, it was shown
that the CA3–CA1 spine density is enhanced after the training
phase (Choi et al., 2018), suggesting that the excitability changes
observed happen in the entire engram cell ensemble. The
increase of spine density observed in the engram cells was
related to the enhancement of the rAMPA/rNMDA ratio and
subsequently with the Kir2.1 inward-rectifier potassium channel
internalization. Then, these results suggested that changes in the
excitability of neurons (Park et al., 2016) that are part of an
engram could be key in the mechanism of pattern separation of
overlapping memories.

It has been proposed that engram cells from distinctive
ensembles spread all over the brain (Kastellakis and Poirazi,
2019). This particularity is associated with the capacity of
integrating different features of the encoding experience (Guan
et al., 2016). According to this idea, activation of DG engram
cells, as a hub in the pattern separation mechanism, could
trigger the expression of aversive or appetitive responses that
are commonly located in different downstream structures
(Redondo et al., 2014; Ramirez et al., 2015; Roy et al., 2017;
Chen et al., 2019). Ramirez et al. (2015) showed that chronic
optogenetic reactivation of rewarded experiences reverts the
depressive behavior in a mouse model. Moreover, the chronic
reactivation of the dorsal DG engram cells associated with
an aversive experience generates extinction response, whereas
the reactivation of the ventral DG engram cells generates an
enhancement of the fear response (Chen et al., 2019). However,
how memory function emerges from the coordinated activity
between all the engram nodes remains a mystery. It has been
shown that distinct neuronal populations of the basolateral
amygdala participate in giving positive or negative valence
(Redondo et al., 2014; Gore et al., 2015) to a particular
experience. Then, it was proposed that the reactivation of
contextual engram cells located in the DG could guide the
reactivation of the valence engram cells associated with guiding
the behavioral outcome of a certain experience (Tonegawa
et al., 2015). These results are in line with the postulation that
reactivation of one of the nodes guides the reactivation of the
entire engram. Understanding the mechanisms underlying this
feature could be useful for the treatment of different anxiety and
mood disorders.

Then, the accumulated evidence proposes that the
information in the brain could be stored at specific cell
ensembles. In this sense, the differentiation of similar
information by generating nonoverlapping engrams is proposed
as the material outcome of a pattern separation process. Most
of the studies focus their attention on the interaction between
excitatory neurons at the time of characterizing the intrinsic
properties of engram cells. However, the GCs are not the
only glutamatergic cells within the DG and neither the only
population within the structure. Then, it is plausible that other
cell populations might also be engram cells or at least play
important modulatory roles to the main cells. In this regard,
inhibitory engrams have been proposed to be important for
specific memory reactivation (for a review, Barron et al., 2017).

In the following sections, we discuss the role of different cell
types in the DG circuit involved in pattern separation.

DENTATE GYRUS GLUTAMATERGIC
CELLS PARTICIPATION IN PATTERN
SEPARATION

Usage of Neurophotonics in the Study of
the Spatial Codification of Granule and
Mossy Cells
One of the most studied hippocampal function is its involvement
in spatial memory encoding. Lesions or pharmacological
interventions on the DG impair the performance in different
spatial memory tasks (Gilbert et al., 1998, 2001; Goodrich-
Hunsaker et al., 2005, 2008), suggesting a role of this
structure during the storage or recall of this kind of memory.
Moreover, electrophysiological recordings have shown the
existence of place cells within the DG (Jung and McNaughton,
1993; Leutgeb et al., 2007), neurons that are selectively
activated when rodents moved into a specific location within
a maze (O’Keefe and Dostrovsky, 1971). A closer analysis
has shown that the DG place cells present multiple place
fields (Jung and McNaughton, 1993; Leutgeb et al., 2007)
and, like CA1 place cells, can remap (Leutgeb et al., 2007).
Remapping is a property consisting of the change of the
place cell firing pattern in response to a small change in
the sensory (Muller and Kubie, 1987; Colgin et al., 2008)
or behavioral context (Colgin et al., 2008). In this way, it
has been suggested that this remapping property allows the
encoding of information emerging from similar experiences into
distinct neuronal representations, which in turn is important
for pattern separation. However, one of the disadvantages of
the data obtained with electrophysiological recordings is the
difficulty in distinguishing between other neurons that are also
glutamatergic-like mossy cells (MCs; Soriano and Frotscherf,
1994). In this scenario, neurophotonic techniques have allowed
researchers to separate the contribution of GCs and MCs to
pattern separation.

The DG is composed primarily of GCs, whose dendrites
are arranged within the molecular layer, and their cell bodies
form the adjacent GC layer (Amaral et al., 2007). Between the
molecular layer and the CA3 region, there is a polymorphic
layer called the hilus. Mossy cells are located only in the
hilus region (Figure 1). However, because GCs fibers and
MCs coexist in this region (Scharfman, 2016), their differential
contribution to the circuitry functionality has been difficult
to be dissected. One possible, and elegant, setting used for
the study of the differential contribution from GCs and
MCs has been to perform simultaneous optical stimulation
and electrophysiological recordings (Senzai and Buzsáki, 2017;
Jung et al., 2019). In these studies, an optrode was used.
This array allows the simultaneous recording of the voltage
field while the light is delivered to the tissue, making
possible to see the instantaneous effect of light in the firing
rate of units recorded (Royer et al., 2010; Anikeeva et al.,
2011). Senzai and Buzsáki (2017) used dopamine receptor
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D2 (DRD2) promoter to drive the expression of a chloride
pump called archaerhodopsin specifically to MCs. Using this
strategy, neurons that suppressed their activity during the
optical stimulation were classified as putative MCs. Surprisingly,
this study found that MCs from the DG present one or
more than one place fields, like GCs, making it necessary
to reinterpret previous works (Jung and McNaughton, 1993;
Leutgeb et al., 2007), but also proving the strength of the new
optical techniques.

With this system, the accuracy of the study of the MCs’
electrophysiological characteristics can be enhanced. However,
this form of identification presents some limitations that depend
on neuronal connectivity. For example, in some cases, neurons
that express archaerhodopsin can activate other neurons. Then,
optical stimulation can induce suppression of the activity of
neurons that express archaerhodopsin but excitation of neurons
that are subsequently activated by them (Senzai and Buzsáki,
2017; Morales et al., 2019). This method does not allow the
identification of GCs (that excite directly the MCs) but is useful
for the identification of MCs. To tackle this issue, Danielson
et al. (2017) used in vivo two-photon calcium imaging in
awake behaving mice to differentiate the role of MCs and
GCs. To achieve selective manipulation of MCs, they took
advantage of the anatomical properties of MCs. Specifically,
they injected an AAV-expressing Cre-recombinase into the
DG. Then they injected a Cre-dependent rAAV-expressing
GCaMP6f, a sensitive fluorescent protein used for imaging of
neuronal activity, in one of the DGs. Because MCs project
to contralateral DG, this technique allows the expression of
fluorescent markers only in MCs of the contralateral DG.
Then a chronic imaging window was implanted above the DG
to visualize Ca2+ activity from MCs in head-fixed mice that
have to run on a treadmill in different linear environments
to receive a reward. They found that MCs have place fields,
as has been previously described, but while GCs have high
tuning specificity, MCs have low tuning specificity indicating
that MCs have multiple firing fields. This supports the finding
that place cells with multiple place fields that were found in
electrophysiological experiments (Jung and McNaughton, 1993;
Leutgeb et al., 2007) are principally MCs. Danielson et al. (2017)
showed that the fraction of place coding was bigger in MCs
than in GCs, supporting the idea that, in electrophysiological
recording, MCs represent an important number of place cells.
Although a powerful approach, a disadvantage of this setting
is that the cell specificity is given by anatomical properties.
Some studies show that MCs are not the unique cells that
project to contralateral DG (Scharfman, 2018). If this is
confirmed, the results reviewed above required to be interpreted
with caution.

The results of a recent study (Jung et al., 2019) suggest a
possible driver role of MCs in remapping. They showed that
when there are changes in the environment, such as those used
to induce remapping, MCs’ response precedes the activity change
on GCs. It is important to note that, to differentiate between
GCs and MCs, Jung et al. (2019) injected a CRE-inducible
AAV to drive the expression of Chronos, an excitatory opsin
that is faster and more light-sensitive than the conventional

channelrhodopsin (Klapoetke et al., 2014), in two different
transgenic mice line, DRD2-Cre and POMC-Cre mice, which
allowed them to excite, MCs and GCs, respectively. Although the
use of this setting to differentiate the role of MCs and GCs in
the DG circuit was previously used, they argued that excitation is
better than inhibition to discriminate between neuronal types.

In summary, the evidence described above suggests that
both CGs and MCs may be deferentially involved in the
functionality of the DG circuitry. In particular, MCs showed
more sensibility to contextual changes than GCs suggesting that
MCs could be part of the circuits that detect and encode the
nonoverlapped information, while the GCs could be encoding
the overlapped information. Although further research would be
needed to completely dissect their specific function, the evidence
accumulated until now proposes to MCs as important players in
the mechanism of pattern separation.

What Can We Say About the “Irritable”
Hypothesis Using Neurophotonic
Techniques?
One of the most exciting topics on the study of the DG is
related to the role of each cell type in terms of which node
orchestrates the activity of the other nodes. It has been shown
that MCs can excite GCs directly and can inhibit GCs indirectly
through the recruitment of feedback inhibition (Scharfman,
1995; Larimer and Strowbridge, 2008). However, because of
the complexity of the DG circuit, the neuronal mechanisms
underlying the net effect on GC activity are still a controversial
matter (Scharfman, 2018).

In the early 1980s, some seminal studies showed that the
stimulation of commissural (fiber ofMCs) just before stimulating
the perforant path (PP) produced an inhibition over the GC
spikes population (Buzsàki and Eidelberg, 1981; Douglas et al.,
1983), suggesting that the activation of MCs principally inhibits
the activity of GCs. Interestingly, this conclusion was confirmed
by subsequent experiments (Sloviter, 1983, 1991; Scharfman,
1995), allowing the establishment of the ‘‘dormant basket cells
(BCs)’’ hypothesis. This hypothesis proposed that the net effect
of MCs on GC activity was mediated by the activation of
parvalbumin (PV+) GABAergic interneurons within the DG
that then inhibit GCs (Sloviter, 1991). However, in contrast to
this theory, other experiments suggested that the net effect was
mediated by the excitation of the GCs by the MCs (Buckmaster
et al., 1996; Ratzliff et al., 2004). This alternative hypothesis,
called the ‘‘irritable mossy cells’’ hypothesis, proposed that MCs’
hyperexcitability increases the activity of the GCs affecting
in this way the net effect onto the DG (Santhakumar et al.,
2000). Despite that the last hypothesis was described in
pathological conditions such as epilepsy, it has been extrapolated
to memory function. Then, based on these two perspectives,
MCs could modulate GCs’ response by indirect inhibition or
direct activation.

One of the problems with electrical stimulation is how to
selectively and specifically stimulate MCs (Amaral et al., 2007;
Leranth andHajszan, 2007). Then, identification ofMCs by other
parameters than their electrophysiological properties is required.
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Jackson and Scharfman (1996) used in hippocampal slice the
voltage-sensitive dye technique (90–92). This technique has a
better spatial resolution than traditional electrophysiological
approaches and permits to study the spread of activity within
DG after stimulation of PP. They showed that the spread of
activity depends specifically on the hilar activation, whereas
the PP damage was not related to this outcome (Jackson
and Scharfman, 1996) and that electrical stimulation of the
hilus induces depolarization at the inner molecular layer. Thus,
they suggested that the spread of activity delivered by PP
stimulation depends on positive feedback between GCs and
MCs. Despite these results, other investigations that combine
a laser-scanning photostimulation with a voltage-sensitive dye
(Xu et al., 2010) have shown that photostimulation of the hilus
does not increment the activity in GCs (Sun et al., 2017). Hsu
et al. (2016) performed a series of experiments to resolve the
discrepancy between these results. They injected unilaterally
a CRE-inducible AAV carrying the ChR2 gene in the hilus
of Grik4-cre hemizygous mice to direct the expression of
ChR2 to the commissural fiber of contralateral DG. The authors
found that inhibition/excitation balance in GCs was increased
when commissural fibers were photostimulated. Moreover, they
showed that while concurrent activation of commissural and
perforant pathways increased the response of GCs, the delayed
activation of PP compared with the commissural pathway
decreased the percentage of responding GCs (Hsu et al., 2016).
These results proposed that the optogenetic stimulation of the
PP at 10 Hz, the ‘‘dormant BCs’’ hypothesis, seems to apply.
Interestingly, the frequency of the optostimulation is quite
similar to the one observed in the HP of animals during active
exploration periods.

Contrasting with what was described above, another study
(Hashimotodani et al., 2017) decided to address the effect of
fast (30 Hz) optical stimulation of MC fiber, because this kind
of stimulation can induce long-term potentiation (LTP). To
generate an optical fast stimulation, they used ChIEF, a faster
version of ChR2 (Lin et al., 2009). They found that fast optical
stimulation induces LTP between MCs–GCs synapses, but not
in mossy-interneurons synapses. This facilitation increases the
excitation/inhibition balance, thereby inducing an increment in
GC activity. These results obtained using a fast optostimulation
protocol support the ‘‘irritable’’ hypothesis. Taking all this
evidence together, the optostimulation frequency performed at
the PP seems to be critical in defining the role of the MCs in
the modulation of the GC activity. If the input is low frequency,
the indirect inhibition mechanism seems to modulate the GC
net effect, whereas the direct MCs–GCs excitation seems to be
more preponderant when higher-frequency inputs impact into
the circuit.

NEUROPHOTONICS APPLICATIONS IN
THE STUDY OF THE DG INTERNEURONS
ROLE IN PATTERN SEPARATION

Several models have proposed that GABAergic DG interneurons
mediate the control of GC excitability and the orthogonalization
of engrams that represents similar contexts (Rolls, 2013).

Electrophysiological experiments have shown that GABAergic
interneuron activity in the DG, unlike other hippocampal
regions, is higher in a novel than in a familiar context (Nitz
and McNaughton, 2004), suggesting its role in encoding novel
information (Figure 1). Some of the GABAergic interneurons
that contact GCs at the perisomatic region are BCs, whose
inputs come from other GCs, the perforant pathway (Freund
and Buzsáki, 1996), and MCs (Scharfman and Myers, 2012;
Hsu et al., 2016; Scharfman, 2016; Danielson et al., 2017).
Thus, in this way, these interneurons could control both
feedback and feedforward inhibition onto GCs (Freund and
Buzsáki, 1996; Savanthrapadian et al., 2014). On the other
hand, within interneurons that contact the dendritic region of
GCs are the hilar PP-associated interneurons (HIPPs), which
correspond to a type of interneurons that have their soma in
the hilus, where contact with GC axons takes place (Freund
and Buzsáki, 1996; Savanthrapadian et al., 2014; Yuan et al.,
2017). It has been proposed that HIPPs could control GC activity
through feedbackmechanisms (Houser, 2007). There has been an
established relationship between the anatomical characteristics
of these subpopulations and the presence of specific neuronal
markers (Freund and Buzsáki, 1996; Savanthrapadian et al.,
2014). The expression of neuronal markers associated with
distinct GABAergic cells has allowed the use of optogenetics
techniques to analyze the role of each of these GABAergic
interneurons in DG networks and pattern separation. Specially,
BC interneurons are PV+, whereas HIPP interneurons are
SOM+ (Freund and Buzsáki, 1996; Savanthrapadian et al., 2014;
Yuan et al., 2017).

The stronger inhibition mediated by the recruitment of PV+
interneurons counterbalances excitation of DG networks. In this
way, stronger excited cells recruit GCs more effectively than less
excited cells, allowing a ‘‘winner-takes-all’’ situation that would
allow a good pattern separation mechanism (Sambandan et al.,
2010; Guzman et al., 2019). Electrophysiological experiments
have shown that this property depends on the coactivation of the
perforant pathway and mossy fibers (Sambandan et al., 2010).
Although there are other mechanisms capable of regulating the
activity of PV+ interneurons, Hu et al. (2010), using confocal
imaging and patch-clamp simultaneously, showed that some
of the intrinsic properties of PV+ interneurons dendrites,
such as the presence of Kv3 channels, are implicated in the
rapid and precise time inhibition mediated by PV+. On the
other hand, several studies (Savanthrapadian et al., 2014;
Yuan et al., 2017) showed that SOM+ also contributes to the
precision of the discharge of PV+. In this line of evidence,
Savanthrapadian et al. (2014) injected a Cre-inducible rAAV
vector containing ChR2-tdT into the DG of SOM-Cre mice.
They studied the PV+ interneurons, while paired optical
stimulation of SOM+ interneurons with electrical stimulation
of PP. They showed that the optical stimulation of the outer
molecular layer, where the axons of HIPPs are present,
increases the precision of action potential generation in
PV+ interneurons. Yuan et al. (2017) showed that there are
two types of SOM+ interneurons within the DG, the HIPP
interneurons, which were studied by Savanthrapadian et al.
(2014), and SOM+ interneurons that have their axons in the
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hilus and contact other interneurons such as PV+ interneurons.
This last group is called hilus-associated interneuron (HIL;
Yuan et al., 2017). In this study, the scientists used a similar
injection protocol as described by Savanthrapadian et al.
(2014), but besides stimulating the outer molecular layers for
the recruitment of HIPPs, they stimulated the perisomatic
region of PV+ interneurons. Using this approach, they showed
that the activity of the HIL determines the activity of PV+
interneurons (Yuan et al., 2017). Thus, the activity of PV+
interneurons is regulated by SOM+ interneurons through
dendritic inhibition by HIPPs and perisomatic inhibition by
HIL (Figure 1). This complex array of inhibitory control
seems to indicate a complementary role between PV+
and SOM+ interneurons and could be instrumental for
pattern separation.

The EC is generally characterized as the main input to
the DG (Rolls, 2013). Understanding how cortical inputs
modulate DG inhibitory microcircuits is crucial to understand
the processing of information in the HP. To this end, Lee
et al. (2016) studied how PV+ and SOM+ interneurons affect
the activity of GCs in response to cortical stimulation. They
injected an AAV (AAV5)-expressing Cre-dependent enhanced
halorhodopsin (eNpHR3.0). Using this experimental approach,
they selectively inhibit each of these interneurons, PV+ and
SOM+. They showed that inhibition of PV+ interneurons
suppresses GCs’ responses to single cortical stimulation.
When cortical stimulation was in theta (θ) or gamma (γ)
frequencies (Lee et al., 2016), that is, frequencies present during
exploration (Bragin et al., 1995), they found that both types of
interneurons differentially regulate GCs’ responses. Interestingly,
they found that PV+ regulates the onset of the spike series,
whereas SOM+ interneurons regulate principally late spikes.
Overall, these results are in agreement with the view that
PV+ and SOM+ interneurons play complementary roles in
pattern separation.

Besides regulating GC excitability, it is possible
that GABAergic interneurons also participate in the
orthogonalization of engrams that represents similar contexts
through a lateral inhibition mechanism. By coupling the
expression of td-tomato or enhanced green fluorescent protein
(EGFP) reports with the expression of neurochemical marker
for its identification in slice experiments, Espinoza et al. (2018)
found that, in the case of GCs-PV+ connection, the ratio of
lateral inhibition regarding recurrent inhibition was higher,
suggesting an important role of this interneurons in lateral
inhibition. On the other hand, Stefanelli et al. (2016) were
interested in the size of the ensemble recruited during the
encoding of contextual information and how it modulates the
specificity during recall. To tackle this question, they expressed
ChR2 in GCs, SOM+, and PV+ interneurons to optostimulate
these cells during the encoding of a contextual fear memory
paradigm. They showed that the rise time of GABAergic
current response induced by PV+ stimulation was the shortest,
whereas the rise time of GABAergic current response induced
by SOM+ and GCs did not have significant differences. In
this way, the authors conclude that, because of the similarity
between GABAergic current response induced by SOM+ and

GCs, the lateral inhibition induced by GCs corresponds to the
recruitment of SOM+ interneurons (Stefanelli et al., 2016).
Thus, in the case of orthogonalization, experimental evidence
suggests that PV+ and SOM+ participate in a complementary
way. These results provide evidence that integrates the role
of different DG cell types in the memory allocation and how
it could contribute to the pattern separation process. From
this perspective, DG interneurons are recruited during the
encoding of contextual fear memory. Their role during this
process seems to be circumscribed to the control of the size
of the ensemble. If this process is affected by blocking the
activity PV+ or SOM+ cells, the number of recruited GCs would
increase. This outcome could affect the selectivity of the storage
and/or recall of the information because the probability of
overlap with other neuronal ensembles coding other memories
is enhanced.

NEUROPHOTONICS TECHNIQUES TO
UNDERSTAND THE ROLE OF
ADULT-BORN GRANULE CELLS IN
PATTERN SEPARATION

The DG circuit, as well as the olfactory bulb, is continuously
changing because of the integration of adult-born GCs
(abGCs; Sahay et al., 2011b). A growing body of studies
are currently focused on finding if abGCs play a particular
role in pattern separation. Clelland et al. (2009) found that
blocking hippocampal adult neurogenesis by X-ray irradiation
altered the animal’s ability to distinguish small changes
in spatial discrimination, but not unmistakable changes.
Consistently, Sahay et al. (2011a) observed that animals with
genetically increased levels of adult neurogenesis were better
at discriminating between two similar contexts (Freund and
Buzsáki, 1996; Sahay et al., 2011a). Moreover, many studies
suggested that these new neurons could be a preferential
substrate for remapping the place cells in presence of subtle
changes in the environment. This is because the immature
granular neurons have higher excitability and plasticity that
distinguishes them from the population of old and relatively
silent neurons (Espósito et al., 2005; Marín-Burgin et al., 2012).
In addition to this, it has been proposed that mature neurons
could be specialized for certain, more stable characteristics of
their environment because they would respond preferentially
to the inputs they received during their development (Aimone
et al., 2011). On the other hand, immature GCs showed a low
threshold for the induction of LTP (Schmidt-Hieber et al., 2004;
Ge et al., 2007). Then, the particular properties of immature
GCs confer them the characteristics required to be involved in
pattern separation. Consistently with this idea, Nakashiba et al.
(2012) suggested that neither the larger number nor the more
dispersed activity of the DG is sufficient to separate similar
contexts and that young aGCs would be necessary to allow
this process.

Ikrar et al. (2013) studied the DG response to electrical
stimulation with a voltage-sensitive dye technique (Ebner and
Chen, 1995; Chemla and Chavane, 2009; Tsytsarev et al.,
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2014) using an iBax-nestin mice, a model mice in which
neurogenesis can be enhanced with tamoxifen administration.
They showed that photostimulation or electrical stimulation
of DG induced a smaller and less-spread neuronal excitability
in mice with increased adult neurogenesis compared to the
controls (Ikrar et al., 2013). These results suggest that adult
neurogenesis is an important factor in the control of the
DG neurons’ excitability. This result was supported by a
different studies (Temprana et al., 2015; Drew et al., 2016).
In this case, a retrovirus expressing a light-activated channel
ChR2 was delivered to the DG of adult mice for its selective
transduction in neural progenitor cells of the adult DG.
Then, acute slices were prepared some weeks postinjection for
studying the effect of photostimulation of abGCs generated
at different time points. They showed that abGCs activate
hilar GABAergic interneurons that in turn inhibit mature
GCs (Figure 1). Specifically, Temprana et al. (2015) showed
that recruitment of feedback inhibition is higher in abGCs of
7 weeks than in abGCs of 4 weeks. This result suggests that as
time passes abGCs tend to be more integrated into inhibitory
circuits that facilitate their role in controlling the excitability of
surrounding neurons.

A recent study (Luna et al., 2019) showed that, besides
the recruitment of feedback inhibition by abGCs (Temprana
et al., 2015; Drew et al., 2016), these newborn neurons
can directly inhibit mature GCs. Specifically, Luna et al.
(2019) selectively expressed archaerhodopsin T in abGCs.
They showed that optical inhibition of abGCs produced an
increment in the DG LTP response to electrical stimulation,
even when GABA antagonists were used. This could indicate
that inhibition is independent of GABAergic interneuron
activation in the hilus. They also studied the effect of
abGC activation in mature GCs, by selectively expressing
ChR2 in abGCs. They showed that low intensities of light,
which produce low levels of glutamate release from abGCs,
induce IPSPs in mature GCs. Moreover, high intensities
of light, which produce high levels of glutamate liberation,
induce EPSP in mature GCs. Finally, they showed that
low glutamate liberation, that is, IPSP in mature GCs, is
due to the preferential activation of the lateral EC that
carries contextual information (Hargreaves et al., 2005; Wilson
et al., 2013). Keeping low levels of mature GC excitability
is important for pattern separation (Jinde et al., 2012;
Sahay et al., 2011a). Luna et al. (2019) suggested that
contextual information—besides spatial information—is relevant
to promote a sparse coding in DG. Consistently, using calcium
imaging, Danielson et al. (2016) differentiate the activity of
abGCs from other populations that present a low spatial tuning
but are good novelty detectors, supporting a fundamental role
of abGCs in disambiguating contextual information through the
process of pattern separation.

All the evidence described in this section proposed that
abGCs could play a key role in the formation of orthogonal
representations from similar inputs. This is because their high
excitability during the early stages of their development is
critical to determine which inputs will recruit them subsequently.
Because neurogenesis is a continuous process, there are always

abGCs at different stages of development. Therefore, the
probability that two different experiences recruit the same
subset of abGCs at the same developing time is low. This
characteristic gives them a potential role in orchestrating the
rest of the cells that potentially form the differentiated engrams
in the DG.

FINAL REMARKS

Neurophotonic techniques allowed the study of the role of
different neuronal types in the DG networks functionality.
Specifically, the evidence described above suggests a differential
role of each neuronal type in the mechanisms underlying
pattern separation. As we have described, neurophotonic studies
led to propose models that go beyond unique neuronal types
for information processing and where several elements of
DG network share complementary roles in the differentiation
of overlapping information. Based on the body of evidence
presented above, we are proposing a possible way in which
all these different cell types might interact and contribute to
pattern separation.

Neurophotonics have contributed to differentiate the role
of three types of DG glutamatergic cells, MCs, newborn GCs
(abGCs), and mature GCs. Thus, it has been shown that
MCs and abGCs present more remapping than mature GCs
(Danielson et al., 2016, 2017; Senzai and Buzsáki, 2017), which
suggests that MCs and abGCs are more sensible than GCs to
detect small environmental changes, that is, when differences
must be detected in similar episodes. Besides, neurophotonics
experiments suggest that these neuronal types would respond
before than GCs (Marín-Burgin et al., 2012; Jung et al., 2019),
suggesting that both neuronal types could initiate the process
of pattern separation. Besides, both neuronal types are more
sensitive to contextual changes (Danielson et al., 2016, 2017;
Senzai and Buzsáki, 2017; Luna et al., 2019), which means that
contextual information would be more relevant than other type
of information. Thus, MCs and abGCs could initiate pattern
separation through the detection of environmental changes,
especially changes in contextual information. After activation
of MCs and abGCs, they can initiate an inhibitory network.
While abGCs can inhibit directly GCs (Luna et al., 2019), MCs
and abGCs would activate PV (Scharfman, 2018; Groisman
et al., 2020), which in turn produces a lateral inhibition
proposed to be important for pattern separation (Espinoza
et al., 2018). Interestingly, the activity of SOM modulates the
activity of PV (Savanthrapadian et al., 2014; Yuan et al., 2017)
and can produce itself a lateral inhibition (Stefanelli et al.,
2016). On the other hand, the evidence indicates that the
activity of SOM is delayed when compared with the activity
of PV (Hsu et al., 2016; Stefanelli et al., 2016). Thus, both
PV and SOM interneurons control the activity of GCs, but
likely in a different time with PV activity preceding SOM
activity. Some models propose pattern separation mechanisms
that take into account and emphasize the role of PV interneurons
(Guzman et al., 2019), abGCs (Sahay et al., 2011b), and MCs
(Nakazawa, 2017). In this work, we make a complementary
interpretation to all these models, paying special attention to the
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interaction between the different cell types present in the DG
(Figure 1). Still, more work is required to better understand the
mechanism, dynamics, and constraints of pattern separation in
the DG.

However, it is important to highlight that in the last years
our understanding of this process advanced enormously, thanks
to the development of neurophotonic techniques. We believe
that the continuous advancement in this field in combination
with genetic tools will prove to be a powerful strategy for ll
for modeling pattern separation where a complementary role of
different types could be studied.
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