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The responses of many cortical neurons to visual stimuli are modulated by the position

of the eye. This form of gain modulation by eye position does not change the retinotopic

selectivity of the responses, but only changes the amplitude of the responses. Particularly

in the case of cortical responses, this form of eye position gain modulation has

been observed to be multiplicative. Multiplicative gain modulated responses are crucial

to encode information that is relevant to high-level visual functions, such as stable

spatial awareness, eye movement planning, visual-motor behaviors, and coordinate

transformation. Here we first present a hardwired model of different functional forms of

gain modulation, including peaked and monotonic modulation by eye position. We use a

biologically realistic Gaussian function to model the influence of the position of the eye on

the internal activation of visual neurons. Next we show how different functional forms of

gain modulation by eye position may develop in a self-organizing neural network model

of visual neurons. A further contribution of our work is the investigation of the influence

of the width of the eye position tuning curve on the development of a variety of forms

of eye position gain modulation. Our simulation results show how the width of the eye

position tuning curve affects the development of different forms of gain modulation of

visual responses by the position of the eye.

Keywords: eye-position, gain modulation, visual cortex, neural network, self-organizing

1. INTRODUCTION

Visual neuronal responses are often characterized in terms of the selectivity of the responses to
the location of a given visual stimulus. The portion of the visual space in which a visual stimulus
changes the responses of a neuron is conventionally referred to as the receptive field. For instance,
the receptive field of neurons in the primary visual cortex (V1) is fixed to a visual space defined
in a retinocentric frame of reference (Guo and Li, 1997; Morris and Krekelberg, 2019), whilst
the receptive field of neurons within other areas of the primate dorsal visual pathway is fixed to
a visual space defined in different body-centered reference frames such as head (Galletti et al.,
1993; O’dhaniel et al., 2005) or hand (Buneo and Andersen, 2006; Bremner and Andersen, 2012),
which are relevant for guiding motor actions. Visually responsive neurons in the cortex have been
observed to fire maximally when visual stimuli are positioned in a particular preferred location
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within the receptive field. A key experimental observation that
we investigate in the models presented below is that such visual
responses are commonly reported to bemodulated by bodily state
or posture, e.g., position of the eyes, head, or hand (Andersen
et al., 1985; Brotchie et al., 1995; Buneo et al., 2002; Pesaran et al.,
2006; Bremner and Andersen, 2012). This gain modulation effect,
however, does not influence the preferred location or the general
response profile of visual neurons, but only the amplitude of
the responses. In particular, different forms of eye position gain
modulation have been observed inmany cortical areas (Andersen
and Mountcastle, 1983; Galletti and Battaglini, 1989; Lal and
Friedlander, 1990; Brotchie et al., 1995; Galletti et al., 1995;
Hoffmann, 1998; Trotter and Celebrini, 1999; Breveglieri et al.,
2009; Merriam et al., 2013). For example, gain modulation by eye
position in parietal neurons has been described as amultiplicative
modulation of the underlying Gaussian retinotopic receptive field
by a linear or saturating function of the position of the eye
(Andersen andMountcastle, 1983; Brotchie et al., 1995). Previous
modeling studies investigating the development of multiplicative
gain modulation used a linear function to model the response
profiles of eye position input neurons (Salinas and Abbott,
1996). Linear functions, however, do not accurately represent the
Gaussian response profile of eye position neurons in the cortex
(Marĉelja, 1980; Andersen et al., 1987; Dayan and Abbott, 2001;
Wang et al., 2007). Here we show how a variety of different
functional forms of eye position gain modulation of retinotopic
visual responses, including peaked and monotonic modulation,
may develop with a more biologically realistic Gaussian function
used to model the responses of eye position input neurons.
Understanding how gain modulation may develop in the brain
provides an insight into the way the brain encodes information
that is relevant to high-level visual functions, such as coordinate
transformation, eyemovement planning, visual-motor behaviors,
and stability of spatial awareness.

1.1. Physiology
The dependence of cortical visual responses on both the retinal
location of visual stimuli and on the position of the eye (i.e.,
gaze direction) was first reported by Andersen and Mountcastle
(1983). The following two independent tasks were used by the
authors to investigate the responses of light-sensitive neurons
in area 7a of the primate brain. In the first task a peripheral
stimulus was flashed in a particular head-centered location whilst
the monkey was fixating at some gaze angle. In the second
task a stimulus was flashed on different screen locations and no
restrictions were imposed over the freedom of eye movements.
There were no head movements during either of the tasks.
The authors reported that both tasks revealed an influence
of the position of the eye on the responses of parietal visual
neurons. For instance, the proportion of recorded neurons
that had responses significantly changed by the position of
the eye was 61% for the first task and 10% for the second
task. Particularly during the first task neuronal responses were
found to become three times stronger when the eye moved
20◦ toward the preferred eye position. These results led the
authors to investigate how neuronal responses depended on the
precise relationship between the retinotopic location of a visual

stimulus and the position of the eye (Andersen et al., 1985).
The later work of Andersen et al. (1990) reported these same
effects in the lateral intraparietal area (LIP). Such gain modulated
neuronal responses were characterized in Andersen et al.
(1990) as a multiplicative interaction between a monotonic eye
position modulation component and the Gaussian retinotopic
receptive field.

Different forms of eye position gain modulation have also
been observed in several brain areas (Galletti and Battaglini, 1989;
Lal and Friedlander, 1990; Galletti et al., 1995; Hoffmann, 1998;
Trotter and Celebrini, 1999; Breveglieri et al., 2009; Merriam
et al., 2013). The work of Galletti et al. (1995) and Breveglieri et al.
(2009) reported the presence of more peaked gain modulation
by eye position in the primate parietal occipital area (PO). The
experimental task in Breveglieri et al. (2009) showed a different
quantity of retinotopic neurons in area V6A had either peaked
or monotonic eye position gain modulation. The task consisted
of presenting visual stimuli at fixation points in each of nine
equally spaced fixation locations organized as a 3 × 3 grid. The
authors reported eye position gain modulated responses in over
55% of recorded neurons. Moreover, the gain modulation of
approximately 73% of these neurons was peaked, whilst only the
remaining 27% were monotonic. The study of Merriam et al.
(2013) showed the presence of neuronal responses in the human
visual cortex modulated by the position of the eye. The task in
Merriam et al. (2013) consisted of periodically rotating a visual
stimulus around a fixation point. The same set of stimuli was
presented for several different eye positions. Functional magnetic
resonance imaging (fMRI) was used to measure cortical activity.
The authors observed that eye position changed the amplitude
of visual responses without affecting the retinal preference of
the responses. All of these experimental studies (Galletti and
Battaglini, 1989; Lal and Friedlander, 1990; Galletti et al., 1995;
Hoffmann, 1998; Trotter and Celebrini, 1999; Breveglieri et al.,
2009; Merriam et al., 2013) found that cortical responses to the
retinal location of visual stimuli are multiplicatively modulated
by the position of the eye.

1.2. Modeling Approaches
Previous modeling studies have attempted to explain how gain
modulation may develop in the brain. The recent simulation
study by De Meyer and Spratling (2011) showed that gain
modulation can appear in a predictive coding model using
unsupervised learning. In the context used by the authors,
predictive coding is defined as neural theory based on the
principle of minimizing error in the stimulus-driven activity
between bottom-up and top-down predictions of the internal
representation of the stimulus. Although predictive coding
has been suggested to be implemented by cortical feedback
connections calculating residual errors that would be then
propagated by cortical feedforward connections, currently
there is no physiological evidence of predictive coding being
implemented on the neuronal level in the cortex (Bastos et al.,
2012; Kwisthout andVan Rooij, 2013;M and S, 2015). In contrast,
the influential work of Salinas and Abbott (1996) investigated
the development of gain modulated responses using recurrent
connections within a network model of cortical neurons. The
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recurrent connectivity was defined according to the distance
between the preferred retinal locations of the neuronal responses.
Although the model was based on ordinary properties of cortical
circuits, the authors used a linear function to model the response
profiles of eye position input neurons. This is an important
issue in terms of biological plausibility because, although a
variety of responses profiles have been observed in the brain,
the response profiles of many eye position neurons have been
reported to be Gaussian (Marĉelja, 1980; Andersen et al., 1987;
Dayan and Abbott, 2001; Wang et al., 2007). Furthermore, the
recurrent connections in their model violated the widely accepted
Dale’s law, which establishes that a presynaptic neuron cannot
make both excitatory and inhibitory synaptic connections on
postsynaptic neurons (O’Donohue et al., 1985). In addition,
the model of Salinas and Abbott (1996) was not trained to
learn visual responses that were multiplicatively modulated by
eye position. Instead, the synaptic connections were hardwired
to ensure that the visual responses of each neuron within the
network were gain modulated by eye position. In this article we
address the biological issues in Salinas and Abbott (1996) with
both a hardwired neural network model and a self-organizing
neural network model of the development of retinotopic visual
responses modulated by eye position.

1.3. Our Work
In this work we investigate how a variety of different
functional forms of gain modulation, including multiplicative
gain modulation, may develop when a Gaussian function is
used to model the responses of both eye position input neurons
and retinocentric input neurons. Moreover, we investigate how
the width of the Gaussian response profile of the eye position
input neurons affects the linearity of the gain modulation by
eye position of the retinotopic visual output neurons. In the first
part of this article we study a hardwired model similar to Salinas
and Abbott (1996). The visual input to our hardwired model
consists of the sum of a term encoding the retinal location of
the visual stimulus and a term encoding the position of the eye
(i.e., the gaze direction). In contrast to Salinas and Abbott (1996),
our model does not violate the Dale’s Law (O’Donohue et al.,
1985) and response profiles of the eye position input neurons
and retinotopic visual input neurons were both modeled by a
more biologically realistic (Gaussian) function. In the second
part of this article we study a self-organizing model of the
development of multiplicative gain modulation by eye position.
Our simulation results again show the emergence of a variety
of different functional forms of gain modulation. Moreover, the
linearity of the gain modulation by eye position of the retinotopic
visual output neurons is affected by the width of the Gaussian
response profile of the eye position input neurons.

2. HARDWIRED MODEL

In this section we present simulation results investigating the
development of multiplicative gain modulation by eye position.
In particular, we address the following issues of a similar model
by Salinas and Abbott (1996). First we use Gaussian functions
to model both retinal stimulus position and eye position input

components of each visual output neuron. In Salinas and
Abbott (1996), the authors used a linear function to model the
influence of the position of the eyes on the visual responses.
Gaussian functions, however, have been reported to be a better
fit to the response profile of parietal eye position neurons
(Marĉelja, 1980; Andersen et al., 1987; Dayan and Abbott, 2001;
Wang et al., 2007). Secondly, we show that multiplicative gain
modulation can be obtained without violating the Dale’s Law
(O’Donohue et al., 1985). Finally, the firing rate responses
were modeled with a sigmoid transfer function rather than the
linear function used by (Salinas and Abbott, 1996). A sigmoid
transfer function represents more accurately the firing rate profile
of individual neurons observed in the cortex (Marĉelja, 1980;
Dayan and Abbott, 2001). Furthermore, we show how the width
of the eye position tuning curve affects the overall linearity
of gain modulation by eye position of the retinotopic visual
output neurons.

2.1. Methods
The architecture of the hardwired neural network model consists
of a single layer of visual output neurons (Figure 1). The internal
activation h of each visual neuron (Equation 1) consists of the
sum of a component hr encoding the retinal location x of the
visual stimulus and a component he encoding the position y of
the eye in the orbit. Each neuron is set to respond maximally to a
unique combination of retinal location of the visual stimulus and
eye position. The range of eye positions and retinal locations were
defined within [−35, 35◦] and [−10, 10◦], respectively. The entire
two dimensional space consisting of all possible combinations
of eye position and retinal location of the visual stimulus is
covered in integer steps of one degree in each dimension by the
population of visual neurons. This resulted in a total of 71×21 =

1, 491 neurons.

h(x, y) = hr(x)+ he(y) (1)

The component of the internal activation hr to each visual neuron
that depends on the retinal location x of the visual stimulus is
given by the Gaussian function

hr(x) = hmaxr × exp

(

−
(x− α)2

2σ 2

)

(2)

FIGURE 1 | Architecture of the hardwired neural network model. The

architecture of the hardwired neural network model consists of a single layer of

visual output neurons. Each neuron is set to respond maximally to a unique

combination of eye position and retinal location of the visual stimulus.
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where x is the current retinal location of the visual stimulus, α

is the neuron’s preferred retinal location and σ is the width of
the Gaussian tuning curve. Themaximum value hmaxr is achieved
only when the visual stimulus is located at the neuron’s preferred
retinal location, i.e., when x = α. If the stimulus is located at
any other retinal location, then the value of hr corresponds to a
Gaussian function of the difference between the stimulus location
on the retina x and the neuron’s preferred location α.

Similarly, the component of the internal activation he to each
visual neuron that depends on the position y of the eye in the
orbit is described by the Gaussian function

he(y) = hmaxe × exp

(

−
(y− β)2

2ρ2

)

(3)

where y is the current position of the eye in the orbit, β is
the neuron’s preferred eye position and ρ is the width of the
Gaussian tuning curve. The response of a given visual neuron is
maximally amplified (i.e., he(y) = hmaxe ) when the eye shifts to
the neuron’s preferred eye position β . For all other eye positions
the neuron’s responses are modulated by a Gaussian function of
the difference between the neuron’s preferred eye position and
the current position of the eye.

The instantaneous firing rate vi of each visual neuron i in the
hardwired model is given by

vi =
1

1+ exp
(

−2ϕ(h− θ)
) (4)

where the activation h is defined by Equation (1) and the sigmoid
slope and threshold are denoted, respectively, by ϕ and θ .

2.2. Simulation Results
This simulation investigates the existence and nature of
multiplicative gain modulation in retinotopic visual output
neurons when the response profiles of both the retinotopic
visual input component and eye position input component are
modeled by Gaussian functions. The former modeling work of
Salinas and Abbott (1996) used a linear function to model the
influence of the position of the eye on visual responses. This
is a particularly important issue because the responses of eye
position neurons in the cortex have been reported to be a better
fit to a Gaussian function (Marĉelja, 1980; Andersen et al., 1987;
Dayan and Abbott, 2001; Wang et al., 2007). In the simulations
presented here we show how multiplicative gain modulation of
the visual neurons can occur even if a Gaussian function is used
to model the term he(y) denoting the component of the visual
neuron activation that depends on eye position. The simulation
parameters for the model are given in Table 1.

Figure 2 shows the visual responses of neurons in the
hardwired model across different eye positions. For each subplot
in Figure 2, the visual target was kept at the neuron’s preferred
retinal location whilst the eyes shifted in steps of one degree
to all positions within [−35, 35◦]. This range of eye positions
has been observed as the functional limit on orbital position
during natural visual exploration (Freedman and Sparks, 1997;
Navarro et al., submitted). Previous modeling studies of brain

TABLE 1 | Simulation parameters of hardwired model.

Parameter Symbol Value

Activation function slope ϕ 1.9

Activation function threshold θ 0.99

Population size − 1, 491

Maximum eye position activation hmaxe 0.485

Maximum retinal location activation hmaxr 0.485

Width of eye position tuning curve ρ 20◦

Width of retinal location tuning curve σ 6◦

function have also used this range of eye positions (Mender
and Stringer, 2013, 2014; Navarro et al., 2018). Figure 2 shows
the visual responses of neurons #1, #373, #475, #1, 117, and
#1, 491. The preferred retinal location of the visual target for
each of these neurons was respectively set to −10, −5, 0, 5,
and 10◦. The preferred eye position of each neuron was −34,
−18, 0, 18, and 34◦, respectively. The linearity of the visual
responses shown in Figure 2 may be compared by calculating
the coefficient of determination R2 of each response curve. The
coefficient of determination is traditionally used in regression
analysis to measure the success of predicting a dependent
variable from independent variables (Rao, 1973). In other
words, the coefficient of determination R2 provides statistical
information about the goodness-of-fit of a model. In this work
the coefficient of determination measures the goodness-of-fit of
the visual responses across different eye positions to a linear
model. The values of R2 are defined within [0, 1], where R2

equal to 1 indicates that a linear model perfectly predicts the
visual responses. Such visual responses are referred to as linear
responses. If R2 is equal to 0, then none of the visual responses can
be predicted by a linear model. In this case, the visual responses
are referred to as non-linear responses.

Figures 2A–E, respectively, show the responses of neurons #1,
#373, #1, 117, and #1, 491. The response curves of neurons #1 and
#1, 491 had a R2 value of 0.88, whilst neurons #373 and #1, 117
had response curves with R2 equal to 0.78. The values of R2 reflect
the fact that the visual responses of neurons #1, #373, #1, 117, and
#1, 491 were linear for themajority of eye positions. Figures 2A,E
had approximately linear monotonic response profiles covering
the whole eye position space. However, the peaked response
curve of neuron #475 shown in Figure 2C had a R2 value equal
to 0. Therefore, Figure 2 shows that modeling the influence of
both eye position and retinal location of the visual stimulus
using biologically realistic Gaussian functions results in a variety
of functional forms of gain modulation of visual responses
including both peaked and monotonic. This is a particularly
relevant result because experimental studies have reported the
existence of these different forms of visual responses in the cortex
(Andersen and Mountcastle, 1983; Galletti and Battaglini, 1989;
Lal and Friedlander, 1990; Brotchie et al., 1995; Galletti et al.,
1995; Hoffmann, 1998; Trotter and Celebrini, 1999; Breveglieri
et al., 2009; Merriam et al., 2013).

Next we study the impact of varying the width ρ of the
eye position Gaussian tuning curve on the linearity of the eye
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FIGURE 2 | Firing rate responses of visual neurons in the hardwired model. (A–E) show, respectively, the responses of neurons #1, #373, #475, #1, 117, and

#1, 491 when the visual target was kept at each neuron’s preferred retinal location whilst the eyes shifted in integer steps of one degree to all positions within

[−35, 35◦]. The preferred retinal location of each of these neurons was set to −10, −5, 0, 5, and 10◦. The preferred eye position of each neuron was −34, −18, 0, 18,

and 34◦, respectively. The coefficient of determination R2 provides a measure of linearity of the visual responses of each visual neuron. The values of R2 are defined

within [0, 1], where 1 implies a perfect linear fit. In particular, whilst (C) shows that the response profile of neuron #475 was not linear (i.e., R2 = 0), all other subplots

had more linear responses (i.e., values of R2 closer to 1). (A,E) had approximately linear monotonic response profiles covering the whole eye position space. Table 1

shows the simulation parameters for the model. These simulation results show that modeling the input components representing both the position of the eye and the

retinal location of the visual stimulus using biologically realistic Gaussian functions results in a variety of forms of visual responses similar to parietal responses,

including peaked and monotonic.

position gain modulation of the responses of the entire visual
population of neurons. We hypothesized that increasing the
width ρ of the eye position tuning curve would increase the
overall linearity of the gain modulation of visual responses by
eye position. Figure 3 shows how the linearity of the eye position
gain modulation of the responses of visual neurons changed
for different values of ρ within [2.5, 25◦]. The visual responses
were tested for the same range of eye positions in Figure 2. The
changes in the linearity of the responses were assessed using
the coefficient of determination R2 for each response curve with
the visual stimulus positioned in each neuron’s preferred retinal
location. Table 1 shows the simulation parameters for the model.
The bars in each subplot represent the proportion of visual
neurons in the hardwired model with responses resulting in
values of coefficient of determination R2 from 0 to 1.0 with a bin
size of 0.2. Figures 3A–C show that at least 57% of visual neurons
had values of coefficient of determination R2 smaller than 0.5
when ρ was not greater than 10◦. In other words, more than half
of all visual responses were highly non-linear for small values of

ρ. However, Figures 3D–F show that the values of coefficient of
determination R2 of the majority of response curves are closer to
1.0 for greater values of ρ. In fact, Figures 3E,F show that more
than 45% of all visual response curves in the hardwired model
had R2 greater than 0.8. In particular, Figure 3 shows that the
proportion of response curves with coefficient of determination
R2 not greater than 0.2, decreased from approximately 75 to 17%
when the value of ρ increased from 2.5 to 25◦. These simulation
results show that a higher proportion of linear responses is
obtained with greater values of ρ.

Finally, we investigate whether the linear responses in the
hardwired model (Figure 2) would produce multiplicative gain
modulation by eye position over all retinal locations of the
stimulus. Table 1 shows the simulation parameters for the model.
In particular ρ was set equal to 15◦. Figure 4 shows the
responses of neuron #1, neuron #7, and neuron #1, 491 in the
hardwired model as a function of the retinal location of the
visual stimulus and eye position. For each different fixation made
to −35,−12, 0, 12, and 35◦ the responses of each neuron were

Frontiers in Neural Circuits | www.frontiersin.org 5 May 2020 | Volume 14 | Article 30

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Navarro et al. Modeling the Emergence of Gain Modulation

FIGURE 3 | Influence of varying the width ρ of the eye position tuning curve in the hardwired model. The subplots show how the width ρ of the eye position tuning

curve affected the linearity of the eye position gain modulation of the responses of the visual neurons in the hardwired model. Simulation parameters are given in

Table 1. The coefficient of determination R2 was calculated to assess the linearity of the response curves of each neuron when the visual stimulus was in the neuron’s

preferred retinal location and the eye position varied in integer steps of one degree within [−35, 35◦]. (A–F) show frequency histograms where individual visual neurons

are binned according to their calculated value of R2. The plotted values are scaled to represent the relative percentages of the entire population of visual neurons.

(A–C) show that the majority of responses were not linear (i.e., values of R2 were closer to 0) for values of ρ not greater than 10, whilst (D–F) show a higher proportion

of more linear responses (i.e., values of R2 closer to 1) for greater values of ρ. These simulation results show a clear increase in the linearity of the visual responses

caused by an increase in the width of the eye position tuning curve.

FIGURE 4 | Modulation of visual neuron responses by eye position in the hardwired model. The figure shows the gain modulation by eye position of visual responses

of neurons in the hardwired model. (A) Shows the visual responses of neuron #1 (α = −10◦,β = −34◦), (B) shows the visual responses of neuron #7

(α = −10◦,β = −25◦) and (C) shows the visual responses of neuron #1491 (α = 10◦,β = 34◦).The x-axis (abscissa) indicates the retinal location of the visual

stimulus. Table 1 gives the simulation parameters for the model. Each curve corresponds to fixations with the following eye positions: −35◦,−12◦, 0◦, 12◦ and 35◦.

The broken line represents fixation straight ahead (i.e., 0◦). The symbols were obtained by multiplying the straight-ahead fixation response curve by a different

constant value for each of the other response curves. The response curves in each subplot show that there is a form of modulation of the visual responses by eye

position that is approximately multiplicative over the simulated retinal locations of the stimulus with a sigmoidal transfer function (Equation 7).
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recorded for all retinal stimulus locations within [−10, 10◦] in
steps of one degree. To demonstrate the multiplicative nature
of the eye position gain modulation of the neuronal responses,
symbols were plotted in Figure 4 by multiplying the response
corresponding to the straight ahead fixation (broken line) by a
constant value for each fixation. The precise alignment of the
symbols over the response curves shows that the visual responses
are modulated multiplicatively by the position of the eye. Thus,
Figure 4 shows that the form of gain modulation by eye position
of the visual responses of neuron #1, neuron #7, and neuron
#1491 is multiplicative.

In this section, we presented a hardwired model of
multiplicative eye position gain modulation of the responses
of visual neurons in the cortex. In Figure 2, we showed that
modeling both the retinal preference and the eye position
preference of visual neurons using a biologically realistic
Gaussian function resulted in a variety of forms of eye position
gain modulation across the entire population of visual output
neurons. This is a particularly important result as different forms
of eye position gain modulation of visual neurons have been
observed in the cortex (Galletti and Battaglini, 1989; Lal and
Friedlander, 1990; Galletti et al., 1995; Hoffmann, 1998; Trotter
and Celebrini, 1999; Breveglieri et al., 2009; Merriam et al., 2013).
Next we showed that varying the width of eye position tuning
curves increased the linearity of eye position gain modulation
across the entire population of visual neurons (Figure 3). In
Figure 4, we showed that the model can produce visual neurons
with multiplicative gain modulation by eye position over all
retinal locations of the stimulus.

In the next section we study a self-organizing model of how
multiplicative eye position gain modulation may develop in
the brain.

3. SELF-ORGANIZING MODEL

In this section we present simulation results of a self-organizing
neural network model of the development of multiplicative gain
modulation of visual responses by eye position. That is, we
show how the synaptic connectivity could develop through a
biologically plausible learning process. In the self-organizing
model, the visual output neurons are driven by two explicitly
modeled populations of input neurons. One input population
encodes the retinotopic position of the stimulus, whilst the
other input population encodes the position of the eyes. In
a manner analogous to the hardwired model, the response
profiles of both populations of input neurons are modeled using
biologically realistic Gaussian functions. The activations of the
visual output neurons were driven by additively combining the
inputs from these two populations of input neurons as would
occur in the brain. A sigmoid transfer function was used to
model the firing rate responses of the visual output neurons
in the self-organizing model. In this section we investigate
the influence of the width of the eye position input neuron
tuning curves on the self-organization of linear eye position
gain modulation at preferred retinal stimulus locations and
the development of multiplicative eye position gain modulation

across all retinal stimulus locations. During the unsupervised
self-organizing learning process described in this section output
neurons compete to respond to specific input patterns. This
means that output neurons learn to differentiate responses
properties for each input pattern present to the model during
training. In this manuscript each input pattern consists of
different randomized combinations of eye position and retinal
stimulus location that are applied to the input layer of the model.
The output layer does not need to be topologically organized.

3.1. Methods
The architecture of the self-organizing neural network model
consists of two layers of neurons. The first layer, the input layer,
had a mixture of neurons with responses depending on either the
position of the eye or the retinal location of the visual stimulus.
Feedforward synaptic connections from neurons in the input
layer to neurons in the second layer, the output layer, were
updated with a Hebbian learning rule during training. After
training, neurons in the output layer were expected to develop
the form of retinotopic visual responses with multiplicative
eye position gain modulation shown in the previous section
(Figures 2, 4). Figure 5 shows the architecture of the model.

Neurons in the input population had responses depending on
either the position of the eye or the retinal location of the visual
stimulus. Neurons with responses depending on the position of
the eye had a Gaussian internal activation given by Equation
(3). Each of these neurons is set to fire maximally to a unique
eye position within [−35, 35◦] in integer steps of one degree.
Neurons with responses depending on the retinal location of
the visual stimulus had a Gaussian internal activation described
by Equation (2), where the range of preferred retinal locations
is defined within [−10◦, 10◦] in integer steps of one degree.
This resulted in a total of 71 + 21 = 92 input neurons. The
instantaneous firing rate vj of each input neuron j is given by the
sigmoid activation function

vj =
1

1+ exp
(

−2ϕ(h− θ)
) (5)

where the sigmoid slope and threshold are denoted by ϕ and θ ,
respectively, and the activation h is defined by either Equation (2)
if the neuron had responses depending on the retinal location of
the visual stimulus, or Equation (3) if the neuron had responses
depending on the position of the eye.

The output population consists of a total of 100 neurons. The
internal activation hi of each neuron i in the output layer is
governed by

τh
dhi

dt
= −hi +

∑

j

wijvj (6)

where wij is the strength of the synapse from input neuron j to
output neuron i. The parameter τh is a time constant common
for all output neurons.

The instantaneous firing rate vi of each output neuron i is
given by the sigmoid transfer function

vi(t) =
1

1+ exp
(

−2ϕ(hi(t)− pπ − θ)
) (7)

Frontiers in Neural Circuits | www.frontiersin.org 7 May 2020 | Volume 14 | Article 30

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Navarro et al. Modeling the Emergence of Gain Modulation

FIGURE 5 | Architecture of the self-organizing neural network model. Afferent synaptic connections from neurons in the input layer (Bottom) are projected to neurons

in the output layer (Top). The responses of neurons within the input layer depend on either the position of the eye or the retinal location of the visual stimulus. The two

colors of neurons in the input layer represent these two different forms of neuronal input responses. A Hebbian learning rule is used to modify the strengths of the

feedforward synaptic connections from the input layer to the output layer during training.

where hi corresponds to activation of output neuron i and ϕ

and θ , respectively, denote the sigmoid slope and threshold. The
parameter pπ controls the level of competition amongst output
neurons by limiting the proportion of output neurons that are
active at any time. For instance, pπ is set to the top fifteenth
percentile activation value within the output population when the
sparseness percentile π is set to 85. This form competition within
the output layer has been previously used in neural network
models of the primate visual system (Rolls, 2012). In the cortex
this form of lateral inhibition is implemented via inhibitory
interneurons (Dayan and Abbott, 2001).

Each output neuron receives synaptic connections from
a unique randomly assigned subset of input neurons
corresponding to φ percent of the input population. Before
training, the weights of these feedforward synaptic connections
are initialized to random values within [0, 1]. During training the
synaptic weights are updated by a Hebbian learning rule given by

dwij

dt
= ̺vivj (8)

where ̺ is the learning rate, vj is the current firing rate of the
presynaptic neuron j (Equation 5) and vi is the current firing rate
of the postsynaptic neuron i (Equation 7).

To prevent unbounded growth of the synaptic weights during
training (Dayan and Abbott, 2001), after each weight update the
length of the synaptic weight vector wi for each output neuron i
is renormalized by setting

wi :=
wi

‖wi‖
(9)

The experimental work of Royer and Paré (2003) provides
evidence for renormalization of synaptic weights in the brain.

The self-organizing model makes no assumptions about
the temporal dynamics of eye movements relative to the
changing positions of visual stimuli within the environment.
Therefore, training involves applying lots of different randomized
combinations of eye position and retinal stimulus location to the
input layer of the model. The activity is propagated from the
input layer to the visual output layer, where a small portion of
output neurons win the competition to respond to the current
inputs. Next, the feedforward synaptic weights from the active
input neurons to the active output neurons are strengthened by
Hebbian learning. This training process eventually endows the
visual output neurons with their learned response properties.

Training lasts for 10 epochs. In each training epoch, the
model is exposed to time-varying combinations of eye position
and stimulus retinal location. Specifically, each epoch consists
of periods in which a visual stimulus is presented for 2 s at
each retinal location within [−10, 10◦] in integer steps of one
degree. During each of these periods the model performs 14
saccades at a constant velocity of 400◦/s to a different random
eye position within [−35, 35◦]. These saccades are interleaved
with 15 fixations, each lasting for 300 ms. Therefore, training
was completed after approximately 420s of simulated time. The
differential Equations (6) and (8) were numerically integrated
using a Forward-Euler scheme with numerical time step set as
one-tenth of the time constant τh.

3.2. Simulation Results
This simulation investigates the development of visual output
neurons with multiplicative gain modulation by eye position
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when the input population consists of a mixture of neurons with
Gaussian responses depending on either the position of the eye
or the retinal location of the visual stimulus. The influential
model by Salinas and Abbott (1996) used a linear function to
model how visual responses depended on the position of the
eyes. However, the response profiles of eye position neurons
in parietal cortex have been observed to be a better fit to a
Gaussian function than to a linear function (Marĉelja, 1980;
Dayan and Abbott, 2001). Furthermore, the efferent synaptic
connections were both excitatory and inhibitory for the same
neuron in the model of Salinas and Abbott (1996), which violates
the Dale’s law (O’Donohue et al., 1985). The synaptic connections
within the self-organizing model discussed in this section do
not violate the Dale’s law. Table 2 gives the parameters of the
self-organizing model.

Figure 6 shows the visual responses across different eye
positions of selected output neurons before training (top
row) and after training (bottom row). Figures 6A,D show the
responses of neuron #84 when the visual stimulus was presented
at retinal location −10◦. For the responses of neuron #36
shown in Figures 6B,E the visual stimulus was presented at
retinal location 0◦. Finally, the visual stimulus was presented
at retinal location 2◦ for responses of neuron #97 shown in
Figures 6C,F. The comparison of the responses in the untrained
model (Figures 6A–C) with the respective responses in the
trained model (Figures 6D–F) shows how training changed the
responses of output neurons. For instance, the response curve of
output neuron #84 after training resembles the response curve
of neuron #1 shown in Figure 2, with similar coefficients of
determination R2 of 0.83 and 0.88, respectively. Likewise, the
response curves of neurons #36 (Figure 6E) and #97 (Figure 6F)
in the trained model resembles the responses of neurons #475
(Figure 2C) and #1117 (Figure 2D) in the hardwired model. The
values of coefficient of determination R2 of output neuron #97
in the trained model and neuron #1117 in the hardwired model

TABLE 2 | Simulation parameters of self-organizing model.

Parameter Symbol Value

Activation function slope ϕ 4.5

Activation function threshold θ 0

Activation time constant τh 100ms

Input neuron population size – 92

Learning rate ̺ 0.05

Maximum eye position activation hmaxe 2.0

Maximum retinal location activation hmaxr 2.0

Number of training epochs – 10

Output neuron population size – 100

Sparseness percentile π 90%

Synaptic connectivity φ 10%

Width of eye position tuning curve ρ 15◦†

Width of retinal tuning curve σ 6◦

†The default value of ρ was 15◦. However, this value was altered in some of the

simulations.

were 0.53 and 0.78, respectively. The values of coefficient of
determination R2 were very similar for both output neuron #36 in
the self-organizing model after training (R2 = 0.08) and neuron
#475 in the hardwired model (R2 = 0). Therefore Figure 6,
together with the analysis of the coefficient of determination R2

of the visual response curves, show that modeling the response
profiles of eye position and retinotopic input neurons with
more biologically realistic Gaussian functions drives the self-
organization of a variety of visual output responses similar to the
responses in the hardwired model (Figure 2).

Next we investigate what would be the impact of varying the
width ρ of the eye position tuning curve on the self-organization
of responses in the output population of visual neurons. In
particular, we investigate whether greater values of ρ would result
in an increase in the linearity of how visual output responses
vary with eye position in the self-organizing model, similar to the
effects presented in previous section. The model was individually
trained as described above for the following different values of
ρ: 2.5, 5, 10, 15, 20, and 25◦. Simulation parameters are given
in Table 2. Figures 7, 8 show the influence of varying ρ on
the self-organization of linear responses for neurons #87, #92,
#95, #51, #53, and #62. The responses of each of these output
neurons in the trained model were recorded when the visual
stimulus was presented at retinal location −10◦ and the eyes
shifted from [−35, 35◦] in integer steps of one degree. Figures 7,
8 show that increasing the value of ρ drives the development
of more sigmoidal output visual responses for the majority of
output neurons within the parameter space that was tested. These
simulation results show that the width ρ of the tuning curve of
the eye position neurons has an impact on the self-organization
of the degree of linearity of the output responses, as indicated by
the values of the coefficient of determination R2 in each subplot.
The values of R2 were only calculated when the output neuron
had significant activity for a range of eye positions. Figures 7A,B
show that for values of ρ not greater than 5◦ the firing rate of
output neuron #87 in the trained model was close to zero for
all eye positions. Figure 7C shows a more Gaussian response
profile when ρ = 10◦ for the same output neuron. Figures 7D–F,
however, show that for greater values of ρ the response profile
of output neuron #87 after training is more sigmoidal across all
eye positions. Figures 7G,M show that output neuron #92 and
output neuron #95, respectively, were mostly unresponsive for
ρ = 2.5◦. However, the response profiles of these neurons were
approximately Gaussian for ρ = 5◦ and ρ = 10◦ (Figures 7H,I

for output neuron #92, and Figures 7N,O for output neuron
#95). Figures 7J–L,P–R show that the response profiles of output
neurons #92 and #95 in the trained model were approximately
sigmoidal for all eye positions within [−35, 35◦] when the values
of ρ were greater than 10◦. Figures 8A,G,M,N show that for
values of ρ not greater than 5◦ the firing rate of output neurons
#51, #53, and #62 in the trained model was close to zero for all
tested eye positions. Figures 8I–L,O–R shows that for greater
values of ρ the response profiles of output neurons #53 and were
approximately sigmoidal.

Moreover, the coefficient of determination R2 increases
from values not greater than 0.52 for smaller values of ρ

(Figures 7C,H, 8H–I,N–P) to values greater than 0.7 for
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FIGURE 6 | Firing rate responses of output visual neurons in the self-organizing model. Each subplot shows the firing rate responses of output neurons #84, #36,

and #97 in the self-organizing model either before training (top row) or after training (bottom row). The responses are plotted for the preferred retinal locations of

neurons #84, #36, and #97 at −10, 0, and 2◦, respectively. These neurons were chosen to show the variety of different forms of visual output responses in the

trained model. Table 2 shows the simulation parameters for the model. The value of ρ was set to 15. The comparison of responses prior to training (A–C) to the

respective responses after training (D–F) shows that training changed the responses of these output neurons. Particularly, the response curves of neurons #84, #36,

and #97 in the trained model (bottom row) resemble the response curves shown in Figure 2 of neurons #1 (Figure 2A), #475 (Figure 2C), and #1117 (Figure 2D)

in the hardwired model, respectively. The values of the coefficient of determination R2 for each response curve in the trained model show that the form of visual

responses in the output layer after training varied from non-linear (e.g., R2 = 0.08 for neuron #36) to more linear responses (e.g., R2 = 0.53 and R2 = 0.83 for

neurons #97 and #84, respectively). These simulation results show that the use of more biologically realistic Gaussian functions to model the response profiles of

input neurons encoding either eye position or retinal location of the visual stimulus enables the self-organizing model to develop a variety of forms of visual responses,

including peaked and monotonic, similar to cortical responses.

larger values of ρ (Figures 7D–F,I–L,O–R, 8J–L,Q–R). The
responses of neuron #51 (Figures 8A–F) show that the for
some output neurons the responses were not sigmoidal
after training even with greater values of ρ. The effects
of varying ρ presented in Figures 7, 8 were generally
observed amongst a large population of output visual neurons
after training.

Finally, we studied whether output neurons displayed
multiplicative gain modulation by eye position over all retinal
locations of the stimulus. Figure 9 shows how the output
responses of neuron #87, neuron #92, neuron #95, neuron #81,
neuron #97, and neuron #73 changed for different fixations
when the visual target was shifted across the retina to locations
within [−10, 10◦] in integer steps of one degree. Table 2 gives
the simulation parameters for the model. The value of ρ was
set to 17◦. The responses of each of these output neurons were

tested for fixations to −20,−12, 0, 12, and 20◦. To demonstrate
the multiplicative nature of the eye position gain modulation of
the neuronal responses, symbols were plotted in Figures 9A–C

by multiplying the response corresponding to the straight ahead
fixation (broken line) by a constant value for each fixation. The
alignment of the symbols over the response curves shows that the
visual responses are approximately modulated in a multiplicative
manner by the position of the eye. This is the same methodology
used in the influential work of Salinas and Abbott (1996).
Figures 9D–F shows the form of modulation by eye-position
of the responses neurons #81, #97, and #73. Therefore the
simulation results in Figure 9 show that training had the effect
of developing a form of gain modulation by eye position over
all retinal locations of the stimulus that is approximately
multiplicative for output neurons #87, #92, #95, #81,
#97, and #73.
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FIGURE 7 | Influence of varying the width ρ of the eye position tuning curve in the self-organizing model. The subplots show how the width ρ of the eye position

tuning curve affected the self-organization of the visual responses of neuron #87, neuron #92 and neuron #95. Each subplot shows the responses of these output

neurons in the trained model when the visual stimulus was presented at retinal location −10◦ and the eyes shifted from [−35◦, 35◦] in integer steps of one degree.

(Continued)
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FIGURE 7 | Table 2 gives the simulation parameters for the model. Each subplot indicates the value of ρ that was used during training and testing. For each of these

neurons, the subplots in the top row show how increasing the value of ρ changes the firing rate responses from showing little activity (A,B for neuron #87, G for

neuron #92, and M for neuron #95) to presenting an approximately Gaussian response profile (C for neuron #87, H,I for neuron #92, and N,O for neuron #95).

Plots in the bottom row for each of these output neurons (D–F,J–L,P–R) show that training the model with greater values of ρ resulted in more sigmoidal response

profiles. These simulations results show that the width of the eye position tuning curve has a large impact on the self-organization of the functional form of the output

responses, with the profiles passing from peaked to monotonic for the majority of output neurons as ρ increases from 10◦ to 25◦. The values of the coefficient of

determination R2 in each subplot show how the width ρ of the tuning curve of the eye position neurons affected the degree of linearity of the self-organized output

responses. The values of R2 were only calculated when the output neuron had significant activity for a range of eye positions after training.

4. DISCUSSION

In this work, we study both hardwired and self-organized
neural network models of how multiplicative gain modulation of
visual responses by the position of the eye may develop in the
brain. A variety of forms of visual responses, such as peaked,
sigmoidal, and more linear responses, have been observed in
cortical areas (Andersen and Mountcastle, 1983; Galletti and
Battaglini, 1989; Lal and Friedlander, 1990; Brotchie et al., 1995;
Galletti et al., 1995; Hoffmann, 1998; Trotter and Celebrini, 1999;
Breveglieri et al., 2009; Merriam et al., 2013). Previous modeling
studies (Salinas and Abbott, 1996) used a linear function to
model the dependence of the visual responses on eye position.
However, the response profiles of eye position neurons in
parietal areas have been reported to be a better fit to Gaussian
than to linear functions (Marĉelja, 1980; Andersen et al., 1987;
Dayan and Abbott, 2001; Wang et al., 2007). The simulation
results presented in this work showed how multiplicative gain
modulation by eye position may develop using inputs from eye
position neurons with Gaussian response profiles. We started
by studying a hardwired model of how cortical visual neuron
responses depend on both the retinal location of the visual target
and the position of the eyes. The simulation results in Figure 2

showed a variety of different functional forms of gain modulation
by eye position of visual responses in the hardwired model that
were similar to cortical responses. In particular, the responses in
Figures 2A,E in the hardwired model were approximately linear
for all eye positions when the visual stimulus was at the neuron’s
preferred retinal location. We also investigated how varying the
width ρ of the eye position Gaussian tuning curve affected the
functional form, including the linearity, of the eye position gain
modulation of visual responses. We showed in Figure 3 that an
increase in the width of the eye position tuning curve resulted
in more linear responses. These simulation results showed that
more biologically realistic Gaussian tuning curves, modeling how
visual responses depend on the retinal location of the visual
stimulus and on the position of the eye, resulted in different
functional forms of gain modulation by eye position similar to
those seen in parietal cortex, including responses that were linear
across different eye positions. In Figure 4, we showed that such
visual responses represent a form of gain modulation that is
multiplicative by eye position.

A further important contribution of our work is the
investigation of how such a variety of different functional forms
of gain modulation by eye position, as well as multiplicatively
gain modulated visual responses, would self-organize in a neural
network model of cortical neurons. Our self-organizing model
consisted of a population of input neurons sending feedforward

synaptic connections to an output population of visual neurons.
The input population consisted of a mixture of neurons with
Gaussian responses depending on either the position of the eye
or the retinal location of the visual stimulus. Training consisted
of presenting the network with lots of different randomized
combinations of retinal stimulus location and eye position.
The weights of the synaptic connections were updated during
training using a Hebbian learning rule (Equation 8). Figure 6
showed that output neurons in the trained model had responses
similar to the ones plotted for the hardwired model in Figure 2.
These simulation results showed that the model successfully
self-organized the forms of visual responses observed in the
parietal cortex including peaked and monotonic. In particular,
Figure 6D showed that the responses of neuron #87 in the
trained model were monotonic and somewhat similar to the
approximately linear responses of neuron #1 in the hardwired
model (Figure 2A). The simulation results in Figure 9 showed
that training had the effect of producing output neurons with
a form of eye-position gain modulation that is approximately
multiplicative. Additionally, in Figure 7 we showed how varying
the width ρ of the tuning curve of eye position input neurons
affected the self-organization of output neuron responses. Similar
to the effects presented in Figure 4, the simulation results in
Figure 7 showed that increasing the width of the eye position
tuning curve resulted in the self-organization of responses that
varied more monotonically with eye position. However, the
neuronal response profiles shown in Figures 7D–F,J–L,P–R,
8I–L,P–R were only linear over a narrow range of eye positions.
This may have been due to the relatively high value of the slope
φ of the sigmoid transfer function (Equation 7) used in the
simulations. A larger slope φ produces a more sharp increase
in the neuronal firing rate vi as the input activation h varies.
Additional simulations with the hardwired model varying the
sigmoid slope ϕ between 1 and 10 showed a change in the
response profile of neurons from flat responses across all eye-
positions (ϕ smaller than 5) to response profiles with much larger
width of the Gaussian profile (ϕ greater than 5). In terms of
self-organization, although varying the value of ϕ in isolation
degraded the performance of the self-organization process, the
model was still capable of developing the form of responses
previously discussed. A similar effect was observed when varying
in isolation the parameter pπ of the self-organizing model. In
summary, changing these parameters in isolation made the self-
organization behavior less robust, and the exploration over the
full parameter set is beyond the scope of this paper.

Gain modulated responses in parietal cortex are critical for
coordinate transformation from eye-centered or retinocentric
frames of reference to other body-centered frames of reference
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FIGURE 8 | Influence of varying the width ρ of the eye position tuning curve in the self-organizing model. The subplots shows extra examples of how the width ρ of

the eye position tuning curve affected the self-organization of the visual responses of output neurons #51, neuron #53, and neuron #62. Similar to Figure 7, the

visual stimulus was presented at retinal location −10◦ and the eyes shifted from [−35◦, 35◦] in integer steps of one degree. Table 2 gives the simulation parameters

for the model. The value of ρ for training and testing is indicated for each subplot. These subplots show that an increase in the value of ρ changes the firing rate

(Continued)
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FIGURE 8 | responses from showing little activity (A,G,M,N) to presenting an approximately Gaussian response profile (B–F). The remaining subplots (H–L,O–R)

show that training the model with greater values of ρ resulted in more sigmoidal response profiles. These simulations results show that the width of the eye position

tuning curve has a large impact on the self-organization of the functional form of the output responses, with the profiles passing from peaked to monotonic as ρ

increases from 10◦ to 25◦ for the majority of output neurons. The responses of neuron #51, however, were not monotonic even for greater values of ρ. The values of

the coefficient of determination R2 in each subplot show how the width ρ of the tuning curve of the eye position neurons affected the degree of linearity of the

self-organized output responses. The values of R2 were only calculated when the output neuron had significant activity for a range of eye positions after training.

FIGURE 9 | Modulation of visual neuron responses by eye position in the self-organizing model after training. The figure shows the gain modulation by eye position of

the visual responses of neurons #87 (A), #92 (B), #95 (C), #81 (D), #97 (E), and #73 (F) after training in the self-organizing model. The x-axis (abscissa)

indicates the retinal location of the visual stimulus. The simulation parameters for the model are shown in Table 2. The value of ρ was set to 17◦. Each curve

corresponds to fixations with the following eye positions: −20◦,−12◦, 0◦, 12◦, and 20◦. The broken line represents fixation straight ahead. The symbols in subplots

(A–C) were obtained by multiplying the straight-ahead fixation response curve by a different constant value for each of the other response curves. The general

alignment of the symbols over the response curves shows that the form of modulation of the visual responses by eye position is approximately multiplicative over all

the retinal location of the stimulus within the parameter space that was tested. Each subplot shows that training was capable of driving the development of output

responses with a form of eye-position gain modulation that is approximately multiplicative.

more suitable to guide motor behaviors, such as head-centered
and hand-centered that have been observed in cortex. Here we
have shown the emergence of different functional forms of gain
modulation, including peaked and monotonic modulation, in
both a hardwired and a self-organizing neural network model of
cortical visual neurons.
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