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The neocortex performs a wide range of functions, including working memory, sensory
perception, and motor planning. Despite this diversity in function, evidence suggests
that the neocortex is made up of repeating subunits (“macrocolumns”), each of which
is largely identical in circuitry. As such, the specific computations performed by these
macrocolumns are of great interest to neuroscientists and AI researchers. Leading
theories of this microcircuit include models of predictive coding, hierarchical temporal
memory (HTM), and Adaptive Resonance Theory (ART). However, these models have
not yet explained: (1) how microcircuits learn sequences input with delay (i.e., working
memory); (2) how networks of columns coordinate processing on precise timescales; or
(3) how top-down attention modulates sensory processing. I provide a theory of the
neocortical microcircuit that extends prior models in all three ways. Additionally, this
theory provides a novel working memory circuit that extends prior models to support
simultaneous multi-item storage without disrupting ongoing sensory processing. I then
use this theory to explain the functional origin of a diverse set of experimental findings,
such as cortical oscillations.

Keywords: sequence memory, neocortex, neocortical theory, prediction, hierarchical temporal memory (HTM),
chunking and cognition, working memory, delay activity

INTRODUCTION

Understanding the exact computations performed by the mammalian neocortex has been a ‘‘Holy
Grail’’ of Neuroscience for over 100 years. This is in part inspired by the fact that the only known
unique attribute of the human brain in comparison to other mammals is the relative size of our
neocortex (Herculano-Houzel, 2009). Furthermore, there is broad consensus that the neocortex
is where working memory is stored (Goldman-Rakic, 1995), where the neural correlates of
consciousness are contained (Koch et al., 2016), where facial recognition occurs (Kanwisher et al.,
1997), where music perception occurs (Zatorre et al., 2007), where ‘‘cognitive control’’ happens
(Miller, 2000), where complex motor tasks such as playing a sport or musical instrument are
learned (Papale and Hooks, 2018), where decision making occurs (Kable and Glimcher, 2009), and
much more.

And yet, despite this astronomically wide range of functions, the neocortex seems to
be made up of repeating subunits called ‘‘macrocolumns,’’ each of which contains the
same types of neurons, connectivity, and firing properties (Mountcastle, 1978). This
observation has led to the hypothesis that the neocortex is just a repeated replication of
the exact same microcircuit and that there was an evolutionary benefit to this duplication
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(Mountcastle, 1978; Douglas et al., 1989; Douglas and Martin,
2004; Thomson and Lamy, 2007; George and Hawkins, 2009;
Harris and Mrsic-Flogel, 2013). Additional support for this can
be seen in rerouting studies, whereby rerouting visual input to
auditory cortex seems to convert auditory cortex into a visual
cortex, suggesting that the only difference between these two
regions is the input they receive and not the computations they
perform (von Melchner et al., 2000). This is further supported
by the fact that the human neocortex increased in size by almost
3-fold over just the last 3 million years of human evolution (Du
et al., 2018), a time frame likely too fast for any new circuitry
to emerge other than a duplication of existing circuits. This
hypothesis suggests that the only difference between any two
areas of the neocortex is the inputs it receives, and the location
it sends its outputs—the actual computations themselves are
the same. If true, this would dramatically reduce the theoretical
complexity of understanding the human neocortex from trying
to understand the connectivity of ∼20 billion neurons and
∼100 trillion synapses, to simply trying to understand the far
fewer number of neurons and synapses within the ‘‘neocortical
microcircuit’’ that is being duplicated.

Despite the above evidence, there are legitimate challenges
to the hypothesis that the neocortex implements a repeated
canonical microcircuit (further elucidated in the ‘‘Discussion’’
section). The most notable differences exist between the ‘‘frontal
cortex’’ and ‘‘sensory cortex’’ (Fukutomi et al., 2018). As such,
most models of the neocortical microcircuit, including this one,
focus their efforts on unraveling the alleged microcircuit within
the sensory cortex.

There are four leading computational frameworks of the
neocortical microcircuit within the sensory cortex: predictive
coding, hierarchical temporal memory (HTM), bayesian
inference, and Adaptive Resonance Theory (ART). These
have all been broadly categorized as ‘‘predictive processing
framework.’’ All these predictive processing frameworks share
two essential features. First, they all assume that the purpose of
the sensory cortex is to predict its sensory input. Second, they
all assume that the neocortex performs computations, at least in
part, hierarchically—whereby the outputs of lower-order regions
are provided as inputs to higher-order regions. Although there
is a broad consensus on these two features, there are notable
differences between each framework, which I describe in more
detail within the ‘‘Relationship to Previous Models’’ section.
This work integrates and extends ideas from all four of these
frameworks, but is built almost directly on top of HTM. HTM
is uniquely attractive in that it models sequence and object
learning using only Hebbian plasticity, whereas other models
tend to require less biologically plausible learning mechanisms
(see ‘‘Relationship to Previous Models’’ section).

However, three key elements are missing from prior HTM
models that I seek to extend in this article. First, the neocortex can
learn sequences even when input elements are separated by long
time intervals (e.g., seconds to minutes), even though short term
synaptic plasticity can only occur on the timescale of <100 ms
(Markram et al., 1997). For example, say ‘‘A,’’ pause 5 s, say
‘‘B,’’ pause 5 s, say ‘‘C,’’ and then ask someone to repeat the
sequence, and anyone can do so effortlessly. In other words, the

neocortex can store elements of a sequence in working memory.
However, prior HTM models have not incorporated working
memory. Second, it appears evident that different macrocolumns
coordinate processing together at precise timescales, otherwise it
would be impossible for macrocolumns organized in a hierarchy
to integrate information accurately. However, I am unaware of
a neural circuit model that explains how such precisely timed
coordination occurs. Third, prior HTM models do not explicitly
incorporate attention.

As such, I seek to present a model that can perform
the same computations of prior HTM models, but can also:
(1) perform working memory and connect sequences separated
by long time intervals; (2) coordinate its activity and processing
with other macrocolumns and structures on extremely precise
time intervals; and (3) can be modulated by attention. I
will go on to show how this model directly explains a wide
range of seemingly disparate experimental observations about
the neocortex.

My approach will be to start with a basic overview of
the overall organizational principles of neocortical neurons,
macrocolumns, and thalamocortical networks. I will go on to
assign specific computational roles to individual types of neurons
within a macrocolumn. I will then incorporate input from the
frontal cortex into these macrocolumns; and lastly, I will go on
to show how networks of these macrocolumns can recognize and
learn objects and sequences.

AN OVERVIEW OF THE STRUCTURE OF
SENSORY CORTEX

The Structure of a Single Excitatory
Neocortical Neuron
To model the computations within canonical neocortical
microcircuit, we must first model the computations of a single
neuron. Most of the excitatory neurons within the neocortex
are pyramidal neurons, with many apical and basal dendritic
segments.Most synapses on a pyramidal neuron are not proximal
to the soma but rather found far away from soma on basal
dendrites or apical dendrites (‘‘distal synapses’’). Presynaptic
firing at distal synapses has very little effect on somatic
membrane potential (Antic et al., 2010; Major et al., 2013).
However, if coincident distal synapses fire simultaneously, a
dendritic branch will fire its own NMDA dendritic spike,
which can cause a sustained subthreshold (no action potential)
depolarization at the soma (Antic et al., 2010; Major et al.,
2013). Because dendritic segments spike on their own, neurons
can learn new patterns without somatic action potentials.
If a pattern of coincident input occurs frequently, dendritic
spikes will lead to long term potentiation. Hence, neurons can
passively learn to recognize patterns without firing somatic
action potentials.

Unlike other models, HTM models incorporate the above
dynamics directly (Hawkins et al., 2010; Hawkins and Ahmad,
2016). Each dendritic segment of an HTM model neuron is
its own independent pattern recognizer. Dendritic spikes can
be thought of as a logical ‘‘and’’ operation on its learned
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patterns, only firing a spike if a specific threshold of coincident
presynaptic neurons fire. Whereas somatic depolarization
effectively performs a logical ‘‘or’’ operation on each dendritic
pattern recognizer (see Figure 1). Of course, in actuality, there
is a non-linear summation of these presynaptic inputs, instead
of an explicit ‘‘and’’ operation, but this can still be conceptually
approximated as a logical ‘‘and.’’

HTM models propose that pyramidal neurons always exist
in one of three states: inactive, predictive, and active (Hawkins
et al., 2010). In an inactive state, the neuron is highly polarized.
In an active state, a neuron is firing action potentials. In
a predictive state, a neuron is subthreshold depolarized. The
computational purpose of this predictive state is that if a proximal
synapse has a presynaptic action potential, neurons in predictive
states will fire before neurons in inactive states. In parts of
the neocortex with extensive lateral inhibition, this will lead to
neurons that were in a predicted state firing action potentials,
but those that were in inactive states not firing at all because
they get rapidly inhibited before they have a chance to depolarize.
This dynamic is an essential computational motif in HTM
(Hawkins and Ahmad, 2016).

The Structure of a Single Macrocolumn
The sensory neocortex has six distinct layers of neurons, each
containing different types of neurons with unique connectivity.
Much of the connectivity of the neurons within a given area of
the sensory cortex is horizontally contained within a 300–600
micron wide column, although spanning vertically across all
six layers (Mountcastle, 1997). This ‘‘cortical macrocolumn’’
of local horizontal connectivity has been proposed to be the
canonical neocortical microcircuit (Mountcastle, 1978, 2003;
Rakic, 1988; Tsunoda et al., 2001). The human neocortex is
thought to be made up of over a million such macrocolumns
(Sporns et al., 2005).

In order to decipher the computations within amacrocolumn,
we must interpret the observed connectivity of each of these
types of neurons. Excitatory neurons within a macrocolumn
can be categorized into nine main groups based on
electrophysiology, morphology, and connectivity (see Figure 2A
and Supplementary Table S1).

L4 and L2/3 of a macrocolumn can also be subdivided
vertically into ∼80–100 minicolumns, each of which is about
50 microns wide (Peters and Yilmaz, 1993; Mountcastle, 1997).
In our model macrocolumn (see Figures 2B,C) there is one
L4 stellate cell per minicolumn and many L2/3 cells within
a minicolumn. Cells within L5 and L6 are not mapped to a
specific minicolumn, but rather perform computations across the
entire macrocolumn.

The Structure of Thalamocortical
Networks
In order to understand how the sensory neocortex performs its
many functions, wemust also consider the thalamus, which is the
primary subcortical structure providing input to the neocortex
(Sherman and Guillery, 2006). The thalamus relays information
from sensory organs, such as the eyes and ears, to the neocortex,

as well as passing information in-between areas of the neocortex
(Sherman and Guillery, 2006).

The thalamus is primarily made up of excitatory
thalamocortical relay neurons. Recent experimental studies have
shown that there are three categories of these thalamocortical
relay neurons within sensory thalamus: ‘‘Core Neurons,’’
‘‘Multiareal Matrix Neurons,’’ and ‘‘Local Matrix Neurons’’
(Clascá et al., 2012). Each of these has different connectivity with
the neocortex. Core neurons project directly to L4-ST neurons.
Local Matrix Neurons project to layer 1 within a single level of
the cortical hierarchy. Multiareal matrix neurons project to L5a,
L1, and L3 across different levels of the hierarchy. Multiareal
matrix neurons are also the only one of the three types of relay
neurons that project directly to the striatum and the amygdala.

The thalamus is organized hierarchically, with ‘‘first order
relay nuclei’’ passing information directly from peripheral senses
(e.g., sight, sound, touch) to ‘‘first order neocortex,’’ while higher-
order relay nuclei pass information between different levels
of neocortex within the hierarchy (see Figure 3B). Early on
in this hierarchy, thalamic nuclei are separated by modalities,
with separate nuclei for vision, audition, and somatosensation
(Sherman and Guillery, 2006).

The nature of the connectivity between the thalamus and
macrocolumns provides clues as to the computations that are
being performed in thalamocortical networks (see Figure 3A).
L5b-IB neurons provide driving input (synapses close to soma)
to core relay neurons that project to L4 in other ‘‘higher-order’’
macrocolumns (Deschênes et al., 1994; Rouiller and Welker,
2000; Reichova and Sherman, 2004; Groh et al., 2008; Llano
and Sherman, 2008; Theyel et al., 2009; Harris and Mrsic-
Flogel, 2013; Sherman, 2017). These higher-level macrocolumns
seem to repeat the same pattern of relaying their L5b-IB output
through even higher-level thalamic relays to even higher-level
macrocolumns. There is also evidence to suggest that L5b-IB
neurons provide driving input to local matrix neurons, which
project back to L1 in the originating macrocolumn (Ohno et al.,
2012; Pouchelon et al., 2014).

In contrast to L5b-IB neurons, L6a-CT neurons provide
modulatory input (synapses far away from the soma) back to
the relay neurons that projected to L4-ST neurons in a given
macrocolumn (Reichova and Sherman, 2004; Thomson, 2010;
Sherman, 2017). These L6a-CT projections are generally thought
of as the origin of ‘‘top-down’’ signals (Douglas and Martin,
2004). They are not able to drive action potentials in thalamic
relay neurons on their own, but they can increase the firing rate of
an already activated thalamic relay neuron via these modulatory
synapses or put them into a subthreshold predictive state.

Surrounding the thalamus is a thin sheet of inhibitory neurons
called the thalamic reticular nucleus (‘‘TRN’’; Sherman and
Guillery, 2006). There are two classes of inhibitory neurons
within TRN: PV neurons and SOM neurons (Clemente-Perez
et al., 2017). PV neurons inhibit core relay neurons while SOM
neurons inhibit matrix neurons. PV neurons receive input from
L6a-CT neurons in the neocortex, while SOM neurons do not
receive any input from the neocortex. The axons of all types
of thalamocortical relay cells send collaterals to TRN on their
way to the neocortex (Clascá et al., 2012). Evidence suggests that
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FIGURE 1 | Proposed Computations performed by a single pyramidal neuron. (A) Visual depiction of morphology of a standard pyramidal neuron. (B) Proposed
computations performed by inputs to distal dendritic segments vs. inputs to proximal dendritic segments. Dendritic segments are independent pattern detectors.
Similar to that proposed by Hawkins et al. (2010) and Hawkins and Ahmad (2016). See text for details.

these collaterals provide lateral inhibition to nearby relay cells
(Pinault and Deschênes, 1998).

A MODEL OF A SINGLE MACROCOLUMN

Layer 4 Stellate Neurons Are Coincidence
Detectors on Bottom-Up Input
There is general agreement that layer 4 stellate (‘‘L4-ST’’) neurons
are the receiver of bottom-up input from lower-order cortical
areas, primarily passing information up from the thalamus
(Hegdé and Felleman, 2007; George and Hawkins, 2009). Similar
to previous models, I propose that L4-ST neurons perform
coincidence detection on this bottom-up input (George and
Hawkins, 2009). L4-ST neurons provide strong driving input
to all L2/3 cells within its minicolumn (Douglas and Martin,
2004; George and Hawkins, 2009; Hawkins and Ahmad, 2016).
This means that whenever a specific coincidence of input is
detected in L4-ST neurons, an entire L2/3 minicolumn will
be activated.

Experimental evidence for this simple form of coincidence
detection in L4-ST cells can be seen directly in their response
properties. Input to L4-ST cells in V1 comes from first-order
visual thalamus (LGN), which respond to on-center off-surround
circular stimuli in specific locations in their receptive field (Tang
et al., 2016). However, L4-ST neurons in V1 primarily respond
to bars of light of specific orientations (Martinez and Alonso,

2003). This is exactly what would be expected if L4-ST neurons
performed coincidence detection on their bottom-up input. A
bar of light in a specific orientation is simply a coincidence of
a specific set of on-center, off-surround circles.

Layer 2/3 Pyramidal Neurons Implement a
Competitive Network on Layer 4 Input
The pyramidal neurons found in L2/3 (‘‘L2/3-PY’’ neurons)
have basal dendrites that extend laterally throughout the
entire macrocolumn. They have apical dendrites that extend
throughout L1 in the macrocolumn. Axonal projections from
L2/3-PY neurons project back onto themselves as well as laterally
throughout layers 2, 3, and 5 of the entire macrocolumn
(Bannister, 2005). L2/3-PY neuron axons synapse on both
other L2/3 pyramidal cells as well as inhibitory interneurons
that synapse on the soma of nearby L2/3 pyramidal cells
(Markram et al., 2004).

I propose the computation of individual L2/3-PY neurons
is as described by the ‘‘HTM model neuron’’ in Hawkins
and Ahmad (2016): basal dendrites receive ‘‘contextual’’
modulatory input from other L2/3-PY neurons, whereas
apical dendrites receive ‘‘top-down’’ modulatory input from
other macrocolumns and higher-order thalamus. Excitation
of either apical or basal dendrites of L2/3-PY neurons
does not provide sufficient depolarization to drive somatic
depolarization. However, such subthreshold excitation can
modulate the sensitivity of these neurons to L4-ST input, and
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FIGURE 2 | The Canonical neocortical microcircuit. (A) The main input/output connectivity of excitatory neuron types within microcircuit. Gray neurons denote
excitatory neurons that are either afferent or efferent partners with neuron type in question. Red neurons denote inhibitory interneurons. Question marks (“?”) denote
hypothesized but unverified connectivity. Triangles denote synapses. See Supplementary Table S1 for references on connectivity. (B) Visualization of morphology
and laminar distribution of the main types of excitatory neurons within the neocortical microcircuit. Note that there are several known excitatory neuron types not
depicted here, including L6b corticothalamic neurons, L6 corticoclaustral neurons, and L2/3 corticocortical pyramidal neurons. Also note that L6-CC neurons are
highly varied in morphology, but for simplicity they are only the “star shaped” morphology is depicted here. (C) A simplified visual model of the neocortical
microcircuit. This article will use this simplified visual model to conceptually articulate the computations performed by the macrocolumn.

hence bias the macrocolumn towards different representations
(Hawkins and Ahmad, 2016).

When other L2/3-PY neurons synapse directly onto L2/3-
PY neuron dendrites, they provide excitatory contextual
modulatory input. When they instead synapse first onto
inhibitory interneurons, they provide inhibitory contextual
modulatory input. I propose that this excitatory and inhibitory
recurrent connectivity enables the L2/3-PY cell network
to operate as a winner-take-all competitive network. To
illuminate the computational power of such a network, consider
the following.

Suppose a macrocolumn has learned two coincident patterns
in L4-ST neurons—one pattern for ‘‘A’’ and one pattern for
‘‘B’’ (Figure 4A). This model proposes that the L4-ST neurons
that respond to ‘‘A’’ will activate a set of minicolumns in
L2/3, whereas the different pattern of L4-ST neurons that
respond to ‘‘B,’’ will activate a different set of minicolumns
in L2/3. I propose that the cells in a minicolumn active
within ‘‘A’’ will provide excitatory input to neurons in other
minicolumns also active in ‘‘A’’ while providing inhibitory input

to neurons in minicolumns that are not active during ‘‘A’’ (such
as those for ‘‘B’’). This effectively implements a competitive
network, where cells responsive to ‘‘A’’ will excite other cells
responsive to ‘‘A’’ while inhibiting those responsive to other
stimuli (Figure 4B).

This means that if ambiguous or conflicting coincidence
detection occurs (i.e., both ‘‘A’’ and ‘‘B’’ are input into the
network simultaneously), the competitive network in L2/3 will
force only one representation to be active (Figure 4C).
Furthermore, top-down excitation enables higher cortical
regions to bias L2/3 representation, allowing for patterns with
less bottom-up input to still win (Figure 4D).

Note that top-down bias cannot create a representation
if there is no bottom-up evidence at all, it can only bias
representations. This is consistent with intuition—consider the
famous duck or rabbit example (Supplementary Figure S1). This
image can be seen as either a duck or a rabbit, but you can’t
see a unicorn. Top-down bias can shift network states between
representations that have some bottom-up evidence but not to
representations with no bottom-up evidence.
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FIGURE 3 | Connections between thalamus and neocortex. (A) Neuron types within the thalamus and their connectivity with neuron types within the neocortex.
Question marks (“?”) denote hypothesized but unverified connectivity. Triangles denote synapses. See Supplementary Table S1 for references on connectivity.
(B) A simplified visual model of a hierarchical thalamocortical network. Note that core relay neurons and their projections to higher-order cortex, and local matrix
neurons and their projections to lower-order cortex are both depicted graphically as a single neuron. I do this both for visual simplicity, but also because in this article
I hypothesize they communicate the same signals forward and backwards across the hierarchy. For visual simplicity, I only depict inputs to multiareal matrix neurons
from some macrocolumns, but in the proposed model all lower order macrocolumns will project to these neurons.

The proposal here is consistent with many others who
similarly propose that L2/3 implements a winner-take-all
network (Riesenhuber and Poggio, 1999; Maass, 2000; Yulle and
Geiger, 2003; Douglas and Martin, 2004). Consistent with this,
recording studies in L2/3 of the visual cortex have shown that
neurons selective to different stimuli in the same receptive field
seem to laterally inhibit each other, and those responsive to one
stimulus are often inhibited during the presentation of other
stimuli (Zoccolan et al., 2005; Busse et al., 2009).

Layer 5a Regular Spiking Neurons Learn
and Replay Transitions Between Layer
2/3 Network States
I propose that layer 5a regular spiking (‘‘L5a-RS’’) neurons
play the computational role of learning and replaying
transitions between different L2/3 network states. L2/3-
PY cells send axonal projections horizontally within
L5 (Larsen and Callaway, 2005), providing input to
L5a-RS neurons throughout a macrocolumn (Kawaguchi,
2017). L5a-RS neurons send a massive projection back
to L2/3 neurons, synapsing both on pyramidal neurons
and inhibitory interneurons throughout the macrocolumn
(Dantzker and Callaway, 2000; Adesnik and Naka, 2018).

This is the perfect circuit set up for the sequential
reverberatory activity.

To demonstrate the proposed computation of L5a-RS
neurons, let us consider a simplified (but unrealistic) setup
where sequences occur in small time windows supportive of
Hebbian and spike-timing-dependent plasticity (STDP; this will
be generalized later in the article). Suppose you input a rapid
sequence of already known patterns (e.g., A, B, and C) into
a macrocolumn; and suppose each element follows each other
immediately with no delay.

This model proposes the following learning process will
occur. The input of ‘‘A’’ will first activate the minicolumn
representation for ‘‘A’’ (step 1 in Figure 5A). This L2/3 pattern
for ‘‘A’’ will then activate a pattern separated pattern of
L5a-RS neurons (step 2 in Figure 5A). Pattern separation is
consistent with observed connectivity—L2/3-PY neurons that are
interconnected tend to synapse on L5a-RS neurons that are also
interconnected (Kampa et al., 2006). This L5a-RS code is then
projected back to the entire L2/3 macrocolumn, where a random
biasing of some pyramidal cells will be sub-threshold activated,
and some inhibitory interneurons will be sub-threshold activated
(step 3 in Figure 5A). I will henceforth refer to this mechanism
from L5a-RS neurons as ‘‘sequence biasing.’’ Due to this
biasing, when ‘‘B’’ received by the macrocolumn, a more sparser
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FIGURE 4 | Proposed computation performed by L2/3-PY neurons: winner-take-all network on L4-ST patterns. (A) Simplified depiction of how L2/3-PY neurons
encode information. A subset of minicolumns are co-activated in response to the coincidence detection of patterns from L4-ST neurons. Example coincident
patterns “A” and “B” are shown. For simplicity they are depicted as coincident activity of two minicolumns, in reality patterns may be encoded in more minicolumns.
(B) Minicolumns that coactivate in response to the same coincident pattern recurrently excite each other (top image in B). Minicolumns that do not coactivate in
response to the same coincident pattern inhibit each other (bottom image in B). This is effectively a winner-take-all network. (C) If multiple patterns are detected
simultaneously in L4-ST neurons, the winner-take-all network amongst L2/3-PY neurons will ensure that only the coincident pattern with the most evidence (higher
L4-ST firing rate) will be activated. (D) Top-down bias, implemented through input onto apical dendrites of L2/3-PY neurons, can bias representations towards
patterns that have less bottom-up evidence, changing the winner.

minicolumn representation of ‘‘B’’ will be activated, as opposed
to the entire minicolumn. Note that this ‘‘sparse’’ representation
of ‘‘B’’ is unique to the sequence ‘‘A→B.’’ This is the case
because the pattern of neurons inhibited and excited in the
minicolumns of ‘‘B,’’ was generated by the L5a-RS neurons
specific to ‘‘A.’’ If the preceding element in the sequence were
‘‘Z,’’ then a different sparse pattern of ‘‘B’’ would have been
activated. The unique code of ‘‘A→B’’ then similarly activates a
pattern separated L5a-RS code (step 4 in Figure 5A). When the
pattern ‘‘C’’ is provided, this sequence biasing occurs again—the
sparse pattern of ‘‘C’’ that will get activated will be unique to the
sequence ‘‘A→B→C.’’

Note that after receiving this sequence once, short term
Hebbian plasticity will occur between the L5a-RS code for
‘‘A,’’ and the code for ‘‘B’’ that represents ‘‘A→B,’’ as well as
between the L5a-RS code for ‘‘A→B’’ and the code for ‘‘C’’ that
represents ‘‘A→B→C.’’ Hence now if ‘‘A’’ is input into this
macrocolumn, it can automatically replay the entire sequence
via reverberatory connectivity between L2/3 and L5aRS neurons
(see Figure 5B).

However, for the above network to learn the sequence ‘‘ABC,’’
the patterns must be input rapidly within the <100 ms time
window for this short-term synaptic potentiation (Markram
et al., 1997), which is not realistic. Later in the article, I will
generalize this to support realistic timescales.

Experimental data is consistent with the idea that
L2/3 representations are sparse and that this sparsity increases
over time with learning (Vinje and Gallant, 2002; Yen et al.,
2010; Martin and Schröder, 2013). Also, note that I use
the term Hebbian plasticity here as interchangeable with
STDP. STDP has been shown to be able to learn sequences
similarly to how I describe above, providing support for the

plausibility of the proposed learning mechanism (Brea et al.,
2012, 2013; Rezende and Gerstner, 2014; Osogami and Otsuka,
2015). Further, STDP has also been shown specifically within
L2/3 synapses (Froemke et al., 2005; Bender et al., 2006;
Nevian and Sakmann, 2006).

Layer 5b Intrinsically Bursting Neurons
Perform Pattern Separation on Layer
2/3 Output to Generate Unique “Sequence
Codes”
Axons of layer 5b intrinsically bursting (‘‘L5b-IB’’) neurons
represent the key output code of the macrocolumn: L5-IB
neurons project directly to motor areas, striatum, and provide
driving input to higher-order thalamic relay neurons that
project to higher-order cortical areas (Kim et al., 2015;
Baker et al., 2018).

Computationally, I propose that L5b-IB neurons perform
pattern separation on the L2/3 macrocolumn code, meaning that
the L5b-IB code is sensitive to the sequence representation in
L2/3, not just the column representation (see Figure 6). I propose
that this ‘‘unique sequence code’’ is the core output code of
a macrocolumn.

The observed connectivity is consistent with such pattern
separation. L2/3-PY neurons project horizontally within L5 of
a macrocolumn (Larsen and Callaway, 2005) making dense
connections with both L5b-IB neurons as well as L5 inhibitory
interneurons (Thomson and Bannister, 2003; Kawaguchi, 2017).
L5b-IB neurons also have reciprocal horizontal connectivity with
each other (Naka and Adesnik, 2016). L2/3-PY neurons that are
reciprocally connected tend to synapse onto L5b-IB neurons that
are also reciprocally connected (Kampa et al., 2006).
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FIGURE 5 | Proposed computation performed by L5a-RS Neurons: learning transitions between L2/3-PY representations. (A) Proposed mechanism by which
L5a-RS neurons can learn a sequence of L2/3-PY representations. Depicted using simplified representations of “A”, “B”, and “C” (same as in Figure 4). Stars
represent synapses where short-term Hebbian potentiation occurs during learning procedure. See text for details. (B) Proposed mechanism by which L5a-RS
neurons can replay a learned sequence of L2/3-PY representations. See text for details. Red squares denote inhibited neurons. Black outlines denote neurons in
subthreshold predictive states.

In Figure 6, you can see visually how L5b-IB output will
be radically different based on the sequence code represented
in L2/3-PY. The same current pattern representation (‘‘A’’) will
have very different output codes depending on the prior elements
in the sequence. In other words, the output code for ‘‘A’’ coming
right after ‘‘Z’’ is completely different from the output code for
‘‘A’’ coming right after ‘‘X.’’

Furthermore, if you chain elements together, the
L2/3 representation in the final element of the sequence
triggers an L5-IB output representation that is unique for
that exact sequence. So in bottom right example in Figure 6,
you can see that the columnar representation of ‘‘C’’ encodes
‘‘A→B→C’’ (from dynamics described in L5a-RS neurons),
and hence the L5b-IB output is a unique code representing the
exact sequence ‘‘A→B→C.’’ This provides a mechanism for how
a macrocolumn can output a unique sequence code based on
its inputs.

I propose that after learning, the L5b-IB sequence code will
stabilize across the whole sequence to represent the pattern of
the last element. Later in this article, I will describe in detail how
this occurs.

Although far from conclusive, evidence of L5b-IB response
properties is at least consistent with the proposal that they

generate invariant sequence codes. First, L5b-IB neurons have
been shown to have much wider receptive fields than L5a-RS
or L2/3-PY neurons (Sun et al., 2013), which is consistent
with the idea that they cluster groups of commonly occurring
sequences of elements in L2/3 together into a stable sequence
code. Second, in visual cortex L5b-IB neurons tend to be
‘‘complex cells’’ (Gilbert, 1977), responsive to complex patterns
of input, consistent with the proposal that L5b-IB represents
further processed information after L4-ST coincident patterns.

Layer 6a Corticothalamic Neurons Make
Top-Down Predictions of Next Elements in
Sequences
I propose that layer 6a corticothalamic (‘‘L6a-CT’’) neurons
encode predictions of the upcoming stimuli a macrocolumn
expects. The observed connectivity of L6a-CT neurons is
consistent with this. L6a-CT neurons have apical dendrites in
L4, where they have access to direct input from core thalamic
neurons (Thomson, 2010). Dendritic NMDA spikes in these
apical dendrites can learn the same coincidences that L4-ST
dendrites do. Consistent with the idea that L6a-CT neurons learn
similar coincidences to L4-ST neurons, the response properties
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of L6a-CT neurons in the visual cortex are of the ‘‘simple’’
type, responding to bars of specific orientations just like L4-ST
neurons do (Hirsch et al., 1998). L6a-CT neurons receive
driving input from L5B (Zarrinpar and Callaway, 2006), which
I speculate comes from L5B-IB neurons. L6a-CT neurons project
both to L4-ST neurons as well as interneurons within layer 4 that
inhibit L4-ST neurons (Thomson, 2010; Kim et al., 2014). The
majority of excitatory input to L4-ST neurons does not come
from the thalamus, but rather from L6a-CT neurons (Ahmed
et al., 1994; Binzegger et al., 2004). These projections seem to be
modulatory and not driving (Kim et al., 2014). I hypothesize that
these L4 projections provide subthreshold excitation of L4-ST
neurons predicted to become active, and inhibition of L4-ST
neurons predicted to not become active. Consistent with this,
photostimulation of L6a-CT neurons is inhibitory of most L4-ST
neurons while modulating the ‘‘gain’’ of their responses to their
preferred stimuli (Olsen et al., 2012; Kim et al., 2014), which is
exactly what you would expect if L6a-CT neurons are making
specific predictions of upcoming sensory input.

L6a-CT neurons have very little recurrent connectivity, but
have substantial lateral inhibition of each other, similar to L2/3-
PY neurons (Thomson, 2010). This means that the winner-take-
all dynamic proposed to occur in L2/3, can also occur in L6a-
CT, albeit with different computational consequences due to
a different input. Consider the following—suppose a specific
coincident pattern of input is received by a macrocolumn. This
puts a specific pattern of L4-ST neurons into an active state,
as well as putting a specific pattern of L6a-CT neurons into
a predictive state (Figure 7, step 1). Furthermore, suppose a
given L5b-IB sequence code sends driving input to a random
subset of L6a-CT neurons. When the L5b-IB sequence code fires,
only the predicted L6a-CT neurons receiving L5b-IB input will
become active, the rest will be inactivated by lateral inhibition.
This generates a sparse L6a-CT code that is unique to a specific
element within a specific sequence (Figure 7, step 2). In other
words, the ‘‘B’’ in ‘‘ABC’’ will trigger a different L6a-CT code than
the ‘‘B’’ in ‘‘DBF.’’ This enables the L6a-CT projection to predict
the next element in the sequence based on the current element
as well as the sequence it is in. In other words, if receiving ‘‘B’’
in ‘‘ABC,’’ L6a-CT will predict ‘‘C,’’ if receiving ‘‘B’’ in ‘‘DBF,’’
L6a-CT neurons will predict ‘‘F.’’

Given the above, it is not hard to imagine how learning
these associations might occur. The random L6a-CT pattern
that gets activated by ‘‘B’’ in the sequence ‘‘ABC’’ will fire right
before the core thalamic neurons and L4-ST neurons for ‘‘C,’’
hence building short-term Hebbian plasticity with both of these
neurons. Hence if the sequence ‘‘ABC’’ is replayed a sufficient
quantity of times, these sparse L6a-CT codes will build long-term
plasticity with the core thalamic and L4-ST neurons that tend to
follow them, hence reliably predicting the upcoming element in
a learned sequence.

FRONTAL INPUT—MOTOR COMMANDS,
ATTENTION, AND WORKING MEMORY

The above model of a single macrocolumn can be used to
explain the neural mechanisms of various cognitive functions

of the sensory cortex. It has been shown that the frontal cortex
sends extensive projections directly to the basal dendrites of
L6a-CT neurons and the apical dendrites of L2/3-PY neurons
(Nelson et al., 2013; Leinweber et al., 2017). Under the
assumption that macrocolumns function as proposed in the
above model, I will show that this projection can explain
the neural mechanisms for motor prediction, attention, and
working memory.

Motor Predictions: Layer 6 Corticocortical
and Layer 6a Corticothalamic Neurons
Integrate Motor Commands to Predict
Upcoming Sensory Input
I propose that one function of these frontal projections to L6 in
the sensory cortex is to enable L6a-CT neurons to incorporate
volitional motor commands into their prediction of upcoming
sensory input. To see howmacrocolumns might accomplish this,
consider an example of a saccadic eye movement.

Suppose there is a 45-degree bar in your left visual field, and
you decide to move your eyes to look at it (Figure 8, step 1). If
this network works as proposed, the L6a-CT neurons in the fovea
of your visual field should predict the 45-degree bar before it
occurs. To accomplish this, the macrocolumn(s) processing your
left receptive fieldmust somehow ‘‘transfer’’ the representation of
the 45-degree bar to the macrocolumn(s) processing your fovea
receptive field before you look to the left.

I propose the mechanism for how this occurs is through
long-range projections from L6-CC neurons. L6-CC neurons
send projections from their macrocolumn to far away
macrocolumns within the same level of their hierarchy (Harris
and Mrsic-Flogel, 2013). These L6-CC neurons synapse onto
other L6-CC and L6a-CT neurons both in distant macrocolumns
as well as within their own macrocolumn (Bremaud et al., 2007).
L6-CC neurons also receive substantial input from L5B, which I
speculate comes from L5B-IB neurons (Zarrinpar and Callaway,
2006). I propose that by integrating the input from frontal
motor commands and local sensory stimuli, L6-CC neurons
respond to specific coincidences of a motor command and
sensory stimulus. In our example, the ‘‘look to the left’’ motor
command along with the 45-degree bar will activate a specific
pattern of L6-CC neurons (Figure 8, step 2). This pattern of
L6-CC neurons will send long-range projections to the L6a-CT
neurons in the fovea macrocolumn to trigger the prediction
of a 45-degree bar before it occurs (Figure 8, step 2). Learning
this mapping can occur with simple STDP—whenever you have
a 45-degree bar in your left visual field and you look to the
left, you will always end up with a 45-degree bar in your fovea.
As such, this mapping will be built naturally with a sufficient
amount of visual exploration. This proposal is consistent with
the observation that deep layer neurons within the sensory
cortex exhibit movement-related response properties before
movement begins, even without any changes in sensory input
(Jordan and Keller, 2020).

Doing this representational transfer with comprehensive
macrocolumn-to-macrocolumn connectivity would likely lead to
a combinatorial explosion—each macrocolumn would have to
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FIGURE 6 | Proposed computation performed by L5b-IB neurons: generation of unique sequence codes. I propose that before learning, L5b-IB neurons perform
pattern separation on L2/3-PY representations (top two rows). After learning, I propose L5b-IB neurons cluster together different representations into a common
sequence code (bottom row). See text for details.

learn a mapping between an object in every other macrocolumn
and a given saccadic motor command. However, there are
several shortcuts one could imagine that would make this
more feasible. First, matching could be made fuzzily, which is
intuitive as object recognition outside of the fovea is already
dramatically reduced. Second, matching could bemade to groups
of stimuli instead of only one (e.g., all bars between 0 and
45 degrees in left visual field maps to all bars between 0 degrees
and 45 degrees in the fovea). Third, connectivity could be
highly biased from peripheral visual field macrocolumns to
fovea field macrocolumns and have very little transference from
the fovea to peripheral fields. All of these would dramatically
reduce the required connectivity of L6-CC neurons while
still enabling the overarching motor prediction mechanism
to function.

Top-Down Attention: Frontal Projections to
L6a-CT and L2/3-PY Neurons Enable
Attention
I propose that another function of the frontal projection to
L6a-CT and L2/3-PY neurons in the sensory cortex is to enable
top-down attention. I use the term ‘‘top-down attention’’ to
refer to two abilities (Knudsen, 2007)—the ability of a subject
to toggle between different possible interpretations of ambiguous
stimuli (‘‘duck or rabbit?’’ see Supplementary Figure S1) and the
ability of a subject to search an environment for specific features
or objects (e.g., ‘‘where’s waldo?’’). If macrocolumns work as
proposed here, then frontal input to apical dendrites of L2/3-PY
neurons will bias representations and hence can disambiguate
stimuli the same way we already proposed that higher-order
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FIGURE 7 | Proposed computation performed by L6a-CT neurons: predicting next element In A sequence. Step 1: bottom-up input from lower-order thalamus
puts a subset of L6a-CT neurons into a predictive state, representing the same coincident pattern encoded in L4-ST neurons (e.g., “A”). Step 2: L5b-IB sequence
code activation for the predicted sequence (e.g., “ABC”) activates a random subset of L6a-CT neurons. Due to extensive lateral inhibition amongst L6a-CT neurons,
only the neurons that were in a predictive state end up firing action potentials. This produces a sparse pattern in L6a-CT neurons that is unique to the element “A”
within the sequence “ABC.” Step 3: L6a-CT neurons that encode the element “A” within sequence “ABC” predict the elements “A” or “B” as upcoming elements in
sequence. This L6a-CT pattern subthreshold activates (“predictive state”) core thalamic relay neurons and L4-ST neurons responsive to “A” and “B” and inhibits core
thalamic relay neurons and L4-ST neurons not responsive to “A” or “B”. See text for more details. Red squares denote inhibited neurons. Black outlines denote
neurons in subthreshold predictive states.

sensory macrocolumns do. Further, when searching for a specific
stimulus or object, frontal input to the basal dendrites of L6a-CT
neurons will put neurons selective for certain features or objects
(e.g., ‘‘waldo’’) into a predictive state the same way motor
projections and bottom-up sensory input puts L6a-CT neurons
into predictive states. This ‘‘prediction’’ of a sensory stimulus
will make the network much more responsive to the predicted
features within an environment, enabling rapid recognition when
receiving consistent stimuli (‘‘aha! There is waldo!’’).

The idea that top-down attention works by biasing
representations in the L2/3 winner-take-all network and
making predictions through L6a-CT neurons is consistent with
a broad set of experimental evidence. It has been shown that
top-down attention of a specific feature or object increases
the responsiveness of specifically the neocortical neurons that
are tuned to that feature or object (Moran and Desimone,
1985; Desimone and Duncan, 1995; Maunsell and Treue,
2006), while simultaneously decreasing the responsiveness of
neurons that are tuned to other feature or objects (Chelazzi
et al., 1993; Treue and Trujillo, 1999; Vanduffel et al., 2000;
Reynolds and Desimone, 2003). This has been replicated
repeatedly across different modalities and hierarchical levels of
sensory cortex (Motter, 1993; Treue and Maunsell, 1996; Luck
et al., 1997; Chelazzi et al., 1998; Reynolds et al., 1999; Recanzone
and Wurtz, 2000; Chelazzi et al., 2001; Kastner and Ungerleider,
2001; McAdams and Reid, 2005). Further, it has been shown
that the higher the attentional demand in the task, the greater
the increase in the sensitivity of the neurons being attended to
Williford and Maunsell (2006) and Martínez-Trujillo Julio and
Treue (2002). The broad idea that attention is fundamentally

a process of biased competition in a winner-take-all network
is consistent with prior models of attention (Lee et al., 1999;
for reviews see Reynolds and Chelazzi, 2004; Knudsen, 2007).
There is also evidence that attention modulates the responses
of TRN (McAlonan et al., 2006), as would be expected by
this model.

Working Memory: Frontal Projections to
L6a-CT Neurons Can Trigger and Maintain
Specific Memories
A recent experimental study showed that L6a-CT neurons
provide strong driving input to L5a-RS neurons, eliciting action
potentials directly (Kim et al., 2014). If macrocolumns work
as proposed here, then the activated L5a-RS neurons will
activate L2/3-PY neurons. This means that if the frontal cortex
triggers a specific L6a-CT representation, then simultaneously
it will trigger a corresponding L2/3-PY representation via
L5a-RS neurons. In other words, a frontal projection to L6a-
CT can trigger and maintain L2/3-PY representations without
sensory input.

There is reasonable evidence that working memory
operates this way. It has been shown that sensory cortex
shows delay activity during working memory tasks and
that this activity is specific to deep and superficial layers,
avoiding L4, exactly what would be predicted by the above
scheme if L6a-CT neurons trigger representations in L2/3-
PY bypassing L4 (Lawrence et al., 2018). It has been shown
that maintaining specific features in working memory
selectively activates neurons selective to those features in
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the sensory cortex (Harrison and Tong, 2009; Serences
et al., 2009; Tong, 2013). It has been shown that top-down
projections from higher-order cortex during delay periods
project specifically to deep layers (Miyashita, 2019). Further,
it has been shown that during delay periods, firing starts in
infragranular layers of sensory cortex and then propagates
to superficial layers, while during sensory experiences
processing starts in granular layers, propagates to L2/3, and
then propagates to deeper layers (Sakata and Harris, 2009;
Takeuchi et al., 2011).

I propose that the hippocampus is an essential component
of this process. CA1 within the hippocampus has been
shown to replay place codes on the gamma rhythm during
working memory tasks (Chadwick et al., 2015; Drieu
and Zugaro, 2019). CA1 of the hippocampus provides
an extensive excitatory projection to the frontal cortex
(Jay et al., 1989, 1992; Jay and Witter, 1991; Carr and
Sesack, 1996; Tierney et al., 2004; Hoover and Vertes,
2007). If CA1 triggers replay in the frontal cortex, then the
corresponding representations within the sensory cortex
could also be replayed due to already described frontal
projection to L6a-CT neurons. Consistent with this, it has
been shown that neural activity between the hippocampus
and neocortex are correlated during working memory
tasks and that frontal firing lags behind the hippocampal
firing, suggesting information flows from hippocampus
to frontal cortex (Hyman et al., 2005, 2010; Jones and
Wilson, 2005; Siapas et al., 2005; Benchenane et al., 2010;
Sigurdsson et al., 2010). L6 in higher-order sensory cortex
also receives a direct projection from CA1, providing another
more direct mechanism by which this the hippocampus
may trigger memories in the absence of sensory input
(Cenquizca and Swanson, 2007).

THALAMOCORTICAL NETWORKS
COORDINATE PROCESSING USING
OSCILLATIONS

Let us now turn to answer the question of how the
brain coordinates processing across macrocolumns on precise
timescales. Processing on precise time scales is an essential
requirement for networks of macrocolumns. Postsynaptic
excitation after presynaptic excitation across a single synapse, in
the absence of successfully driving a postsynaptic spike, typically
decays for 10–30 ms (Curtis and Eccles, 1959; Sayer et al.,
1990; Williams and Stuart, 2000). This means that in order
for dendritic segments to sum inputs across multiple synapses,
presynaptic neurons must fire action potentials within a precise
time window.

Macrocolumns Oscillate Between “Input
States” and “Output States”
I propose processing on precise timescales is made possible by
macrocolumns oscillating back and forth between an ‘‘input
state’’ and an ‘‘output state.’’ The inherent circuit dynamics
within the thalamus ensure that macrocolumns oscillate between

these states at the same time, enabling coordinated processing.
Within the thalamus, about ∼30% of thalamocortical cells have
been called ‘‘High-Threshold Busting Cell’’ (HTC) due to their
rhythmic bursting at the alpha rhythm (Lörincz et al., 2009;
Hughes et al., 2011). When these HTC neurons burst fire they
inhibit other thalamic relay neurons via thalamic interneurons
(Lörincz et al., 2009). I speculate that these HTC cells are in fact
the same as the multiareal matrix cells identified by Clascá et al.
(2012), and the neurons they inhibit are core relay neurons. If this
is true, then on the alpha rhythm, multiareal matrix neurons will
fire for∼50 ms while core neurons pause, and then core neurons
will fire for 50 ms while multiareal matrix neurons pause, back
and forth.

I propose that when multiareal neurons pause and core
thalamic neurons are activated, macrocolumns lock into an
‘‘input state.’’ In this state, macrocolumns integrate bottom-up
input from core thalamic neurons through L4-ST neurons and
top-down input through apical dendrites of L2/3-PY neurons.
Activation of L4-ST neurons excites inhibitory interneurons in
L5 which directly inhibit L5a-RS and L5b-IB neurons (Pluta
et al., 2015; Naka and Adesnik, 2016). Hence during input states,
superficial layers are activated, and deep layers are inactivated
(Figure 9).

However, when multiareal matrix neurons burst fire and core
relay neurons pause, themacrocolumn shifts to an ‘‘output state.’’
In this state, I propose that L2/3-PY and L4-ST neurons will
be inhibited, while deep layer neurons will become activated.
There are several ways in which this could happen. Multiareal
matrix cells project to L1 (Vijayan and Kopell, 2012), where
thalamocortical neurons synapse onto thick apical dendrites of
L5b-IB neurons (LaBerge, 2005) driving burst-firing. L5b-IB
neurons then synapse onto L6a-CT neurons (Thomson, 2010)
which activate L6 interneurons that inhibit layers 4 and 2/3
(Bortone et al., 2014). This mechanism is consistent with
the observation that L5b-IB neuron firing triggers up/down
states within L2/3 by propagating first to L6 and then to
superficial layers (Lórincz et al., 2015). Another mechanism
could be through multiareal matrix neurons directly projecting
to inhibitory interneurons in layer 2/3 that inhibit L2/3-PY and
L4-ST neurons (Vijayan and Kopell, 2012). This direct inhibition
is consistent with the observed connectivity of multiareal matrix
neurons to layer 2/3 of the higher-order cortex. Furthermore,
thalamic projections within L1 also synapse onto inhibitory
interneurons which inhibit L2/3 neurons (Cruikshank et al.,
2012), providing a mechanism by which multiareal matrix
neurons may inhibit top-down input onto L2/3-PY neurons.

I propose there are three key computational purposes of this
output state: First, the output state enables a stable output of the
L5b-IB sequence code, so that it can be passed to other regions
without being interrupted by changes in sensory input. Second,
the output state enables the macrocolumn to reactivate memories
within L2/3-PY via L6a-CT neurons without being disrupted by
incoming sensory information through L4-ST. Third, it provides
a mechanism for macrocolumns to ‘‘reset’’ their representations
in concert, and hence enable a network to re-lock into a new
representation given new information.
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Network Oscillations for Integrated
Processing: Passive Processing at Alpha
and Attentive Processing at Theta
I propose that there are two broad oscillatory modes of sensory
thalamocortical networks: passive processing and attentive
processing, each coordinating processing between different sets
of regions at different frequencies.

I propose passive processing is the default thalamocortical
network mode within the sensory cortex. In passive processing
macrocolumns oscillate between input and output states at
the alpha rhythm, spending roughly ∼50 ms in each state.
These alpha oscillations are driven by the inherent oscillatory
dynamics of HTC cells and L5b-IB burst firing as described in
the prior section.

However, I propose that during situations requiring top-down
attention or working memory, thalamocortical networks slow
down their oscillations to the theta frequency (∼100 ms in
each state). I propose that the purpose of this oscillatory
slowing is threefold. First, the default oscillatory dynamics
of the higher-order frontal cortex and hippocampus are in
the theta frequency (Buzsáki, 2002; Colgin, 2011), hence to
coordinate processing with those regions’ sensory cortex needs
to also oscillate at the same rhythm. Second, this slowing
down gives L2/3-PY neurons more time in between input
states to replay sequences, hence enabling more items to be
stored in working memory. Third, this slowing gives L2/3-
PY neurons more time to lock into a representation that well
matches top-down input and bottom-up input. I proposed that
during periods of a good match between top-down expectations
and bottoms up input, L2/3-PY neurons resonate at gamma
oscillations. This is consistent with the observations of strong
gamma oscillations within L2/3 during attention (Buffalo et al.,
2011), as well as the observed entrainment of gamma to theta
oscillations (Soltesz and Deschênes, 1993; Bragin et al., 1995;
Lee et al., 2005; Canolty et al., 2006; Colgin et al., 2009;
Belluscio et al., 2012). As proposed by others, I hypothesize
that the function of these rapid oscillations during successful
predictions facilitates long-term synaptic plasticity to learn
new associations of objects and sequences being attended to
Grossberg and Versace (2008).

There are several mechanisms by which oscillations in
the sensory cortex might be slowed from alpha to theta
during attentive processing. It has been shown that L5b-IB
neurons can modulate their bursting rate within ranges
encapsulating both theta and alpha frequencies based on
apical input (Li et al., 2013). It is possible that independent
pacemakers in the septal complex become independently
activated during attentive states (Petsche et al., 1962). CA1 from
the hippocampus to the higher-order sensory cortex may
modulate oscillations during attention. The frontal cortex also
sends a large projection to the sensory cortex through the
claustrum, which may trigger or modulate oscillatory states
(Narikiyo et al., 2020; White et al., 2018). It is also possible
that various arousal neuropeptides or neuromodulators change
inherent oscillatory dynamics in the thalamus and cortex
(Li et al., 2017).

Unraveling the Experimental Data on
Oscillations
The proposal here is definitively not a comprehensive account of
all neural oscillations. However, the theory presented here well
accounts for a large body of findings regarding specifically theta
and alpha oscillations.

The alpha frequency is the strongest EEG oscillatory signal
observed in the brain of awake subjects (Berger, 1929; da Silva
et al., 1973; Lopes da Silva andNiedermeyer, 1999). Further, these
studies showed that alpha activity is greatest when humans are
awake, but not engaged in any specific task. Both consistent with
the idea that alpha oscillations are a form of ‘‘passive’’ processing.

There is also experimental evidence suggesting that theta
oscillations are triggered specifically under conditions of high
attention. Local theta rhythms are observed when engaging in
selective attention, specifically in the modality being attended to
(Green et al., 2011). Theta oscillations have been observed when
animals are navigating spatial environments, a task presumably
required substantial attention (Caplan et al., 2003; Tsanov et al.,
2011). During working memory tasks, there is sustained theta
activity within the neocortex during the delay period (Gevins
et al., 1997; Raghavachari et al., 2001; Jensen and Tesche, 2002;
Scheeringa et al., 2009).

There is also evidence that not only does theta increase under
attentive tasks, but alpha decreases specifically in the modality
being focused on, consistent with the idea that networks shift
from alpha oscillations to theta oscillations. It has been shown
that when focusing on motor tasks, there is an increase in alpha
over visual areas, and when focusing on visual tasks, and increase
in alpha over motor areas (Pfurtscheller, 1992). When focusing
spatial attention to one side, alpha increases over the side of
the brain not processing the attended location, whereas alpha
decreases over the side that is processing the attended location
(Worden et al., 2000; Thut et al., 2006; Rihs et al., 2007; van
Gerven and Jensen, 2009; Kelly et al., 2009; Haegens et al., 2010;
Händel et al., 2011).

This proposal is also consistent with the observed laminar
origins of various oscillations, where spiking activity within
superficial layers is most coherent with gamma, activity in
deep layers is most coherent with alpha (Livingstone, 1996;
Buffalo et al., 2011), and gamma oscillations in superficial
layers are entrained to alpha oscillations in deep layers
(Jensen and Mazaheri, 2010).

There is admittedly experimental evidence that is inconsistent
with the proposal herein. Most notably, some studies have
shown that attention actually decreases theta power (Spyropoulos
et al., 2018). I hypothesize that this inconsistency arises due
to the unreliability of using changes in the relative power
of different frequencies observed in local field potentials to
ascertain underlying oscillatory processes. For example, if
under a moderate level of attention input states last for
100 ms, and output state last for 100 ms, but then under
more strenuous attention input states prolong themselves to
150 ms, and the output state only lasts for 50 ms, this
would be observed in Fourier analysis as a decrease in theta
power. However, in this latter case, the actual theta oscillatory
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process did not become weaker, rather macrocolumns simply
modulated their times within input and output states to prolong
integration time.

There is also experimental evidence that alpha oscillations
primarily pass information in the feedback direction, while theta
and gamma oscillations pass information in the feedforward
direction (Kerkoerle et al., 2014; Bastos et al., 2015; Spyropoulos
et al., 2018), a phenomenon not directly explained by this
theory. Although speculative, it is possible to explain these
findings in the context of this theory under the following
assumption. If it were the case that the mechanism by
which frontal cortex transitions sensory cortex from passive
processing to attentive processing occurs first in the lower-order
cortex, whereas the frontal disengagement that transfers
networks back from attentive processing to passive processing
occurs first in the higher-order cortex, then this theory
can explain these findings. In such a case, attentive states
would always occur first in the lower-order cortex and
propagate upwards, and passive states would always occur
first in the higher-order cortex and propagate downwards,
hence showing the observed differential in directions of
frequency propagation.

However, it is important to note that there are several
alternative interpretations of neural oscillations that are also
consistent with experimental data, and are more consistent with
alternative models of the neocortical microcircuit (Wang, 2010;
Bastos et al., 2012; Doesburg et al., 2015). Further work will have
to be done to unify and/or disambiguate these interpretations.

HOW NETWORKS OF MACROCOLUMNS
RECOGNIZE ALREADY LEARNED
OBJECTS AND SEQUENCES

The Computational Function of Networks
of Macrocolumns
With the above work done, the next question is: what are
the emergent computations of hierarchical thalamocortical
networks of these macrocolumns? I propose these
hierarchical networks of macrocolumns serve two purposes:
(1) ‘‘integration’’—progressively more stable representations
of input get formed higher in the hierarchy, as proposed
by HTM theory (George and Hawkins, 2009); and
(2) ‘‘disambiguation’’—conflicting patterns are disambiguated
higher in the hierarchy, and this is used to bias patterns in
macrocolumns lower in the hierarchy.

The integration enables broad inputs across thousands of
macrocolumns to be represented in fewer macrocolumns over
several levels of a hierarchy until an L2/3 representation in a
higher-level macrocolumn could represent a coincidence pattern
over thousands of lower-level macrocolumns. Sequence outputs
of one level of macrocolumns become coincident objects within
L2/3 representations of the level above. Taken together, higher-
level L2/3 representations come to represent sequences of
sequences of sequences.

Disambiguation can occur in two specific ways: (a) sequence
disambiguation—an ambiguous sequence can be disambiguated

(e.g., macrocolumn gets ‘‘A,’’ but can’t tell the difference
between two sequences ‘‘ABC’’ and ‘‘AZY’’) and (b) object
disambiguation—an ambiguous input can be disambiguated
(e.g., macrocolumn gets ‘‘A’’ and ‘‘B’’ simultaneously, which
input is right?).

Sequence Disambiguation
To demonstrate how the sequence disambiguation occurs, let us
consider how a simple network of macrocolumns could learn
to differentiate between two songs (Figure 10A). Consider a
two-layer network of three macrocolumns. Suppose there are
two ‘‘level-1’’ macrocolumns, each of which receives auditory
input within a certain frequency band, as is seen in the tonotopic
mapping of the auditory cortex (Saenz and Langers, 2014).
Let us say macrocolumn #1 receives only ‘‘high notes’’ (treble)
input, and macrocolumn #2 receives only ‘‘low notes’’ (bass)
input. And let us say the output L5b-IB codes from both
macrocolumn #1 and #2 are passed through the thalamic relay
to L4-ST neurons in macrocolumn #3 (hence implementing a
two-level hierarchy).

Suppose this network has only ever heard one of two songs
(song 1 and song 2 in Figure 10A). In song 1, the treble range
plays C, E, D, and the bass just plays C. In song 2, the treble
plays C, B, A, and the bass just plays A. Hence macrocolumn
#1 knows two sequences: C→E→D, and C→B→A. This means
that on beat #1, macrocolumn #1 does not know what song is
being played; it is within an ambiguous sequence.

However, any human that heard these two songs just once,
would immediately be able to predict the next treble note that
would be played on beat #2 after hearing beat #1. It is clear that
the network has sufficient information to disambiguate which
song is being played: if the bass note is C, then we know we are
in song 1 and the beat #2 treble note is E, on the other hand, if
the bass note is A, then we know we are in song 2 and the beat
#2 treble note is B.

To see how this network of macrocolumns implements this
sequence disambiguation, let us play out the processing steps
in our two-level network of macrocolumns (see Figure 10B).
Step 1 begins when beat #1 notes are played (‘‘high C’’ and
‘‘low C’’). During the input state, macrocolumn #1 locks into
a representation for ‘‘high C,’’ and macrocolumn #2 locks into
a representation for ‘‘low C.’’ In the output state (step 2),
macrocolumn #1 will activate two different learned sequence
code outputs, since it is ambiguous whether the sequence
‘‘CED’’ or ‘‘CBA’’ will be played. For simplicity, I depict
only a single L5b-IB neuron firing for a given sequence
representation. These sequence outputs from L5b-IB neurons
in level 1 macrocolumns activate specific relay neurons in
the higher-order thalamus and then provide input to L4-ST
of macrocolumn #3. The coincidence detection in the L4-ST
neurons of macrocolumn #3 now receives conflicting evidence
from these lower-level macrocolumns. Two relay neurons are
consistent with song 1, and one relay neuron is consistent
with song 2. Given the competitive network in L2/3, the
representation with the most evidence (i.e., song 1) will win
out. Hence the representation for only song 1 gets activated in
L2/3 (step 3).
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FIGURE 8 | Proposed computation performed by L6-CC neurons: integrating motor commands into predictions of upcoming sensory input. Step 1: the top oval to
the right of the “eye” depicts a subject’s retina where a 45-degree black bar exists in their left receptive field, and nothing exists in the subjects fovea (center receptive
field). The macrocolumns processing information from two receptive fields (shown in circles) are depicted below the graphic of the retina. Step 2: a volitional motor
command to “look towards the left” will project from frontal cortex to L6-CC neurons, which project out a unique pattern for “45-degree bar” plus “motor command to
look to left.” After learning, L6a-CT neurons within the center receptive field will respond to this pattern and thereby predict the upcoming 45-degree bar in the center
receptive field before it arrives. Red squares denote inhibited neurons. Black outlines denote neurons in subthreshold predictive states. See text for more details.

Note, the ability to co-activate multiple representations in
L5b-IB, without a winner-take-all mechanism preventing such
co-activation, is in stark contrast to the L2/3 network and
is consistent with the experimental data on L5b-IB neurons.
The inhibition observed amongst L5b-IB neurons seems to
not implement lateral inhibition, but rather drive coordinated
burst firing amongst L5b-IB neurons. The L5b-IB to L5b-IB
inhibition exhibits a remarkable delay in firing, inhibiting
other L5b-IB neurons only after 100–200 ms (Silberberg
and Markram, 2007). This is too slow to implement a
winner-take-all mechanism—alternative representations have a
long-time window to be co-active together. Further, L5b-IB
inhibition is not selective for only other L5b-IB but also
provides feedback inhibition back onto themselves (Naka and
Adesnik, 2016), supportive of the idea that the role of this
inhibition is to coordinate burst firing and not to implement
lateral inhibition.

In the next output state of the network (step 4), an
unambiguous sequence code gets output from macrocolumn
#3. Furthermore, the L6a-CT neuron back-propagation provides
modulatory input back to the thalamic relay neurons for song
1, while inhibiting relay neurons representing song 2. Hence,

in the next input state (step 5), there will be only excitement
of thalamic relay neurons active during song 1, which thereby
provides biased top-down input to macrocolumn #2. This
top-down bias leads to the activation of the L2/3 representation
of only the C within the sequence CED, and not the C within
sequence CBA. In the next output state (step 6), macrocolumn
#2 will now output an unambiguous sequence code only for
the sequence CED. Further, this will lead to an unambiguous
prediction of ‘‘high E’’ as the next element in the sequence
through L6a-CT neurons in macrocolumn #2. At this point, this
network has now achieved a stable state, and if sensory input is
unchanged, this network will oscillate back and forth between
step 5 and step 6.

This sequence disambiguation could happen within the
timescale of hundreds of milliseconds, and it can enable this
network to unambiguously know that we are playing song 1 and
not song 2, even when just hearing beat #1.

Object Disambiguation
Object disambiguation occurs very similarly to sequence
disambiguation, except instead of disambiguating between
sequence codes, networks disambiguate between conflicting
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FIGURE 9 | Macrocolumns are proposed to always exist in either an “input state” or an “output state.” Input states are proposed to occur when high-threshold
bursting cells in thalamus pause. During input state superficial layers (L2/3 and L4) are active while deep layers (L5/6) are inhibited. Output states are proposed to
occur when high-threshold bursting cells in thalamus burst fire. During output states superficial layers (L2/3 and L4) are inactivated while deep layers (L5/6) are
activated. See text for details.

inputs. Suppose a two-level network is learning the difference
between an oval and a line, and that each level 1 macrocolumn
receives input from only a specific location in a visual field. The
learned pattern representations can be seen in Figure 11A, where
each level 1 macrocolumn only learns to recognize the shapes
seen in its receptive field, while the level 2 macrocolumn can
recognize the entire shape by integrating sequence outputs across
the level 1 macrocolumns.

What happens then if one of the three level 1 macrocolumns
is receiving conflicting input? The same dynamics in sequence
disambiguation will play out where the competitive network
in level 2 will lead to top-down bias in the macrocolumn
with conflicting input, eventually leading the entire network to
actually see the full oval, even though not all input is consistent
with the oval just most of the input (see Figure 11B). This
mechanism works mathematically the same way as described in
George and Hawkins (2009).

Multi-areal Matrix Neurons in Thalamus
Signal Failed Predictions
A key piece missing from the above proposal is understanding
how thalamocortical networks deal with failed vs. successful
predictions. There are three reasons why explaining this is
essential. First, if a learned sequence fails to predict subsequent
input, then a macrocolumn must somehow subsequently
‘‘forget’’ the prior sequence so it can try to look for a new
sequence to match with the input it is receiving. In other words,
if a macrocolumn knows the sequence ‘‘ABC’’ and ‘‘XYZ’’ if it
hears ‘‘ABCX’’ it needs to shift from the ‘‘ABC’’ sequence to the
‘‘XYZ’’ sequence after the surprising ‘‘X.’’ Second, the brain needs
to solve the ‘‘stability-plasticity dilemma’’ (Grossberg, 1980)—it

is essential that the brain primarily only learns when there is
something new to learn, otherwise the brain risks catastrophic
forgetting by an overzealous generalization of already learned
associations. This requires that the brain has a signal for novelty
to modulate the rate of learning. Third, it has been clearly shown
through behavioral experimentation that a ‘‘surprise’’ signal is
available in the brain. It has been shown that surprise is arousing,
that it draws attention, that it dilates pupils, and much more
(Itti and Baldi, 2009; Preuschoff et al., 2011). This means that if
macrocolumns are in the business of predicting sensory input,
then somehow other brain systems become aware of when these
predictions are wrong, hence there must be some source of failed
prediction signal.

I postulate that the answers to all three of these can be
found in theoretical work by Stephen Grossberg over 30 years
ago in his ART (Grossberg, 1980; Grossberg and Versace,
2008). He proposed that the thalamic core and matrix neurons
respond differently when there is a ‘‘match’’ between layer 6a-CT
predictions and bottom-up input vs. when there is a ‘‘mismatch.’’
A ‘‘match’’ means that the pattern of core neurons subthreshold
activated by L6a-CT are exactly, or close to, the same as the
neurons that get activated by the subsequent bottom-up input.
He suggested that this double input to core neurons leads them
to fire rapidly and oscillate in the gamma frequency. Consistent
with this, it has also been shown that if thalamic relay neurons are
held at elevated subthreshold resting potentials, they burst fire in
response to stimulation, otherwise, they tonically fire in response
to stimulation (Jahnsen and Llinás, 1984; Hughes et al., 1999;
Sherman, 2001; Guillery and Sherman, 2002). This rapid firing in
core relay neurons would then lead to lateral inhibition of matrix
neurons through the TRN, hence reducing the activity of matrix
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FIGURE 10 | How networks of macrocolumns may perform sequence disambiguation. (A) Depiction of how two songs might be depicted in A 2-Level network of
three macrocolumns. Example song 1 and song 2 are shown in musical notation, each composed of only three beats. Macrocolumn #1 only receives input from
“high notes” in the treble clef (top notes), and macrocolumn #2 only receive input from “low notes” in the bass clef (bottom notes). Macrocolumn #3 receives input
only from macrocolumns #1 and #2. This architecture is consistent with observed neuroanatomy—it is known that auditory cortex is organized tonotopically (see
text). The L4-ST and L2/3-PY representations active on each beat in each song are depicted below each beat. Note that macrocolumn #3 has two different
representations of song 1 and song 2 and can disambiguate which song is being played even on beat #1. (B) Using the model of the two songs in (A), this figure
shows the step by step process by which macrocolumn #1 can disambiguate between the two songs on beat #1 using top—down feedback. All macrocolumns in
this network are oscillating between “input states” and “output states” at the same time—each step depicted represents an oscillatory phase of the network. See
text for details.
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neurons. In contrast, if there is a mismatch, then core neurons
do not fire rapidly when they receive their driving input, hence
disinhibiting matrix neurons and increasing their activity. Put
simply, his matrix neurons signal failed predictions. Consistent
with this proposal, it has been found that areas of thalamus rich
in matrix neurons, such as the central medial nucleus, respond
selectively to unexpected sensory stimuli (Matsumoto et al., 2001;
Minamimoto and Kimura, 2002).

I propose that the matrix neurons that fulfill this role are
specifically the multiareal matrix neurons recently described in
Clascá et al. (2012). Furthermore, I propose that the mechanism
for this lateral inhibition of core neurons occurs through the
recently elucidated different connectivity of the PV and SOM
interneurons within TRN. It was identified that L6a-CT neurons
project only back onto PV neurons which seem to subsequently
inhibit only core relay neurons. In contrast, SOM interneurons
seem to only inhibit matrix neurons and only receive thalamic
input via lateral inhibition from other relay neurons but not
from L6a-CT neurons (Clemente-Perez et al., 2017). Note that
this study elucidated PV/SOM interneuron connectivity with
specific vs. nonspecific thalamic nuclei as opposed to specifically
connectivity with core vs. matrix neurons within specific sensory
thalamic nuclei, as I propose in the above model. Hence these
studies are only suggestive of selective PV inhibition of core
thalamic neurons vs. SOM inhibition ofmatrix thalamic neurons.
However, I believe this is a reasonable extrapolation since the
primary distinction between specific and non-specific thalamus
is its relative quantity of core vs. matrix neurons (Clascá et al.,
2012). Further, this study shows some connectivity of SOM
neurons in specific thalamus, where there are some matrix
neurons, but no connectivity of PV neurons with non-specific
thalamus, where there are no core neurons (Clemente-Perez
et al., 2017). Furthermore, if this ends up not being the case,
the above model could be modified to have mismatch codes
be signaled from nonspecific thalamic nuclei directly, instead
of from multiareal matrix neurons within specific thalamic
nuclei (as modeled in Grossberg and Versace, 2008). This
observed circuitry provides new experimental support for the
above mismatch computation because it implies that the level
of inhibition that multi-areal matrix neurons receive depends
primarily on the firing rates of core relay neurons. See Figure 12
for details on the proposed circuitry of mismatch signaling.

I propose this mismatch code signaled by multiareal
matrix neurons serves three key computational purposes within
macrocolumns. First, it resets sequences within L2/3-PY neurons
by synapsing directly on inhibitory interneurons in L2/3.
Multiareal matrix neurons are known to project to L2/3 of the
higher-order cortex, although it is speculative that they synapse
on inhibitory interneurons instead of pyramidal cells. By rapidly
inhibiting neurons in L2/3, matrix firing makes it such that any
L5a-RS sequence biasing within L2/3 is lost, hence restarting any
sequences. Second, this mismatch signal generates widespread
arousal capable of drawing attention from the frontal cortex.
There are several mechanisms through which such arousal could
be generated, the simplest being possible direct projections from
multiareal matrix neurons to neuromodulatory arousal areas
that release acetylcholine or norepinephrine, as is observed from

areas of thalamus rich in matrix neurons (Van del Werf et al.,
2002). Third, the rapid gamma oscillations in core thalamic
neurons generated during ‘‘match’’ episodes generate gamma
oscillations within L4-ST and L2/3-PY neurons. These gamma
oscillations generate rapid short-term STDP, enabling a rapid
acceleration in the rate of learning under conditions of successful
predictions. This provides a potential solution to the ‘‘stability-
plasticity dilemma.’’

In Grossberg’s theory, he proposes that the brain can
modulate its ‘‘sensitivity’’ to mismatch, a parameter he called
‘‘vigilance.’’ In other words, the brain can decide ‘‘how big a
mismatch can I tolerate before triggering matrix firing?’’ Such a
mechanism is consistent with the model proposed here, although
I do not propose an exact mechanism by which this happens.

HOW NETWORKS OF MACROCOLUMNS
LEARN NEW OBJECTS AND SEQUENCES

Now we have all the computational building blocks to answer a
key questionwe set out to answer: how does amacrocolumn learn
sequences over realistic timescales, and then output sequence
predictions to other regions?

To explain this, let us consider a simple procedure—let us see
how ourmodelmacrocolumn can learn the sequence ‘‘ABC’’ over
realistic timescales and once learned, how it can send an output
prediction of this sequence ‘‘ABC’’ to other regions after only
receiving the sensory input ‘‘A.’’ In our model macrocolumn,
let us represent these different elements (‘‘A,’’ ‘‘B,’’ ‘‘C’’) by the
activation of different sets of two minicolumns (see Figure 3A).

Computationally five specific states will occur during the
example procedure of learning this sequence:

(1) Receiving the input of ‘‘A’’ for 1 s:
(2) Pause (no input) for 5 s:
(3) Receiving the input of ‘‘B’’ for 1 s:
(4) Pause (no input) for 5 s:
(5) Receiving the input of ‘‘C’’ for 1 s.

In order to accomplish this task, the brain must store each
of these elements in working memory. As such, I propose
that the relevant networks lock into an ‘‘attentive processing’’
mode during this procedure. They do this to enable coordinated
processing with the frontal cortex and hippocampus, hence
oscillating at the theta rhythm. In Supplementary Figure S2
you can see a visualization of this realistic learning procedure,
with embedded theta oscillations and the corresponding
macrocolumn states.

Step #1: Receiving Input of “A” For 1 s
Figure 13 provides a zoom in on the exact representation and
processing of the neural circuits in a given macrocolumn during
step #1 of this learning procedure. When ‘‘A’’ is input into
macrocolumn, the L2/3 pattern for ‘‘A’’ gets activated during the
‘‘input state.’’ When the first ‘‘output state’’ is triggered, a pattern
separated L5b-IB representation of the single element sequence
‘‘A’’ gets output. After being initially triggered from the prior
activation of ‘‘A’’ in L2/3, the L5b-IB representation turns off
any further L2/3 activation (by activating L6a-CT neurons, which
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then inhibit L4-ST neurons, as described earlier). However, I
propose the L5b-IB representation is capable of maintaining itself
independently for the duration of the output state, even when the
L2/3 state is turned off Harris and Mrsic-Flogel (2013) shows the
self-sustaining activity of L5b-IB neurons.

During the output state, I propose the frontal cortex and/or
CA1 activates a unique pattern of L6a-CT neurons, which gets
mapped to the network state ‘‘A’’ through STDP. I further
propose that CA1 generates unique ‘‘episodic memory codes,’’
consistent with the concept of place cells (O’Keefe, 1979) and
that frontal cortex propagates a version of these codes to the
sensory cortex. If this is the case, then CA1 and frontal cortex
would be able to activate and maintain specific memories across
the sensory cortex simply by replaying these episode codes. It
is of course also possible, and perhaps more likely, that frontal
cortex and CA1 replay multiple place codes within a theta cycle.
However, for the simplicity of modeling, I will assume that
the frontal cortex continuously replays only one ‘‘episode code’’
every theta cycle. This means that every theta cycle, the same
unique L6a-CT pattern will be replayed, and hence ‘‘A’’ will
be replayed.

After the first replay of ‘‘A,’’ a new L5a-RS code is activated,
sequence biasing L2/3-PY neurons. If the subsequent input in
the input state is the same (i.e., still just ‘‘A’’), then the L5a-RS
projection fails to change the L2/3 representation. In contrast, if
the subsequent input in the input state is different (i.e., it is ‘‘B’’),
then the combination of L5a-RS sequence biasing and L4-ST
input will generate a sparse representation in L2/3 unique for the
sequence ‘‘A→B.’’

Step #2: Pause For 5 s
When the sensory input of ‘‘A’’ is removed during the pause, as
long as the frontal/CA1 episode code continues to replay itself
during this delay period, then the L6a-CT episode code will
continue to independently replay ‘‘A’’ during each output state.
Crucially, this means that at the beginning of each input state.
L2/3 is sequence biased from the L5a-RS ‘‘A’’ representation,
waiting to be mapped to the next incoming L2/3 representation.
I propose that this continuous replay of an episode code is one
of the key underlying computational processes performed by the
brain during working memory tasks.

Step #3: Input “B” For 1 s
After 5 s of a pause, the sensory input of ‘‘B’’ is provided to
the macrocolumn. Due to the sequence biasing from L5a-RS
neurons, a sparse representation of ‘‘B’’ is activated that is
unique to ‘‘A→B,’’ and the L5a-RS code is mapped to this
sparse representation of B using STDP. Due to this unique
representation of ‘‘B,’’ now L5b-IB neurons output an ‘‘A→B’’
sequence code instead of just the ‘‘A’’ sequence code (see
Figure 14).

Taken together, this means that although ‘‘A’’ and ‘‘B’’ were
separated by 5 s, in the macrocolumn they were only separated
by ∼10 ms due to the repeated working memory replay of ‘‘A.’’
This enables rapid STDP plasticity between the L5a-RS neurons
activated by ‘‘A’’ and the L2/3 representation of ‘‘B,’’ despite a 5-s
separation between the actual sensory stimuli.

When the repeating frontal/CA1 episode code comes around
and reactivates ‘‘A’’ during the output state, the entire sequence
‘‘A→B’’ will be replayed automatically, instead of just ‘‘A.’’

Step #4: Pause For 5 s
Due to the same dynamics described in step #2, as long as frontal
cortex/CA1 continues to replay the same episode code, ourmodel
macrocolumn will continue to replay the sequence ‘‘A→B’’ on
each output state even when stimuli ‘‘B’’ is removed.

The key difference between step #4 and step #2 is that now: (a)
there are two elements replayed and hence two gamma cycles (A
and then B); and (b) the output state now ends with a sequence
bias from the L5a-RS code for ‘‘A→B,’’ instead of the L5a-RS
code for just ‘‘A.’’

Step #5: Input “C” For 1 s
When ‘‘C’’ is finally inputted into the macro column after the
final 5-s interval, as in step #3, the sequence bias from L5a-RS
code for ‘‘A→B’’ leads to a sparse representation of ‘‘C’’ that
corresponds to the sequence ‘‘A→B→C’’ (see Figure 15). This
builds plasticity between the L5a-RS code for ‘‘A→B’’ and this
sparse representation of ‘‘C.’’ Hence now when ‘‘A’’ is replayed
during the output state, there will be 3 elements replayed (hence
3 gamma cycles): ‘‘A’’ then ‘‘B’’ then ‘‘C.’’

During the output state, due to the L2/3 representation of ‘‘C’’
that is unique to ‘‘A→B→C,’’ the L5b-IB output code will now be
a unique code that represents exactly the sequence ‘‘A→B→C’’

This macrocolumn has accomplished something amazing—it
is now outputting a unique sequence code for the sequence
‘‘A→B→C’’ even though the input elements were separated
by long time intervals. And the only external computation
required was a constant episode code from the frontal cortex
and/or hippocampus to enable consistent replay of only the first
element ‘‘A.’’

Remembering the Sequence “ABC” After
Just Saying “A”
Each time the sequence ‘‘A’’ then ‘‘B’’ then ‘‘C’’ replays during
an output state while L5b-IB neurons are firing the ‘‘A→B→C’’
output code, each representation of ‘‘A’’ then ‘‘A→B’’ and
then ‘‘A→B→C’’ builds plasticity with L5b-IB representation
of ‘‘A→B→C’’ (since they coactivate with each other). If this
replay occurs a sufficient quantity of times, these synaptic
connections will go through long-term potentiation (LTP). This
LTP then makes it such that when this macrocolumn receives
the input ‘‘A,’’ during the output state it will output the code
‘‘A→B→C’’ automatically instead of just the output for sequence
‘‘A.’’ Note that multiple L5b-IB representations can be active
simultaneously, meaning that if ‘‘A’’ leads to multiple different
sequences, multiple ambiguous sequence codes can be output for
higher cortical areas to disambiguate.

DISCUSSION

This aricle provides a novel theory for how the neocortex
learns to recognize complex multi-sensory objects and sequences
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FIGURE 11 | How networks of macrocolumns may perform object disambiguation. (A) Depiction of how two visual objects (a line and an oval) might be depicted in
a 2-level network of four macrocolumns. The receptive field of each level 1 macrocolumn is depicted by the dotted line squares below each macrocolumn. The
inputs to each receptive field for the “line” and the “oval” are shown within the dotted line squares. The patterns activated by the sensory input within each receptive
field are shown in the level 1 macrocolumns for line and oval. The macrocolumn in level 2 receives input from all three level 1 macrocolumns through the thalamus
(not depicted) and represents the whole object by responding to coincident patterns across the three level 1 macrocolumns. This is consistent with known
neuroanatomy - the visual cortex is organized retinotopically. (B) Using the model of the two objects (“line” and “oval”) in (A), this figure shows the step by step
process by which the network of macrocolumns can disambiguate between the two objects when receiving conflicting sensory input within one receptive field. All
macrocolumns in this network are oscillating between “input states” and “output states” at the same time—each step depicted represents an oscillatory phase of the
network. See text for details.
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FIGURE 12 | How thalamus may signal failed predictions. (A) How thalamic relay neurons respond when top-down predictions from L6a-CT neurons in
higher-order macrocolumns successfully match the bottom-up input from L5b-IB neurons in lower-order macrocolumns. Core relay neurons burst fire, and multiareal
matrix neurons weakly fire. (B) How thalamic relay neurons respond when top-down predictions from L6a-CT neurons in higher-order macrocolumns fail to match
the bottom-up input from L5b-IB neurons in lower-order macrocolumns. Core relay neurons weakly tonically fire, which disinhibits multiareal matrix neurons, hence
signaling a “failed prediction.” See Figure 2 for neuron types depicted. See text for further details.

FIGURE 13 | Step 1 of learning paradigm whereby a macrocolumn learns a sequence of elements separated by realistic delays. Top row depicts location in the
overall learning paradigm described in text and in Supplementary Figure S2. The middle row depicts the theta phase and gamma phase of the macrocolumn. The
bottom row depicts each state of the macrocolumn throughout one full theta cycle within step 1 of the learning procedure. See text for details.

across realistic timescales, and in doing so provides a model
for how working memory may function. It extends prior HTM
models in three ways: (1) it shows how macrocolumns perform

working memory and connect sequences separated by long
time intervals; (2) it shows how networks of macrocolumns
can coordinate processing with other macrocolumns on
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FIGURE 14 | Step 3 of learning paradigm whereby a macrocolumn learns a sequence of elements separated by realistic delays. Top row depicts location in the
overall learning paradigm described in text and in Supplementary Figure S2. The middle row depicts the theta phase and gamma phase of the macrocolumn. The
bottom row depicts each state of the macrocolumn throughout one full theta cycle within step 3 of the learning procedure. See text for details.

precise time intervals; and (3) it explicitly incorporates
top-down attention.

Taken together, this sheds light on the overall evolutionary
purpose of the mammalian neocortex. As theorized by Hawkins’
HTM, I propose the neocortex is in the business of generating
unique sequence and object codes. This neocortical microcircuit
engages in ‘‘unsupervised learning.’’ There is no labeling. The
only ‘‘supervisor’’ is time and attention. Inputs that tend to co-
occur, or to quickly follow each other in sequence, will over time
get unique output codes from a network of macrocolumns. These
unique sequence codes can then be used by other structures, such
as the striatum, amygdala, or other cortical areas to respond to
recognized objects or sequences.

In addition to explaining how working memory, sequence
prediction, and object recognition might work in the neocortex,
this theory also explains why certain neuroscientific findings are
observed. I will review a selection of these below.

An Explanation for Why We Observe
Network Oscillations Within the Neocortex
and Thalamus
It has long been observed that there are distinct
electrophysiological oscillations within the brain. However, the
computational purpose has been unclear. Many computational
models have attempted to explain these oscillations as emergent
dynamics of feedback inhibition and attractor states (Lundqvist
et al., 2011; Mejias et al., 2016). Other theories have suggested

that oscillations serve the specific purpose of entraining
distributed networks to process together (Lisman and Jensen,
2013; Doesburg et al., 2015; Ribary et al., 2019). Consistent
with the latter proposal, the theory presented here provides
a circuit level model for how oscillations arise and why they
are essential for distributed processing within the neocortex.
Specifically, this theory suggests that the purpose of these
oscillations is to coordinate input and output states across
networks of macrocolumns to enable integrated processing on
precise time scales.

An Explanation for Why We Observe
Working Memory to Cap Out at ∼7 Items
sychologist George Miller showed that the average human can
only hold around seven items in short-term working memory
at a given point in time (Miller, 1956). However, a neural
circuit explanation for why we have this working memory
limitation has been elusive. Lisman and Idiart (1995) made the
novel observation that the two frequencies observed in EEGs
during working memory tasks, theta and gamma oscillations,
have a clear relationship with the ‘‘magic number 7’’: there are
∼7 gamma oscillations within one half of a theta wave (∼100ms).
They went on to propose that elements in working memory are
replayed at the gamma frequency every theta cycle (Lisman and
Idiart, 1995; Jensen and Lisman, 2005).

Consistent with their idea, I propose that the reason we have
this limitation is that the thalamocortical networks provide a
maximum of ∼100 ms within an output state for elements to be
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FIGURE 15 | Step 5 of learning paradigm whereby a macrocolumn learns a Sequence of elements separated by realistic delays. Top row depicts location in the
overall learning paradigm described in text and in Supplementary Figure S2. The middle row depicts the theta phase and gamma phase of the macrocolumn. The
bottom row depicts each state of the macrocolumn throughout one full theta cycle within step 5 of the learning procedure. See text for details.

replayed on the gamma frequency. Hence macrocolumns only
have the time to replay ∼7 elements; anything more simply
will get truncated when the next input state comes around.
A reasonable follow-up question would then be ‘‘why can not
the output state simply be made longer to support more than
7 elements?’’ The answer may lie in the fact that extending
the length of output states is not free. If working memory
operates works as proposed in this theory, then there is a costly
tradeoff between working memory capacity and the speed of
processing—the longer the output state, the more items that can
be held in working memory, but the slower the processing of
incoming sensory data will be passed up and downmacrocolumn
hierarchies. I hypothesize that there is an evolutionary reason
why the human brain has settled around ∼7 being the point at
which the additional slowness in processing is no longer worth
the benefit to increased working memory capacity.

An Explanation for Why We Observe
Mammals Without a Hippocampus to be
Impaired at Sequence Memory and Unable
to Create New Memories
Patients with bilateral damage to their hippocampus lose
the ability to produce new episodic memories, but can still
remember old memories (Parkin, 1996; Corkin, 2002), but
it has not been clear exactly why this is the case. This
model explains this observation: the hippocampus is a key
source (likely disynaptically through frontal cortex) of memory

reactivations within the neocortex. I hypothesize that this replay
is required for new episodic memories to be learned. Without
this frontal/CA1 episode code, a replay will not occur reliably in
the neocortex. Without these repeated replay events, memories
can never transition from short-term potentiation to LTP. In
contrast, memories that are already present in LTP of synapses
can still be recalled with the right sensory input.

Furthermore, patients with hippocampal damage also have
profound deficits in specifically sequence memory (Agster et al.,
2002), while other forms of intelligence and object recognition
remain functional (Honey et al., 1998; Jensen and Lisman,
2005). The sequence memory deficit occurs most notably when
there are time delays incorporated into the learning paradigms
(Agster et al., 2002). These results can be explained with the
model presented here: without a consistent frontal/CA1 episode
code, sequence elements can not be maintained in working
memory, hence a sequence provided over realistic timescales
will never be learned. On the other hand, hierarchies of
macrocolumns will still be able to engage in object recognition
of known objects, since there is no requirement for replay events.

An Explanation for How the Brain May
Generalize Object Recognition to Changes
in Orientation, Translation, and Scale
The proposed circuitry potentially provides a clue as to how to
solve a vexing problem in machine vision research—learning to
generalize recognition well to changes in orientation, translation,
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and scale (Hassabis et al., 2017). You can show a human a
shape at one level of scale, and in one shot, a human will
recognize that same object when perturbed, shrunk, or shifted
to another field of view (Carey and Barlett, 1978). However,
in machine vision, this level of generalization has not been
achieved. The state-of-the-art way to solve this problem is to
artificially edit the training data to include changes in orientation,
translation, and scale for a given object. Obviously, the brain
does not require this. The proposed L6-CC to L6a-CT circuitry
provides a clue as to how the brain might solve this problem.
The brain may do more than simply learn to associate a set
of inputs with a specific label (say a ‘‘cat’’). The sensory cortex
may first learn that a 45-degree bar over here is the same
thing as a 45-degree bar over there. In other words, the brain
learns the relationship of low-level features to movement. This
may be how the brain in one shot can recognize that an
object at one level of scale is the same object at another level
of scale, translation, or orientation. There have been notable
mathematical attempts to resolve this type of one-shot learning
(Ranzato et al., 2007; Lake et al., 2011; Doumas et al., 2018),
some of which implement a type of low level ‘‘feature invariance’’
similar in concept to the L6-CC to L6a-CT transfer network
proposed here.

Is Neocortex Actually Uniform?
There are legitimate challenges to the hypothesis that the
neocortex implements a repeated canonical microcircuit.
The theory here focused solely on modeling the canonical
microcircuit within the sensory cortex since there is meaningful
evidence that the frontal cortex performs different computations
than the sensory cortex. However, even in sensory cortex,
there are meaningful interregional differences in laminar
widths (Fukutomi et al., 2018), and evidence that layers
exhibit different correlated variability profiles across different
regions, implying differences in canonical circuits (Hansen
et al., 2012; Nandy et al., 2017). I propose that differences in
width can be explained simply by variances in computational
load within the same cortical microcircuit. For example,
if in certain domains there is lots of motor input to be
integrated, you may expect a uniquely thick L6, such as what
you observe in the parietal cortex (Fukutomi et al., 2018).
However, differences in correlated variability are harder to
explain in the context of this theory. Further work will have
to be done to reconcile this observation with the theory
presented here.

The Mystery of Bottom-Up Thalamic Input
to Layer 5b Intrinsically Bursting Neurons
and Potential Modifications of This Theory
Although this model explains a broad set of experimental
findings and assigns a function to a broad set of the observed
connectivity within a macrocolumn, a key experimental finding
that is directly inconsistent with the model presented here is the
observed direct bottom-up thalamic input to L5b-IB neurons
(Constantinople and Bruno, 2013). First, it has been shown
that L5b-IB neurons fire before L4-ST neurons when receiving
sensory stimuli (Constantinople and Bruno, 2013; Sun et al.,

2013), whereas this model would predict it should fire last.
Second, it has been found that L5b-IB neurons are insensitive to
L4-ST inactivation (Constantinople and Bruno, 2013).

I hypothesize two solutions to this. One solution could
be that after sufficient training, L5b-IB neurons learn to
respond directly to thalamic input, learning to predict the
current sequence-based solely on the inputs alone. The
benefit of this would be faster processing. Another solution
could be that both L4-ST and L5b-IB are parallel coincident
detectors of bottom-up input, and sequence representations in
L5b-IB emerge only through learned L2/3-PY modulation
of L5b-IB representations. If the latter ends up being
true, then this model will have to be modified to provide
a different mechanism for how sequences get learned in
L5b-IB neurons.

Testable Predictions
Many of the predictions of this theory are consistent with the
general predictions of HTM, which can be seen in Hawkins and
Ahmad (2016). However, in addition to these, several predictions
are specific to the theory presented here:

1. This theory suggests that multiareal matrix neurons signal
‘‘mismatches.’’ A way to test this would be to record individual
multiareal matrix neurons during the presentation of both
surprising and well-learned stimuli. This theory predicts that
multiareal matrix neurons will selectively burst in response to
surprising stimuli (i.e., ‘‘mismatch’’ responses).

2. This theory predicts that ‘‘multiareal matrix neurons’’ seen
in Clascá et al. (2012) are the same as the ‘‘high threshold
bursting’’ thalamocortical relay neurons seen in Lörincz
et al. (2009) and Hughes et al. (2011). Tracing studies on
HTC neurons will elucidate whether or not this prediction
is correct.

3. This theory suggests that when multi-areal matrix neurons
burst fire, they ‘‘restart’’ sequence representations stored
within macrocolumns. A way to test this would be to
selectively inhibit multi-areal matrix neurons during tasks
where subjects are observing well-learned sequences (moving
objects, melodies, etc.). This model predicts that in such
a condition if surprising stimuli are inserted into these
sequences, it will take subjects longer to identify these new
objects. This model further predicts that subjects will struggle
to identify which stimuli are in fact ‘‘surprising’’ at all.

4. This theory suggests that attention facilitates learning of
sequences by replaying previously received elements through
the activation of L6a-CT neurons. A way to test this would
be to selectively inhibit frontal and hippocampal input to
L6a-CT neurons during learning tasks. This model predicts
that subjects should be severely impaired in their ability to
learn sequences of stimuli if the presentation of these stimuli
is separated by a delay.

5. This theory suggests that intended motor movements arise
through frontal projections to L6a-CT neurons. A way to test
this would be to selectively inhibit frontal input to L6a-CT
neurons within the visual cortex. This model predicts that this
will be very disorienting for subjects as they will be unable
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to use intended volitional movements to predict changes in
visual stimuli. This difference could be tested using measures
of arousal and surprise.

6. This theory suggests that the origin of differences in observed
responses within L2/3 from predicted vs. surprising stimuli
(Jordan and Keller, 2020) arises from multiareal matrix
neurons inhibiting L2/3-PY neurons in response to surprise. A
way to test this would be to selectively inhibit matrix neurons
within sensory thalamus. This theory predicts that in such
a condition, prediction error responses within L2/3 of the
corresponding area of neocortex would be eliminated.

7. This theory suggests that L6-CC neurons pass lateral
predictions of upcoming sensory stimuli in response to
volitional movement. A way to test this would be to selectively
inhibit the L6-CC neurons within the receptive field of visual
stimuli a subject is directed to saccade towards. This theory
predicts that subjects will be selectively unable to predict input
from the inhibited visual field while being able to predict input
from other visual fields normally.

RELATIONSHIP TO PREVIOUS MODELS

Relationship to Previous Models of
Hierarchical Temporal Memory
The model presented here is highly inspired by the HTM model
presented by George and Hawkins (2009). I maintain the key
elements of their model while extending it to support learning
over realistic time scales, coordination between macrocolumns,
working memory, attention, and motor predictions. To
accomplish this, there are some key differences in terms of
the actual microcircuits presented. Previous models of the
canonical microcircuit typically involve a linear computation
from L4 as the input layer, L2/3 as the processing layer, and
L5/6 as the output layer. However the observed connectivity
between layers is far more complex: the layer 5 ‘‘output layer’’
sends massive projections back to L2/3 (Dantzker and Callaway,
2000; Adesnik and Naka, 2018), L5 is massively horizontally
reciprocally connected (Naka and Adesnik, 2016), L6a-CT cells
send a strong projection to L4 inhibitory GABA interneurons
and L5a-RS neurons (Thomson, 2010; Kim et al., 2014). The
theory presented here explains the computational function such
circuitry may provide.

The model presented here is also highly inspired by the
Hawkins and Ahmad’s (2016) model of sequence memory.
Hawkins and Ahmad (2016) proposed a novel way in which
sequence codes could be remembered through sparseness in
minicolumns. Four open questions (my assessment) from their
article were: (1) how ‘‘timing’’ of processing is coordinated with
other macrocolumns; (2) how these ‘‘sequence predictions’’ get
communicated outside of a macrocolumn; (3) how sequences
get learned when there is a realistic time delay between inputs
(seconds to minutes); and (4) how sequences get ‘‘restart.’’ I
extend Hawkins’ article by proposing an explanation for all four.
A notable difference in the circuit model presented here vs.
Hawkins and Ahmad (2016) is that in this model, sparseness
in minicolumns is achieved via ‘‘sequence bias’’ from L5a RS

neurons projecting to L2/3, whereas in their model it occurs via
lateral connections of L2/3 pyramidal cells. The model presented
here proposes that the lateral connectivity of L2/3 pyramidal cells
instead plays the role of implementing a competitive network,
instead of making sequence predictions. Another difference is
that their model proposes ‘‘restarting’’ occurs through L4 stellate
cells ‘‘overriding’’ sparse representations when incoming input
is ‘‘unpredicted,’’ although they acknowledge a lack of a circuit
explanation for how this would occur. This model proposes
sequence restarting occurs through the toggling of input states
to output states.

Hawkins et al. (2019) and Lewis et al. (2019) provide a
compelling theory that L6 contains ‘‘grid-like’’ neurons that
can perform transformations on incoming sensory input to
L4 using movement signals, enabling stable L2/3 representations
despite changes in sensory input (i.e., generating allocentric
representations of objects). The model presented here is broadly
consistent with their proposal, albeit with several extensions.
First, this theory presents an explicit neural circuit model for how
the neocortex performs these functions, assigning computational
roles to known categories of neurons. Second, while their
model shows how a single macrocolumn can learn to recognize
an object, the theory presented here incorporates long-range
macrocolumn-to-macrocolumn connectivity, enabling networks
of macrocolumns to learn objects hierarchically and transfer
representations laterally.

Last, prior HTM models do not explicitly model surprise,
and hence fail to explain behaviorally observed responses to
surprise, as well as do not explicitly model modulations of
learning rates during successful vs. failed predictions. This
presents a problem in the context of the stability-plasticity
dilemma—supervised systems will risk learning ‘‘too much’’ or
over-generalizing. Mathematically, HTM models resolve this by
assuming that inactive neurons get ‘‘boosted’’ whereas highly
active ones get suppressed (Hawkins et al., 2010)—I am unaware
of experimental support for such a mechanism. In contrast,
this theory suggests that thalamic oscillations and attention
selectively gates learning.

Relationship to Previous Models of
Working Memory and Delay Activity
There are three broad classes of computational models for
working memory and delay activity: (1) attractor network
models; (2) bistability models; and (3) synaptic weight
models (Sreenivasan and D’Esposito, 2019). Stable attractor
network models and bistability models both rely on persistent
representations maintaining themselves during working
memory delay periods. Because of this, both of these models
struggle to explain how: (a) multiple items can be stored
in working memory simultaneously; and (b) how working
memory can be maintained without disrupting ongoing
sensory processing.

On the other hand, synaptic weight models propose that
working memory is stored in short-term synaptic potentiation
after stimuli are received, instead of within an actual persistent
representation. These models are attractive because they do
not disrupt incoming sensory information and theoretically
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could support multiple items being stored simultaneously.
However, synaptic weight models have struggled to: (a) explain
the observed delay activity in the brain during working
memory tasks; and (b) describe a circuit mechanism for
multi-item storage.

This model proposes a ‘‘synaptic weight model’’ that solves
both of these challenges. This model explains the existence
of delay activity as well as how multiple items can be stored
simultaneously (through ‘‘replays’’), all without the requirement
for a stable attractor state.

Relationship to Previous Models of
Predictive Coding and Active Inference
Predictive coding is undeniably the most broadly accepted
computational model of the sensory cortex. The canonical
model of predictive coding assumes that hierarchical layers
sensory neocortex pass predictions to lower level neocortex,
and pass prediction errors up to higher levels (Rao and
Ballard, 1999; Bastos et al., 2012; Spratling, 2017; Keller and
Mrsic-Flogel, 2018). There are notable similarities between
the model presented here and predictive coding. Top-down
modulatory input in this model and other HTM models
is functionally similar to the top-down control of Kalman
gain or precision in predictive coding. Attempts to extend
predictive coding to incorporate temporal dynamics, such as
those that simulate birdsong (Kiebel et al., 2009a,b; Isomura
et al., 2019), also share several features with HTM models.
First, such models propose that recognition occurs through
multiple internal generative models each attempting to predict
its sensory input, leading the network to eventually select the
model that provides the most plausible explanation for its
input. This is conceptually very similar to the model here
whereby winner-take-all dynamics amongst L2/3-PY neurons
force only the representation with the most bottom-up evidence
to become activated. Second, they model the ability for
an agent to switch between different generative models to
perform ‘‘hypothesis testing,’’ a dynamic conceptually similar
to this model’s top-down attention, whereby ambiguous
input can be disambiguated through top-down bias towards
specific representations.

Continuous state-space models of attention and working
memory (Parr and Friston, 2017) also share similarities to
the model presented here. In those models, a key function of
working memory is to enable a serial sequence of evidence to
accumulate over time to select the internal generative model
with the most evidence. This is conceptually similar to the
process here whereby the context of prior stimuli is maintained
within macrocolumns, allowing subsequent sensory input (new
‘‘evidence’’) to further disambiguate the sequence representation.
Interestingly, their model used a similar theta cycle of evaluation
and broadcasting proposed in this article. In their setting,
Bayesian inference proceeds by the minimization of variational
free energy (i.e., maximization of marginal likelihood) through
attractor dynamics to a free energy minimum, every theta
cycle. The output is then broadcast to other levels of deep
generative models.

The model presented here is also consistent with Friston’s
seminal Free-Energy Principle, a foundational principle guiding
most predictive coding models (Friston, 2010). Put simply,
Friston’s free-energy principle proposes that the brain seeks to
minimize ‘‘surprise.’’ This general principle is consistent with the
theory presented here—networks will seek to minimize surprise
by resetting representations when they fail to predict subsequent
input, and selectively learning new representations only during:
(a) successful matching; or (b) attentive processing. It is relevant
to note that this synergy between active inference and this
model does not extend cleanly to other HTM models—other
HTM models do not explicitly model the surprise/non-
matching dynamics proposed here. As such, the theory here
presents a potential unifying bridge between predictive coding
and HTM.

However, despite these many similarities, there are also
important differences between the theory presented here and
predictive coding. Most directly, predictive coding typically
theorizes that L2/3-PY neurons compute prediction errors,
and L5/6 neurons compute predictions (Bastos et al., 2012),
whereas this model proposes no explicit prediction error
computation, but rather a non-negative ‘‘mismatch’’ code
signaled by multiareal matrix neurons. The benefit of this
mismatch code is that unlike prediction error computations,
it does not require signaling negative values, and can enable
learning without biologically implausible ‘‘weight copying’’ (for
a review of these limitations within predictive coding models see
Spratling, 2017).

Relationship to Previous Models of
Adaptive Resonance Theory
ART is built on the idea that the neocortex tries to assign
incoming sensory input to a known classification, and if the
mismatch between incoming input and all known classifications
surpasses a threshold, then a new classification is generated
for that input (Grossberg and Versace, 2008). ART shares
several features with the theory presented here—first, both
propose the neocortex learns in an unsupervisedmanner, second,
both propose that matrix neurons signal mismatch, third, both
proposes that L6a-CT neurons signal the top-down predictions
from which this mismatch is computed, and fourth both
propose that attentional effects are at least partially mediated
through L6a-CT neurons. However, this model extends ART in
several meaningful ways. Most notably, the ART model does
not explicitly model working memory or sequence learning.
Attempts to extend ART into these domains have relied on
working memory models of attractor networks with order
maintained with relative levels of excitation between each
element (Grossberg, 1982, 2007). Such a model relies on hard
to imagine systems that maintain precise levels of firing rates
amongst a distributed network of representations. Furthermore,
even these extensions of ART do not explain how a sequence
can be stored in long term memory, how overlapping sequences
can be disambiguated, nor how learned sequences can be used
to predict upcoming input. The model presented here proposes
an answer to all of these. Last, ART relies on a relatively
implausible mechanism of rapid hypothesis testing that loops
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through different possibilities before choosing to generate a
new cluster. In contrast, the theory presented here suggests that
top-down attention and replay mediates this learning of new
representations directly.
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FIGURE S1 | The duck or rabbit illusion. Example of how top-down bias can
change object perception without any changes to bottom-up input. Originally
printed in the 1892 issue of Fliegende Blätter.

FIGURE S2 | Visual depiction of example paradigm for learning a sequence of
elements separated by realistic time delays. The top part of the figure shows the
timeline of the learning paradigm. The “zoom in” depicts the repeating oscillatory
states of macrocolumns during the learning paradigm. See text for details.

TABLE S1 | References for connectivity. References for the connectivity
modeled and cited in this article.

REFERENCES

Adesnik, H., and Naka, A. (2018). Cracking the function of layers in the sensory
cortex. Neuron 100, 1028–1043. doi: 10.1016/j.neuron.2018.10.032

Agster, K. L., Fortin, N. J., and Eichenbaum, H. (2002). The hippocampus
and disambiguation of overlapping sequences. J. Neurosci. 22, 5760–5768.
doi: 10.1523/JNEUROSCI.22-13-05760.2002

Ahmed, B., Anderson, J. C., Douglas, R. J., Martin, K. A. C., and Nelson, J. C.
(1994). Polyneuronal innervation of spiny stellate neurons in cat visual cortex.
J. Comp. Neurol. 341, 39–49. doi: 10.1002/cne.903410105

Antic, S. D., Zhou, W.-L., Moore, A. R., Short, S. M., and Ikonomu, K. D. (2010).
The decade of the dendritic NMDA spike. J. Neurosci. Res. 88, 2991–3001.
doi: 10.1002/jnr.22444

Baker, A., Kalmbach, B., Morishima, M., Kim, J., Juavinett, A., Li, N., et al.
(2018). Specialized subpopulations of deep-layer pyramidal neurons in the
neocortex: bridging cellular properties to functional consequences. J. Neurosci.
38, 5441–5455. doi: 10.1523/JNEUROSCI.0150-18.2018

Bannister, A. P. (2005). Inter- and intra-laminar connections of pyramidal cells in
the neocortex. Neurosci. Res. 53, 95–103. doi: 10.1016/j.neures.2005.06.019

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., and
Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron 76,
695–711. doi: 10.1016/j.neuron.2012.10.038

Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J.-M., Oostenveld, R.,
Dowdall, J. R., et al. (2015). Visual areas exert feedforward and feedback
influences through distinct frequency channels. Neuron 85, 390–401.
doi: 10.1016/j.neuron.2014.12.018

Belluscio, M. A., Mizuseki, K., Schmidt, R., Kempter, R., and Buzsaki, G.
(2012). Cross-frequency phase-phase coupling between θ and γ oscillations
in the hippocampus. J. Neurosci. 32, 423–435. doi: 10.1523/JNEUROSCI.4122-
11.2012

Benchenane, K., Peyrache, A., Khamassi, M., Tierney, P. L., Gioanni, Y.,
Battaglia, F. P., et al. (2010). Coherent θ oscillations and reorganization of
spike timing in the hippocampal- prefrontal network upon learning. Neuron
66, 921–936. doi: 10.1016/j.neuron.2010.05.013

Bender, V. A., Bender, K. J., Brasier, D. J., and Feldman, D. E. (2006).
Two coincidence detectors for spike timing-dependent plasticity in
somatosensory cortex. J. Neurosci. 26, 4166–4177. doi: 10.1523/JNEUROSCI.
0176-06.2006

Berger, H. (1929). Über das elektroenkephalogramm des menschen. Arch.
Psychiatr. Nervenkr. 87, 527–570.

Binzegger, T., Douglas, R. J., and Martin, K. A. C. (2004). A quantitative
map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453.
doi: 10.1523/JNEUROSCI.1400-04.2004

Bortone, D. S., Olsen, S. R., and Scanziani, M. (2014). Translaminar inhibitory cells
recruited by layer 6 corticothalamic neurons suppress visual cortex.Neuron 82,
474–485. doi: 10.1016/j.neuron.2014.02.021

Bragin, A., Jandó, G., Nádasdy, Z., Hetke, J., Wise, K., and Buzsáki, G. (1995). γ
(40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15,
47–60. doi: 10.1523/JNEUROSCI.15-01-00047.1995

Brea, J., Senn, W., and Pfister, J.-P. (2012). ‘‘Equence learning with hidden units
in spiking neural networks,’’ in Advances in Neural Information Processing
Systems 24: 25th Annual Conference on Neural Information Processing Systems
2011, December 12–15, 2011, Granada, Spain (La Jolla, CA: Neural Information
Processing Systems), 1422–1430.

Brea, J., Senn, W., and Pfister, J.-P. (2013). Matching recall and storage in
sequence learning with spiking neural networks. J. Neurosci. 33, 9565–9575.
doi: 10.1523/JNEUROSCI.4098-12.2013

Bremaud, A., West, D. C., and Thomson, A. M. (2007). Binomial parameters
differ across neocortical layers and with different classes of connections in
adult rat and cat neocortex. Proc. Natl. Acad. Sci. U S A 104, 14134–14139.
doi: 10.1073/pnas.0705661104

Buffalo, E. A., Fries, P., Landman, R., Buschman, T. J., and Desimone, R. (2011).
Laminar differences in γ and α coherence in the ventral stream. Proc. Natl.
Acad. Sci. U S A 108, 11262–11267. doi: 10.1073/pnas.1011284108

Busse, L., Wade, A. R., and Carandini, M. (2009). Representation of concurrent
stimuli by population activity in visual cortex. Neuron 64, 931–942.
doi: 10.1016/j.neuron.2009.11.004

Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron 33, 325–340.
doi: 10.1016/s0896-6273(02)00586-x

Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E.,
et al. (2006). High γ power is phase-locked to θ oscillations in human neocortex.
Science 313, 1626–1628. doi: 10.1126/science.1128115

Caplan, J. B., Madsen, J. R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R.,
Newman, E. L., and Kahana, M. J. (2003). Human θ oscillations related to
sensorimotor integration and spatial learning. J. Neurosci. 23, 4726–4736.
doi: 10.1523/JNEUROSCI.23-11-04726.2003

Carey, S., and Barlett, E. (1978). ‘‘Acquiring a single new word,’’ in Proceedings
of the Papers and Reports on Child Language Development Conference (New
Orleans, LA), 17–29.

Carr, D. B., and Sesack, S. R. (1996). Hippocampal afferents to the rat
prefrontal cortex: synaptic targets and relation to dopamine terminals. J. Comp.
Neurol. 369, 1–15. doi: 10.1002/(sici)1096-9861(19960520)369:1<1::aid-cne1>
3.0.co;2-7

Cenquizca, L. A., and Swanson, L. W. (2007). Spatial organization of direct
hippocampal field CA1 axonal projections to the rest of the cerebral cortex.
Brain Res. Rev. 56, 1–26. doi: 10.1016/j.brainresrev.2007.05.002

Chadwick, A., van Rossum, M. C., and Nolan, M. F. (2015). Independent theta
phase coding accounts for CA1 population sequences and enables flexible
remapping. Elife 4:e03542. doi: 10.7554/eLife.03542

Chelazzi, L., Duncan, J., Miller, E. K., and Desimone, R. (1998). Responses of
neurons in inferior temporal cortex during memory-guided visual search.
J. Neurophysiol. 80, 2918–2940. doi: 10.1152/jn.1998.80.6.2918

Chelazzi, L., Miller, E. K., Duncan, J., and Desimone, R. (1993). A neural
basis for visual search in inferior temporal cortex. Nature 363, 345–347.
doi: 10.1038/363345a0

Chelazzi, L., Miller, E. K., Duncan, J., and Desimone, R. (2001). Responses of
neurons in macaque area V4 during memory-guided visual search. Cereb.
Cortex 11, 761–772. doi: 10.1093/cercor/11.8.761

Frontiers in Neural Circuits | www.frontiersin.org 27 July 2020 | Volume 14 | Article 40

https://www.frontiersin.org/articles/10.3389/fncir.2020.00040/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fncir.2020.00040/full#supplementary-material
https://doi.org/10.1016/j.neuron.2018.10.032
https://doi.org/10.1523/JNEUROSCI.22-13-05760.2002
https://doi.org/10.1002/cne.903410105
https://doi.org/10.1002/jnr.22444
https://doi.org/10.1523/JNEUROSCI.0150-18.2018
https://doi.org/10.1016/j.neures.2005.06.019
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2014.12.018
https://doi.org/10.1523/JNEUROSCI.4122-11.2012
https://doi.org/10.1523/JNEUROSCI.4122-11.2012
https://doi.org/10.1016/j.neuron.2010.05.013
https://doi.org/10.1523/JNEUROSCI.0176-06.2006
https://doi.org/10.1523/JNEUROSCI.0176-06.2006
https://doi.org/10.1523/JNEUROSCI.1400-04.2004
https://doi.org/10.1016/j.neuron.2014.02.021
https://doi.org/10.1523/JNEUROSCI.15-01-00047.1995
https://doi.org/10.1523/JNEUROSCI.4098-12.2013
https://doi.org/10.1073/pnas.0705661104
https://doi.org/10.1073/pnas.1011284108
https://doi.org/10.1016/j.neuron.2009.11.004
https://doi.org/10.1016/s0896-6273(02)00586-x
https://doi.org/10.1126/science.1128115
https://doi.org/10.1523/JNEUROSCI.23-11-04726.2003
https://doi.org/10.1002/(sici)1096-9861(19960520)369:1<1::aid-cne1>3.0.co;2-7
https://doi.org/10.1002/(sici)1096-9861(19960520)369:1<1::aid-cne1>3.0.co;2-7
https://doi.org/10.1016/j.brainresrev.2007.05.002
https://doi.org/10.7554/eLife.03542
https://doi.org/10.1152/jn.1998.80.6.2918
https://doi.org/10.1038/363345a0
https://doi.org/10.1093/cercor/11.8.761
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Bennett Unified Theory of Neocortical Microcircuit

Clascá, F., Rubio-Garrido, P., and Jabaudon, D. (2012). Unveiling the diversity
of thalamocortical neuron subtypes. Eur. J. Neurosci. 35, 1524–1532.
doi: 10.1111/j.1460-9568.2012.08033.x

Clemente-Perez, A., Makinson, S. R., Higashikubo, B., Brovarney, S., Cho, F. S.,
Urry, A., et al. (2017). Distinct thalamic reticular cell types differentially
modulate normal and pathological cortical rhythms. Cell Rep. 19, 2130–2142.
doi: 10.1016/j.celrep.2017.05.044

Colgin, L. L. (2011). Oscillations and hippocampal-prefrontal synchrony. Curr.
Opin. Neurobiol. 21, 467–474. doi: 10.1016/j.conb.2011.04.006

Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O.,
et al. (2009). Frequency of γ oscillations routes flow of information in the
hippocampus. Nature 462, 353–357. doi: 10.1038/nature08573

Constantinople, C. M., and Bruno, R. M. (2013). Deep cortical layers are activated
directly by thalamus. Science 340, 1591–1594. doi: 10.1126/science.1236425

Corkin, S. (2002). What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci.
3, 153–160. doi: 10.1038/nrn726

Cruikshank, S. J., Ahmed, O. J., Stevens, T. R., Patrick, S. L., Gonzalez, A. N.,
Elmaleh, M., et al. (2012). Thalamic control of layer 1 circuits in prefrontal
cortex. J. Neurosci. 32, 17813–17823. doi: 10.1523/JNEUROSCI.3231-12.2012

Curtis, D. R., and Eccles, J. C. (1959). The time courses of excitatory and inhibitory
synaptic actions. J. Physiol. 145, 529–546. doi: 10.1113/jphysiol.1959.sp006159

Dantzker, J. L., and Callaway, E. M. (2000). Laminar sources of synaptic input
to cortical inhibitory interneurons and pyramidal neurons. Nat. Neurosci. 3,
701–707. doi: 10.1038/76656

da Silva, F. L., van Lierop, T., Schrijer, C., and van Leeuwen, W. S. (1973).
Organization of thalamic and cortical α rhythms: spectra and coherences.
Electroencephalogr. Clin. Neurophysiol. 35, 627–639. doi: 10.1016/0013-
4694(73)90216-2

Deschênes, M., Bourassa, J., and Pinault, D. (1994). Corticothalamic projections
from layer V cells in rat are collaterals of long-range corticofugal axons. Brain
Res. 664, 215–219. doi: 10.1016/0006-8993(94)91974-7

Desimone, R., and Duncan, J. (1995). Neural mechanisms of selective visual
attention. Annu. Rev. Neurosci. 18, 193–222. doi: 10.1146/annurev.ne.18.
030195.001205

Doesburg, S., Ward, L., and Ribary, U. (2015). The α-theta-γ (ATG) switch:
toward unified principles of cortical processing. Curr. Trends Neurol.
9, 1–12. Available online at: http://www.researchtrends.net/tia/article_pdf.
asp?in=0&vn=9&tid=47&aid=5723.

Douglas, R. J., and Martin, K. A. (2004). Neuronal circuits of the neocortex.
Annu. Rev. Neurosci. 27, 419–451. doi: 10.1146/annurev.neuro.27.070203.
144152

Douglas, R. J., Martin, K. A., andWhitteridge, D. (1989). A canonical microcircuit
for neocortex. Neural Comput. 1, 480–488. doi: 10.1162/neco.1989.1.4.480

Doumas, L. A. A., Puebla, G., and Martin, A. (2018). Human-like
generalization in a machine through predicate learning. Available online
at: https://arxiv.org/abs/1806.01709.

Drieu, C., and Zugaro, M. (2019). Hippocampal sequences during exploration:
mechanisms and functions. Front. Cell. Neurosci. 13:232. doi: 10.3389/fncel.
2019.00232

Du, A., Zipkin, A.M., Hatala, K. G., Renner, E., Baker, J. L., Bianchi, S., et al. (2018).
Pattern and process in hominin brain size evolution are scale-dependent. Proc.
R. Soc. B Biol. Sci. 285:20172738. doi: 10.1098/rspb.2017.2738

Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev.
Neurosci. 11, 127–138. doi: 10.1038/nrn2787

Froemke, R. C., Poo, M.-M., and Dan, Y. (2005). Spike-timing-dependent
synaptic plasticity depends on dendritic location. Nature 434, 221–225.
doi: 10.1038/nature03366

Fukutomi, H., Glasser,M. F., Zhang, H., Autio, J. A., Coalson, T. S., Okada, T., et al.
(2018). Neurite imaging reveals microstructural variations in human cerebral
cortical gray matter. NeuroImage 182, 488–499. doi: 10.1016/j.neuroimage.
2018.02.017

George, D., and Hawkins, J. (2009). Towards a mathematical theory of cortical
micro-circuits. PLoS Comput. Biol. 5:e1000532. doi: 10.1371/journal.pcbi.
1000532

Gevins, A., Smith, M., McEvoy, L., and Yu, D. (1997). High-resolution EEG
mapping of cortical activation related to working memory: effects of task
difficulty, type of processing, and practice. Cereb. Cortex 7, 374–385.
doi: 10.1093/cercor/7.4.374

Gilbert, C. D. (1977). Laminar differences in receptive field properties of cells in
cat primary visual cortex. J. Physiol. 268, 391–421. doi: 10.1113/jphysiol.1977.
sp011863

Goldman-Rakic, P. (1995). Cellular basis of working memory. Neuron 14,
477–485. doi: 10.1016/0896-6273(95)90304-6

Green, J. J., Doesburg, S. M., Ward, L. M., and McDonald, J. J. (2011). Electrical
neuroimaging of voluntary audiospatial attention: evidence for a supramodal
attention control network. J. Neurosci. 31, 3560–3564. doi: 10.1523/jneurosci.
5758-10.2011

Groh, A., de Kock, C. P. J., Wimmer, V. C., Sakmann, B., and Kuner, T. (2008).
Driver or coincidence detector: modal switch of a corticothalamic giant synapse
controlled by spontaneous activity and short-term depression. J. Neurosci. 28,
9652–9663. doi: 10.1523/jneurosci.1554-08.2008

Grossberg, S. (1980). How does a brain build a cognitive code? Psychol. Rev. 87,
1–51. doi: 10.1007/978-94-009-7758-7_1

Grossberg, S. (1982). ‘‘Behavioral contrast in short term memory: serial binary
memory models or parallel continuous memory models?’’ in Studies of Mind
and Brain: Boston Studies in the Philosophy of Science, (Dordrecht: Springer),
425–447. Available online at: https:// link.springer.com/chapter/10.1007/ 978-
94-009-7758-7_11.

Grossberg, S. (2007). Towards a unified theory of neocortex: laminar
cortical circuits for vision and cognition. Prog. Brain Res. 165, 79–104.
doi: 10.1016/s0079-6123(06)65006-1

Grossberg, S., and Versace, M. (2008). Spikes, synchrony, and attentive learning
by laminar thalamocortical circuits. Brain Res. 1218, 278–312. doi: 10.1016/j.
brainres.2008.04.024

Guillery, R., and Sherman, S. (2002). Thalamic relay functions and their role
in corticocortical communication. Neuron 33, 163–175. doi: 10.1016/s0896-
6273(01)00582-7

Haegens, S., Osipova, D., Oostenveld, R., and Jensen, O. (2010). Somatosensory
working memory performance in humans depends on both engagement and
disengagement of regions in a distributed network. Hum. Brain Mapp. 31,
26–35. doi: 10.1002/hbm.20842

Händel, B. F., Haarmeier, T., and Jensen, O. (2011). α-oscillations correlate
with the successful inhibition of unattended stimuli. J. Cogn. Neurosci. 23,
2494–2502. doi: 10.1162/jocn.2010.21557

Hansen, B. J., Chelaru, M. I., and Dragoi, V. (2012). Correlated variability in
laminar cortical circuits. Neuron 76, 590–602. doi: 10.1016/j.neuron.2012.
08.029

Harris, K. D., and Mrsic-Flogel, T. D. (2013). Cortical connectivity and sensory
coding. Nature 503, 51–58. doi: 10.1038/nature12654

Harrison, S. A., and Tong, F. (2009). Decoding reveals the contents of
visual working memory in early visual areas. Nature 458, 632–635.
doi: 10.1038/nature07832

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017).
Neuroscience-inspired artificial intelligence. Neuron 95, 245–258.
doi: 10.1016/j.neuron.2017.06.011

Hawkins, J., and Ahmad, S. (2016). Why neurons have thousands of synapses,
a theory of sequence memory in neocortex. Front. Neural Circuits 10:23.
doi: 10.3389/fncir.2016.00023

Hawkins, J., Ahmad, S., and Dubinksy, D. (2010). Hierarchical Temporal Memory
Including HTM Cortical Learning Algorithms. Redwood City, CA: Numenta.

Hawkins, J., Lewis, M., Klukas, M., Purdy, S., and Ahmad, S. (2019). A framework
for intelligence and cortical function based on grid cells in the neocortex. Front.
Neural Circuits 12:121. doi: 10.3389/fncir.2018.00121

Hegdé, J., and Felleman, D. J. (2007). Reappraising the functional implications
of the primate visual anatomical hierarchy. Neuroscientist 13, 416–421.
doi: 10.1177/1073858407305201

Herculano-Houzel, S. (2009). The human brain in numbers: a linearly
scaled-up primate brain. Front. Hum. Neurosci. 3:31. doi: 10.3389/neuro.09.
031.2009

Hirsch, J. A., Gallagher, C. A., Alonso, J.-M., and Martinez, L. M. (1998).
Ascending projections of simple and complex cells in layer 6 of the cat
striate cortex. J. Neurosci. 18, 8086–8094. doi: 10.1523/JNEUROSCI.18-19-080
86.1998

Honey, R. C., Watt, A., and Good, M. (1998). Hippocampal lesions
disrupt an associative mismatch process. J. Neurosci. 18, 2226–2230.
doi: 10.1523/JNEUROSCI.18-06-02226.1998

Frontiers in Neural Circuits | www.frontiersin.org 28 July 2020 | Volume 14 | Article 40

https://doi.org/10.1111/j.1460-9568.2012.08033.x
https://doi.org/10.1016/j.celrep.2017.05.044
https://doi.org/10.1016/j.conb.2011.04.006
https://doi.org/10.1038/nature08573
https://doi.org/10.1126/science.1236425
https://doi.org/10.1038/nrn726
https://doi.org/10.1523/JNEUROSCI.3231-12.2012
https://doi.org/10.1113/jphysiol.1959.sp006159
https://doi.org/10.1038/76656
https://doi.org/10.1016/0013-4694(73)90216-2
https://doi.org/10.1016/0013-4694(73)90216-2
https://doi.org/10.1016/0006-8993(94)91974-7
https://doi.org/10.1146/annurev.ne.18.030195.001205
https://doi.org/10.1146/annurev.ne.18.030195.001205
http://www.researchtrends.net/tia/article_pdf.asp?in=0&vn=9&tid=47&aid=5723
http://www.researchtrends.net/tia/article_pdf.asp?in=0&vn=9&tid=47&aid=5723
https://doi.org/10.1146/annurev.neuro.27.070203.144152
https://doi.org/10.1146/annurev.neuro.27.070203.144152
https://doi.org/10.1162/neco.1989.1.4.480
https://arxiv.org/abs/1806.01709
https://doi.org/10.3389/fncel.2019.00232
https://doi.org/10.3389/fncel.2019.00232
https://doi.org/10.1098/rspb.2017.2738
https://doi.org/10.1038/nrn2787
https://doi.org/10.1038/nature03366
https://doi.org/10.1016/j.neuroimage.2018.02.017
https://doi.org/10.1016/j.neuroimage.2018.02.017
https://doi.org/10.1371/journal.pcbi.1000532
https://doi.org/10.1371/journal.pcbi.1000532
https://doi.org/10.1093/cercor/7.4.374
https://doi.org/10.1113/jphysiol.1977.sp011863
https://doi.org/10.1113/jphysiol.1977.sp011863
https://doi.org/10.1016/0896-6273(95)90304-6
https://doi.org/10.1523/jneurosci.5758-10.2011
https://doi.org/10.1523/jneurosci.5758-10.2011
https://doi.org/10.1523/jneurosci.1554-08.2008
https://doi.org/10.1007/978-94-009-7758-7_1
https:// link.springer.com/chapter/10.1007/978-94-009-7758-7_11
https:// link.springer.com/chapter/10.1007/978-94-009-7758-7_11
https://doi.org/10.1016/s0079-6123(06)65006-1
https://doi.org/10.1016/j.brainres.2008.04.024
https://doi.org/10.1016/j.brainres.2008.04.024
https://doi.org/10.1016/s0896-6273(01)00582-7
https://doi.org/10.1016/s0896-6273(01)00582-7
https://doi.org/10.1002/hbm.20842
https://doi.org/10.1162/jocn.2010.21557
https://doi.org/10.1016/j.neuron.2012.08.029
https://doi.org/10.1016/j.neuron.2012.08.029
https://doi.org/10.1038/nature12654
https://doi.org/10.1038/nature07832
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.3389/fncir.2016.00023
https://doi.org/10.3389/fncir.2018.00121
https://doi.org/10.1177/1073858407305201
https://doi.org/10.3389/neuro.09.031.2009
https://doi.org/10.3389/neuro.09.031.2009
https://doi.org/10.1523/JNEUROSCI.18-19-08086.1998
https://doi.org/10.1523/JNEUROSCI.18-19-08086.1998
https://doi.org/10.1523/JNEUROSCI.18-06-02226.1998
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Bennett Unified Theory of Neocortical Microcircuit

Hoover,W. B., andVertes, R. P. (2007). Anatomical analysis of afferent projections
to the medial prefrontal cortex in the rat. Brain Struct. Funct. 212, 149–179.
doi: 10.1007/s00429-007-0150-4

Hughes, S. W., Cope, D. W., Tóth, T. I., Williams, S. R., and Crunelli, V.
(1999). All thalamocortical neurones possess a T-type Ca2+ ‘window’ current
that enables the expression of bistability-mediated activities. J. Physiol. 517,
805–815. doi: 10.1111/j.1469-7793.1999.0805s.x

Hughes, S., Lorincz, M. L., Blethyn, K., Kékesi, K. A., Juhász, G.,
Turmaine, M., et al. (2011). Thalamic gap junctions control local
neuronal synchrony and influence macroscopic oscillation amplitude
during EEG α rhythms. Front. Psychol. 2:193. doi: 10.3389/fpsyg.2011.
00193

Hyman, J. M., Zilli, A. A., Paley, A. M., and Hasselmo, M. E. (2010).
Working memory performance correlates with prefrontal-hippocampal theta
interactions but not with prefrontal neuron firing rates. Front. Integr. Neurosci.
4:2. doi: 10.3389/neuro. 07.002.2010

Hyman, J. M., Zilli, E. A., Paley, A. M., and Hasselmo, M. E. (2005). Medial
prefrontal cortex cells show dynamic modulation with the hippocampal theta
rhythm dependent on behavior. Hippocampus 15, 739–749. doi: 10.1002/hipo.
20106

Isomura, T., Parr, T., and Friston, K. (2019). Bayesian filtering with multiple
internal models: toward a theory of social intelligence. Neural Computat. 31,
2390–2431. doi: 10.1162/neco_a_01239

Itti, L., and Baldi, P. (2009). Bayesian surprise attracts human attention.Vision Res.
49, 1295–1306. doi: 10.1016/j.visres.2008.09.007

Jahnsen, H., and Llinás, R. (1984). Electrophysiological properties of
guinea-pig thalamic neurones: an in vitro study. J. Physiol. 349, 205–226.
doi: 10.1113/jphysiol.1984.sp015153

Jay, T. M., Glowinski, J., and Thierry, A.-M. (1989). Selectivity of the hippocampal
projection to the prelimbic area of the prefrontal cortex in the rat. Brain Res.
505, 337–340. doi: 10.1016/0006-8993(89)91464-9

Jay, T. M., Thierry, A.-M., Wiklund, L., and Glowinski, J. (1992). Excitatory
amino acid pathway from the hippocampus to the prefrontal cortex.
Contribution of AMPA receptors in hippocampo-prefrontal cortex
Transmission. Eur. J. Neurosci. 4, 1285–1295. doi: 10.1111/j.1460-9568.1992.tb
00154.x

Jay, T. R. S. M., and Witter, M. P. (1991). Distribution of hippocampal CA1 and
subicular efferents in the prefrontal cortex of the rat studied by means of
anterograde transport of Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol.
313, 574–586. doi: 10.1002/cne.903130404

Jensen, O., and Lisman, J. E. (2005). Hippocampal sequence-encoding driven
by a cortical multi-item working memory buffer. Trends Neurosci. 28, 67–72.
doi: 10.1016/j.tins.2004.12.001

Jensen, O., and Mazaheri, A. (2010). Shaping functional architecture by
oscillatory α activity: gating by inhibition. Front. Hum. Neurosci. 4:186.
doi: 10.3389/fnhum.2010.00186

Jensen, O., and Tesche, C. D. (2002). Frontal theta activity in humans increases
with memory load in a working memory task. Eur. J. Neurosci. 15, 1395–1399.
doi: 10.1046/j.1460-9568.2002.01975.x

Jones, M. W., and Wilson, M. A. (2005). Theta rhythms coordinate hippocampal-
prefrontal interactions in a spatial memory task. PLoS Biol. 3:e402.
doi: 10.1371/journal.pbio.0030402

Jordan, R., and Keller, G. B. (2020). Opposing influence of top-down and
bottom-up input on different types of excitatory layer 2/3 neurons in mouse
visual cortex. doi: 1101/2020.03.25.008607

Kable, J. W., and Glimcher, P. W. (2009). The neurobiology of decision:
consensus and controversy. Neuron 63, 733–745. doi: 10.1016/j.neuron.2009.
09.003

Kampa, B. M., Letzkus, J. J., and Stuart, G. J. (2006). Cortical feed-forward
networks for binding different streams of sensory information. Nat. Neurosci.
9, 1472–1473. doi: 10.1038/nn1798

Kanwisher, N., McDermott, J., and Chun, M. M. (1997). The fusiform
face area: a module in human extrastriate cortex specialized for face
perception. J. Neurosci. 17, 4302–4311. doi: 10.1523/JNEUROSCI.17-11-
04302.1997

Kastner, S., and Ungerleider, L. G. (2001). The neural basis of biased competition
in human visual cortex. Neuropsychologia 39, 1263–1276. doi: 10.1016/s0028-
3932(01)00116-6

Kawaguchi, Y. (2017). Pyramidal cell subtypes and their synaptic
connections in layer 5 of rat frontal cortex. Cereb. Cortex 27, 5755–5771.
doi: 10.1093/cercor/bhx252

Keller, G. B., and Mrsic-Flogel, T. D. (2018). Predictive processing: a canonical
cortical computation. Neuron 100, 424–435. doi: 10.1016/j.neuron.2018.
10.003

Kelly, S. P., Gomez-Ramirez, M., and Foxe, J. J. (2009). The strength of
anticipatory spatial biasing predicts target discrimination at attended locations:
a high-density EEG study. Eur. J. Neurosci. 30, 2224–2234. doi: 10.1111/j.1460-
9568.2009.06980.x

Kerkoerle, T. V., Self, M. W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J.,
Togt, C. V. D., et al. (2014). α and γ oscillations characterize feedback and
feedforward processing in monkey visual cortex. Proc. Natl. Acad. Sci. U S A
111, 14332–14341. doi: 10.1073/pnas.1402773111

Kiebel, S. J., Daunizeau, J., and Friston, J. K. (2009a). Perception and
hierarchical dynamics. Front. Neuroinformatics 3:20. doi: 10.3389/neuro.
11.020.2009

Kiebel, S. J., Kriegstein, K. V., Daunizeau, J., and Friston, K. J. (2009b). Recognizing
sequences of sequences. PLoS Comput. Biol. 5:e1000464. doi: 10.1371/journal.
pcbi.1000464

Kim, E. J., Juavinett, A. L., Kyubwa, E. M., Jacobs, M. W., and Callaway, E. M.
(2015). Three types of cortical layer 5 neurons that differ in brain-wide
connectivity and function. Neuron 88, 1253–1267. doi: 10.1016/j.neuron.2015.
11.002

Kim, J., Matney, C. J., Blankenship, A., Hestrin, S., and Brown, S. P. (2014). Layer
6 corticothalamic neurons activate a cortical output layer, layer 5a. J. Neurosci.
34, 9656–9664. doi: 10.1523/JNEUROSCI.1325-14.2014

Knudsen, E. I. (2007). Fundamental components of attention.Annu. Rev. Neurosci.
30, 57–78. doi: 10.1146/annurev.neuro.30.051606.094256

Koch, C., Massimini, M., Boly, M., and Tononi, G. (2016). Neural correlates
of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321.
doi: 10.1038/nrn.2016.22

Lórincz, M. L., Gunner, D., Bao, Y., Connelly, W. M., Isaac, J. T. R.,
Hughes, S. W., et al. (2015). A distinct class of slow (0.2–2 Hz) intrinsically
bursting layer 5 pyramidal neurons determines UP/DOWN state dynamics
in the neocortex. J. Neurosci. 35, 5442–5458. doi: 10.1523/JNEUROSCI.3603-
14.2015

LaBerge, D. (2005). Sustained attention and apical dendrite activity in
recurrent circuits. Brain Res. Rev. 50, 86–99. doi: 10.1016/j.brainresrev.2005.
04.004

Lake, B., Salakhutdinov, R., and Gross, J. (2011). One shot learning of simple visual
concepts. Cogn. Sci. 33. Available online at: https://www.semanticscholar.
org/paper/One-shot-learning-of-simple -visual-concepts-Lake-Salakhutdinov/
100a038 fdf29b4b20801887f0ec40e3f10d9a4f9.

Larsen, D. D., and Callaway, E. M. (2005). Development of layer-specific axonal
arborizations in mouse primary somatosensory cortex. J. Comp. Neurol. 494,
398–414. doi: 10.1002/cne.20754

Lawrence, S. J. D., Mourik, T. V., Kok, P., Koopmans, P. J., Norris, D. G., and
Lange, F. P. D. (2018). Laminar organization of working memory signals in
human visual cortex. SSRN Electr. J. doi: 10.2139/ssrn.3155909 [Epub ahead of
print].

Lee, D., Itti, L., Koch, C., and Braun, J. (1999). Attention activates winner-take-
all competition among visual filters. Nat. Neurosci. 2, 375–381. doi: 10.10
38/7286 pub-id-type="pmid">10204546

Lee, H., Simpson, G. V., Logothetis, N. K., and Rainer, G. (2005). Phase locking of
single neuron activity to theta oscillations during working memory in monkey
extrastriate visual cortex. Neuron 45, 147–156. doi: 10.1016/j.neuron.2004.
12.025

Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A., and Keller, G. B. (2017).
A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron
96:1204. doi: 10.1016/j.neuron.2017.11.009

Lewis, M., Purdy, S., Ahmad, S., and Hawkins, J. (2019). Locations in the
neocortex: a theory of sensorimotor object recognition using cortical grid cells.
Front. Neural Circuits 13:22. doi: 10.3389/fncir.2019.00022

Li, G., Henriquez, C. S., and Fröhlich, F. (2017). Unified thalamic model
generates multiple distinct oscillations with state-dependent entrainment by
stimulation. PLoS Comput. Biol. 13:e1005797. doi: 10.1371/journal.pcbi.10
05797

Frontiers in Neural Circuits | www.frontiersin.org 29 July 2020 | Volume 14 | Article 40

https://doi.org/10.1007/s00429-007-0150-4
https://doi.org/10.1111/j.1469-7793.1999.0805s.x
https://doi.org/10.3389/fpsyg.2011.00193
https://doi.org/10.3389/fpsyg.2011.00193
https://doi.org/10.3389/neuro.07.002.2010
https://doi.org/10.1002/hipo.20106
https://doi.org/10.1002/hipo.20106
https://doi.org/10.1162/neco_a_01239
https://doi.org/10.1016/j.visres.2008.09.007
https://doi.org/10.1113/jphysiol.1984.sp015153
https://doi.org/10.1016/0006-8993(89)91464-9
https://doi.org/10.1111/j.1460-9568.1992.tb00154.x
https://doi.org/10.1111/j.1460-9568.1992.tb00154.x
https://doi.org/10.1002/cne.903130404
https://doi.org/10.1016/j.tins.2004.12.001
https://doi.org/10.3389/fnhum.2010.00186
https://doi.org/10.1046/j.1460-9568.2002.01975.x
https://doi.org/10.1371/journal.pbio.0030402
https://doi.org/10.1101/2020.03.25.008607
https://doi.org/10.1016/j.neuron.2009.09.003
https://doi.org/10.1016/j.neuron.2009.09.003
https://doi.org/10.1038/nn1798
https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997
https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997
https://doi.org/10.1016/s0028-3932(01)00116-6
https://doi.org/10.1016/s0028-3932(01)00116-6
https://doi.org/10.1093/cercor/bhx252
https://doi.org/10.1016/j.neuron.2018.10.003
https://doi.org/10.1016/j.neuron.2018.10.003
https://doi.org/10.1111/j.1460-9568.2009.06980.x
https://doi.org/10.1111/j.1460-9568.2009.06980.x
https://doi.org/10.1073/pnas.1402773111
https://doi.org/10.3389/neuro.11.020.2009
https://doi.org/10.3389/neuro.11.020.2009
https://doi.org/10.1371/journal.pcbi.1000464
https://doi.org/10.1371/journal.pcbi.1000464
https://doi.org/10.1016/j.neuron.2015.11.002
https://doi.org/10.1016/j.neuron.2015.11.002
https://doi.org/10.1523/JNEUROSCI.1325-14.2014
https://doi.org/10.1146/annurev.neuro.30.051606.094256
https://doi.org/10.1038/nrn.2016.22
https://doi.org/10.1523/JNEUROSCI.3603-14.2015
https://doi.org/10.1523/JNEUROSCI.3603-14.2015
https://doi.org/10.1016/j.brainresrev.2005.04.004
https://doi.org/10.1016/j.brainresrev.2005.04.004
https://www.semanticscholar.org/paper/ One-shot-learning-of-simple-visual-concepts-Lake- Salakhutdinov/100a038fdf29b4b20801887f0ec40e3f10d9a4f9
https://www.semanticscholar.org/paper/ One-shot-learning-of-simple-visual-concepts-Lake- Salakhutdinov/100a038fdf29b4b20801887f0ec40e3f10d9a4f9
https://www.semanticscholar.org/paper/ One-shot-learning-of-simple-visual-concepts-Lake- Salakhutdinov/100a038fdf29b4b20801887f0ec40e3f10d9a4f9
https://doi.org/10.1002/cne.20754
https://doi.org/10.2139/ssrn.3155909
https://doi.org/10.1038/7286
https://doi.org/10.1038/7286
https://doi.org/10.1016/j.neuron.2004.12.025
https://doi.org/10.1016/j.neuron.2004.12.025
https://doi.org/10.1016/j.neuron.2017.11.009
https://doi.org/10.3389/fncir.2019.00022
https://doi.org/10.1371/journal.pcbi.1005797
https://doi.org/10.1371/journal.pcbi.1005797
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Bennett Unified Theory of Neocortical Microcircuit

Li, X., Morita, K., Robinson, H. P. C., and Small, M. (2013). Control of
layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical
dendrites: a computational modeling study. J. Neurophysiol. 109, 2739–2756.
doi: 10.1152/jn.00397.2012

Lisman, J. E., and Jensen, O. (2013). The θ-γ neural code. Neuron 77, 1002–1016.
doi: 10.1016/j.neuron.2013.03.007

Lisman, J., and Idiart, M. (1995). Storage of 7 +/− 2 short-term memories in
oscillatory subcycles. Science 267, 1512–1515. doi: 10.1126/science.7878473

Livingstone, M. S. (1996). Oscillatory firing and interneuronal correlations in
squirrel monkey striate cortex. J. Neurophysiol. 75, 2467–2485. doi: 10.1152/jn.
1996.75.6.2467

Llano, D. A., and Sherman, S. M. (2008). Evidence for nonreciprocal organization
of the mouse auditory thalamocortical-corticothalamic projection systems.
J. Comp. Neurol. 507, 1209–1227. doi: 10.1002/cne.21602

Lopes da Silva, F. H., and Niedermeyer, E. (1999). Electroencephalography: Basic
Principles, Clinical Applications and Related Fields. Baltimore, MD: Williams
and Wilkins.

Lörincz, M. L., Kékesi, K. A., Juhász, G., Crunelli, V., and Hughes, S. W.
(2009). Temporal framing of thalamic relay-mode firing by phasic inhibition
during the α rhythm. Neuron 63, 683–696. doi: 10.1016/j.neuron.2009.
08.012

Luck, S. J., Chelazzi, L., Hillyard, S. A., and Desimone, R. (1997). Neural
mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque
visual cortex. J. Neurophysiol. 77, 24–42. doi: 10.1152/jn.1997.77.1.24

Lundqvist, M., Herman, P., and Lansner, A. (2011). Theta and γ power increases
and α/β power decreases with memory load in an attractor network model.
J. Cogn. Neurosci. 23, 3008–3020. doi: 10.1162/jocn_a_00029

Maass, W. (2000). On the computational power of winner-take-all. Neural
Comput. 12, 2519–2535. doi: 10.1162/089976600300014827

Major, G., Larkum, M. E., and Schiller, J. (2013). Active properties of
neocortical pyramidal neuron dendrites. Annu. Rev. Neurosci. 36, 1–24.
doi: 10.1146/annurev-neuro-062111-150343

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,
213–215. doi: 10.1126/science.275.5297.213

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and
Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nat. Rev.
Neurosci. 5, 793–807. doi: 10.1038/nrn1519

Martin, K. A. C., and Schröder, S. (2013). Functional heterogeneity in neighboring
neurons of cat primary visual cortex in response to both artificial and
natural stimuli. J. Neurosci. 33, 7325–7344. doi: 10.1523/JNEUROSCI.4071-
12.2013

Martinez, L. M., and Alonso, J.-M. (2003). Complex receptive fields in
primary visual cortex. Neuroscientist 9, 317–331. doi: 10.1177/10738584032
52732

Martínez-Trujillo Julio, C., and Treue, S. (2002). Attentional modulation strength
in cortical area MT depends on stimulus contrast. Neuron 35, 365–370.
doi: 10.1016/s0896-6273(02)00778-x

Matsumoto, N., Minamimoto, T., Graybiel, A. M., and Kimura, M. (2001).
Neurons in the thalamic CM-Pf complex supply striatal neurons with
information about behaviorally significant sensory events. J. Neurophysiol. 85,
960–976. doi: 10.1152/jn.2001.85.2.960

Maunsell, J. H., and Treue, S. (2006). Feature-based attention in visual cortex.
Trends Neurosci. 29, 317–322. doi: 10.1016/j.tins.2006.04.001

McAdams, C. J., and Reid, R. (2005). Attention modulates the responses of
simple cells in monkey primary visual cortex. J. Neurosci. 25, 11023–11033.
doi: 10.1523/JNEUROSCI.2904-05.2005

McAlonan, K., Cavanaugh, J., and Wurtz, R. H. (2006). Attentional
modulation of thalamic reticular neurons. J. Neurosci. 26, 4444–4450.
doi: 10.1523/JNEUROSCI.5602-05.2006

Mejias, J. F., Murray, J. D., Kennedy, H., andWang, X.-J. (2016). Feedforward and
feedback frequency-dependent interactions in a large-scale laminar network of
the primate cortex. Sci. Adv. 2:e1601335. doi: 10.1126/sciadv.1601335

Miller, G. A. (1956). The magical number seven, plus or minus two: some
limits on our capacity for processing information. Psychol. Rev. 63, 81–97.
doi: 10.1037/h0043158 pub-id-type="pmid">13310704

Miller, E. K. (2000). The prefontral cortex and cognitive control. Nat. Rev.
Neurosci. 1, 59–65. doi: 10.1038/35036228 pub-id-type="pmid">11252769

Minamimoto, T., and Kimura, M. (2002). Participation of the thalamic
CM-Pf complex in attentional orienting. J. Neurophysiol. 87, 3090–3101.
doi: 10.1152/jn.2002.87.6.3090

Miyashita, Y. (2019). Perirhinal circuits for memory processing. Nat. Rev.
Neurosci. 20, 577–592. doi: 10.1038/s41583-019-0213-6

Moran, J., and Desimone, R. (1985). Selective attention gates visual processing
in the extrastriate cortex. Science 229, 782–784. doi: 10.1126/science.40
23713

Motter, B. C. (1993). Focal attention produces spatially selective processing in
visual cortical areas V1, V2, and V4 in the presence of competing stimuli.
J. Neurophysiol. 70, 909–919. doi: 10.1152/jn.1993.70.3.909

Mountcastle, V. (1978). ‘‘An organizing principle for cerebral function: the unit
module and the distributed system,’’ in TheMindful Brain, eds G.M. Edelmann
and V. B. Mountcastle (Cambridge, MA: MIT Press), 7–50.

Mountcastle, V. (1997). The columnar organization of the neocortex. Brain 120,
701–722. doi: 10.1093/brain/120.4.701

Mountcastle, V. B. (2003). Introduction. Computation in cortical columns. Cereb.
Cortex 13, 2–4. doi: 10.1093/cercor/13.1.2

Naka, A., and Adesnik, H. (2016). Inhibitory circuits in cortical layer 5. Front.
Neural Circuits 10:35. doi: 10.3389/fncir.2016.00035

Nandy, A. S., Nassi, J. J., and Reynolds, J. H. (2017). Laminar organization
of attentional modulation in macaque visual area V4. Neuron 93, 235–246.
doi: 10.1016/j.neuron.2016.11.029

Narikiyo, K., Mizuguchi, R., Ajima, A., Mitsui, S., Shiozaki, M., Hamanaka, H.,
et al. (2020). The claustrum coordinates cortical slow-wave activity. Nat.
Neurosci. 23, 741–753. doi: 10.1038/s41593-020-0625-7

Nelson, A., Schneider, D. M., Takatoh, J., Sakurai, K., Wang, F., and Mooney, R.
(2013). A circuit for motor cortical modulation of auditory cortical activity.
J. Neurosci. 33, 14342–14353. doi: 10.1523/jneurosci.2275-13.2013

Nevian, T., and Sakmann, B. (2006). Spine Ca2+ signaling in spike-timing-
dependent plasticity. J. Neurosci. 26, 11001–11013. doi: 10.1523/jneurosci.
1749-06.2006

Ohno, S., Kuramoto, E., Furuta, T., Hioki, H., Tanaka, Y. R., Fujiyama, F., et al.
(2012). A morphological analysis of thalamocortical axon fibers of rat posterior
thalamic nuclei: a single neuron tracing study with viral vectors. Cereb. Cortex
22, 2840–2857. doi: 10.1093/cercor/bhr356

O’Keefe, J. (1979). A review of the hippocampal place cells. Prog. Neurobiol. 13,
419–439. doi: 10.1016/0301-0082(79)90005-4

Olsen, S. R., Bortone, D. S., Adesnik, H., and Scanziani, M. (2012). Gain
control by layer six in cortical circuits of vision. Nature 483, 47–52.
doi: 10.1038/nature10835

Osogami, T., and Otsuka, M. (2015). Seven neurons memorizing sequences of
alphabetical images via spike-timing dependent plasticity. Sci. Rep. 5:14149.
doi: 10.1038/srep14149

Papale, A. E., and Hooks, B. M. (2018). Circuit changes in motor cortex during
motor skill learning. Neuroscience 368, 283–297. doi: 10.1016/j.neuroscience.
2017.09.010

Parkin, A. J. (1996). Human memory: the hippocampus is the key. Curr. Biol. 6,
1583–1585. doi: 10.1016/s0960-9822(02)70778-1

Parr, T., and Friston, K. J. (2017). Working memory, attention, and salience in
active inference. Sci. Rep. 7:14678. doi: 10.1038/s41598-017-15249-0

Peters, A., and Yilmaz, E. (1993). Neuronal organization in area 17 of cat visual
cortex. Cereb. Cortex 3, 49–68. doi: 10.1093/cercor/3.1.49

Petsche, H., Stumpf, C., and Gogolak, G. (1962). The significance of the rabbit’s
septum as a relay station between the midbrain and the hippocampus I. The
control of hippocampus arousal activity by the septum cells. Electroencephalogr.
Clin. Neurophysiol. 14, 202–211. doi: 10.1016/0013-4694(62)90030-5

Pfurtscheller, G. (1992). Event-related synchronization (ERS): an
electrophysiological correlate of cortical areas at rest. Electroencephalogr.
Clin. Neurophysiol. 83, 62–69. doi: 10.1016/0013-4694(92)90133-3

Pinault, D., and Deschênes, M. (1998). Anatomical evidence for a mechanism
of lateral inhibition in the rat thalamus. Eur. J. Neurosci. 10, 3462–3469.
doi: 10.1046/j.1460-9568.1998.00362.x

Pluta, S., Naka, A., Veit, J., Telian, G., Yao, L., Hakim, R., et al. (2015). A
direct translaminar inhibitory circuit tunes cortical output. Nat. Neurosci. 18,
1631–1640. doi: 10.1038/nn.4123

Pouchelon, G., Gambino, F., Bellone, C., Telley, L., Vitali, I., Lüscher, C.,
et al. (2014). Modality-specific thalamocortical inputs instruct the identity

Frontiers in Neural Circuits | www.frontiersin.org 30 July 2020 | Volume 14 | Article 40

https://doi.org/10.1152/jn.00397.2012
https://doi.org/10.1016/j.neuron.2013.03.007
https://doi.org/10.1126/science.7878473
https://doi.org/10.1152/jn.1996.75.6.2467
https://doi.org/10.1152/jn.1996.75.6.2467
https://doi.org/10.1002/cne.21602
https://doi.org/10.1016/j.neuron.2009.08.012
https://doi.org/10.1016/j.neuron.2009.08.012
https://doi.org/10.1152/jn.1997.77.1.24
https://doi.org/10.1162/jocn_a_00029
https://doi.org/10.1162/089976600300014827
https://doi.org/10.1146/annurev-neuro-062111-150343
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1038/nrn1519
https://doi.org/10.1523/JNEUROSCI.4071-12.2013
https://doi.org/10.1523/JNEUROSCI.4071-12.2013
https://doi.org/10.1177/1073858403252732
https://doi.org/10.1177/1073858403252732
https://doi.org/10.1016/s0896-6273(02)00778-x
https://doi.org/10.1152/jn.2001.85.2.960
https://doi.org/10.1016/j.tins.2006.04.001
https://doi.org/10.1523/JNEUROSCI.2904-05.2005
https://doi.org/10.1523/JNEUROSCI.5602-05.2006
https://doi.org/10.1126/sciadv.1601335
https://doi.org/10.1037/h0043158
https://doi.org/10.1038/35036228
https://doi.org/10.1152/jn.2002.87.6.3090
https://doi.org/10.1038/s41583-019-0213-6
https://doi.org/10.1126/science.4023713
https://doi.org/10.1126/science.4023713
https://doi.org/10.1152/jn.1993.70.3.909
https://doi.org/10.1093/brain/120.4.701
https://doi.org/10.1093/cercor/13.1.2
https://doi.org/10.3389/fncir.2016.00035
https://doi.org/10.1016/j.neuron.2016.11.029
https://doi.org/10.1038/s41593-020-0625-7
https://doi.org/10.1523/jneurosci.2275-13.2013
https://doi.org/10.1523/jneurosci.1749-06.2006
https://doi.org/10.1523/jneurosci.1749-06.2006
https://doi.org/10.1093/cercor/bhr356
https://doi.org/10.1016/0301-0082(79)90005-4
https://doi.org/10.1038/nature10835
https://doi.org/10.1038/srep14149
https://doi.org/10.1016/j.neuroscience.2017.09.010
https://doi.org/10.1016/j.neuroscience.2017.09.010
https://doi.org/10.1016/s0960-9822(02)70778-1
https://doi.org/10.1038/s41598-017-15249-0
https://doi.org/10.1093/cercor/3.1.49
https://doi.org/10.1016/0013-4694(62)90030-5
https://doi.org/10.1016/0013-4694(92)90133-3
https://doi.org/10.1046/j.1460-9568.1998.00362.x
https://doi.org/10.1038/nn.4123
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Bennett Unified Theory of Neocortical Microcircuit

of postsynaptic L4 neurons. Nature 511, 471–474. doi: 10.1038/nature
13390

Preuschoff, K., Marius ’t Hart, B., and Einhäuser, W. (2011). Pupil dilation signals
surprise: evidence for noradrenaline’s role in decision making. Front. Neurosci.
5:115. doi: 10.3389/fnins.2011.00115

Raghavachari, S., Kahana, M. J., Rizzuto, D. S., Caplan, J. B., Kirschen, M. P.,
Bourgeois, B., et al. (2001). Gating of human theta oscillations by a working
memory task. J. Neurosci. 21, 3175–3183. doi: 10.1523/JNEUROSCI.21-09-
03175.2001

Rakic, P. (1988). Specification of cerebral cortical areas. Science 241, 170–176.
doi: 10.1126/science.3291116

Ranzato, M., Huang, F. J., Boureau, Y.-L., and Lecun, Y. (2007). ‘‘Unsupervised
learning of invariant feature hierarchies with applications to object
recognition,’’ in Proceedings of the 2007 IEEE Conference on Computer
Vision and Pattern Recognition (Minneapolis, MN: IEEE), 1–8.

Rao, R. P. N., and Ballard, D. H. (1999). Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field effects. Nat.
Neurosci. 2, 79–87. doi: 10.1038/4580

Recanzone, G. H., and Wurtz, R. H. (2000). Effects of attention on MT and
MST neuronal activity during pursuit initiation. J. Neurophysiol. 83, 777–790.
doi: 10.1152/jn.2000.83.2.777

Reichova, I., and Sherman, S. M. (2004). Somatosensory corticothalamic
projections: distinguishing drivers from modulators. J. Neurophysiol. 92,
2185–2197. doi: 10.1152/jn.00322.2004

Reynolds, J. H., and Chelazzi, L. (2004). Attentional modulation of visual
processing. Annu. Rev. Neurosci. 27, 611–647. doi: 10.1146/annurev.neuro.26.
041002.131039

Reynolds, J. H., Chelazzi, L., and Desimone, R. (1999). Competitive mechanisms
subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753.
doi: 10.1523/JNEUROSCI.19-05-01736.1999

Reynolds, J. H., and Desimone, R. (2003). Interacting roles of attention and
visual salience in V4. Neuron 37, 853–863. doi: 10.1016/s0896-6273(03)
00097-7

Rezende, D. J., and Gerstner, W. (2014). Stochastic variational learning in
recurrent spiking networks. Front. Comput. Neurosci. 8:38. doi: 10.3389/fncom.
2014.00038

Ribary, U., Doesburg, S. M., and Ward, L. M. (2019). ‘‘Unified principles of
thalamocortical network dynamics: a framework for typical/atypical functional
connectivity,’’ in Magnetoencephalography, eds S. Supek and C. Aine (Cham:
Springer), 1–28.

Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recognition
in cortex. Nat. Neurosci. 2, 1019–1025. doi: 10.1038/14819

Rihs, T. A., Michel, C. M., and Thut, G. (2007). Mechanisms of selective
inhibition in visual spatial attention are indexed by α-band EEG
synchronization. Eur. J. Neurosci. 25, 603–610. doi: 10.1111/j.1460-9568.2007.
05278.x

Rouiller, E. M., and Welker, E. (2000). A comparative analysis of the morphology
of corticothalamic projections in mammals. Brain Res. Bull. 53, 727–741.
doi: 10.1016/s0361-9230(00)00364-6

Saenz, M., and Langers, D. R. (2014). Tonotopic mapping of human auditory
cortex. Hear. Res. 307, 42–52. doi: 10.1016/j.heares.2013.07.016

Sakata, S., and Harris, K. D. (2009). Laminar structure of spontaneous and
sensory-evoked population activity in auditory cortex. Neuron 64, 404–418.
doi: 10.1016/j.neuron.2009.09.020

Sayer, R., Friedlander, M., and Redman, S. (1990). The time course and amplitude
of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the
hippocampal slice. J. Neurosci. 10, 826–836. doi: 10.1523/JNEUROSCI.10-03-
00826.1990

Scheeringa, R., Petersson, K. M., Oostenveld, R., Norris, D. G., Hagoort, P., and
Bastiaansen, M. C. (2009). Trial-by-trial coupling between EEG and BOLD
identifies networks related to α and theta EEG power increases during working
memory maintenance. NeuroImage 44, 1224–1238. doi: 10.1016/j.neuroimage.
2008.08.041

Serences, J. T., Ester, E. F., Vogel, E. K., and Awh, E. (2009). Stimulus-specific
delay activity in human primary visual cortex. Psychol. Sci. 20, 207–214.
doi: 10.1111/j.1467-9280.2009.02276.x

Sherman, S. (2001). Tonic and burst firing: dual modes of thalamocortical relay.
Trends Neurosci. 24, 122–126. doi: 10.1016/s0166-2236(00)01714-8

Sherman, S. M. (2017). Functioning of circuits connecting thalamus and cortex.
Compr. Physiol. 7, 713–739. doi: 10.1002/cphy.c160032

Sherman, S. M., and Guillery, R. W. (2006). Exploring the Thalamus and its Role in
Cortical Function. Cambridge, MA: MIT Press.

Siapas, A. G., Lubenov, E. V., and Wilson, M. A. (2005). Prefrontal phase locking
to hippocampal theta oscillations. Neuron 46, 141–151. doi: 10.1016/j.neuron.
2005.02.028

Sigurdsson, T., Stark, K. L., Karayiorgou, M., Gogos, J. A., and Gordon, J. A.
(2010). Impaired hippocampal-prefrontal synchrony in a genetic mouse
model of schizophrenia. Nature 464, 763–767. doi: 10.1038/nature
08855 pub-id-type="pmid">20360742

Silberberg, G., and Markram, H. (2007). Disynaptic inhibition between
neocortical pyramidal cells mediated by martinotti cells. Neuron 53, 735–746.
doi: 10.1016/j.neuron.2007.02.012

Soltesz, I., and Deschênes, M. (1993). Low- and high-frequency membrane
potential oscillations during theta activity in CA1 and CA3 pyramidal neurons
of the rat hippocampus under ketamine-xylazine anesthesia. J. Neurophysiol.
70, 97–116. doi: 10.1152/jn.1993.70.1.97

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome: a structural
description of the human brain. PLoS Comput. Biol. 1:e42. doi: 10.1371/journal.
pcbi.0010042

Spratling, M. (2017). A review of predictive coding algorithms. Brain Cogn. 112,
92–97. doi: 10.1016/j.bandc.2015.11.003

Spyropoulos, G., Bosman, C. A., and Fries, P. (2018). A theta rhythm in macaque
visual cortex and its attentional modulation. Proc. Natl. Acad. Sci. U S A 115,
E5614–E5623. doi: 10.1073/pnas.1719433115

Sreenivasan, K. K., and D’Esposito, M. (2019). The what, where and how of
delay activity. Nat. Rev. Neurosci. 20, 466–481. doi: 10.1038/s41583-019-
0176-7

Sun, Y. J., Kim, Y.-J., Ibrahim, L. A., Tao, H. W., and Zhang, L. I. (2013). Synaptic
mechanisms underlying functional dichotomy between intrinsic-bursting and
regular-spiking neurons in auditory cortical layer 5. J. Neurosci. 33, 5326–5339.
doi: 10.1523/JNEUROSCI.4810-12.2013

Takeuchi, D., Hirabayashi, T., Tamura, K., and Miyashita, Y. (2011). Reversal
of interlaminar signal between sensory and memory processing in
monkey temporal cortex. Science 331, 1443–1447. doi: 10.1126/science.11
99967

Tang, J., Jimenez, S. C. A., Chakraborty, S., and Schultz, S. R. (2016). Visual
receptive field properties of neurons in the mouse lateral geniculate nucleus.
PLoS One 11:e0146017. doi: 10.1371/journal.pone.0146017

Theyel, B. B., Llano, D. A., and Sherman, S. M. (2009). The corticothalamocortical
circuit drives higher-order cortex in the mouse. Nat. Neurosci. 13, 84–88.
doi: 10.1038/nn.2449

Thomson, A. (2010). Neocortical layer 6, a review. Front. Neuroanat. 4:13.
doi: 10.3389/fnana.2010.00013

Thomson, A. M., and Bannister, A. P. (2003). Interlaminar connections in the
neocortex. Cereb. Cortex 13, 5–14. doi: 10.1093/cercor/13.1.5

Thomson, A. M., and Lamy, C. (2007). Functional maps of neocortical
local circuitry. Front. Neurosci. 1, 19–42. doi: 10.3389/neuro.01.1.1.
002.2007

Thut, G., Nietzel, A., Brandt, S., and Pascual-Leone, A. (2006). α-band
electroencephalographic activity over occipital cortex indexes visuospatial
attention bias and predicts visual target detection. J. Neurosci. 26, 9494–9502.
doi: 10.1523/JNEUROSCI.0875-06.2006

Tierney, P. L., Dégenètais, E., Thierry, A.-M., Glowinski, J., and Gioanni, Y. (2004).
Influence of the hippocampus on interneurons of the rat prefrontal cortex. Eur.
J. Neurosci. 20, 514–524. doi: 10.1111/j.1460-9568.2004.03501.x

Tong, F. (2013). Imagery and visual working memory: one and the same? Trends
Cogn. Sci. 17, 489–490. doi: 10.1016/j.tics.2013.08.005

Treue, S., and Maunsell, J. H. R. (1996). Attentional modulation of visual
motion processing in cortical areas MT and MST. Nature 382, 539–541.
doi: 10.1038/382539a0

Treue, S., and Trujillo, J. C. M. (1999). Feature-based attention influences
motion processing gain in macaque visual cortex. Nature 399, 575–579.
doi: 10.1038/21176

Tsanov, M., Chah, E., Wright, N., Vann, S. D., Reilly, R., Erichsen, J. T., et al.
(2011). Oscillatory entrainment of thalamic neurons by theta rhythm in freely
moving rats. J. Neurophysiol. 105, 4–17. doi: 10.1152/jn.00771.2010

Frontiers in Neural Circuits | www.frontiersin.org 31 July 2020 | Volume 14 | Article 40

https://doi.org/10.1038/nature13390
https://doi.org/10.1038/nature13390
https://doi.org/10.3389/fnins.2011.00115
https://doi.org/10.1523/JNEUROSCI.21-09-03175.2001
https://doi.org/10.1523/JNEUROSCI.21-09-03175.2001
https://doi.org/10.1126/science.3291116
https://doi.org/10.1038/4580
https://doi.org/10.1152/jn.2000.83.2.777
https://doi.org/10.1152/jn.00322.2004
https://doi.org/10.1146/annurev.neuro.26.041002.131039
https://doi.org/10.1146/annurev.neuro.26.041002.131039
https://doi.org/10.1523/JNEUROSCI.19-05-01736.1999
https://doi.org/10.1016/s0896-6273(03)00097-7
https://doi.org/10.1016/s0896-6273(03)00097-7
https://doi.org/10.3389/fncom.2014.00038
https://doi.org/10.3389/fncom.2014.00038
https://doi.org/10.1038/14819
https://doi.org/10.1111/j.1460-9568.2007.05278.x
https://doi.org/10.1111/j.1460-9568.2007.05278.x
https://doi.org/10.1016/s0361-9230(00)00364-6
https://doi.org/10.1016/j.heares.2013.07.016
https://doi.org/10.1016/j.neuron.2009.09.020
https://doi.org/10.1523/JNEUROSCI.10-03-00826.1990
https://doi.org/10.1523/JNEUROSCI.10-03-00826.1990
https://doi.org/10.1016/j.neuroimage.2008.08.041
https://doi.org/10.1016/j.neuroimage.2008.08.041
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1016/s0166-2236(00)01714-8
https://doi.org/10.1002/cphy.c160032
https://doi.org/10.1016/j.neuron.2005.02.028
https://doi.org/10.1016/j.neuron.2005.02.028
https://doi.org/10.1038/nature08855
https://doi.org/10.1038/nature08855
https://doi.org/10.1016/j.neuron.2007.02.012
https://doi.org/10.1152/jn.1993.70.1.97
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1016/j.bandc.2015.11.003
https://doi.org/10.1073/pnas.1719433115
https://doi.org/10.1038/s41583-019-0176-7
https://doi.org/10.1038/s41583-019-0176-7
https://doi.org/10.1523/JNEUROSCI.4810-12.2013
https://doi.org/10.1126/science.1199967
https://doi.org/10.1126/science.1199967
https://doi.org/10.1371/journal.pone.0146017
https://doi.org/10.1038/nn.2449
https://doi.org/10.3389/fnana.2010.00013
https://doi.org/10.1093/cercor/13.1.5
https://doi.org/10.3389/neuro.01.1.1.002.2007
https://doi.org/10.3389/neuro.01.1.1.002.2007
https://doi.org/10.1523/JNEUROSCI.0875-06.2006
https://doi.org/10.1111/j.1460-9568.2004.03501.x
https://doi.org/10.1016/j.tics.2013.08.005
https://doi.org/10.1038/382539a0
https://doi.org/10.1038/21176
https://doi.org/10.1152/jn.00771.2010
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Bennett Unified Theory of Neocortical Microcircuit

Tsunoda, K., Yamane, Y., Nishizaki, M., and Tanifuji, M. (2001). Complex
objects are represented in macaque inferotemporal cortex by the
combination of feature columns. Nat. Neurosci. 4, 832–838. doi: 10.1038/
90547

Van del Werf, Y. D., Witter, M. P., and Groenewegen, H. J. (2002). The
intralaminar and midline nuclei of the thalamus. Anatomical and functional
evidence for participation in processes of arousal and awareness. Brain Res. Rev.
39, 107–140. doi: 10.1016/s0165-0173(02)00181-9

van Gerven, M., and Jensen, O. (2009). Attention modulations of posterior α as
a control signal for two-dimensional brain-computer interfaces. J. Neurosci.
Methods 179, 78–84. doi: 10.1016/j.jneumeth.2009.01.016

Vanduffel, W., Tootell, R. B., and Orban, G. A. (2000). Attention-dependent
suppression of metabolic activity in the early stages of the macaque visual
system. Cereb. Cortex 10, 109–126. doi: 10.1093/cercor/10.2.109

von Melchner, L., Pallas, S. L., and Sur, M. (2000). Visual behaviour mediated
by retinal projections directed to the auditory pathway. Nature 404, 871–876.
doi: 10.1038/35009102

Vijayan, S., and Kopell, N. J. (2012). Thalamic model of awake α oscillations
and implications for stimulus processing. Proc. Natl. Acad. Sci. U S A 109,
18553–18558. doi: 10.1073/pnas.1215385109

Vinje, W. E., and Gallant, J. L. (2002). Natural stimulation of the nonclassical
receptive field increases information transmission efficiency in V1. J. Neurosci.
22, 2904–2915. doi: 10.1523/JNEUROSCI.22-07-02904.2002

Wang, X.-J. (2010). Neurophysiological and computational principles of cortical
rhythms in cognition. Physiol. Rev. 90, 1195–1268. doi: 10.1152/physrev.000
35.2008

White, M. G., Panicker, M., Mu, C., Carter, A.M., Roberts, B.M., Dharmasri, P. A.,
et al. (2018). Anterior cingulate cortex input to the claustrum is required
for top-down action control. Cell Rep. 22, 84–95. doi: 10.1016/j.celrep.2017.
12.023

Williams, S. R., and Stuart, G. J. (2000). Site independence of EPSP time course is
mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83,
3177–3182. doi: 10.1152/jn.2000.83.5.3177

Williford, T., and Maunsell, J. H. R. (2006). Effects of spatial attention on
contrast response functions in macaque area V4. J. Neurophysiol. 96, 40–54.
doi: 10.1152/jn.01207.2005

Worden, M. S., Foxe, J. J., Wang, N., and Simpson, G. V. (2000). Anticipatory
biasing of visuospatial attention indexed by retinotopically specific α-bank
electroencephalography increases over occipital cortex. J. Neurosci. 20:RC63.
doi: 10.1523/JNEUROSCI.20-06-j0002.2000

Yen, S.-C., Baker, J., and Gray, C. (2010). Heterogeneity in the responses of
adjacent neurons to natural stimuli in Cat striate cortex. J. Vis. 7, 326–326.
doi: 10.1167/7.9.326

Yulle, A. L., and Geiger, D. (2003). ‘‘Winner-take-all networks,’’ in The Handbook
of Brain Theory and Neural Networks, ed. M. A. Arbib (Cambridge, MA: MIT
Press), 1228–1231.

Zarrinpar, A., and Callaway, E. M. (2006). Local connections to specific types
of layer 6 neurons in the rat visual cortex. J. Neurophysiol. 95, 1751–1761.
doi: 10.1152/jn.00974.2005

Zatorre, R. J., Chen, J. L., and Penhune, V. B. (2007). When the brain plays music:
auditory-motor interactions in music perception and production. Nat. Rev.
Neurosci. 8, 547–558. doi: 10.1038/nrn2152

Zoccolan, D., Cox, D. D., and DiCarlo, J. J. (2005). Multiple object response
normalization in monkey inferotemporal cortex. J. Neurosci. 25, 8150–8164.
doi: 10.1523/JNEUROSCI.2058-05.2005

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Bennett. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 32 July 2020 | Volume 14 | Article 40

https://doi.org/10.1038/90547
https://doi.org/10.1038/90547
https://doi.org/10.1016/s0165-0173(02)00181-9
https://doi.org/10.1016/j.jneumeth.2009.01.016
https://doi.org/10.1093/cercor/10.2.109
https://doi.org/10.1038/35009102
https://doi.org/10.1073/pnas.1215385109
https://doi.org/10.1523/JNEUROSCI.22-07-02904.2002
https://doi.org/10.1152/physrev.00035.2008
https://doi.org/10.1152/physrev.00035.2008
https://doi.org/10.1016/j.celrep.2017.12.023
https://doi.org/10.1016/j.celrep.2017.12.023
https://doi.org/10.1152/jn.2000.83.5.3177
https://doi.org/10.1152/jn.01207.2005
https://doi.org/10.1523/JNEUROSCI.20-06-j0002.2000
https://doi.org/10.1167/7.9.326
https://doi.org/10.1152/jn.00974.2005
https://doi.org/10.1038/nrn2152
https://doi.org/10.1523/JNEUROSCI.2058-05.2005
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

	An Attempt at a Unified Theory of the Neocortical Microcircuit in Sensory Cortex
	INTRODUCTION
	AN OVERVIEW OF THE STRUCTURE OF SENSORY CORTEX
	The Structure of a Single Excitatory Neocortical Neuron
	The Structure of a Single Macrocolumn
	The Structure of Thalamocortical Networks

	A MODEL OF A SINGLE MACROCOLUMN
	Layer 4 Stellate Neurons Are Coincidence Detectors on Bottom-Up Input
	Layer 2/3 Pyramidal Neurons Implement a Competitive Network on Layer 4 Input
	Layer 5a Regular Spiking Neurons Learn and Replay Transitions Between Layer 2/3 Network States
	Layer 5b Intrinsically Bursting Neurons Perform Pattern Separation on Layer 2/3 Output to Generate Unique ``Sequence Codes''
	Layer 6a Corticothalamic Neurons Make Top-Down Predictions of Next Elements in Sequences

	FRONTAL INPUT—MOTOR COMMANDS, ATTENTION, AND WORKING MEMORY
	Motor Predictions: Layer 6 Corticocortical and Layer 6a Corticothalamic Neurons Integrate Motor Commands to Predict Upcoming Sensory Input
	Top-Down Attention: Frontal Projections to L6a-CT and L2/3-PY Neurons Enable Attention
	Working Memory: Frontal Projections to L6a-CT Neurons Can Trigger and Maintain Specific Memories

	THALAMOCORTICAL NETWORKS COORDINATE PROCESSING USING OSCILLATIONS
	Macrocolumns Oscillate Between ``Input States'' and ``Output States''
	Network Oscillations for Integrated Processing: Passive Processing at Alpha and Attentive Processing at Theta
	Unraveling the Experimental Data on Oscillations

	HOW NETWORKS OF MACROCOLUMNS RECOGNIZE ALREADY LEARNED OBJECTS AND SEQUENCES
	The Computational Function of Networks of Macrocolumns
	Sequence Disambiguation
	Object Disambiguation
	Multi-areal Matrix Neurons in Thalamus Signal Failed Predictions

	HOW NETWORKS OF MACROCOLUMNS LEARN NEW OBJECTS AND SEQUENCES
	Step #1: Receiving Input of ``A'' For 1 s
	Step #2: Pause For 5 s
	Step #3: Input ``B'' For 1 s
	Step #4: Pause For 5 s
	Step #5: Input ``C'' For 1 s
	Remembering the Sequence ``ABC'' After Just Saying ``A''

	DISCUSSION
	An Explanation for Why We Observe Network Oscillations Within the Neocortex and Thalamus
	An Explanation for Why We Observe Working Memory to Cap Out at 7 Items
	An Explanation for Why We Observe Mammals Without a Hippocampus to be Impaired at Sequence Memory and Unable to Create New Memories
	An Explanation for How the Brain May Generalize Object Recognition to Changes in Orientation, Translation, and Scale
	Is Neocortex Actually Uniform?
	The Mystery of Bottom-Up Thalamic Input to Layer 5b Intrinsically Bursting Neurons and Potential Modifications of This Theory
	Testable Predictions

	RELATIONSHIP TO PREVIOUS MODELS
	Relationship to Previous Models of Hierarchical Temporal Memory
	Relationship to Previous Models of Working Memory and Delay Activity
	Relationship to Previous Models of Predictive Coding and Active Inference
	Relationship to Previous Models of Adaptive Resonance Theory

	DATA AVAILABILITY STATEMENT
	AUTHOR CONTRIBUTIONS
	SUPPLEMENTARY MATERIAL
	REFERENCES


