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In vivo 1-photon (1p) calcium imaging is an increasingly prevalent method in behavioral
neuroscience. Numerous analysis pipelines have been developed to improve the
reliability and scalability of pre-processing and ROI extraction for these large calcium
imaging datasets. Despite these advancements in pre-processing methods, manual
curation of the extracted spatial footprints and calcium traces of neurons remains
important for quality control. Here, we propose an additional semi-automated curation
step for sorting spatial footprints and calcium traces from putative neurons extracted
using the popular constrained non-negative matrix factorization for microendoscopic
data (CNMF-E) algorithm. We used the automated machine learning (AutoML) tools
TPOT and AutoSklearn to generate classifiers to curate the extracted ROIs trained on
a subset of human-labeled data. AutoSklearn produced the best performing classifier,
achieving an F1 score >92% on the ground truth test dataset. This automated approach
is a useful strategy for filtering ROIs with relatively few labeled data points and can be
easily added to pre-existing pipelines currently using CNMF-E for ROI extraction.

Keywords: calcium imaging, open-source, machine learning, microendoscopy, 1-photon, CNMF-E

INTRODUCTION

Advances in 1-photon (1p) miniaturized fluorescence microscopy in terms of utility, cost, and ease-
of-use have increased the accessibility and popularity of in vivo calcium imaging in freely behaving
rodents (Ghosh et al., 2011; Hamel et al., 2015; Cai et al., 2016; Jacob et al., 2018). Consequently,
researchers can track the activity of neuronal populations across days, weeks, or even months
(Rubin et al., 2015; Gonzalez et al., 2019). Concurrent with the growing usage of 1pmicroendoscopy
in neuroscience, there is an increasing demand for high-throughput software that can accurately
and efficiently process the very large raw calcium imaging datasets now being produced. To address
this challenge, several algorithms and analysis pipelines have been developed to automate the
extraction of cells and calcium activity traces across time in a robust manner—necessary step for
downstream analyses (Pnevmatikakis, 2019).
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Motion correction, source extraction, and cell registration
(across multiple recording sessions) are important steps involved
in pre-processing raw 1p calcium imaging data. Source
extraction, the task of identifying the locations and activity of
neurons in the imaged field of view (FOV), is arguably the
most challenging of these steps, as evidenced by the number of
different algorithms published to improve this step. Nevertheless,
two main methods of source extraction have been widely
adopted in the field: principal component analysis/independent
component analysis (PCA/ICA; Mukamel et al., 2009) and
the more recent extended constrained non-negative matrix
factorization for microendoscopic data (CNMF-E; Zhou et al.,
2018). CNMF-E explicitly models background signals present in
1p microendoscopic recordings and therefore results in more
accurate signal detection from neurons compared to PCA/ICA
(Zhou et al., 2018).

Our lab has successfully applied CNMF-E to recordings
from our open-source Compact Head-mounted Endoscope
(CHEndoscope) to identify neuron locations (or spatial
footprints) and extract their calcium activity traces from freely-
behaving mice performing different behavioral tasks. CNMF-E
has proven to be a reliable tool across multiple imaging sessions
and experimental paradigms conducted in the lab with minimal
parameter tuning in our hands (Jacob et al., 2018). However, like
PCA/ICA, CNMF-E may still produce some false-positives in
the output of detected cells (i.e., non-neuronal spatial footprints
or calcium traces), which can be filtered out of the final dataset
manually. We initially found success in filtering CNMF-E-
extracted spatial footprints and traces by adding a manual
curation step that involved visual inspection of each ROI and
calcium trace (previously described in Jacob et al., 2018). While
this type of manual curation can reduce the number of false-
positives in CNMF-E’s output, visual inspection of potentially
tens of thousands of extracted cells can be time-consuming, and
this method is not free from human error. Here, we propose
an automated machine learning (AutoML) approach built on
top of the CNMF-E algorithm’s outputs to filter out potential
false-positives. We implemented a semi-automated classification
tool to limit the amount of manual curation required during
pre-processing, without completely removing the ability to
fine-tune the process with human-labeled datasets.

The main outputs of CNMF-E’s source extraction algorithm
are: 1. the extracted calcium traces representing cellular activity
and 2. the spatial footprint of putative neurons. As mentioned
previously, manual curation of these outputs involves identifying
both aberrant traces that do not have stable baseline fluorescence
(Resendez et al., 2016), transient durations inconsistent with
the expressed calcium indicator (e.g., GCAMP6f; Badura et al.,
2014), and/or spatial footprints that are not consistent with the
shape and size of neurons in the brain region being recorded
(Resendez et al., 2016). We trained and validated our classifiers
on a dataset of 14,000 manually curated spatial footprints and
traces output from CNMF-E. The final model chosen was then
used to automate the curation of ROIs from other recording
sessions. From the two AutoML libraries, we chose the best
performing model to train on the full training set to evaluate
on the test set. We find our model can accurately predict

whether a cell would be included or excluded at a rate of 92%.
We further validated the performance of our models on an
additional ground truth dataset derived from 2-photon (2p)
imaging source ROIs of mouse visual cortex (Stringer et al.,
2019a,b), where ROIs were downsampled to emulate 1p images
and modified to simulate a proportion of ‘‘negative’’ labeled
ROIs for ground truth labels. The AutoML classifier was able to
accurately predict>98% of the correct labels on the 2p simulated
ground-truth dataset.

The potential time savings of manually curating thousands
of cells makes this approach a method worth employing as part
of a typical 1p calcium imaging pipeline. While our AutoML-
based curation pipeline was primarily developed to be used with
CHEndoscope data, our model takes the output of CNMF-E
and as a result, allows this method to be readily applied to data
acquired using other 1p miniature microscopes.

MATERIALS AND METHODS

Dataset Preparation and Pre-processing
The dataset used for model training was acquired from multiple
hippocampal CA1 recordings captured across different mice
and recording sessions using methods described in Jacob
et al., 2018. From these recordings, we used CNMF-E (Zhou
et al., 2018) to extract spatial footprints and calcium traces of
14,000 ROIs. We then manually reviewed and labeled these ROIs
as neuronal (included for further analysis) or artifact (excluded
from analysis). The labels were generated by two human expert
raters that inspected the calcium transients and spatial footprints
based on previously reported criteria:

1. Fast rise and slow decay of calcium transients with stable
baseline fluorescence (Resendez et al., 2016).

2. Calcium transient durations consistent with GCaMP6f (or
appropriate GCaMP variant; Badura et al., 2014).

3. Spatial footprints consistent with appropriate neuronal shape
and size (Resendez et al., 2016).

Each label in the ground truth dataset was derived from a single
rater’s annotations. Interrater agreement was 87% across the two
raters on a subset of the data (1,073 putative ROIs extracted from
CNMF-E; Figure 1).

Spatial footprints consisted of the maximum projection of the
identified cell from all frames in the video. We found that the
location of the footprint in the FOV was not important in our
labeling criteria (compared to the shape and size of footprint),
we cropped the spatial footprints to remove empty space.
Each spatial footprint was reduced to an 80 × 80 pixel image
centered on the peak intensity of the footprint. Furthermore,
recordings were of varying lengths, so all trace data was cropped
at 500 frames (equivalent to 100 s of recording at 5 fps) and
normalized such that the values. To combine the spatial and trace
data into a single dataset for classification, the 2-dimensional
spatial footprint images were flattened and the trace data were
concatenated to the end of the image data to create a single 1-
dimensional vector for each ROI.
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FIGURE 1 | Interrater agreement of ROI labels. A confusion matrix
comparing the manually reviewed labels (include or exclude) for putative ROIs
extracted from constrained non-negative matrix factorization for
microendoscopic data (CNMF-E) determined by two different raters. Each cell
of the matrix is annotated with the proportion of ROIs.

We aggregated the labeled ROIs into a dataset split into
training and test sets, which comprised 80% (∼11,000 ROIs) and
20% (∼3,000 ROIs) of the data, respectively.

To further validate this AutoML approach, we also used
an open dataset of ROIs imaged in the mouse primary
visual cortex acquired using 2p microscopy (Stringer et al.,
2019a). This ground-truth dataset contained 19,000 ROIs,
from which we randomly selected 7,200 ROIs to use in the
analysis to reduce compute time. We spatially and temporally
downsampled the 2p ROI spatial footprint images and calcium
traces, respectively, to better emulate 1p imaging data. Spatial
footprints were cropped to 40 × 40 pixel images around the
ROI centers, and trace data were cropped to a 500-frame
time window.

Next, to generate true ‘‘negative’’ labels in our dataset, we
manipulated 15% of ROIs (to match the proportion of positive
and negative labels in our 1p dataset) using one or a combination
of the following methods:

1. Modify the size of the spatial footprint by a scaling factor
randomly chosen from ( 12 ,

1
3 , 2, 3; ‘‘spatial’’)

2. Add gaussian noise to the calcium trace (‘‘trace’’)
3. Both methods #1 and #2 (‘‘both’’)
4. Combine two ROIs to simulate the incorrect merging of two

separate ROIs detected as one ROI (‘‘merged’’)

The spatial footprints were flattened into a 1-dimensional
vector and the trace data was concatenated to the end. The final
2p simulated ground truth dataset was split into training and test
sets, which comprised 80% (6,000 ROIs) and 20% (1,000 ROIs)
of the data, respectively.

Model Optimization and Selection
We used two automated machine learning (AutoML) methods,
TPOT (Olson et al., 2016; Olson and Moore, 2019) and
AutoSklearn (Feurer et al., 2015) that are based on the popular

Python machine learning toolbox, scikit-learn (Pedregosa
et al., 2011) to select optimal classification models. While
other AutoML tools exist that may outperform the ones
we chose (Truong et al., 2019), TPOT and AutoSklearn
are both free open-source, and easy to use, making them
accessible for labs to incorporate into their existing analysis
pipelines. To benchmark the results of the AutoML methods
on the ROI curation task, we trained two types of out-of-
the-box scikit-learn classifiers, Decision Tree, and K-Nearest
Neighbors, with and without PCA-transformed inputs for
dimensionality reduction.

The key advantage of AutoML tools such as TPOT and
AutoSklearn is that they do the extensive work of finding
the best type(s) of data transformation and models to build
a pipeline for classifying the input data, as well as the
hyperparameters associated with these steps. TPOT is an
evolutionary algorithm that works with the scikit-learn API to
find the best parameters and model pipelines through searching
‘‘genetic lineages’’ of the best performing pipelines. It will
try a pipeline, evaluate its performance, and then randomly
modify various parameters in search of a better pipeline (Olson
et al., 2016; Olson and Moore, 2019). TPOT generates pipelines
of pre-processing steps and classification models to maximize
classification performance while prioritizing simpler pipelines.
For example, a pipeline may consist of PCA for dimensionality
reduction and a support vector machine to perform the
classification, though they do not necessarily need to have
multiple components. AutoSklearn performs algorithm selection
and hyperparameter tuning using Bayesian optimization, meta-
learning, and ensemble construction (Feurer et al., 2015) and
as a result, the final classifier is an ensemble of many different
model types and their associated hyperparameters. We primarily
used default TPOT and AutoSklearn parameters, with a max
evaluation time for a single pipeline of 10 min, and a total search
time of 2 days.

During training, we used 10-fold cross-validation using
stratified folds that preserved the relative proportions of
‘‘include’’ and ‘‘exclude’’ labels (i.e., during each run of training,
9 of 10 folds were used for training, and the 10th fold was used
to test the performance of the model). This process was repeated
for all 10 folds, resulting in an averaged performance metric for
the data. We optimized the models to maximize the F1 score, the
harmonic average of precision and recall, where high precision
indicates a low false-positive rate and high recall indicates a low
false-negative rate. In our dataset, a true positive is an extracted
ROI that both the trained model and a ‘‘ground truth’’ human
scorer define as suitable to be included for further analysis (i.e., it
satisfies the three selection criteria listed above). A true negative
is an extracted ROI that is excluded for further analysis by both
the model and our ground truth scoring.

RESULTS

To define a benchmark for classifier performance on CNMF-E
extracted ROIs and the utility of using trace and spatial data
together, we used two conventional machine learning algorithms
[Decision Trees and K-Nearest Neighbors (KNN)] trained on:
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TABLE 1 | ROI classification F1 scores in different ML and automated machine
learning (AutoML) methods tested on 1p ground truth and 2p simulated ground
truth data.

Classifier 1p
Spatial

1p
Trace

1p
Combined

2p Simulated
ground truth
(combined)

Decision Tree 0.856 0.822 0.868 0.988
Decision Tree + PCA 0.806 0.813 0.835 0.935
K Nearest Neighbours 0.873 0.877 0.881 0.929
K Nearest
Neighbours + PCA

0.814 0.815 0.885 0.953

TPOT - - 0.904 0.954
AutoSklearn - - 0.922 0.994

(1) only spatial footprint data, (2) only trace data or (3) the
combined spatial and trace data. Our spatial and trace data
had a large number of features, 6,400 and 500, respectively.
To test whether the classifiers would perform better using
dimensionality reduction, we also compared the performance
of classifiers with and without Principal Component Analysis
(PCA) as a data preprocessing step. We trained and tested
the Decision Tree, or the KNN classifiers on each of the
three types of data listed above, with and without PCA to
reduce the dimensionality of our data. The F1 scores on the
test set for each of these classifiers are reported in Table 1.
Notably, both the Decision Tree and K-Nearest Neighbors
classifiers generalized best on the test set when trained on the
combined spatial and trace data, compared to the trace only
or spatial only data. The highest F1 score achieved by any of
these models on our 1p ground truth dataset was the KNN
(with PCA) classifier with a score of 0.885 trained on the
combined data.

Next, to determine the efficacy of an AutoML approach
for classification of our ROI curation task, we tested the
ability of TPOT and AutoSklearn to build classifiers that can
label the pre-processed spatial footprints and calcium traces of
putative ROIs. Both TPOT and AutoSklearn were trained on the
11,000 labeled ROIs in the training set, split into 10 folds for
cross-validation, repeated five times. The best models obtained
during training were used to determine the F1 score on the test
set. Table 1 reports the performance of the best models obtained
by TPOT and AutoSklearn across the training folds and on the
test set.

We then tested the transferability of the best classifier
pipelines identified by TPOT and AutoSklearn using fewer
samples. We used the top-performing classifier pipelines and
hyperparameters chosen by TPOT and AutoSklearn and trained
the initialized pipelines using datasets of increasing ROI
numbers. The training set size ranged from 150–10,000 ROIs.
Using a change point analysis algorithm (PELT, Killick et al.,
2012), we determined that AutoSklean and TPOT classifiers
approached a maximal F1 score with 719 and 1,000 labeled
ROIs, respectively (Figure 2). The pipelines found using our
much larger labeled dataset may be easily incorporated into
other pipelines with a minimal computational effort to train and
finetune on CNMF-E extracted ROIs from other 1p experiments,
using fewer labeled ROIs.

FIGURE 2 | F1 score performance with increasing training size. Graph of the
F1 test scores vs. the number of training samples used to train the best
models output by AutoSklearn (blue) and TPOT (green). (Inset) A graph of the
same plot with a smaller range of training sizes and the change point is
marked with arrows on each algorithm type.

To examine the classifier performance in terms of false
positives and false negatives, we created confusion matrices to
visualize the rate of true positives, true negatives, false positives,
and false negatives from the TPOT and AutoSklearn predictions
compared to the ground truth. We found that the classifier built
with AutoSklearn (0.922 F1, Table 1) performs better in terms of
both reducing false positives and false negatives (Figure 3).

To further assess the nature of the classification errors, we
looked at the class confidences or probabilities of the test set
predictions from the trained TPOT and AutoSklearn models
(Figure 4). Class probabilities indicate the classifier’s certainty
(using confidence score for TPOT and class probability for
AutoSklearn) that a sample belongs to a particular class label.
We tested whether mislabeled ROIs were also those in which the
classifiers expressed less confidence in classifying. We examined
the size of the difference between certainty scores (true positives
vs. false positives, true negatives vs. false negatives) in TPOT
and AutoSklearn using Cohen’s d (Sawilowsky, 2009; Cohen,
2013; Table 2). The AutoSklearn classifier which outperformed
the TPOT classifier based on F1 scores showed large differences
in certainty scores when labeling ROIs as positive (d = 1.36) or
negative (d = 2.34). By contrast, the TPOT classifier was relatively
less confident in both types of classification (positive d = 0.63,
negative d = 1.68). In other words, the AutoSklearn classifier
was more certain in applying labels to ROIs than was the TPOT
classifier. This indicates that false negatives and false positives
in the higher-performing AutoSklearn classifier may arise from
‘‘edge-cases’’ ROIs in the dataset which the classifier was not as
certain about the label. In contrast, the poorer performance of the
TPOT classifier may simply be due to poor generalization on the
test set.

To investigate the nature of the false positives and false
negatives from the best TPOT and AutoSklearn models, we
looked at the underlying spatial footprints and calcium traces
for mislabeled ROIs from both AutoML tools (Figure 5).
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FIGURE 3 | Confusion matrices of AutoML tools: TPOT and AutoSklearn. Each cell in the matrix is annotated with the proportion of ROIs labeled as Include or
Exclude according to the predicted and true labels. Colors indicate the relative proportions of the labels where lower proportions are darker in color and higher
proportions are lighter in color. The confusion matrices were made from predictions on the test set from the best models output by AutoSklearn (left) and TPOT (right).

FIGURE 4 | Classifier confidence (TPOT) and class probabilities (AutoSklearn) on predicted false positives and false negatives. Violin plots of the distribution of (A)
TPOT classifier confidence or (B) AutoSklearn class probabilities on predicted ROI labels (Positive for Include, or Negative for Exclude) in the test set. Each half of the
violin plot is the distribution of values for correct labels (True, left/blue) or incorrect (False, right/green) based on the ground truth labels.

Representative examples of excluded ROIs from the ground
truth dataset show that some cells may be excluded (i.e., true
negatives) because of poor trace data and/or poor spatial
footprints, which possibly represent non-neuronal imaging
artifacts and/or ROIs representing areas of background
fluorescence. While some false positives from AutoSklearn
shared similar features with true negative ROIs, others were
more ambiguous. Upon inspection, these ROIs sometimes
were high-quality spatial footprints with poor-quality calcium
traces, or vice versa, or were composed of spatial footprints
and calcium traces of true neuronal origin mixed with
additional non-neuronal noise. These examples represent

‘‘edge-cases’’ which may be difficult to judge even by a
human rater.

To validate the utility of the AutoML models on a different
set of calcium imaging data, we trained and tested our out-of-
the-box scikit-learn classifiers and the final ensemble classifiers
output by TPOT and AutoSklearn on an open 2p calcium
imaging dataset of 7,200 ROIs (a randomly chosen subset
from the original 19,000 ROIs) from mouse visual cortex cells
(Stringer et al., 2019a,b). We modified ROIs by downsampling
the spatial footprints, and traces to simulate 1p data that has
been analyzed by CNMF-E, and generated a subset of ‘‘bad’’
ROIs where we modified the trace, spatial footprint, both
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TABLE 2 | Cohen’s d effect size of certainty scores between predicted labels
that were correct or incorrect compared to ground truth in TPOT or AutoSklearn.

Include (Positive) Exclude (Negative)

TPOT AutoSklearn TPOT AutoSklearn

Cohen’s d 0.63 1.36 1.68 2.34

trace, and footprint modification, or simulated the merging of
two separate ROIs into one ROI, a common issue in calcium
imaging ROI extraction (Figure 6A). Of the conventional
scikit-learn models, we found that a Decision Tree classifier
achieved an F1 score of 0.988 on the 2p simulated ground
truth test set (Table 1). Surprisingly, the Decision Tree classifier
outperformed the TPOT Linear Support Vector Machine which
had an F1 score of 0.954. However, the final AutoSklearn
ensemble was achieved the best F1 score of 0.994, and notably
had a far lower proportion of false positives than the TPOT
classifier, and no false negatives were labeled in the test
set (Figure 6B).

DISCUSSION

Automated curation of ROIs provides a fast, accurate method
for classifying neural data generated in 1p calcium imaging
experiments. We show that AutoML tools such as the
open-source TPOT and AutoSklearn packages provide an easy
way to build effective classifiers for ROIs extracted from the
widely used CNMF-E algorithm. Spatial footprints and calcium
traces from CNMF-E can be used to train these models with
minimal data preprocessing. Furthermore, it may be possible to
apply the top-performing classifiers generated from this work
to other experimental datasets taken from different 1p imaging
setups, while requiring relatively few labeled samples. Other
analyses pipelines such as MIN1PIPE (Lu et al., 2018) have
been developed to improve source extraction by reducing false-
positive ROIs without increasing the rate of false negatives.
However, given the more widespread adoption of CNMF-E, the
approach described here prevents labs from having to adopt
entirely new analysis pipelines. Our approach provides a balance
between the need to manually review the output of CNMF-E
ROIs to maximize the number of detected cells, while still
allowing some further automation of the otherwise laborious
curation process.

While great advancements have been made in widefield 1p
imaging, fundamental constraints (e.g poor axial resolution,
light scattering) limit the number of high-quality cells that
can be detected compared to 2p imaging (Svoboda and
Yasuda, 2006). As a result, being able to accurately detect
as many ‘‘true’’ ROIs as possible is crucial for downstream
analyses. If false positives make it through ROI extraction,
or if data is lost due to false negatives, analyses of these
datasets will suffer from increased variability and reduced
statistical power.

AutoML may be a useful approach for curating CNMF-E
extracted ROIs and can be implemented on top of pre-existing
analysis pipelines without much need to adapt the software.

However, there are several limitations to this approach. First,
we emphasize the automated aspect of this machine learning
classifier approach and little need for hand-tuning, but we
recognize that the best models still make errors. Cases in which
the best performing classifier generated by AutoSklearn failed
to detect true positives or true negatives were further reviewed
and were typically seen to be edge cases where it may be
difficult for a human reviewer to make a judgment. Similarly,
we found that a second expert scorer looking at the same data
may not make the same judgments on such edge cases (having an
interrater reliability score of 87%). While the AutoML classifiers
were trained on data that had relatively little preprocessing
beyond cropping and downsampling, future work could address
whether feature engineering over the spatial footprints and
trace data could further improve accuracy and reduce training
time for model selection and hyperparameter tuning. Better
curation of a training dataset for the models may help reduce
ambiguous cases that make it difficult for a classifier to make
accurate predictions.

Ultimately, automated methods for source extraction are still
likely to be imperfect, resulting in some small proportion of
false positives in the final dataset, and/or false negatives not
detected during source extraction. In practice, it may be useful
to be able to prioritize precision (proportion of positive labels
by the classifier that are true positives), over recall (proportion
of all true positives that were correctly labeled), or vice versa.
For example, the loss of some small proportion of ROIs from
a large dataset (i.e., false negatives) may not be as harmful as
a small number of highly active false-positive ROIs that could
disproportionately impact downstream analyses. We used the
F1metric, which equally weights precision and recall, to optimize
our AutoML classifiers. However, one could instead use an F Beta
score which is a weighted F1 score where the beta parameter
determines the weight of recall (penalty on false negatives)
relative to the precision (penalty on false positives). This could
be used to bias the autoML search for an optimal classifier in
either direction.

To reduce computing time and complexity of ROI classifiers,
we flattened and concatenated our 2d spatial footprints with
our 1d trace data to create a single dataset to train the
classifiers on. Perhaps there are alternative machine learning
methods that preserve the originally structured inputs in the
spatial images and calcium trace time-series data could provide
more accurate classification results. Variations on residual
neural networks (ResNets) and Hierarchical Vote Collective of
Transformation-based Ensembles (HIVE-COTE) have achieved
a state of the art performance on image classification and
time series classification, respectively (He et al., 2016; Lines
et al., 2016). However, the simplicity of exported pipelines from
TPOT, AutoSklearn, and conventional scikit-learn algorithms
do not require as much computational power and runtime
as HIVE-COTE (an ensemble of typically 37 classifiers that
need to be trained and tuned for each use-case) or ResNet
which typically requires a GPU to finetune the model on
one’s dataset. Furthermore, the strong performance of the final
extracted AutoSklearn and TPOT ensemble classifiers found
using our 1p data and retrained/tested on the 2p simulated
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FIGURE 5 | Representative false positives and negatives compared to ground truth ROIs. Example calcium traces (top) and spatial footprints (bottom) from ground
truth positive- (left) and negative-labeled (right) ROIs. Example calcium traces (top) and spatial footprints (bottom) of false positive and false negative ROIs predicted
from the AutoSklearn (middle row) or TPOT (bottom row) classifiers.

ground truth dataset demonstrates the transferable capabilities
of these models with ROIs from different brain regions and
different imaging set-up.

In conclusion, we present here a demonstration and
benchmark of an AutoML approach for the curation of CNMF-E
extracted ROIs. The data show that simple, out-of-the-box ML
methods can also be trained to curate ROIs to a relatively
high degree of accuracy, but the final ensemble model found
by AutoSklearn was consistently able to outperform other
classifiers in both the 1p and 2p simulated ground truth
datasets. The methods described here can provide a flexible,
free open-source, and easy-to-incorporate curation step for
other researchers using CNMF-E for source extraction of their
1p datasets, while requiring few changes to their existing
analysis pipelines.
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FIGURE 6 | Validation of AutoML methods on modified 2p calcium imaging data. (A) Examples of ROIs extracted from 2p calcium imaging modified to resemble 1p
data and to simulate ROIs that should be excluded from the analysis. Example trace data (top) and spatial footprints (bottom) of simulated negative ROIs that were
modified using various methods: “spatial” (spatial footprints were upscaled or downscaled beyond the range of typical neuronal size in the dataset), “trace” (traces
with Gaussian noise added), “both” (where both “spatial” and “trace” modifications were made) or merged” (where two ROIs are incorrectly identified as a single ROI
by combining the spatial footprint and trace of two separate cells). (B) Confusion matrices of the TPOT (left) and AutoSklearn (right) test predictions on the 2p
simulated ground truth dataset (where the test set size is 1,080 ROIs).
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