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It is commonly assumed that memories about experienced stimuli are represented by

groups of highly interconnected neurons called cell assemblies. This requires allocating

and storing information in the neural circuitry, which happens through synaptic weight

adaptations at different types of synapses. In general, memory allocation is associated

with synaptic changes at feed-forward synapses while memory storage is linked

with adaptation of recurrent connections. It remains, however, largely unknown how

memory allocation and storage can be achieved and the adaption of the different

synapses involved be coordinated to allow for a faithful representation of multiple

memories without disruptive interference between them. In this theoretical study, by using

network simulations and phase space analyses, we show that the interplay between

long-term synaptic plasticity and homeostatic synaptic scaling organizes simultaneously

the adaptations of feed-forward and recurrent synapses such that a new stimulus forms

a new memory and where different stimuli are assigned to distinct cell assemblies.

The resulting dynamics can reproduce experimental in-vivo data, focusing on how

diverse factors, such as neuronal excitability and network connectivity, influence memory

formation. Thus, the here presented model suggests that a few fundamental synaptic

mechanisms may suffice to implement memory allocation and storage in neural circuitry.

Keywords: memory allocation, memory formation, synaptic plasiticity, synaptic scaling, network dynamic

1. INTRODUCTION

Learning and memorizing information about the environment over long time scales is a vital
function of neural circuits of living beings. For this, different elements of a neural circuit—the
neurons and synapses—have to coordinate themselves to accurately form, organize, and allocate
internal long-term representations of the different pieces of information received. While many
processes and dynamics of the single elements are well-documented, their coordination remains
obscure. How do neurons and synapses self-organize to form functional, stable, and distinguishable
memory representations? Moreover, what mechanisms underlie the self-organized coordination
yielding such representations?

This theoretical study identifies three distinct properties of long-term synaptic dynamics to
allow for a robust coordination of neurons and synapses during the self-organized formation
of internal representations. In contrast to the current hypothesis, which assumes that solely

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2020.541728
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2020.541728&domain=pdf&date_stamp=2020-10-07
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tetzlaff@phys.uni-goettingen.de
https://doi.org/10.3389/fncir.2020.541728
https://www.frontiersin.org/articles/10.3389/fncir.2020.541728/full


Auth et al. Allocation and Formation of Memories

long-term synaptic plasticity serves as sufficient mechanism
(Martin et al., 2000; Barbieri and Brunel, 2008; Palm et al.,
2014; Takeuchi et al., 2014), our analysis indicates that synaptic
plasticity has to interact with the mechanism so-called synaptic
scaling, which adapts synaptic dynamics in a homeostatic
manner (Turrigiano et al., 1998; Tetzlaff et al., 2011; Hengen et al.,
2013). This interaction of plasticity mechanisms, determining the
dynamics of individual synapses, comprises all three required
properties and results in an input-dependent circuit dynamic,
which yields the reliable organization of internal representations
of environmental information.

As discussed in the following, to understand the coordination
of neurons and synapses underlying the organization of internal
representations, we have to investigate two memory processes
acting together: memory formation and allocation.

The reliable formation of memory, hence of internal stimulus
representations in neural circuits, is explained by the Hebbian
hypothesis. In brief, the Hebbian hypothesis (James, 1890;
Konorski, 1948; Hebb, 1949; Palm et al., 2014; Holtmaat and
Caroni, 2016) states that, when a neural circuit receives a
new piece of information, the corresponding stimulus activates
a group of neurons and, via activity-dependent long-term
synaptic plasticity (Bliss and Lomo, 1973; Levy and Steward,
1983; Martin et al., 2000; Malenka and Bear, 2004), adapts
the weights or efficacies of synapses between these neurons.
This adaptation remodels the activated group of neurons to
a strongly interconnected group of neurons called Hebbian
cell assembly (HA). This newly formed HA serves as an
internal long-term representation (long-term memory) of the
corresponding stimulus (Hebb, 1949; Palm et al., 2014; Holtmaat
and Caroni, 2016). Recall of this memory translates into the
activation of the respective HA. In order to recognize similar
pieces of information, similar stimuli also have to be able
to activate the corresponding HA. This is enabled by the
strong recurrent interconnections betweenHA-neurons resulting
in pattern completion (Hunsaker and Kesner, 2013; Palm
et al., 2014). Several experimental and theoretical studies have
investigated the formation and recall of HAs given synaptic
plasticity (Hopfield, 1982, 1984; Amit et al., 1985, 1994; Tsodyks
and Feigelman, 1988; Buzsaki, 2010; Brunel, 2016; Holtmaat
and Caroni, 2016). Recent theoretical studies already indicate
that, in addition to synaptic plasticity, homeostatic mechanisms
such as synaptic scaling are required to keep the neural
circuit in a functional regime (Tetzlaff et al., 2013, 2015;
Litwin-Kumar and Doiron, 2014; Zenke et al., 2015). However,
all the above-mentioned studies investigate the coordination
of synaptic and neuronal dynamics within the group of
neurons (memory formation), but they do not consider the
dynamics determining which neurons are recruited to form
this group, or rather why is the stimulus allocated to this
specific group of neurons and not to others (memory allocation;
Rogerson et al., 2014).

The allocation of stimuli to their internal representations
requires that the synapses from the neurons encoding the
stimulus to the neurons encoding the internal representation
have to be adjusted accordingly. Considering only these types

of synapses (“feed-forward synapses”), several studies show that
long-term synaptic plasticity yields the required adjustments of
synaptic weights (Willshaw et al., 1969; Adelsberger-Mangan and
Levy, 1992; Knoblauch et al., 2010; Babadi and Sompolinsky,
2014; Kastellakis et al., 2016; Choi et al., 2018) such that
each stimulus is mapped to its corresponding group of
neurons. However, theoretical studies (Sullivan and de Sa,
2006; Stevens et al., 2013), which investigate the formation of
input-maps in the visual cortex (Kohonen, 1982; Obermayer
et al., 1990), show that the stable mapping or allocation
of stimuli onto a neural circuit requires, in addition to
synaptic plasticity, homeostatic mechanisms such as synaptic
scaling. Note that all these studies focus on the allocation of
stimuli to certain groups of neurons; however, they do not
consider the dynamics of the synapses within these groups
(“recurrent synapses”).

Thus, up to now, it remains unclear how a neural circuit
coordinates in a self-organized manner the synaptic and
neuronal dynamics underlying the reliable allocation of stimuli to
neurons with the simultaneous dynamics underlying the proper
formation of memory representations. If these two memory
processes are not tightly coordinated, the neural system could
show awkward, undesired dynamics: On the one hand, memory
allocation could map a stimulus to a group of unconnected
neurons, which impedes the formation of a proper HA. On the
other hand, the formation of a HA could bias the dynamics of
allocation such that multiple stimuli are mapped onto the same
HA disrupting the ability to discriminate between these stimuli.

In this theoretical study, we show in a network model
that long-term synaptic plasticity (Hebb, 1949; Abbott and
Nelson, 2000; Gerstner and Kistler, 2002) together with the
slower, homeostatic processes of synaptic scaling (Turrigiano
et al., 1998; Turrigiano and Nelson, 2004; Tetzlaff et al., 2011;
Hengen et al., 2013) leads to the self-organized coordination
of synaptic weight changes at feed-forward and recurrent
synapses. Throughout this study, the system should memorize
two independent stimuli of arbitrary modality illustrating a
general aspect of explicit memory. The synaptic changes of
the recurrent synapses yields the reliable formation of HAs.
In parallel, the synaptic changes of the feed-forward synapses
links the newly formed HA with the corresponding stimulus-
transmitting neurons without interrupting already learned
ones assuring the allocation of HAs. The model reproduces
in-vivo experimental data and provides testable predictions.
Furthermore, the analysis of a population model, capturing
the main features of the network dynamics, allows us to
determine three generic properties of the interaction between
synaptic plasticity and scaling, which enable the formation and
allocation of memory representations in a reliable manner.
These properties of synaptic adaptation are that (i) synaptic
weights between two neurons with highly-correlated activities
are strengthened (homosynaptic potentiation), (ii) synaptic
weights between two neurons with weakly-correlated activities
are lowered (heterosynaptic depression), and (iii) the time scale
of synaptic weight changes are regulated by the post-synaptic
activity level.
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2. MATERIALS AND METHODS

2.1. Numerical Simulations
The neuronal system considered in this study consists of
a recurrently connected neuronal network (“memory area”)
receiving (environmental) inputs from an “input area” via plastic
feed-forward synapses (Figures 1A,B). The system consists of
936 excitatory neurons (36 in input area, 900 in memory area)
and a single inhibitory unit. The inhibitory unit describes a
population of inhibitory neurons which are connected to the
excitatory neurons in an all-to-all manner. Given the long
time scales considered in this study, all neurons are described
by a rate-coded leaky integrator model. The memory area
is arranged as a quadratic neural grid of 30 × 30 units.
Each neuron within the grid receives excitatory connections
from four randomly chosen input neurons. In addition,
it is recurrently connected to its circular neighborhood of
radius four (measured in neuronal units; for visualization see
Figure 1B and Supplementary Figure S1) and to the global
inhibitory unit. Initially, recurrent synaptic weights of existing
connections equal to 0.25 · ŵrec and feed-forward synaptic
weights are drawn from a uniform distribution {0, 0.7 ·

ŵff} (ŵrec =
√

(κrecα2)/(α − FT) ≈ 77.5 and ŵff =
√

(κffα · 130)/(α − FT) ≈ 306.1). Connections to and from the

inhibitory neuron are at fixed and homogeneous weight (for
detailed values see Table 1).

TABLE 1 | Model parameters: variable, descriptions, and used values.

Variable Description Value

τ Membrane time constant (memory area) 0.01

R Membrane resistance (memory area) 1/11

NM Number of neurons in memory area 900

NI Number of neurons in input area 36

Ik Input rate {0,130}

α Maximum firing rate 100

β Sigmoid steepness 0.05

ǫ Sigmoid inflection point 130

µ Plasticity time constant 1/15

FT Target firing rate 0.1

κ rec Scaling time constant (recurrent) 60

κ ff Scaling time constant (feed-forward) 720

τinh Membrane time constant (inhibitory unit) 0.02

Rinh Membrane resistance (inhibitory unit) 1

winh,i Synaptic weight to inhibitory unit 0.6

wi,inh Synaptic weight from inhibitory unit 1,200

FIGURE 1 | The neural system to investigate the coordination of synaptic and neuronal dynamics underlying the allocation and formation of memories consists of two

areas receiving external stimuli. (A) The neural system receives different external stimuli (e.g., a blue triangle, S1, or a red square, S2) yielding the activation of subsets

of neurons (colored dots) in the input (I1 and I2) and memory area (HA1 and HA2; brain image by James.mcd.nz under license CC BY-SA 4.0). (B) Each excitatory

neuron in the memory area receives inputs from a random subset of excitatory neurons being in the input area, from its neighboring neurons of the memory area

(indicated by the dark gray units in the inset) and from a global inhibitory unit. All synapses between excitatory neurons are plastic regarding the interplay of long-term

synaptic plasticity and synaptic scaling. (C) Throughout this study, we consider two learning phases during each a specific stimulus is repetitively presented. In

addition, test phases are considered with stopped synaptic dynamics for analyses. (D) Schematic illustration of the average synaptic structure ensuring a proper

function of the neural system. This structure should result from the neuronal and synaptic dynamics in conjunction with the stimulation protocol. IR and RR represent

populations of remaining neurons being not directly related to the dynamics of memory formation and allocation. Details see main text.
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2.1.1. Neuron Model
The membrane potential ui of each excitatory neuron i in the
memory area is described as follows:

dui

dt
= −

ui

τ
+ R





NM
∑

j

wrec
i,j Fj + wi,inhFinh +

NI
∑

k

wff
i,kIk



, (1)

with the membrane time constant τ , membrane resistance R,
number of neurons in the memory area NM, number of neurons
in the input area NI, and firing rate Ik of input neuron k.
The membrane potential is converted into a firing rate Fi by a
sigmoidal transfer function with maximal firing rate α, steepness
β and inflection point ǫ:

Fi(ui) =
α

1+ exp(β(ǫ − ui))
. (2)

The global inhibitory unit is also modeled as a rate-coded leaky
integrator receiving inputs from all neurons of the memory area.
Its membrane potential uinh follows the differential equation 3
with inhibitory membrane time scale τinh and resistance Rinh.
The potential is converted into a firing rate Finh by a sigmoidal
transfer function (Equation 4):

duinh

dt
=−

uinh

τinh
+ Rinh ·

NM
∑

i

winh,iFi, (3)

Finh(uinh) =
α

1+ exp(β(ǫ − uinh))
. (4)

As the neurons in the input area form the stimuli, their output
activation is set manually. Thus no further description is needed.

2.1.2. Synaptic Dynamics
The weight changes of the excitatory feed-forward (Equation 5)
and recurrent synapses (Equation 6) are determined by the
combined learning rule of conventional Hebbian synaptic
plasticity and synaptic scaling with time constants µff, µrec, κff,
κrec, and target firing rate FT. The differential equation for the
synaptic weight of a feed-forward connection wff

i,k
from input

neuron k ∈ {0, · · · ,NI} to memory neuron i ∈ {0, · · · ,NM} is:

dwff
i,k

dt
= µff

(

FiIk + (κff)−1 · (FT − Fi) · (w
ff
i,k)

2
)

· cffi,k. (5)

The dynamics of the synaptic weight of a recurrent connection
wrec
i,j from memory neuron j ∈ {0, · · · ,NM} to memory neuron

i ∈ {0, · · · ,NM} is determined by:

dwrec
i,j

dt
= µrec

(

FiFj + (κrec)−1 · (FT − Fi) · (w
rec
i,j )

2
)

· creci,j . (6)

cff
i,k

and cff
i,k

are the entries in the feed-forward and recurrent
connectivity matrices of value 1, if the connection exists, or
otherwise of value 0.

In both equations the first summand on the right hand side
describes correlation-based Hebbian synaptic plasticity while

the second summand formalizes the dynamics of synaptic
scaling. Synaptic scaling alone drives the synaptic weights in
a homeostatic manner such that the neuronal firing rate Fi
reaches its target rate FT. As shown in previous studies (Tetzlaff
et al., 2011, 2013, 2015; Yger and Gilson, 2015), although the
homeostatic dynamics of scaling are significantly slower than the
fast, divergent dynamics of Hebbian plasticity (κff, κrec >> 1),
the interplay between both processes yields synaptic dynamics
that remain in a reasonable regime. W.l.o.g., we consider that
the overall time scale of the synaptic dynamics of feed-forward
and recurrent connections is the same (µrec = µff = µ; see
Supplementary Figure S3). All other connections are considered
to be non-plastic.

2.1.3. Coding Framework
The differential equations have been solved numerically with the
Euler method with a time step of 5 ms using Python 3.5.

2.1.4. Simulation of Self-Organized Formation of Two

HAs
The system undergoes two learning phases presenting two
completely dissimilar input patterns I1 (first phase) and I2
(second phase). For input pattern I1 half of the input neurons
are set to be active at 130 Hz whereas the other half remains
inactive at 0 Hz and vice versa for input pattern I2. During a
learning phase the respective pattern is presented 10 times for 5 s
with a 1 s pause in between. Both learning phases are embraced
by test phases in which plasticity is shut off and both patterns
are presented for 0.5 s each to apply measures on the existing
memory structures.

2.1.5. Comparison to Experimental Data
The manipulation of the neuronal excitability has been done
by adapting the value for ǫ in the transfer function of the
neuronmodel, i.e., shifting its inflection point to lower (increased
excitability) or higher (decreased excitability) values. Similar
to the methods used in experiments (Yiu et al., 2014), we
manipulated a sub-population of neurons within a randomly
chosen circular area in the memory area (about 10% of the
network). The relative recruitment factor is the relation of
recruitment probabilities for manipulated and control neurons
averaged over 100 repetitions.

2.2. Population Model
We consider two non-overlapping populations of N excitatory
neurons and one inhibitory unit. The state of every population
i ∈ {1, 2} is determined by its mean membrane potential ūi,
its mean recurrent synaptic weight w̄rec

i between neurons of the

population, and the mean weight w̄ff
i of feed-forward synapses

projecting signals from the currently active input onto the
population. We assume that the two populations interact solely
through the inhibitory unit whose state is given by its membrane
potential uinh. Thus, the dynamics of the model is described by
a set of nine differential equations (see following section). To
obtain its equilibria, we analytically derive the nullclines ū∗1(ū

∗
2)

and ū∗2(ū
∗
1) and numerically determine their intersections. The

stability of an equilibrium is obtained from the sign of the
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eigenvalues of the system’s Jacobi Matrix. For analyzing in which
regimes population 1 and population 2 are assigned to an input
stimulus as a function of the initial synaptic weights (Figures 5E,
6), we initialize the system with the given combination of feed-
forward and recurrent average synaptic weights and ū1 = ū2 =

ūinh = 0, simulate it for 100 s, and assess which of the two
populations is active. For further details and parameter values see
Supplementary Material.

2.2.1. Derivation of Population Model
The two excitatory populations in the population model are
described by their mean membrane potentials ūi, i ∈ {1, 2},
k ∈ {A, B}:

dūi

dt
= −

ūi

τ
+ R

(

n̄recw̄rec
i F̄i + wi,inhFinh +

∑

k

n̄ffw̄ff
ik Īk

)

. (7)

Here, the time scale τ , the resistance R and the synaptic weight
wi,inh have the same value as in the network simulations.
The average number n̄reci of incoming recurrent connections
from neurons within the population as well as the number
of feed-forward synapses transmitting signals from active
inputs to every neuron (n̄ff) are taken from simulations
(n̄rec = 35, Supplementary Figure S4C; nff = 2.3,
Supplementary Figure S4B).

The membrane potential of the inhibitory population is
given by

duinh

dt
= −

uinh

τinh
+ Rinh(winh,1NF̄1 + winh,2NF̄2) (8)

with τinh, Rinh and winh,1 = winh,2 corresponding to
the respective values in the network simulations. The
number N of neurons per population is adjusted to the
HAs in the network simulation and chosen as N = 120
(Supplementary Figure S4A). The transfer function of
the neurons within the population is the same as for
individual neurons:

F̄i(ūi) =
α

1+ exp(β(ǫ − ūi))
, i ∈ {1, 2, inh}. (9)

The synaptic weight changes of recurrent and feed-forward
synapses follow the interplay of conventional Hebbian synaptic
plasticity and synaptic scaling (i ∈ {1, 2}):

dw̄ff
ik

dt
= µ

(

F̄i Īk + (κff)−1(FT − F̄i)(w̄
ff
ik)

2
)

, (10)

dw̄rec
i

dt
= µ

(

F̄2i + (κrec)−1(FT − F̄i)(w̄
rec
i )2

)

. (11)

2.2.2. Data Display
The population model applies the same combined learning
rule as the numerical simulation. We thus consider the
memorization process completed when the dynamic fixed
point of synaptic plasticity is reached, i.e., synaptic plasticity
and scaling compensate each other. In order to focus the
reader’s attention onto the populations dynamics as well as
for illustrative reasons, we scale the explicit values of synaptic
weights and activation in their depiction (Figures 5B–E, 6B,D
and Supplementary Figure S5) with the respective values of
their dynamic fixed points (weights; ŵff, ŵrec) or the maximum
value (activation; α). Hence, their values simply range from 0 to 1.

2.2.3. Recruitment Basins
For determining the recruitment basins (Figures 5E, 6), we
exploit the symmetry of the system and that, in general, only
one of the two stimuli (S1 or S2) is active. Accordingly, we
approximate the second, inactive input to zero and neglect
the respective feed-forward synapses. The population model is
integrated with the given initial values of the feed-forward and
recurrent weights and ū1 = ū2 = ūinh = 0 for 100 s. At
t = 100 s, we evaluate which of the two populations is active.
Table 2 provides the exact used initial values.

3. RESULTS

Throughout this study, our goal is to present a general model
and its key mechanism that may underlie self-organized memory
allocation and formation. We consider a neural system receiving
environmental stimuli (sensory, pain, fear, etc.) that are processed
and eventually memorized or encoded. In order to illustrate
our experimental procedure, we choose an exemplary learning
protocol for visual memory (Figure 1). Here, different stimuli

TABLE 2 | Initial values for recruitment basin plots.

Figure ū1 ū2 ūinh w̄ff
1A w̄ff

2A w̄rec
1 w̄rec

2

2E left; 2E right†;

3B top left, 3B top right†, 0 0 0 0,1wff
1A, . . . , ŵ

ff
1A 0.35 ŵff

2A 0,1wrec
1 , . . . , ŵrec

1 0.25 ŵrec
2

3B bottom right*†,

3D top left, 3D top right†

3B bottom left* 0 0 0 0,1wff
1A, . . . , ŵ

ff
1A 0.40 ŵff

2A 0,1wrec
1 , . . . , ŵrec

1 0.25 ŵrec
2

3D bottom left* 0 0 0 0,1wff
1A, . . . , ŵ

ff
1A 1.00 ŵff

2A 0,1wrec
1 , . . . , ŵrec

1 1.00 ŵrec
2

3D bottom right*† 0 0 0 0,1wff
1A, . . . , ŵ

ff
1A 0.00 ŵff

2A 0,1wrec
1 , . . . , ŵrec

1 1.00 ŵrec
2

1wff
1A = 0.001ŵff

1A, 1wrec
1 = 0.001ŵrec

1 .

*Using symmetry by commutating populations.
†
Using symmetry by commutating inputs.
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such as geometrical shapes (e.g., a blue triangle S1 and a red
square S2) are presented to the system, which then evoke
certain activity patterns within an “input area” (e.g., blue pattern
I1 evoked by S1). Each activity pattern, in turn, triggers via
several random feed-forward synapses the activation of a subset
of neurons in a recurrently connected “memory area.” For
simplicity, all neurons of the system are considered to be
excitatory; only a single all-to-all connected inhibitory unit
(resembling an inhibitory population) in the memory area
regulates its global activity level (Figure 1B). Furthermore, as
we investigate here neuronal and synaptic dynamics happening
on long time scales, we neglect the influence of single spikes
and, thus, directly consider the dynamics of the neuronal firing
rates (see section 2). All synapses between the excitatory neurons
(feed-forward and recurrent) are adapted by activity-dependent
long-term plasticity. Due to the recurrent connections, the
memory area should robustly form internal representations of the
environmental stimuli, while simultaneously the feed-forward
synapses should provide an allocation of the stimuli (activity
patterns in input area) onto the corresponding representations.
In the following, we will show in a step-by-step approach that
the interplay of long-term synaptic plasticity (here conventional
Hebbian synaptic plasticity) with homeostatic synaptic scaling
(see section 2; Tetzlaff et al., 2011, 2013; Nachstedt and Tetzlaff,
2017) coordinates synaptic changes such that proper formation
and allocation of memory is ensured.

First, stimulus S1 is repetitively presented ten times (first
learning phase; Figure 1C). Given this stimulation, the resulting
synaptic adaptations of feed-forward and recurrent synapses
should yield the proper formation of an internal representation
indicating that the dynamics underlying memory allocation
(changes of feed-forward synapses) does not impede the
recurrent dynamics of HA-formation. After the formation of
this representation, next, we repetitively present a different
stimulus S2 (second learning phase). Due to this stimulation, the
neural system should form another HA representing S2, which is
independent of the first one. The proper formation of a second
HA indicates that memory allocation is not biased by recurrent
dynamics enabling a reliable discrimination between stimuli.
Please note that we consider three test phases (Figure 1C), during
which synaptic dynamics are fixed (separation of time scales), to
enable the investigation of the resulting response dynamics of the
circuit according to the different stimuli. Otherwise, the system is
always plastic. In general, we expect that the neural system should
form strongly interconnected groups of neurons according to
each learning stimulus (memory formation; HA1 and HA2 in
Figure 1D indicated by thicker lines) while remaining neurons
in the memory area (RR) last weakly interconnected. In addition,
the synapses from the neurons in the input area, which are
activated by a specific stimulus (I1 and I2), to the corresponding
HAs should have larger weights while all other feed-forward
connections remain rather weak (memory allocation; I1 to HA1
and I2 to HA2).

In the following, after showing that the interplay of synaptic
plasticity and scaling yields the described synaptic structure,
we derive a population model of the neural system and
analyze the underlying synaptic and neuronal dynamics to

identify the required generic properties determining the synaptic
adaptations. Finally, we demonstrate that our theoretical model
matches and provides potential explanations for a series of
experiments revealing the relation between neuronal dynamics
and the allocation of memory (Yiu et al., 2014) and provide some
experimentally verifiable predictions.

3.1. Formation and Allocation of the First
Memory Representation
Before learning, feed-forward as well as recurrent synapses, on
average, do not show any structural bias (Figure 2A, test 0).
The presentation of an environmental stimulus (e.g., S1 or S2)
- via the activation of a stimulus-specific pattern within the
input area (I1 or rather I2) - triggers the activation of a random
pattern of active neurons in the memory area. We consider the
average shortest path length (ASPL) between these neurons as a
measure to evaluate to what degree these activated neurons are
directly or indirectly connected with each other. Note that we
assume a strongly interconnected local population of neurons as
the basis for a HA (Hebb, 1949; Palm et al., 2014). In general,
the ASPL is a graph theoretical measure to assess the average
number of units (here neurons) along the shortest path between
all pairs of units in a specific network or sub-network. Here,
we consider only the pairs of highly activated neurons (details
see Supplementary Material Section A) for two reasons: First,
the considered synaptic processes of Hebbian plasticity and
synaptic scaling depend on the neuronal activation such that
the bulk of synaptic changes will happen at synapses connected
to highly activated neurons. Second, given the bulk of synaptic
changes we expect the formation of a HA to be correlated with
highly activated neurons. Thus, if the ASPL-value equals one,
all highly activated neurons are directly connected with each
other. A high ASPL-value indicates that, on average, the most
active neurons in the memory area are not directly connected
with each other as given before learning (Figure 2B, test 0).
Moreover, we can assume that the current activity pattern before
learning is mainly determined by the random initial conditions
in the feed-forward connections (number of connection as
well as synaptic weight), since the recurrent connections were
initialized homogeneusly. By contrast, if a stimulus (here
stimulus S1) is repeatedly presented in a given time interval,
the neuronal and synaptic dynamics of the network reshapes
the pattern of activated neurons in the memory area such that
the final pattern consists of a group of interconnected neurons
(decrease in ASPL; Figure 2B, test 1). As shown in our previous
studies (Tetzlaff et al., 2013; Nachstedt and Tetzlaff, 2017),
the combination of synaptic plasticity and scaling together
with a repeated activation of an interconnected group of
neurons yields an average strengthening of the interconnecting
recurrent synapses without significantly altering other synapses
(Figure 2A, test 1, bottom; neurons are sorted into groups
retroactively; see Supplementary Figure S2 for exemplary,
complete weight matrices). Taken together with the decreased
ASPL this indicates the stimulus-dependent formation of a HA
during the first learning phase. However, do the self-organizing
dynamics also link specifically the stimulus-neurons with the
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FIGURE 2 | The interaction of conventional synaptic plasticity and scaling enables the stimulus-dependent formation and allocation of memory representations in a

neuronal network model. (A) During the test phases, the resulting network structure is evaluated. Top row: average synaptic weight of feed-forward synapses from

input populations I1 and I2 activated by the corresponding stimuli to the groups of neurons which become a HA (HA1 and HA2) and others (RR). Please note that we

first train the network, then determine the resulting HAs with corresponding neurons, and retroactively sort the neurons into the HA-groups. Bottom row: average

synaptic weight of recurrent synapses within the corresponding groups of neurons (HA1, HA2, and other neurons RR). Before learning (test 0), no specific synaptic

structures are present. After the first learning phase (test 1), the first group of neurons becomes strongly interconnected, thus, a HA (HA1), which becomes also

strongly connected to the active input population I1. (test 2) The second learning phase yields the formation of a second HA (HA2), which is linked to the second input

population I2. (B) The formation of HAs is also indicated by the reduction of the average shortest path length (ASPL) between stimulus-activated neurons in the

memory area (Error bars are small and overlapped by symbols). (C) After both learning phases, the response vector overlap (RVO) between neurons activated by S1

and activated by S2 depends non-linearly on the disparity between the stimulus patterns. (A–C) Data presented are mean values over 100 repetitions. Explicit values

of mean and standard deviation are given in Supplementary Table S1.

HA-neurons? A repeated presentation of stimulus S1 yields
an on average strengthening of synapses projecting from the
stimulus-neurons I1 to the whole memory area (Figure 2A,
test 1, top). Essentially, the synapses from stimulus-I1-neurons
to HA1-neurons have a significantly stronger increase in synaptic
weights than the controls (HA2 and RR).

In more detail, presenting stimulus S1 initially activates
an increasing number of mainly unconnected neurons in the
memory area (Figure 3; first presentation, fifth row, dark red
dots; nearby neurons are connected with each other as indicated
in the inset of Figure 1B and Supplementary Figure S1B. This
does not indicate the physical distance between neurons).
However, the ongoing neuronal activation during following
stimulus presentations increases the recurrent synaptic weights
(Figure 3, fourth row) and also feed-forward weights from
stimulus I1 to the neurons (second row), which, in turn,
increases the activity. This positive feedback loop between
synaptic weights and neuronal activity leads to the emergence
of groups of activated neurons, which are directly connected
with each other (second presentation, fifth row). Such an
interconnected group grows out, incorporating more directly
connected neurons, until inhibition limits its growth (see below)
and, furthermore, suppresses sparse activation in the remaining
neurons by competition (fourth to tenth presentation). The
recurrent weights among HA-neurons are increased until an

equilibrium between synaptic plasticity and scaling is reached
(fourth row). Please note that, as our previous studies show
(Tetzlaff et al., 2011, 2013), the interplay between these two
mechanisms yields the existence of this equilibrium; otherwise
synaptic weights would grow unbounded even if the neural
activity is limited (see also detailed analysis below). Interestingly,
the weights of the feed-forward synapses show a different
dynamics as of the recurrent synapses. The average over all
synaptic weights linking from the input area to each neuron in
the memory area (first row) indicates that synapses connected to
HA-neurons have a similar average weight compared to synapses
connected to other neurons. This implies that the synaptic weight
changes of the feed-forward connections to the HA-neurons are
on average not significantly different than controls. However, if
the feed-forward synapses are sorted according to the stimulus-
affiliation of the pre-synaptic neuron, we see that only the weights
of synapses from the S1-stimulus-neurons to the emerging HA-
neurons are strengthened (second row, dark blue spot; see
also Figure 2A, test 1, I1 to HA1), while weights of synapses
from other stimulus-neurons to the HA-neurons are on average
decreased (third row, white spot; see also Figure 2A, test 1, I2
to HA1). This implies a proper assignment of the stimulus to
the newly formed HA during the learning phase resulting in
a higher chance of activating the HA-neurons when the same
stimulus is presented later again. Furthermore, amajority of these
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FIGURE 3 | The repetitive presentation of a stimulus (here S1) triggers changes in feed-forward and recurrent synaptic weights as well as neural activities resulting to

the proper formation and allocation of a HA. Each panel represents properties of the recurrent network in the memory area with neurons ordered on a 30× 30 grid as

indicated in Supplementary Figure S1A at different points of the protocol during the first learning phase. Thus, each dot in a panel represents a property of a neuron

in the memory area, which is connected to the neighboring dots as shown in Supplementary Figure S1B. These properties are; first row: average feed-forward

synaptic weights from all input neurons; second row: average feed-forward synaptic weights from the subset of I1-input neurons; third row: average feed-forward

synaptic weights from the subset of I2-input neurons; forth row: average incoming synaptic weight from neurons of the memory area (recurrent synapses); fifth row:

firing rate of the corresponding neuron. Please note that we consider torus-like periodic boundary conditions.

HA-neurons becomes active if a noisy version of the original
stimulus is being presented during recall such that about 50% of
the stimulus-I1-neurons have to be active to trigger the activation
of about 80% of the HA-neurons (see Supplementary Figure S8).
Such a “filling up” of active HA neurons by the strengthened
recurrent network dynamics within the HA indicates the
process of pattern completion (Hunsaker and Kesner, 2013).
These results reveal that the interaction of synaptic plasticity
and scaling self-organizes for a wide parameter regime (see
Supplementary Figure S3) synaptic changes at recurrent and
feed-forward connections to form and allocate a memory
representation in a previously random neuronal network.

3.2. Formation and Allocation of a Second
Memory Representation
After showing that the synaptic dynamics of the feed-forward
connection does not impede the formation of a HA as internal
representation of a stimulus, next, we will demonstrate that the

recurrent dynamics (thus, a formed HA) does not obstruct the
feed-forward dynamics given new stimuli. Clearly the presence of
a memory representation can alter the self-organizing dynamics
shown before, which could impede the proper formation and
allocation of representations of further stimuli. For instance,
the existence of a HA in the neuronal network could bias
the adaptations of the feed-forward synapses such that a
new stimulus is also assigned to this HA. This would imply
that the neural circuit is unable to discriminate between the
originally HA-associated stimulus and the new stimulus. Thus,
to investigate the influence of prior learning, we repeatedly
present a second, different stimulus S2 (second learning phase;
Figure 1C) after the proper formation of the HA associated to
stimulus S1 and analyse whether a second HA is formed, which is
independent of the first one.

Similar to the first learning phase, the repeated presentation
of stimulus S2 (here, stimulus-associated activity patterns
in the input area I1 and I2 have a stimulus disparity
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equals 1 indicating no overlap between patterns; see
Supplementary Material Section A) yields via activity pattern I2
in the input area the activation of a group of interconnected
neurons in the memory area (decreased ASPL; Figure 2B, test 2,
red). In addition, the stimulation triggers a strengthening of the
corresponding recurrent synaptic weights (Figure 2A, bottom
row, test 2, HA2; Figure 4). Thus, the stimulus-dependent
formation of a new HA is not impeded by the existence of
another HA. Furthermore, both HAs are distinguishable as
they do not share any neuron in the memory area (Figure 4,
forth row, tenth presentation; Supplementary Figure S2). As
indicated by the response vector overlap (RVO, Figure 2C;
basically the number of neurons activated by both stimuli), this
depends on the disparity between stimuli; for quite dissimilar
stimuli both HAs are separated (disparity& 0.5 yields RVO≈ 0),
for more similar stimuli the system undergoes a state transition
(0.3 . disparity . 0.5 yields RVO > 0), and for quite similar
stimuli both stimuli activate basically the same group of neurons

(disparity . 0.3 yields RVO > 100 given that 120 ± 4 neurons
are on average part of a HA; Supplementary Figure S4A). Note
that the latter demonstrates that the network does correctly
assign noisy versions of a learned stimulus pattern (pattern
completion Hunsaker and Kesner, 2013) instead of forming
a new HA, while the first case illustrates that the network
performs pattern separation (Hunsaker and Kesner, 2013) to
distinguish different stimuli. This indicates a correct assignment
of the stimuli to the corresponding HAs, such that also in the
presence of another HA the weight changes of synapses between
input pattern and newly formed HA are adapted accordingly
(Figure 2A, test 2, I2 to HA2).

Thus, the self-organizing dynamics yields the formation and
allocation of a new HA during the second learning phase.
Note that the synaptic weights of the initially encoded HA
are not altered significantly during this phase (Figure 2A).
But, although stimulus S1 is not present, the second learning
phase leads to a weakening of synapses projecting from

FIGURE 4 | The presentation of a second stimulus (here S2) yields the formation of a second, distinct group of strongly interconnected neurons or HA. The structure

of the sub-plots is the same as in Figure 3. The first learning phase yields the encoding of a highly interconnected sub-population of neurons in the memory area

(Figures 2, 3). However, due to the interplay between synaptic plasticity and scaling this HA cannot be activated by the second stimulus S2. Instead, the process of

initially scattered activation (dark red dots in the fifth row; first presentation) and the following neuronal and synaptic processes (fourth to tenth presentation), as

described before, are repeated yielding the formation of a second HA representing stimulus S2. Please note that both representations do not overlap (see

Supplementary Figure S2).
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corresponding input neurons I1 to the newly formed HA
considerably below control (Figure 2A, test 2, I2 to HA1).
Similarly, during the first learning phase the synaptic weights
between input neurons I2 and the first cell assembly are also
weakened (Figure 2A, test 1, I2 to HA1). Apparently, this
weakening of synapses from the other, non-assigned stimulus
to a HA reduces the chance of spurious activations. In
addition, as we will show in the following, this weakening
is also an essential property enabling the proper functioning
of the neural system. In summary, these results of our
theoretical network model show that the self-organized processes
resulting from the interplay between synaptic plasticity and
scaling coordinates the synaptic and neuronal dynamics such
that the proper formation and allocation of several memory
representations without significant interferences between them
is enabled.

3.3. Generic Properties of Synaptic
Adaptations Required for the Formation
and Allocation of Memory Representations
In order to obtain a more detailed understanding of the self-
organizing coordination of synaptic and neuronal dynamics by
synaptic plasticity and scaling underlying the reliable formation
and allocation of memory representations, we have to reduce
the complexity of the model to enable (partially) analytical
investigations. As already indicated by the above shown results
(Figure 2A), the main features of the self-organizing network
dynamics can be described by considering the synaptic weights
averaged over the given neuronal populations. Thus, we assume
that the different involved neuronal populations in the input
(input-pattern I1 and I2 neurons) and memory area (populations
HA1 and HA2 becoming HAs in the memory area) are by
themselves homogeneous allowing the derivation of a theoretical
model describing the average population dynamics (Figure 5A).
For this, we combine the neuronal dynamics of all neurons
within such a population (groups of I1-, I2-, HA1-, HA2-
neurons) and describe them by the average neuronal dynamics
of the population such that we obtain four variables each
describing the average firing rate of one population or group
of neurons (I1: Ī1; I2: Ī2; HA1: F̄1; HA2: F̄2). Similarly, we
combine the synaptic dynamics of all synapses to describe them
by the average synaptic dynamics for all connections within
a neuronal population (within HA1: w̄rec

1 ; within HA2: w̄rec
2 )

and for all connections between populations (from I1 to HA1:
w̄ff
11; from I1 to HA2: w̄ff

21; from I2 to HA1: w̄ff
12; from I2 to

HA2: w̄ff
22). As activities and weights of the remaining neurons

and synapses (IR and RR groups of neurons in Figure 1D)
remain small, in the following, we neglect their influence on
the system dynamics. The inhibition is considered similarly
(see section 2) and the values of some system parameters are
taken from full network simulations (Supplementary Figure S4).
Please note, we re-scale the average neuronal activities and the
average synaptic weights such that, if the weights equal one,
learning is completed (see section 2). By considering the average
neuronal and synaptic dynamics, we map the main features
of the complex network dynamics with ≈ N2 dimensions (N

is the number of neurons in the network) to a 9-dimensional
population model.

Given such a population model of our adaptive network,
first, we investigate the formation of a memory representation
in a blank, random neural circuit (thus, Ī1 > 0 and Ī2 =

0). As mentioned before, the advantage of using a population
model is the reduced dimensionality enabling, amongst others,
the analytical calculation of the nullclines of the system to
classify its dynamics. Nullclines show states of the system in
which the change in one dimension equals zero (Glendinning,
1994; Izhikevich, 2007). Thus, the intersection points of all
nullclines of a system are the fixed points of the systems
dynamics describing the system states in which no change
occurs. Such fixed points can either be stable (attractive), thus
the system will tend to converge into this point or state,
or unstable (repulsive) meaning that the system will move
away from this state (Supplementary Material Section C). Such
dynamics can be summarized in a phase space diagram, in
which each point indicates a possible state of the system and
we can determine from the relative position of this state to
the nullclines and fixed points to which new state the system
will go to. The population model of the network model has
9 dimensions, thus, 9 nullclines and a 9-dimensional phase space
(Figure 5A); however, by inserting solutions of some nullclines
into others (Supplementary Material Section B), we can project
the dynamics onto two dimensions for visualization. In the
following, we project the dynamics onto the average recurrent
synaptic weights of both populations in the memory area (w̄rec

1 ,
w̄rec
2 ) to investigate the dynamics underlying the formation of a

HA during the first learning phase (Figure 5B, top; please see
Figure 5B, bottom, for corresponding activity levels).

Thus, the projection of the solutions of the nullclines of the
system dynamics onto the average recurrent synaptic weights
of the two neuronal groups shows that the recurrent dynamics
during the first learning phase are dominated by three fixed
points: one is unstable (orange, 7; more specifically, it is a saddle
point) and two are stable (green, 2 and 3). As the recurrent
synaptic weights before learning are in general rather weak
(which “sets” the initial state in this diagram), the fixed points
4, 8, 9, 10 cannot be reached by the system and, thus, they
do not influence the here discussed dynamics. The two stable
fixed points represent that one of the two neuronal populations
becomes a strongly interconnected HA, while the other remains
in a weakly interconnected state. For instance, in state 2 the first
population is a HA as it is strongly interconnected (w̄rec

1 ≫ 0)
and the second population of neurons remains weakly connected
(w̄rec

2 has only about 10% of the value of w̄rec
1 ). The unstable

or repulsive fixed point lies on the identity line (w̄rec
1 = w̄rec

2 )
having the same distance to both stable, attractive states. The
resulting mirror symmetry in the phase space implies that the
dynamics on the one side of the identity line, reaching the
stable fixed point lying on this side, equals the dynamics on
the other side. Please note that the form of the nullclines and,
thus, the existence and positions of the fixed points of the system
dynamics depend on the mechanisms determining the synaptic
adaptations. In other words, given a strong stimulus, the interplay
between synaptic plasticity and scaling coordinates the recurrent
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FIGURE 5 | Population model of network dynamics enables analytical derivation of the underlying neuronal and synaptic dynamics. (A) Schema of the population

model for averaged network dynamics (bars above variables indicate the average over all neurons in the population. Īs: firing rate of input population s ∈ {1, 2}; F̄p:

neural activity of population p ∈ {1, 2}; w̄ff
ps: weight of feed-forward synapses from population s to p; w̄rec

p : weight of recurrent synapses within population p. (B) The

intersections of the population nullclines projected into weight (top) and activity (bottom) space reveal several fixed points (attractive: green; repulsive: orange)

indicating the formation of a HA (green markers 2 and 3), if the system deviates from the identity line. Numbers correspond to labels of fixed points. (C) The bifurcation

diagram (labels as in (B) and insets) of the network indicates that HAs are formed for a wide variety of input amplitudes (̄IA & 120). The dashed line illustrates the value

used in (B). Solutions of the full network model (purple dots) and population model match. (D) The dynamics of feed-forward synaptic weights depends on the firing

rate of the input population and of the population in the memory area. There are four different cases (I–IV) determining the system dynamics. (E) These cases

(indicated by arrows with Roman numbers: I–IV) together with the potentiation of recurrent synapses (arrow labeled HA1) yield the self-organized formation and

allocation of HAs. Namely, during the first learning phase, synaptic changes drive the system (white dot) into regimes where either population 1 (blue) or population 2

(red) will represent the presented stimulus (left: stimulus S1; right: stimulus S2). Details see main text.
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synaptic dynamics such that the system by itself has to form a
HA (reach one of both stable states). The question, which of both
stable states is reached, translates into the question, to which
group of neurons will the stimulus be allocated. As both groups
are before learning quite similar, the initial state of the system
will be close to the identity line. Only a minor difference between
both groups (e.g., slightly different recurrent synaptic weights or
a little different number of feed-forward synapses) results to a
small variation in the initial condition of the first learning phase
such that the system is slightly off the identity line (see traces for
examples). Given the difference, the system will be on one side of
the identity line and converge to the corresponding fixed point
implying that the corresponding group of neurons will become
the internal representation (e.g., black trace). Note that this
symmetry-dependent formation of a HA is quite robust as long
as the input firing rate is above a certain threshold (ĪA & 120),
which agrees with results from the more detailed network model
discussed before (purple dots; Figure 5C). Below this threshold,
the system remains in a state both groups of neurons are not
becoming HAs (state 1 in Figure 5C; see also first two insets).
Thus, the existence of the threshold predicts that a new, to-be-
learned stimulus has to be able to evoke sufficient activity in
the input area (above the threshold) to trigger the processes of
memory formation; otherwise, the system will not learn.

In parallel to the development of the recurrent synaptic
weights, the synaptic weights of the feed-forward connections
change to assure proper memory allocation. Thus, we derive
analytically the activity-dependency of the interaction of
synaptic plasticity and scaling and obtain the change of the
feed-forward synaptic weights (1w̄ff) being expected during
the first learning phase, given different activity conditions of
the input (Īs) and HA-populations (F̄p, s, p ∈ {1, 2}; Figure 5D
and Supplementary Material Section D). As expected, the
combination of both activity levels for a certain duration
determines whether the weights of the feed-forward synapses
are potentiated (red), depressed (blue), or not significantly
adapted (white). In general, if both activities are on a quite high
level, synapses are potentiated (case II; so-called homosynaptic
potentiation; Miller, 1996). If the pre-synaptic activity (input
population) is on a low level and the post-synaptic activity (HA-
population) is on a high level, on average, feed-forward synapses
are depressed (case I; so-called heterosynaptic depression; Miller,
1996). However, if the post-synaptic activity is low, synaptic
changes are negligible regardless of the level of pre-synaptic
activity (cases III and IV).

The different parts of recurrent and feed-forward synaptic
dynamics together lead to the formation and allocation of a HA
as described in the following. For this, given the presentation
of a to-be-learned stimulus, we have to consider the basins of
attraction of the system in the phase space (Figure 5E) projected
onto different types of connections (insets; gray indicates the
active input population). If the system is in a certain state, we
marked by the color of this state which group of neurons will
become a HA and will be assigned to the stimulus presented (left:
S1 is presented; right: S2 is presented). The mirror symmetry
described before (Figure 5B) maps to the boundary (white
dashed line in Figure 5E) between both basins of attraction

(blue: population 1 becomes the internal representation; red:
population 2 becomes the HA). Thus, during the first learning
phase (stimulus S1; Figure 5E, left), a small variation in initial
conditions breaks the symmetry such that the system is, in the
example highlighted in Figure 5B (black trace), in the basin of
attraction of population 1 becoming the internal representation
(dot nearby symmetry line in blue area). This leads to the
strengthening of the recurrent synapses within population 1
forming a HA (increase of w̄rec

1 ; Figures 5B,E). In parallel, the
synaptic strengthening induces an increase of the activity level of
the population (F̄1; black trace in Figure 5B, bottom) yielding,
together with the high activity level of input population I1
(Ī1 ≫ 0), an average increase of the corresponding feed-forward
synapses (w̄ff

11; case II in Figure 5D). These synaptic changes
push the system further away from the symmetry condition
(white arrows; Figure 5E, left) implying a more stable memory
representation. Note that changing the strength of synapses
connecting input population I1 with population 2 (w̄ff

21) could
result in a shift of the symmetry condition (indicated by black
arrows) counteracting the stabilization process. However, this
effect is circumvented by the system, as the second population has
a low activity level and, therefore, corresponding feed-forward
synapses are not adapted (case IV in Figure 5D). Thus, during
the first learning phase, the formation and allocation of an
internal representation is dictated by the subdivision of the
system phase space into different basins of attraction of the stable
fixed points such that small variations in the before-learning
state of the network predetermines the dynamics during learning.
This subdivision, in turn, emerges from the interplay of synaptic
plasticity and scaling.

How do these synaptic and neuronal dynamics of the
allocation and formation of the first HA influence the dynamics
of the second learning phase? In general, the formation
of a HA acts as a variation or perturbation of the initial
condition breaking the symmetry for the second learning phase
(stimulus S2; Figure 5E, right). The formation of the first
HA pushes the system into the blue area (HA1-arrow). This
indicates that, if stimulus S2 is presented, the feed-forward
synapses would be adapted such that population 1 would also
represent stimulus S2. This would impede the discrimination
ability of the network between stimulus S1 and S2. However,
during the first learning phase, as the input population I2
of stimulus S2 is inactive, synapses projecting from I2-input
neurons to population 1 neurons are depressed (case I in
Figure 5D; downward arrow in Figure 5E, right) and the
system switches into the red area. This area indicates that,
if stimulus S2 is presented during the second learning phase,
population 2 would form a HA representing stimulus S2 and
not population 1. Please note that this switch can be impeded
by adapting the connections from the I2-input population to
population 2 during the first learning phase (w̄ff

22) shifting the
symmetry condition (black arrows in Figure 5E, right). But,
similar to before, this effect is circumvented by the system, as
population 2 is basically inactive resulting to case III (Figure 5D).
Thus, after the first learning phase, the synaptic dynamics
regulated by the combination of synaptic plasticity and scaling
drives the system into an intermediate state, which implies
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that the system will definitely form a new HA during the
second learning phase (see Figure 6 for further phase space
projections and dynamics during second learning phase). These
results indicate that this intermediate state can only be reached
if synaptic adaptations comprise three properties implied by
the four cases I-IV (Figure 5D): (i) homosynaptic potentiation
(case I), (ii) heterosynaptic depression (case II), and (iii) the
down-regulation of synaptic weight changes by the post-synaptic
activity level (cases III and IV).

3.4. Modeling Experimental Findings of
Competition-Based Memory Allocation
In addition to the described three properties, our model implies
the existence of a symmetry condition underlying the formation
and allocation of memory representations. Small variations
in the initial condition of the system suffice to break this
symmetry. These variations could be, aside from noise, enforced
experimentally by adapting neuronal parameters in a local group
of neurons. One experimental study (Yiu et al., 2014) indicates
that the probability of a group of neurons to become part
of a newly formed memory representation can be influenced
by changing their excitability genetically (e.g., by varying the
CREB concentration). We reproduced such manipulations based
on experiments investigating fear memory. Thus, the stimulus
considered here in our model is related to pain. Please note
that the detailed learning protocol in experiment and model
are different; however, detailed biological models (Kim et al.,
2013a,b) indicate that fear learning also leads to the formation
of Hebbian cell assembly like memory representations, as in
our model during learning. Thus, similar to the experimental
procedures, we adapt the neuronal excitability of a group of
neurons and analyze the resulting data accordingly (see section
2). Thus, we determined the probability of a single neuron to
become part of a HA averaged over the whole manipulated group

of neurons (relative recruitment factor) and compared the results
to experimental findings (Figure 7A).

On the one hand, if the excitability of a group of neurons
is artificially increased briefly before learning, the probability
of these neurons to become part of the memory representation
is significantly enhanced. On the other hand, if the excitability
is decreased, the neurons are less likely to become part of
the representation. Considering the theoretical results shown
before (Figure 5B), this phenomenon can be explained as
follows: the manipulation of the excitability in one population
of neurons changes the distance between the repulsive state
(orange; Figure 7B) to the two attractive states (green). Thus,
an increased (decreased) excitability yields a larger (smaller)
distance between the repulsive state and the attractive state
related to themanipulated population (e.g., Figure 7B instance iii
for increased excitability in population 1). This larger (smaller)
distance implies a changed basin of attraction of the manipulated
population enhancing the chance that the initial condition of
the network (black dots) lies within this basin. This implies
an increase (decrease) of the probability that this group of
neurons becomes a HA, as depicted by the variation of the
experimentally measured single neuron probability. In other
words, the increased excitability leads on average to an easier and
stronger activation of this neuronal group, which in turn changes
the balance between Hebbian synaptic plasticity and synaptic
scaling, such that the synapses of this group are potentiated
faster yielding a stronger activation and so on. In addition, the
competing neuronal groups are repressed via mutual inhibition
further increasing the probability of neurons with enhanced
excitability to become part of the memory representation.

This theoretical analysis yields the prediction that the
measured effects will be altered by manipulating other
parameters. For instance, if the synaptic weight of the population
with increased excitability is on average decreased before
stimulus presentation (e.g., by PORCN; Erlenhardt et al.,

FIGURE 6 | Summary of the synaptic changes and their implication on the formation and allocation of memory representations. The interaction of synaptic plasticity

and scaling brings a blank network [(A) test 0] during the first learning phase (B) to an intermediate state [(C) test 1]. From this intermediate state, the second learning

phase (D) leads the system to the desired end state [(E) test 2], in which each stimulus is allocated to one HA (S1/I1 to pop. 1/HA1 and S2/I2 to pop. 2/HA2). (A,C,E)

Thickness of lines is proportional to average synaptic weight. (B,D) Similar to panels in Figure 5E. Black area indicates regimes in which both populations would be

assigned to the corresponding stimulus.
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FIGURE 7 | The model of synaptic plasticity and scaling matches experimental in-vivo data and provides experimentally verifiable predictions. (A) The artificial

modification of the excitability of a subset of neurons alters the probability of these neurons to become part of a memory representation (normalized to control).

Experimental data are taken from Yiu et al. (2014). Data presented are mean values with standard error of the mean. Labels correspond to instances shown in (B). (B)

The alteration of the excitability of one group of neurons (here pop. 1) compared to others yields a shift of the positions of the system’s fixed points and basins of

attractions (here shown schematically; for details see Supplementary Figure S5) inducing a bias toward one population (e.g., from instance ii to iii by increasing the

excitability of population 1). (A,B) The model analysis yields the prediction that this excitability-induced bias can be counterbalanced by, for instance, additionally

decreasing the average synaptic weight of the manipulated population before learning (here by a factor of 0.1). This additional manipulation shifts the initial state of the

network back to the symmetry condition (orange; instance iv).

2016), the network’s initial condition is shifted such that the
CREB-induced influence on the relative recruitment factor is
counterbalanced (Figure 7A, instance iv). Please note that the
general approach of our model indicates that this prediction
could be verified in diverse learning paradigms.

4. DISCUSSION

Our theoretical study indicates that the formation as well as
the allocation of memory representations in neuronal networks
depend on the self-organized coordination of synaptic changes at
feed-forward and recurrent synapses. By deriving a population
model, we provide the first theoretical analysis identifying
a symmetry mechanism underlying the problem of memory
allocation. By this model, we also obtain the dependencies
of the mechanism on network and neuron parameters.
Furthermore, we predict that the combined dynamics of synaptic
plasticity and scaling could be sufficient for yielding the self-
organized coordination as it implies three generic properties:
(i) homosynaptic potentiation, (ii) heterosynaptic depression,
and (iii) the down-regulation of synaptic weight changes by the
post-synaptic activity level.

Homosynaptic potentiation is a well-known concept being
directly related to the dynamics of long-term potentiation (Bliss
and Lomo, 1973; Levy and Steward, 1983; Bi and Poo, 1998;
Dayan and Abbott, 2001; Gerstner and Kistler, 2002; Malenka
and Bear, 2004; Feldman, 2009). Heterosynaptic depression
implies the competition between different synapses or inputs
that are connected to the same postsynaptic neuron (Miller and
MacKay, 1994; Miller, 1996). Several theoretical studies indicate
that competition can be implemented by different homeostatic

mechanisms such as intrinsic plasticity, weight normalization, or
synaptic scaling (Bienenstock et al., 1982; Abraham and Bear,
1996; Yeung et al., 2004; Keck et al., 2012; Yger and Gilson,
2015; Miner and Triesch, 2016; Triesch et al., 2018; Kruppel
and Tetzlaff, 2020) each based on diverse biological principles
(Turrigiano et al., 1998; Zhang and Linden, 2003; Turrigiano and
Nelson, 2004; Triesch et al., 2018).

In this study we considered synaptic scaling that is a
homeostatic mechanism found in several brain areas and under

various experimental condition (Turrigiano et al., 1998; Burrone
et al., 2002; Hengen et al., 2013; Keck et al., 2013). In principle

this mechanism detects deviations of the postsynaptic activity
from a desired target value (Turrigiano and Nelson, 2004;
Ibata et al., 2008); thus, if the activity is larger than the target
value, the synaptic weights are decreased and vice versa (see
second summand in Equations 5 and 6). On the one hand,
the detection of the deviation has to act on a time scale of
seconds to several minutes (Zenke et al., 2013) such that it
could be implemented by variations of calcium concentrations
(Turrigiano, 2008, 2011). In this study we neglected these
calcium dynamics and considered an immediate detection of
the activity deviation (ẇ ∝ FT − Fpost). On the other hand,
synaptic scaling influences the synaptic dynamics usually on
a slower time scale than long-term synaptic plasticity (but
see also Bourne and Harris, 2011), which we implement in
our model by considering κ >> 1. Despite this slow time
scale, theoretical and numerical analyses indicate that synaptic
scaling keeps the synaptic dynamics within a healthy, functional
regime (Tetzlaff et al., 2011, 2013, 2015; Toyoizumi et al.,
2014; Yger and Gilson, 2015). Furthermore, the combination
of long-term potentiation and homeostatic plasticity implies the
two properties of homosynaptic potentiation and heterosynaptic
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depression and this combination is required in recurrent
neuronal networks to dynamically form memory representations
(Tetzlaff et al., 2013; Litwin-Kumar and Doiron, 2014; Zenke
et al., 2015). However, these studies do not consider the
feed-forward synaptic dynamics. Studies analyzing feed-forward
dynamics, such as the self-organization of cortical maps
(Kohonen, 1982; Sullivan and de Sa, 2006; Stevens et al.,
2013), also indicate the importance of homosynaptic potentiation
and heterosynaptic depression. However, these studies do not
consider the recurrent synaptic dynamics. Only by considering
both feed-forward and recurrent synaptic dynamics, we revealed
the requirement of property (iii) that a low level of post-
synaptic activity curtails the synaptic changes which is also
supported by experimental evidence (Sjostrom et al., 2001;
Graupner and Brunel, 2010). Note that property (iii) is realized
by both mechanisms: Hebbian synaptic plasticity as well as
synaptic scaling. By contrast, property (i) is implemented by
Hebbian synaptic plasticity only and property (ii) is realized
by synaptic scaling only. This indicates that synaptic scaling
could have an essential role in the allocation and formation of
multiple memory representations beyond the widely assumed
stabilization of neural network dynamics (Abbott and Nelson,
2000; Turrigiano and Nelson, 2004; Tetzlaff et al., 2011;
Turrigiano, 2017; Zenke and Gerstner, 2017). So far, to the best
of our knowledge, experimental studies did not survey synaptic
scaling in the context of memory. Thus, new experimental setups
are required to investigate whether synaptic scaling influences
the dynamics of memory and to verify its role as predicted
by our model. Please note that other adaptive mechanisms
or combinations of these (e.g., intrinsic plasticity, Zhang and
Linden, 2003; Triesch, 2007, structural plasticity, Fauth and
Tetzlaff, 2016; Gallinaro and Rotter, 2018, voltage-based synaptic
plasticity, Clopath et al., 2010) could also implement all three
properties (e.g., the BCM-rule does not implement all three
properties and does not seem to yield the desired dynamics;
see Supplementary Figures S9, S10). The identification of such
combinations requires further investigations. However, as
indicated by our results, the properties of synaptic plasticity and
scaling could be sufficient such that the combination of both
could lead to the desired self-organized coordination of synaptic
changes at feed-forward and recurrent synapses.

Similar to previous studies (Tetzlaff et al., 2013, 2015;
Nachstedt and Tetzlaff, 2017), we consider here an abstract
model to describe the neuronal and synaptic dynamics of the
network. Despite the abstract level of description, the model
matches experimental in-vivo data of memory allocation. Other
theoretical models match similar experimental data (Kim et al.,
2013a; Kastellakis et al., 2016); however, these models are of
greater biological detail including more dynamic processes (e.g.,
short-term plasticity). However, only by considering an abstract
model, we have been able to derive analytical expressions such
that we could find the underlying nullclines and the requirement
of the three generic properties yielding the proper formation
and allocation of memories. Remarkably, the synaptic plasticity
processes considered in the detailed models (Kim et al., 2013a,b;
Kastellakis et al., 2016) also imply the three generic properties (i-
iii) supporting our findings. Further investigations are required

to assess possible differences between different realizations of
the three generic properties. For this, the here used theoretical
methods from the field of non-linear dynamics (Glendinning,
1994; Izhikevich, 2007) seem to be promising given their ability
to derive and classify fundamental system dynamics, which can
be verified by experiments.

In our model the neuronal and synaptic dynamics
always yields the formation of separated memory
representations for different stimuli. Hereby, Figure 2C

and Supplementary Figure S8 together indicate that a new
memory representation is formed when the new stimulus does
not trigger the activation of a stored representation. Thus, the
non-activation of any memory representation by a stimulus
could act as an internal novelty signal triggering learning.
However, a new stimulus being partially similar to a learned one
could lead to interferences, as in the current model no overlaps
that consists of neurons encoding more than one stimulus at
the same time are being formed. In particular, the process of
heterosynaptic depression inherently impedes the formation
of an overlap between memory representations (Tetzlaff et al.,
2013). Any two HAs sharing a sub-population of neurons - and
thus sharing strong interconnections - would be separated once
either of the two turns active: high activation of HA1 would
suppress HA2 and thus synapses fromHA2 to HA1 are depressed
(and vice versa). This mechanism necessarily affects the capacity
of the circuit. A preliminary test shows that within our set of
parameters HAs start to interfere when memorizing a fifth HA
(see Supplementary Material Section F). The interference is
expressed in a way that several neurons, which belonged to
a different HA, are re-assigned to the newly formed one and
that they do not tend to encode several stimuli (no overlap).
This implies that the number of HAs that can be stored in the
circuit depends on the number of neurons or the size of a HA by
optimally “packing” the HAs into the network without overlaps.
If a large number of neurons is already part of a HA, a new
learning stimulus would lead to a kind of catastrophic forgetting.
However, in order to reach a more thorough understanding of
these results, expansive additional investigations are required
considering methods to evaluate the relations between HAs
systematically (Babadi and Sompolinsky, 2014; Kruppel and
Tetzlaff, 2020).

Experimental results indicate that memory representations
can overlap (Cai et al., 2016; Holtmaat and Caroni, 2016; Yokose
et al., 2017) and, in addition, theoretical studies show that
overlaps increase the storage capacity of a neuronal network
(Tsodyks and Feigelman, 1988) and can support memory recall
(Recanatesi et al., 2015). To partially counterbalance the effect
of heterosynaptic depression to allow the formation of overlaps,
further time-dependent processes are required. For instance,
the CREB-induced enhancement of neuronal excitability biases
the neuronal and synaptic dynamics such that the respective
subgroup of neurons is more likely to be involved in the
formation of a memory representation (Figure 7; Kim et al.,
2013a; Yiu et al., 2014). Furthermore, the dynamics of CREB seem
to be time-dependent (Yiu et al., 2014; Frankland and Josselyn,
2015; Kastellakis et al., 2016). Therefore, the enhancement of
CREB can counterbalance heterosynaptic depression for a given
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period of time and, by this, could enable the formation of
overlaps. We expect that the impact of such time-dependent
processes on the dynamics of memories can be integrated into
the here-proposed model to analyse the detailed formation
of overlaps between memory representations. Thus, our study
shows that the interplay between synaptic plasticity and scaling
is required to include all three generic properties of synaptic
adaptation enabling a proper formation and allocation of
memories. In addition, given the here-derived theoretical model,
other mechanisms can be included to investigate systematically
their functional implication on the self-organized, complex
system dynamics underlying the multitude of memory processes.
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