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Brain function depends on the flexible and dynamic coordination of functional
subsystems within distributed neural networks operating on multiple scales. Recent
progress has been made in the characterization of functional connectivity (FC) at the
whole-brain scale from a dynamic, rather than static, perspective, but its validity for
cognitive sciences remains under debate. Here, we analyzed brain activity recorded
with functional Magnetic Resonance Imaging from 71 healthy participants evaluated
for depressive symptoms after a relationship breakup based on the conventional
Major Depression Inventory (MDI). We compared both static and dynamic FC patterns
between participants reporting high and low depressive symptoms. Between-group
differences in static FC were estimated using a standard pipeline for network-
based statistic (NBS). Additionally, FC was analyzed from a dynamic perspective by
characterizing the occupancy, lifetime, and transition profiles of recurrent FC patterns.
Recurrent FC patterns were defined by clustering the BOLD phase-locking patterns
obtained using leading eigenvector dynamics analysis (LEiDA). NBS analysis revealed
a brain subsystem exhibiting significantly lower within-subsystem correlation values
in more depressed participants (high MDI). This subsystem predominantly comprised
connections between regions of the default mode network (i.e., precuneus) and
regions outside this network. On the other hand, LEiDA results showed that high MDI
participants engaged more in a state connecting regions of the default mode, memory
retrieval, and frontoparietal network (p-FDR = 0.012); and less in a state connecting
mostly the visual and dorsal attention systems (p-FDR = 0.004). Although both our
analyses on static and dynamic FC implicate the role of the precuneus in depressive
symptoms, only including the temporal evolution of BOLD FC helped to disentangle
over time the distinct configurations in which this region plays a role. This finding further
indicates that a holistic understanding of brain function can only be gleaned if the
temporal dynamics of FC is included.

Keywords: depressive symptoms, dynamic FC, functional brain networks, nonclinical sample, resting-state fMRI,
static FC, whole-brain
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INTRODUCTION

The ability to flexibly engage in a variety of cognitive
functions is crucial as it enables individuals to adapt to the
constantly changing and sometimes threatening environment.
Impairments in this ability might result in dysfunctional
responses that ultimately contribute to psychopathology. For
example, depressive symptoms in the general population are
often triggered by the experience of stressful or upsetting
life events (Kendler et al., 1999), such as the breakup of a
relationship. Although not everyone responds to a breakup
in the same manner, in some cases, individuals complain of
grief, sadness, concentration difficulties, rumination thoughts,
and lack of sleep (Field et al., 2009). This is of clinical
relevance because the persistence of these symptoms over time
places individuals at higher risk of developing a full-blown
depressive episode (Cuijpers and Smit, 2004; Zisook et al.,
2010; Karsten et al., 2011). While important progress has
been made in elucidating the neural mechanisms involved in
Major Depression Disorder (MDD), we still do not know how
these mechanisms originate in the healthy brain. To address
this question, we investigated the brain-behavior relationship
in nonclinical individuals with varying degrees of depressive
symptoms after a relationship breakup.

Accumulating evidence from neuroimaging experiments
suggests that clinical and subclinical depressive symptoms may
evolve due to abnormal interactions within and between several
functional brain networks (for review, see Wang et al., 2012;
Kaiser et al., 2015; Mulders et al., 2015; Helm et al., 2018).
These include the default mode (DM) and dorsal attention
(DAT) networks, supporting internally and externally oriented
cognition, respectively, the ventral attention (VAT) network
involved in salience detection; the frontoparietal (FP) and
cingulo-opercular (CO) task-control networks, both regulating
attention and emotion. Other studies applying whole-brain
connectivity analyses have also found abnormalities in other less
common networks in depression such as the sensorimotor (SMT)
and visual (VIS) networks (Veer et al., 2010; Zeng et al., 2012;
Yan et al., 2019).

Although abnormal functional connectivity (FC) has been
largely documented in neuroimaging research of depression,
these findings are sometimes in contradicting directions. Notably,
most of these studies have examined brain FC from a static
perspective, computing the correlation between BOLD signals
over the entire recording time and extracting differences between
condition using methods such as network-based statistic (NBS;
Zalesky et al., 2010). Despite the advances, this approach fails
to capture the alterations occurring in the temporal expression
of known functional brain networks. Emerging data suggest that
FC fluctuates over time (Chang and Glover, 2010; Hutchison
et al., 2013; Calhoun et al., 2014; Preti et al., 2016) and that this
dynamical property holds valuable information that is relevant
for understanding the range of cognitive abilities that enable
complex and adaptive behavior (Sakoğlu et al., 2010; Allen et al.,
2014; Zalesky et al., 2014). Even in the absence of external
stimulation, such as in resting-state, the brain is characterized
by the constant exploration of time-varying patterns of coupling

among brain regions (Deco et al., 2011; Hansen et al., 2015;
Cabral et al., 2017a). In this study, we specifically measured brain
activity while at rest because we hypothesize that signatures of a
depressive mood may be intrinsically expressed in as changes in
the dynamical behavior of specific functional networks. Indeed,
a recent study on this same dataset demonstrated that increased
depressive symptoms were associated with a reduced dynamic
functional organization across the whole-brain and a more static
regime over time (Alonso Martínez et al., 2020).

To date, several methods have been developed to investigate
how these network configurations form, interact, and dissolve
over time. Moreover, recent evidence suggests that the pattern of
transitions between functional networks could serve a biomarker
for brain disorders such as depression (Demirtaş et al., 2016;
Kaiser et al., 2016; Wise et al., 2017; Figueroa et al., 2019).
Although the most common method for evaluating dynamic FC
has been the sliding window approach (Sakoğlu et al., 2010),
other methods with higher temporal resolution have recently
gained recognition because they reveal relevant and meaningful
results. These include co-activation pattern analysis (Tagliazucchi
et al., 2012; Karahanoğlu and Van De Ville, 2015) and phase-
coherence pattern analysis (Glerean et al., 2012; Hellyer et al.,
2015; Cabral et al., 2017b). While the former considers the frames
from which regional activity exceeds a given threshold, the latter
is sensitive to phase-locked synchronization of BOLD signal
fluctuations. In particular, a method relying on the detection of
recurrent BOLD phase-locking (PL) patterns, termed Leading
Eigenvector Dynamics Analysis (LEiDA; Cabral et al., 2017b) has
revealed subsystems that closely overlap with functional networks
reported in the literature, such as the DM, FP, VAT, DAT, SMT,
and VIS (Lord et al., 2019; Vohryzek et al., 2020). Notably, the
dynamical properties of some of these networks (such as the
probability of occurrence, duration, and transition probabilities)
have been found to relate with cognitive performance (Cabral
et al., 2017b), depressive history (Figueroa et al., 2019), the effects
of psychoactive drugs (Lord et al., 2019), and even with the scores
of an emotional reward task (Stark et al., 2019).

Based on the amount of literature that points out to
disruption in functional connectivity, we employed LEiDA to
characterize the dynamics of recurrent BOLD PL patterns (PL
states) and quantify between-group differences in terms of the
percentage of occupancy and lifetime of each PL state. Due to
the non-stationary nature of resting-state FC, we predict that
investigating the temporal dynamics of resting-state FC would
be more advantageous in providing new information rather than
assuming a static perspective on FC. To this end, we compared
our results from the LEiDA approach to those obtained from the
analysis of static FC using the NBS technique.

MATERIALS AND METHODS

Participants
We analyzed a data set from a previously published behavioral
study on the degree of depressive symptoms after a relationship
breakup (Verhallen et al., 2019). This data set consists of
71 volunteers (38 women; age range, 18–25) who were in a
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relationship for at least 6 months, which ended in the preceding
6 months. Inclusion criteria included Western background, no
history of neurological or psychiatric disorders, heterosexuality,
and oral contraceptive use in women. The study protocol was
approved by the Ethics Committee at the University Medical
Center Groningen. Participants provided written informed
consent before the study procedure.

Two of the 71 enrolled participants, were excluded
after neuroimaging data preprocessing (see section “Image
Preprocessing”), resulting in a total of 69 participants (between
18 and 25 years old, 37 women) for functional Magnetic
Resonance Imaging (fMRI) data analysis.

Depressive Symptoms
The prevalence of depressive symptoms was measured using
the Major Depression Inventory (MDI), which is based on the
DSM-IV and the ICD-10 symptoms of depression (Bech et al.,
2001; Olsen et al., 2003). The MDI is a brief self-report mood
questionnaire, considered a reliable instrument for assessing
depression symptoms in the general population (Cuijpers et al.,
2007). It consists of 12 questions about the frequency of
depressive symptoms experienced over the last 14 days. MDI
scores can range from 0 to 50, with higher scores indicating
higher levels of depressive symptoms. MDI scores varied from
1 to 45 with an average score of 14.3 (IQR = 7–21). Participants
were split into 2 groups based on the conventional MDI cut-off
point of 20 for depression. Nine-teen participants (16 women)
scored above this threshold and were classified as “high MDI”
(median MDI score = 29); 50 participants (21 women) had a score
equal to or below this threshold and were classified as “low MDI”
(median MDI score = 7). Supplementary Table S1 displays the
characteristics of the study sample.

Image Acquisition
The MRI session was conducted on a 3 T Philips Intera MRI
scanner (Philips Medical Systems, Best, Netherlands) using a 32-
channel SENSE head coil. T2∗-weighted images were obtained
using Fast Field Echo Planar Imaging (EPI) pulse sequence
with gap = 0.3 mm; slice thickness = 3.5 mm; TR = 2000 ms;
TE = 30 ms; FoV in mm (RL × AP × FH) = 220 × 121.8 × 220;
voxel size in mm = 3.44 × 3.44 × 3.30; flip angle = 70◦;
oriented parallel to the AC-PC transverse plane and recorded in
descending order. For each participant, a total of 150 volumes
(37 slices per volume) were collected in a 306-second scanning
session. Participants used foam pads to reduce head motion
and earplugs to minimize the noise of the scanner. They were
instructed to close their eyes, move as little as possible, and let
their mind flow without falling asleep.

Image Analysis
Neuroimaging data analysis was performed using SPM121 and in-
house Matlab scripts using Matlab 2015b (The Mathworks Inc.,
Natick, MA, United States).

1http://www.fil.ion.ucl.ac.uk

Image Preprocessing
The EPI images were spatially realigned to the first volume using
rigid body transformations, and the mean EPI generated in this
step was coregistered to the structural T1 image. The coregistered
images were spatially normalized to MNI T1-template and
resampled to 2 × 2 × 2 mm voxel size. The bounding box
was changed to −90:90, −126:90, −72:108 to ensure overlap of
all regions of interest (ROIs) with the bounding box for time
series extraction. Then, eight nuisance variables (i.e., six head
motion parameters, white matter signal, and cerebrospinal fluid
signal) and their first-order temporal derivatives were regressed
out. Subsequently, images were spatially smoothed using a
Gaussian kernel of 8 mm full-width at half maximum. After
preprocessing, two of the 71 participants were excluded: one due
to neuroimaging data quality issues, and another due to excessive
head motion (> 0.3 mm in translation, or >3 degree in rotation).

ROI Definition and BOLD Time Series Extraction
We used a fine-grained parcellation scheme consisting of 270
non-overlapping regions (5-mm-radio spheres). These regions
were defined from the 264-region parcellation of the cortex
proposed by Power et al. (2011) and adding 6 subcortical
structures (bilateral amygdala, hippocampus and caudate) from
the Harvard-Oxford Subcortical Structural Atlas, given their
relevance in depression-related research. A group whole-brain
mask was generated in MNI space to localize the parts of the
brain that were free from susceptibility artifacts in all participants.
Individual participant’s whole-brain masks were then evaluated
to ensure that each region had more than 50% overlap with the
group mask (i.e., common space for all participants), at 90% mean
signal intensity. This step led to the exclusion of 47 ROIs from the
Power et al. (2011) parcellation. For the remaining 223 regions,
the BOLD time series were extracted as the average signal across
voxels within each region (Supplementary Table S2).

Band-Pass Filtering of BOLD Time Series
The participant-specific set of 223 ROI-time series was bandpass
filtered between 0.01 and 0.1 Hz, using a 9th order Butterworth
filter, to discard low-frequency drifts (<0.01 Hz) and high
frequency components associated to cardiac and respiratory
signals (> 0.1 Hz).

Static FC Analysis
Between-group differences in static FC were estimated with the
NBS approach, implemented in the NBS Toolbox for Matlab
R2015b. The NBS analysis, described by Zalesky et al. (2010),
is a non-parametric technique that controls for the family-wise
error rate (FWER), when mass-univariate testing is performed
at every connection comprising the network, potentially offering
a substantial gain in statistical power. Before using NBS, we
calculated for each participant, the pairwise Pearson correlation
coefficients between the filtered time series of each region. The
calculated coefficients were stored in a 223 × 223 symmetric FC
matrix (the 223 diagonal elements were removed). Following the
NBS procedure, a t-test contrasting the two groups (low vs. high-
MDI) was calculated for each pairwise correlation/connection.
We controlled for the effect of gender given that there was a
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significant difference in the proportion of women and men in
the 2 groups, X2(1, N = 69) = 9.9, p = 0.02 (Supplementary
Table S1). Then, we defined a set of suprathreshold connections
by identifying all links with a T > 3.5. Note that although
the network threshold influences the extent of the returned
network, the selection of this value is arbitrary. As recommended
by Zalesky et al. (2010), we compared the returned network
to those obtained with a less (T > 3.1) and a more (T > 4)
restricted threshold. Links with positive and negative t-scores
were calculated separately to identify connected components
where participants with high MDI had either significantly higher
or lower connectivity strength compared to participants with low
MDI. We used 10,000 permutations to determine the significance
of the network at alpha = 0.05 and using FWER to correct for
multiple comparisons.

Dynamic FC Analysis
The analysis of dynamic FC involved the characterization of
recurrent BOLD PL patterns by applying LEiDA. This is a data-
driven approach that relies on the leading eigenvector of the
BOLD PL matrix at each single TR (Cabral et al., 2017b). Matlab
scripts to performed LEiDA are publicly available at github.com/
sonsolesalonsomartinez/LEiDA.

Dynamic BOLD PL Matrix
First, a whole-brain pattern of BOLD PL was obtained at each
time point by computing the dynamic phase-locking matrix
(dPL). The dPL estimates the phase alignment between each pair
of brain regions, the value of which varies from 1 to −1, for
signals changing in the same or opposite direction, respectively.
In more detail, for each participant, the 223 bandpass filtered
time series were first demeaned and Hilbert transformed to
estimate the analytic phase of the averaged BOLD signals. The
Hilbert transform expresses any given signal in polar coordinates,
x(t) = A(t)cos(θ(t)), where A(t) is the instantaneous amplitude or
the envelope, and θ(t), the instantaneous phase, or phase angle. As
shown in Figure 1A, the cosine of the phase angle still captures
the fluctuations of the BOLD signal. Given the phases of the
BOLD signals, the phase alignment, dPL (n, p, t), for each pair of
regions, n and p, at time t, is calculated using the cosine function,
as in the following equation:

dPL
(
n, p, t

)
= cos

(
θ (n, t)− θ

(
p, t

))
dPL is a tensor of size N × N × T, where N = 223 is the number
of brain regions, and T = 148 is the number of recording frames
in each scan (after removing the first and last volumes of the
total 150 to account for the boundary distortions associated to
the Hilbert transform). Two regions n and p with temporarily
aligned BOLD signals (i.e., with similar angles) at a given TR
will have a PL value close to 1 (cos (0◦) = 1), while regions with
orthogonally developing BOLD signals (e.g., one increasing at 45◦
and the other decreasing at 45◦) will have zero PL value (i.e., cos
(90◦) = 0).

Leading Eigenvector of the PL Matrix
The second step is to calculate the leading eigenvector for
the resulting dPL matrix (Figure 1B). For each dPL(t), the

leading eigenvector V1(t), of dimension N × 1, captures the
main orientation of BOLD phases over all regions. Therefore,
instead of considering all (upper triangular) elements of the
N × N dPL(t), the LEiDA approach considers only the
eigenvector associated with the largest magnitude eigenvalue.
This strategy substantially reduces the dimensionality of the
data, from N(N−1)/2 to N. The sign (positive or negative)
of the eigenvector elements can be used to separate brain
regions in one of the two communities (blue or red)
according to their BOLD−phase relationship (Newman, 2006).
Elements of different signs indicate BOLD signals following
different directions with respect to their projection onto
the leading eigenvector. Because V and −V represent the
same eigenvector, only the relative sign between regions
is relevant. A convention was used ensuring that most of
the elements have negative values. The magnitude of the
eigenvector elements indicates the strength with which brain
regions belong to the communities in which they are placed
(Newman, 2006).

Detection of Recurrent BOLD PL States
The next step is to define recurrent BOLD PL states by
applying a k-means clustering algorithm that divides the set
of leading eigenvectors into a predefined number of clusters
k (Figure 1C). Determining the optimal number of clusters
is indeed a fundamental issue in partitioning a system and
the most common solutions include methods for optimizing
a criterion, such as elbow and silhouette. Here, we do not
aim to detect the optimal number of clusters describing the
entire resting-state dataset, but rather identify which clusters
of PL states significantly (false discovery rate (FDR) adjusted
p-value < 0.05) and consistently differ between the two groups
in terms of occupancy or lifetime across different k-clustering
solutions (these measures are described in section “Occupancy,
Lifetime and Transition Probability Profiles of PL States”). To
this end, a k-means clustering algorithm was run for 11 partition
models by varying the number of clusters k from 4 to 14,
with higher k resulting in more fine-grained configurations.
Specifically, for each partition model, clustering the 10,212
leading eigenvectors, V1, (resulting from 69 participants and
148 TRs each) returns k N × 1 cluster centroids, Vc, each
representing a recurrent state of BOLD PL. The brain subsystem
related to each cluster centroid, Vc, can be represented as a
network in cortical space, by (i) drawing each element as a sphere
using the coordinates of the corresponding brain region; and
(ii) using the value of Vc(n) to plot links between regions with
positive sign, to highlight the network formed by the smallest
community of synchronized brain regions. The fact that the
smallest synchronized community in Vc represents the most
meaningful brain subsystem has been demonstrated empirically
in previous works (Lord et al., 2019; Larabi et al., 2020; Vohryzek
et al., 2020), by revealing a highly significant overlap with
functional systems from the literature (Yeo et al., 2011). However,
these studies have considered a different parcellation atlas,
consisting of 90 anatomically defined brain regions, and it has
not been verified if it holds for a different and finer-grained
parcellation scheme as we use here.
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FIGURE 1 | Detection of recurrent BOLD PL patterns. (A) For a given region, the BOLD signal (green) is first band-pass filtered between 0.01 and 0.1 Hz (blue) and
then Hilbert transformed into an analytic signal, whose phase can be represented over time by eiθ (black line) and at each TR (red arrows). (B) At a single time point,
BOLD phases in all N = 223 regions can be represented in cortical space (left) and the complex plane (middle). The dPL(t) matrix captures the phase alignment
between each pair of regions (bottom). The leading eigenvector of the dPL(t) matrix, V(t), is the vector that best captures the main orientation of all phases, where
each element in V(t) corresponds to the projection of the phase of each region into V(t) (right). (C) All the leading eigenvectors V(t) are concatenated over participants
and fed into a k-means clustering algorithm, which divides the pool of data points into a predefined number of clusters k. Each cluster centroid represents a
recurrent PL state. dPL, dynamic phase-locking.

Functional Networks Assigned to Each PL State
To facilitate interpretation of BOLD PL states we used as a
reference the consensus community assignments from Power
et al. (2011) whereby each brain region is ascribed to one of
13 predefined functional networks (Supplementary Table S2).
In addition, to allow for comparison with other studies, we
also compared the resulting identified BOLD PL states to the
seven resting-state networks (RSNs) from Yeo et al. (2011),
following the methodology described in Vohryzek et al. (2020).
However, to verify whether the smallest community still reveals
the most functionally relevant brain subsystem in this work,
the overlap was computed with both communities, considering
either the positive (smallest community) or the negative (largest
community) elements in Vc.

Occupancy, Lifetime and Transition Probability
Profiles of PL States
The last step consists of the characterization of PL states in
terms of (i) percentage of occupancy, calculated as the temporal
percentage of epochs assigned to a given cluster centroid Vc,
that is, the number of time points in which a PL state is active
during the scan, divided by the total number of time points
in a scan and multiplied by 100; (ii) lifetime, or duration,
calculated as the mean number of consecutive epochs in the
same state; and (iii) transition probability profiles, computed as
the probability of switching from each PL state to any other
PL state. Between-group differences in these measures were
statistically assessed using a non-parametric permutation-based
t-test with 10,000 gender-restricted permutations. We used

gender-restricted permutations to account for the significant
difference in the proportion of women and men in the two
groups, X2(1, N = 69) = 9.9, p = 0.02 (see Supplementary
Table S1). For each of the 11 partition models (from k = 4
to k = 14), multiple testing correction was conducted via FDR
estimation at alpha = 0.05.

RESULTS

Between-Group Differences in Static FC
Network-based statistic identified a single subsystem exhibiting
significantly lower within-subsystem correlation values in high
compared to low MDI. This consisted of 42 links between 39
brain regions (T = 3.5; p-FWER = 0.010). As shown in Figure 2
and Supplementary Table S3, these regions are distributed across
the frontal, temporal, occipital, and parietal lobe. 81% of the total
42 edges connected regions of the DM network with regions
from the VIS, AUD, SMT, CO, DAT, and VAT networks. Other
connections included links between regions of the SMT network
with regions of the VAT and the VIS network. The regions that
exhibited the highest degree centrality were found within the DM
network. Specifically, links with the right precuneus accounted
for 9 of the 42 significant connections, followed by the right
posterior cingulate, with seven connections. Since no standard
threshold has been established, experimenting with a range of
thresholds is recommended (Zalesky et al., 2010). We found
that a lower threshold, T = 3.1, resulted in a large subsystem
which could contain spurious weak connections. On the contrary,
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FIGURE 2 | Participants with more depressive symptoms exhibit lower correlations within a specific subsystem revealed by network-based statistic (NBS). Cortical
representation of the NBS-derived whole-brain functional network comprising reduced connectivity connections in high compared to low MDI for three different
t-thresholds (T): T > 3.1, T > 3.5, and T > 4. The circle plot shows the highest degree (>4) nodes in the network. Spheres represent the coordinates of the
NBS-derived regions. Spheres are color-coded according to the functional network they belong to, as described in Power et al. (2011). L, left; MDI, Major
Depression Inventory; R, right.

a higher threshold, T = 4, helped to emphasize the strongest
connections. These consisted of seven links, five of which were
connections between the precuneus and other regions within the
DM network. No connected components showed significantly
increased connectivity in high compared to low MDI for any of
these thresholds.

Between-Group Differences in Dynamic
FC
Consistency of Between-Group Differences Across
Partition Models
We first searched for the PL states that most significantly and
consistently differentiated participants with high MDI from
participants with low MDI. Across the 11 partition models
explored, a total of 14 PL states were found to be significantly
(p-FDR < 0.05) different between the two groups in terms
of either percentage of occupancy or duration. Note that the
multiple hypotheses being tested across partition models are
not independent of each other, and therefore p-values were
adjusted in each partition model separately. Figure 3A shows
for each partition model (from k = 4 to k = 14 in the x-axis)
the clusters that significantly differentiated participants with low

and high MDI (in the y-axis clusters are sorted according to
their percentage of occupancy). The clusters with the same color
indicate that they refer to variant forms of the same underlying
PL state, as can be observed in the vector format representation
of these PL state centroids, Vc (Figure 3B). We classified the
significant PL state centroids in three groups: the one highlighted
in orange changed significantly between groups in 5 k-means
solutions, the network highlighted in blue was significant for
seven solutions and another PL state (green) showed significant
between-group differences in two solutions. Since this last PL
state was not consistent across cluster solutions, we did not
consider it as a robust finding. For the subsequent analysis, we
focused on the two PL states that significantly differed for high
compared to low MDI consistently across five clustering solutions
(i.e., k = 4, 9, 10, 11, and 12).

Relevant PL States
As described in the method section, we did not aim to
determine the optimal number of clusters, but instead to identify
the partition model that was able to capture the states that
consistently and significantly distinguished participants with
high vs. low MDI. We chose the partition model k = 9 because
it captured the most significant changes between high and
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FIGURE 3 | Detection of significant between-group differences in PL states across partition models. (A) Each square in the matrix represents a PL state (or cluster)
obtained for each k-means partition model with k varying between k = 4 and k = 14 (x-axis). PL states that are significantly different between low and high MDI
(p-FDR < 0.05), either in terms of percentage of occupancy (o) or duration (d), are indicated by colored squares. Since significantly different PL states obtained for
different k were found to represent variant forms of 3 underlying configurations of BOLD phase locking (see panel B), we used a color-code (blue, red, green) to
illustrate how these different configurations occurred across k. (B) The cluster centroids, Vc, of significantly different PL states identified in panel A are represented as
bar plots. Here, each horizontal bar represents the BOLD phase in each of the N = 223 brain regions projected into the corresponding leading eigenvector (captured
by the N elements in Vc). The regions n whose BOLD signal is phase-shifted (Vc(n) > 0) were colored using the same color-code from panel A. MDI, Major
Depression Inventory; PL, phase-locking.
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low MDI in two different BOLD PL states in terms of both
their percentage of occupancy and duration. In particular, for
the selected partition model (k = 9), PL state 3 (Figure 4A)
occurred more in high MDI (16.1 ± 8.8%) compared to low
MDI (9.8 ± 8%; p-FDR = 0.012, Hedges’ g = 0.77, medium
to large effect size) with each occurrence lasting on average
6.8 ± 2.9 s compared to 5.0 ± 2.6 s in low MDI (p-FDR = 0.041,
Hedges’ g = 0.67, medium to large effect size). The smallest
community in this state mostly comprises regions of the DM,
memory retrieval (MR), and FP networks as well as subcortical
regions. Conversely, PL state 8 (Figure 4B) appeared less in high
MDI (6.2 ± 3.4%) compared to (10.6 ± 6.6%) in low MDI (p-
FDR = 0.004, Hedges’ g = 0.74, medium to large effect size)
and lasted shorter (4.1 ± 2.0 s vs. 5.5 ± 2.3 s, p-FDR = 0.041,
Hedges’ g = 0.63, medium to large effect size). This PL state
comprised mostly connections of the VIS and DAT networks,
but also the postcentral gyrus, angular gyrus, and regions of
the so-called visual recognition network, namely the lingual and
fusiform gyrus (Tao et al., 2013). Between-group differences for
all PL states are provided in Supplementary Table S4.

The Repertoire of PL States Obtained With k = 9
Figure 5 displays the full repertoire of recurrent PL states
obtained when partitioning the data into k = 9 clusters. These
PL states are synchronization patterns that appear, dissolve, and
reoccur over time in all participants during the entire resting-
state fMRI recording session. PL states can be represented in
cortical space (Figure 5A), in a matrix as the eigenvector’s outer
product (Figure 5B) and vector format (Figure 5C). Because we
used a fine-grained parcellation with 223 regions, we obtained a
more detailed description of the implicated functional networks,
revealing that each PL state involves functionally different sets
of brain regions. In addition, to make it more comparable to
the current literature, Figure 5D shows the spatial similarities
between the PL states obtained here and the 7 RSNs defined
in Yeo et al. (2011). From the Pearson’s correlation analysis,
we found significantly (p < 0.001) positive correlations of state
1 (considering positive Vc elements) with the FP and the DM
networks; state 2 with the VAT network; states 3 and 5 with the
DM network; state 4 with the VIS and SMT networks; state 6
with the DAT and VAT networks; state 8 with the VIS and DAT
networks; and state 9 with the FP and DAT networks. State 7,
which does not overlap with any of the 7 RSNs proposed by Yeo,
includes regions involved in executive control (mostly subcortical
regions). Note that although PL states 3 and 5 both correlated
exclusively with the DM network, these are two different states,
with PL state 3 showing a weaker decoupling with the DAT and
the FP network, compared to PL state 5.

The Role of the Precuneus From a Static to a
Dynamic Perspective
Considering the results obtained using NBS, where the precuneus
was found to be the region exhibiting most dysconnectivity in
high MDI, we investigated the specific role of the precuneus in
the repertoire of recurring PL states obtained with k = 9 using
LEiDA. While in Figures 5, the repertoire of BOLD PL states
was represented by highlighting only the subset of brain regions

belonging to the smallest community determined by the signs
in Vc (following the previous literature), in Figure 6 (top) we
consider the subnetworks determined by both the largest (blue)
and smallest (orange) communities in each cluster centroids
Vc. Below each PL state, we show for both communities, the
connections involving the precuneus regions. Links were color-
coded according to the functional network each precuneus region
belongs to. All seeds were color-coded according to their assigned
functional network. Noteworthily, in PL states 3 and 8 –the ones
found to change most significantly between groups–, regions of
the precuneus were found to be synchronized within the smallest
community only. To facilitate visualization, these two states were
zoomed in, with larger seeds indicating regions of the precuneus.
We found that the parts of the precuneus involved in each PL
state are functionally different and connect to regions within
different functional networks. Specifically, while in PL state 3,
the BOLD signal in the precuneus is synchronized mostly with
regions of the DM network, in state 8, it is synchronized with
regions of the VIS and DAT networks.

Transitions Between PL States
For the selected partition model k = 9, we also explored between-
group differences with respect to the probability of transitioning
from a given PL state to any other PL state. Figure 7A shows
the matrices containing the mean transition probabilities for each
group and Figure 7B illustrates the transitions that significantly
(p < 0.05) increased (solid orange line) and decreased (dashed
blue line) for participants with high, compared to low MDI.
Overall, we found that for both groups, once in state 1 the
most probable transition is to state 4 and from this state the
most probable transition is back to state 1, forming a closed-
loop between these two PL states. In high MDI, the second most
probable transition is from state 5 to state 6, and once in state
6, back to state 5, forming another closed loop that appears less
evident in low MDI. We also found an increase in the probability
of transitioning from state 3 to state 1 and 6 and from state 6 back
to state 3 in high MDI. Conversely, in low MDI, the second most
probable transition was from state 8 to state 2, which together
with the probability of transitioning from state 2 to 7, from state
7 to 1 and from state 1 back to state 7 was significantly lower in
participants with high MDI.

Assessing the Effect of Motion
We confirm that the results found in this study were not driven by
differences in motion during the scanning session. We assessed
motion by calculating the mean framewise displacement (FD) for
each subject. FD measures movement of any given frame relative
to the previous one. A t-test revealed that the mean FD was not
significantly different for high (0.16 ± 0.04) compared to low
MDI (0.15 ± 0.04; t = −1.42, p = 0.16). We also investigated the
relationship between the expression of PL state 3 and 8 with the
mean FD. No significant Pearson correlation was observed for
state 3 in terms of percentage of occupancy (r = −0.12, p = 0.31)
or lifetime (r = −0.05, p = 0.71). Nor there was a significant
correlation of mean FD with the percentage of occupancy
(r = 0.13, p = 0.31) or lifetime (r = 0.16, p = 0.18) of PL state 8.

Frontiers in Neural Circuits | www.frontiersin.org 8 September 2020 | Volume 14 | Article 570583

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-14-570583 September 17, 2020 Time: 18:45 # 9

Alonso Martínez et al. DFC in Nonclinical Depression

FIGURE 4 | PL states 3 (A) and 8 (B) significantly differ for high compared to low MDI. (top left) Each PL state is represented in the cortical space, where functionally
connected brain regions (represented as spheres) are colored in red. Links between vector elements with Vc(n) > 0.3 are drawn to highlight the configuration
captured by each centroid. PL states are also represented as the outer product of Vc, which is a 223 × 223 matrix representing the number of brain regions, where
positive (red) values indicate the product of Vc elements with the same sign, be they positive or negative. (right) Bar plot showing the elements in Vc with positive
BOLD phase, representing the projection into the leading eigenvector. Vertical color bars indicate the network assigned to a given region. (bottom left) Significant
(p-FDR < 0.05) differences in the percentage of occurrence and lifetime between low and high MDI. Dots represent individual data points; dark gray bars represent
standard deviation, and lighter bars indicate standard error of the mean (represented by a horizontal line). Analysis via non-parametric permutation-based t-test
(N = 69 participants). DAT, dorsal attention; DM, default mode; FP, frontoparietal task control; L, left; MDI, Major Depression Inventory; MR, memory retrieval; PL,
phase-locking; R, right; SC, subcortical; SMT, sensorimotor; s, seconds; VIS, visual; CER, cerebellar; U, uncertain (visual-related network).
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FIGURE 5 | The repertoire of 9 PL states detected by clustering the set of leading eigenvectors into 9 clusters. (A) Cortical space representation of each PL state.
Only functionally connected brain regions are drawn (red spheres). Links between vector elements with Vc(n) > 0.3 are displayed to highlight the configuration
captured by each centroid. (B) Matrices (223 × 223) obtained calculating the outer product of Vc, where positive (red) values indicate the product of Vc elements
with the same sign, be they positive or negative. (C) Bar plot showing the N = 223 elements in Vc, representing the projection of the BOLD phase in each region into
the leading eigenvector. (D) Pearson correlation of the 9 PL states returned by our partition model (LEiDA for k = 9) and the seven resting-state networks defined in
Yeo et al. (2011). *p-value < 0.001. PL, phase-locking.
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FIGURE 6 | Precuneus FC for the repertoire of nine PL states. (Top) Subnetworks determined by the largest (blue) and smallest (orange) communities in each cluster
centroids Vc. Note that Vc captures the main orientation of BOLD phases over all regions and that the sign (positive or negative) of the eigenvector elements are
used to separate brain regions in one of the two communities (blue-largest or orange-smallest) according to their BOLD–phase relationship. Below each PL state,
the cortical representation of the functional connections involving the precuneus regions for the largest (Middle) and smallest (Bottom) communities. Here, seeds
were color-coded according to their assigned functional network, and links were color-coded according to the functional network each precuneus region belongs to.
Note that PL states 3 and 8 (i.e., PL states that were expressed significantly different in high vs. low MDI) were zoomed in for visualization purposes (with larger
spheres indicating regions of the precuneus). MDI, Major Depression Inventory; PL, phase-locking.

FIGURE 7 | Transition probabilities between PL states. (A) Displays the switching matrices showing the probability of transition from a given PL state (rows) to any
other PL states (columns) in low (left) and high MDI (right). The color bar is used to scale the transition probabilities between PL states. (B) Illustrates the transitions
between PL states (rendered on the cortical surface) that significantly (p < 0.05) increased (solid orange line) and decreased (dashed blue line) for participants with
high compared to low MDI. Analysis via a non-parametric permutation-based t-test. *p < 0.05. MDI, Major Depression Inventory; PL, phase-locking.
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DISCUSSION

We investigated potential differences in both static and dynamic
patterns of BOLD FC for participants reporting high compared
to low depressive symptoms after a relationship breakup.
Even though both measures captured significant differences
between the groups, our results demonstrate the advantage of
capturing changes in the temporal expression of functional
networks to gain novel insights into the psychophysiology of
depressive symptomatology.

The application of the LEiDA approach revealed a repertoire
of BOLD PL patterns that emerged, dissolved, and reoccurred
over time in all participants, corroborating evidence for the
dynamic nature of brain FC during rest. This result reinforces the
conceptualization of dynamic FC as a multi-stable process where
the connectivity patterns pass through multiple and reoccurring
relatively stable states (Hutchison et al., 2013; Hansen et al., 2015;
Vohryzek et al., 2020).

While the repertoire of PL states was similar across
participants, the expression of two of these states was found to
be significantly different between the two groups in terms of their
percentage of occurrence and lifetime. In particular, there was an
increased occupancy of a PL state characterized by DM network
dominance in participants with higher depressive symptoms; and
a decreased occupancy of a state overlapping with VIS and DAT
networks. The significance of these two states was consistent
across a range of partition models.

Both static and dynamic measures of FC implicate the role
of the precuneus in depressive symptoms. However, including
the temporal properties of phase coupling patterns helped to
disentangle over time the distinct configurations in which the
precuneus plays a role. Taken together, our findings using LEiDA
emphasize the existence of BOLD PL patterns that are sensitive
to distinguish participants with high versus low depressive
symptoms even in a nonclinical sample.

The Precuneus Accounts for the Overall
Reduced Static FC in Participants With
High MDI
By applying the NBS approach, we identified a single brain
subsystem exhibiting significantly lower within-subsystem
connectivity in participants with higher depressive symptoms.
The links in this brain subsystem were mainly long-distance
correlations between regions of the DM network and regions
outside the DM network, with the right precuneus accounting for
the largest number of them. The precuneus, as a core component
of the DM network (Utevsky et al., 2014 but see also Margulies
et al., 2009) may be important for self-referential processing
(Fransson and Marrelec, 2008; Van Buuren et al., 2010) and has
been commonly described with aberrant resting-state activity
(Liu C.-H. et al., 2017; Li et al., 2018) and connectivity in patients
with depression (Zhu et al., 2012; Dutta et al., 2019; Jacob et al.,
2020). The study by Jacob et al. (2020) found reduced strength
connectivity of this region to be linked to higher rumination
tendency (i.e., an exaggerated focus on negative thoughts) in
patients with depression. However, these maladaptive thinking

patterns, often seen in patients with depression, have been
associated with an increase, rather than a decrease in precuneus
connectivity. Consequently, a sole consideration of the results
obtained with static measures of FC would lead us to the
supposition that there was a decreasing tendency in participants
with high depressive symptoms to engage with processes
concerning the self.

The precuneus, which is functionally divided into several
regions, contributes to multiple networks and it is involved in
a variety of cognitive processes including, but not limited
to, visuospatial processing, episodic memory, and self-
referential processes. In this context, investigating the dynamic
configurations connecting the precuneus with other regions
cannot be captured from a static perspective of FC, such as in
Jacob et al. (2020), which ignores changes that might occur in the
temporal domain.

Dynamical Properties of FC Disentangle
the Distinct Role of the Precuneus Over
Time
By including the temporal properties of BOLD phase coupling
we show that participants who reported more frequent depressive
symptoms spend more time in a state (PL state 3) characterized
by higher dominance of the DM network. This finding was
previously interpreted as a sign of excessive self-referential and
ruminative thoughts (Broyd et al., 2009; Christoff et al., 2009;
Hamilton et al., 2011; Marchetti et al., 2012; Marusak et al.,
2017) and has been previously linked to depressive symptoms
in the general population (Wei et al., 2014). Evidence from EEG
studies also shows that this predominance might already exist
at the preclinical stages of depression (Knyazev et al., 2016).
Rumination is considered to implicate a variety of cognitive and
affective processes such as attention, self-referential encoding,
and recall of autobiographical memories (Cooney et al., 2010).
This functional diversity may be manifested in the involvement
of other regions outside the DM network, as observed in PL state
3. These regions were part of the DM but also, the MR and FP
networks as well as the hippocampus (Huijbers et al., 2011), and
were mostly driven by connections with the precuneus.

Although there was another state (PL state 5) with a strong
synchronization between the precuneus and other regions in the
DM network, no differences were observed in the occurrence
of this state between low and high MDI. Compared to PL state
3, the DM network coupling in PL state 5 was accompanied
by a stronger decoupling with the rest of the brain, which was
mostly driven by connections with other parts of the precuneus.
This indicates that between-group differences involving DM
network connectivity exceed connections within this network.
It further supports the hypothesis that a shift of the precuneus
connectivity to other regions outside the DM network relates to
atypical connectivity patterns in depression (Dutta et al., 2019).
In the same direction, Marusak et al. (2017) suggested that high
synchrony between the DM and the executive control network
was associated with self-reflective thoughts whereas increased
FC within the DM and decreased connectivity between this
network and the executive control network was associated to
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positive thoughts. Our finding seems supportive of the concept
that DM network-mediated self-reflection becomes maladaptive
when other networks integrate with the DM network (Sheline
et al., 2010; Hamilton et al., 2015).

Conversely, participants with high depressive symptoms
spend less time in a state (PL state 8) characterized by a shift
in precuneus coupling away from the DM network, connecting
regions of the VIS and DAT networks. In healthy participants,
these two networks are known to be highly synchronized at rest
(Beckmann et al., 2005). Regions of the DAT are thought to be
responsible for goal-directed top-down processing by modulating
activity in visual regions (Corbetta and Shulman, 2002; Bressler
et al., 2008). In our study, such goal-directed processing of
visual information (provoked by internal stimulation) appears
to be less common in the presence of depressive symptoms.
This observation is in line with a study reporting weaker
functional dominance of the DAT in association with greater
sadness and subclinical depression (Petrican et al., 2015). Other
connections in PL state 8 included the inferior and superior
parietal lobule, which have been proposed to be the main
components of the executive control network, participating
in the regulation and interpretation of sensory information.
A study in college students with nonclinical depression suggested
that alterations in these regions might be associated with
abnormal emotional control of visual information processing
(Wei et al., 2014). Despite the scarce literature implicating
abnormalities in the VIS network, several studies have shown
that depression can profoundly modify the visual and visual-
attentional systems (Veer et al., 2010; Sacchet et al., 2016;
Chen et al., 2019; Moreno-Ortega et al., 2019). For example,
Moreno-Ortega et al. (2019) showed that the reduced VIS
network connectivity found in patients with depression reversed
after successful electroconvulsive therapy. More comparable
to our analysis, (Zhi et al., 2018) found that patients with
depression also spent less time in states of high connectivity with
the visual system.

Almost all the entire precuneus established connections
during the occurrence of PL state 8. In healthy controls,
precuneus connectivity with cortical visual regions, angular
gyrus, and temporal cortex suggest the potential involvement of
this region in visual imagery processes (Fletcher et al., 1995).
Furthermore, imagery vividness has been related to several
posterior cortical regions, the fusiform gyrus, posterior cingulate,
and parahippocampal gyrus, similarly, to those found in PL
state 8. Accordingly, this state may reflect processes related
to participants planning the future and remembering the past
during the stimulus-free recording session.

In sum, participants with high depressive symptoms engaged
more in a state characterized by an increased coupling of the
precuneus with regions in the DM network (PL state 3), and
less in a state where the precuneus shifts away from connections
in this network (PL state 8). We proposed that this imbalance
might result in maladaptive cognitive styles that ultimately
contribute to sad mood and depressive symptoms, which aligns
with other studies implicating abnormal FC of the precuneus
in patients with depression (Sheline et al., 2009; Li et al., 2013;
Chen et al., 2018).

Strengths and Limitations
Three aspects of our results require further consideration. The
first one relates to the controversial step in the preprocessing
of resting-state FC data, global signal regression (GSR) (Uddin,
2017). Although the removal of global sources of variance
attenuates motion and respiratory-related sources of noise (Fox
et al., 2009; Murphy and Fox, 2017), GSR may also eliminate
important information about ongoing neural activity (Liu T. T.
et al., 2017). A recent study has shown that the global signal
contains a rich source of information associated with behavior
and trait-level cognition (Li et al., 2019). We chose not to regress
out the global signal, given the potential functional relevance of
this signal and to keep our analyses comparable with the literature
using LEiDA where global signal was preserved (Cabral et al.,
2017b; Figueroa et al., 2019; Lord et al., 2019; Larabi et al., 2020;
Vohryzek et al., 2020). Yet, it is worth noting that including
or removing the global signal might provide complementary
insights into the brain’s functional organization (Murphy and
Fox, 2017). Second, contrary to other studies using LEiDA
(Cabral et al., 2017b; Figueroa et al., 2019; Lord et al., 2019;
Stark et al., 2019; Larabi et al., 2020), we did not find a PL state
where all BOLD signals followed a single global mode, (i.e., all
signals projecting toward the same direction into the leading
eigenvector). A possible explanation of this outcome could relate
to differences in fMRI data preprocessing steps, particularly those
involving white matter and CSF signal regression, as well as the
definition of cortical areas, which may include CSF signal and
variability across subjects. Therefore, efforts should be made to
understand the impact of these and other preprocessing steps
in the computation of dynamic FC. Third, although participants
were instructed to keep their eyes closed, eye movements were
not tracked, and therefore we cannot rule out the possibility
that participants opened their eyes at some points during the
resting-state scanning session. Although we found significant
differences in a state (PL state 8) connecting regions of the VIS
with other networks, these results do not seem to be explained
by spontaneous eye-apertures. If our results were driven by the
effect of feedforward visual input, we would also expect between-
group differences in the other visual-related state (PL state 4),
comprised of connections involving the VIS and SSM networks.
Supporting this argument, a recent study showed that eyes
closed/eyes open conditions significantly affected the patterns of
connectivity between the VIS and the SSM networks, where they
were mostly anticorrelated in eyes open condition, and correlated
in the case of eyes closed (Agcaoglu et al., 2019).

While data analysis approaches of functional brain networks
in the context of depression have varied widely, most of them
have assessed FC within and between specific networks or regions
of interest, of which sensory networks have been considered
less of an imperative. On the other hand, when whole-brain
analyses are performed, observing abnormalities in the FC
involving the visual network are not as rare (Veer et al., 2010;
Zeng et al., 2012; Borchardt et al., 2015; Wu et al., 2016;
Moreno-Ortega et al., 2019; Schultz et al., 2019; Yan et al.,
2019; Liu et al., 2020). These and our results, emphasize the
potential implications of this network in the development of

Frontiers in Neural Circuits | www.frontiersin.org 13 September 2020 | Volume 14 | Article 570583

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-14-570583 September 17, 2020 Time: 18:45 # 14

Alonso Martínez et al. DFC in Nonclinical Depression

the disorder. Last, using LEiDA we found patterns that were
previously implicated in depressive symptoms, such as increased
expression of a state characterized by DM network dominance in
participants with high depressive symptoms. However, we did not
find abnormalities in FC involving both the DM and FP networks
together, in contrast with what has been frequently found in
patients with depression (Kaiser et al., 2015; Figueroa et al., 2019).
We propose that this discrepancy could be ascribed to differences
in population samples. Unlike most studies on depression, our
study investigated the level of current depressive symptoms in
a nonclinical population. Therefore, the observed alterations in
FC found here seem to be associated with the current experience
of depressive symptoms, which may cease to exist as participants
recover from the breakup.

CONCLUSION

In this study, we demonstrate the potential of whole-brain
analyses of dynamic FC for investigating the psychophysiology
of depressive symptoms in nonclinical populations. We find that
participants with higher depressive symptoms spend significantly
more time in a brain activity pattern related to self-referential
thoughts and significantly less time in a pattern related to
thinking about the past and planning the future. Together,
these changes in brain activity patterns may account for the
rumination tendency observed in depressive disorders. These
findings encourage further research on depressive symptoms in
the general population, to develop strategies that prevent these
symptoms to trigger a full depressive episode. More importantly,
by comparing and evaluating the results obtained from dynamic
versus static FC analysis, we were able to demonstrate that a
holistic understanding of brain function can only be gleaned if
the temporal dynamics of functional connectivity is included.
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