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Neural processing occurs across a range of temporal scales. To facilitate this, the
brain uses fast-changing representations reflecting momentary sensory input alongside
more temporally extended representations, which integrate across both short and long
temporal windows. The temporal flexibility of these representations allows animals to
behave adaptively. Short temporal windows facilitate adaptive responding in dynamic
environments, while longer temporal windows promote the gradual integration of
information across time. In the cognitive and motor domains, the brain sets overarching
goals to be achieved within a long temporal window, which must be broken down into
sequences of actions and precise movement control processed across much shorter
temporal windows. Previous human neuroimaging studies and large-scale artificial
network models have ascribed different processing timescales to different cortical
regions, linking this to each region’s position in an anatomical hierarchy determined
by patterns of inter-regional connectivity. However, even within cortical regions, there
is variability in responses when studied with single-neuron electrophysiology. Here,
we review a series of recent electrophysiology experiments that demonstrate the
heterogeneity of temporal receptive fields at the level of single neurons within a cortical
region. This heterogeneity appears functionally relevant for the computations that
neurons perform during decision-making and working memory. We consider anatomical
and biophysical mechanisms that may give rise to a heterogeneity of timescales,
including recurrent connectivity, cortical layer distribution, and neurotransmitter receptor
expression. Finally, we reflect on the computational relevance of each brain region
possessing a heterogeneity of neuronal timescales. We argue that this architecture is
of particular importance for sensory, motor, and cognitive computations.

Keywords: neuronal timescale, autocorrelation, time constant, decision-making, working memory

INTRODUCTION

Imagine you are listening to Beethoven’s 9th symphony. As you listen, neurons in the auditory
cortex are responding to the momentary pitch of the music. In isolation, these momentary
pitches are meaningless. The notes must be contextualized across bars (seconds), melodies (tens
of seconds), and movements (minutes) for the music to be appreciated and understood. The beauty
of the music depends upon melodic expectations that are established over both long and short
timescales. The neural processing of information across a diversity of timescales is not only key
to many aspects of perception, but also cognition and motor control.
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TIMESCALES OF CORTICAL REGIONS
REFLECT HIERARCHY

More formally, we will consider the neural temporal receptive
field as the length of time over which inputs can be
integrated by a neural substrate. Previous work has established
the notion of temporal receptive fields, and characterized
the temporal properties of neural activity in response to
sensory stimuli (Sen et al., 2001; Kiebel et al., 2008; Chen
et al., 2015; Hasson et al., 2015). This work has revealed
many relevant parallels with the more established concept
of spatial receptive fields. It has long been known that
neurons in different cortical areas process sensory information
across different spatial scales. As information becomes more
highly processed, neural representations are based upon larger
physical areas and contain more abstract representations
which require the integration of multiple sources of sensory
information. As a general principle, the size and complexity
of spatial receptive fields increase along a visual hierarchy
(Lennie, 1998). For example, neurons in the early visual
cortex encode the presence of simple features of stimuli
(e.g., orientation) in a small, specific area of the visual
field (Hubel and Wiesel, 1962, 1968). At the other end
of the ventral visual stream, neurons in the inferotemporal
cortex encode high-level information about object identity,
independent of its location in the visual field (Tanaka, 1996;
Brincat and Connor, 2004; Chang and Tsao, 2017). A similar
pattern of representational hierarchies is also present in
the motor domain, with receptive field sizes increasing and
more complex motor representations becoming evident, such
as selectivity for sequences of actions, as you move from
the primary motor cortex more anteriorly to premotor and
prefrontal regions (Luppino et al., 1991; Picard and Strick,
1996; Shima and Tanji, 2000; Nachev et al., 2008; Russo
et al., 2020; but see also, Yokoi and Diedrichsen, 2019).
Furthermore, in the cognitive domain, complex representations
are evident mainly in the prefrontal cortex (Wallis et al., 2001),
which also exhibits a hierarchical anatomical organization of
abstract representations (Koechlin et al., 2003; Badre, 2008;
Nee and D’Esposito, 2016).

When reviewing temporal receptive fields, we will initially
apply a similar framework and consider how representation
size and complexity could vary across neural substrates. In
the temporal domain, as a possible equivalent to the neuronal
diversity in representing spatial scale, neurons may signal an
event (e.g., a sensory stimulus, action, or goal) for varying
lengths of time after it occurs. Some neurons may represent
this information with a fixed pattern of activity, invariant of
how long ago it occurred, within a set temporal window (e.g.,
5 s). The length of this window may vary across neurons, and
the representation carried by other neurons may be restricted
to when the event initially occurs. In higher cortical areas,
the temporal receptive window may also be task-dependent,
as demonstrated (for example) in working memory tasks with
variable delays (Funahashi et al., 1989) or in time estimation
tasks with variable durations (Wang et al., 2018). By possessing
a spectrum of these representations concurrently, it would allow

the brain to hold salient information in working memory while
continuing to monitor fluctuations in the environment.

We can also consider the complexity of information in
the temporal domain. Stimuli often vary across time, and
information must be temporally integrated to enable perception.
Further to the musical symphony analogy presented at the start
of this piece, another good example is language comprehension
(Hasson et al., 2015). To understand speech, the brain integrates
auditory information over tens of milliseconds to detect words,
which in turn are combined over several seconds to form
sentences, which are then integrated across minutes to facilitate
the understanding of discourse. Another example would be
when we take a journey. The overarching goal of the journey,
across many minutes, is to reach a destination. But in order
to reach this goal, we set subgoals which are achieved through
sequences of actions (across seconds). These action sequences
in turn require the precise co-ordination of muscle groups at a
timescale of milliseconds. In both of these examples, different
neural substrates likely underly the processing of information
across different timescales. Therefore, a temporal receptive field
may also constitute the length of time over which inputs can
be combined or outputs organized—with higher complexity
associated with longer integration times.

Recent work has begun to address how different cortical
regions process information across different temporal scales.
Several studies by Hasson and colleagues have utilized
an innovative protocol to demonstrate this with human
neuroimaging (see Hasson et al., 2015 for an in depth
review; Figure 1A). Human subjects passively experienced
a complex stimulus (e.g., listening to a story) across several
minutes, before the stimulus was ‘‘scrambled’’ and presented
again. For the scrambled versions, the original stimulus was
fragmented to different degrees. For instance, some versions
only reorganized the paragraphs of the story, whilst others
shuffled the order of all of the words. Regardless of the
degree of shuffling, fMRI activity recorded in early auditory
cortices showed a high degree of inter-subject reliability.
However, in higher cortical areas, reliable responses were only
observed when scrambled stimuli preserved the structure of
paragraphs (Lerner et al., 2011). The interpretation of these
results was that early cortical regions processed momentary
input regardless of its context, whereas in higher cortical
regions information was processed across a much longer
timescale. These findings have been demonstrated with
various sensory modalities (i.e., auditory, visual, and audio-
visual) and with different neuroimaging techniques (Hasson
et al., 2008; Lerner et al., 2011; Honey et al., 2012). More
recent studies have built on this work to directly infer the
timescale over which activity is structured by applying a Hidden
Markov Model to the time course of neural activity during
movie-watching (Baldassano et al., 2017, 2018). This again
reveals a nested hierarchy of timescales from lower to higher
cortical areas, with responses in higher areas generalising to
an audio description of the same story, while hippocampal
activity demarcates high-level boundaries between distinct
episodes in the movie. It is notable that a similar hierarchy
of timescales can also be found by examining data acquired
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during the resting state (Stephens et al., 2013), linking these
findings to the rich literature on slow timescale interactions
between large-scale brain regions while at rest (reviewed in
Buckner et al., 2013).

In another line of work, researchers have indexed temporal
scales of cortical regions by measuring the spike-count
autocorrelation of single neuron activity recorded from macaque
monkeys (Ogawa and Komatsu, 2010; Murray et al., 2014).
Utilising task independent neural activity recorded during
short (∼1,000 ms) pre-trial fixation periods, the decay rate
of autocorrelation can be captured with an exponential
equation and used to define the cortical region’s intrinsic
timescale (Figure 1B). When results from a large number of
electrophysiological datasets were collated, there was a strong
relationship between a region’s position in the anatomical
hierarchy (Felleman and Van Essen, 1991; Barbas and Rempel-
Clower, 1997) and its intrinsic timescale (Murray et al., 2014;
Figure 1C). Moreover, the potential functional relevance of
resting spike-count autocorrelation was suggested such that
regions with longer intrinsic timescales also contained neurons
with longer task-related maintenance of reward information
across trials (Bernacchia et al., 2011; Spitmaan et al., 2020).

A large-scale network model of interconnected regions,
guided by anatomical data on hierarchical connectivity (Markov
et al., 2014a) and local recurrent connectivity (Elston et al.,
2011), was sufficient to reproduce this variation in intrinsic
timescales (Chaudhuri et al., 2015; Figure 1D). In the model,
individual neurons are embedded within densely interconnected
networks. Areas of the frontal cortex are densely connected
with multiple areas, whereas sensory areas have lower, and
typically more local, connection densities (Chaudhuri et al., 2015;
Wang and Kennedy, 2016). These connection patterns form
cortical hierarchies, defined by asymmetric local (interlaminar)
and extrinsic (long-range) connections (Bastos et al., 2015;
Chaudhuri et al., 2015; Wang and Kennedy, 2016). These
anatomical hierarchies result in long integrative timescales of
neurons in frontal cortex, contrasted with short timescales of
neurons in sensory areas (Romo et al., 1999; Wang, 2001, 2020;
Kiebel et al., 2008; Benucci et al., 2009; Chaudhuri et al., 2015;
Wang and Kennedy, 2016).

Although in this initial work variation in intrinsic timescales
had only been assigned to brain regions as a whole, perhaps
individual neurons within those regions were also capable
of processing information across a diversity of timescales.
For example, previous research on spatial receptive fields has
demonstrated that although there is a general trend of higher
cortical regions exhibiting larger spatial receptive fields (Lennie,
1998), in studies where larger numbers of visual neurons were
recorded, a significant amount of within-region heterogeneity
is also found (Blasdel and Fitzpatrick, 1984; Gur et al., 2005;
Nauhaus et al., 2016; Siegle et al., 2019). It was therefore crucial
to test whether single neurons had individual timescales, which
varied within cortical regions.

If single neurons did indeed have their own temporal
receptive fields, what would this imply for their roles in
cognitive function? It is already established that there is a large
degree of heterogeneity with which neurons in higher brain

regions are involved in cognitive computations (Shafi et al.,
2007; Jun et al., 2010; Wallis and Kennerley, 2010; Meister
et al., 2013). It might therefore be the case that a neuron’s
intrinsic timescale determines its functional role in extended
cognitive processes, such as decision-making and working-
memory—specifically the neuron’s strength and dynamics of
information encoding. This could be examined by relating an
individual neuron’s encoding properties with its own intrinsic
timescale, as opposed to the broader timescale of the brain region
it inhabited.

Several studies have begun to address these questions
with single neuron electrophysiology experiments in macaque
monkeys. Here, we will review this work and consider
its significant implications—specifically what it may tell us
about how neural circuits are organized, how they compute
information, and how we should go about studying them
in future.

A DIVERSITY OF TIMESCALES AT THE
SINGLE NEURON LEVEL

One of the first studies to examine single neuron intrinsic
timescales using spike-count autocorrelation was (Cavanagh
et al., 2016), which utilized electrophysiology data recorded
from macaque monkeys during a value-based decision-making
task (Hosokawa et al., 2013). Before the monkey began to
make a choice, there was a 1,000 ms fixation period on
each trial. The same spike-count autocorrelation analysis was
applied (Murray et al., 2014; Figure 1B), with one important
difference. Instead of pooling the autocorrelograms of all
neurons within a brain region, a timescale was fitted for
each individual neuron. Although this inevitably made the
fitting process more noisy, and some neurons were poorly
described by a simple exponential decay, the majority of
neurons exhibited a decay in autocorrelation structure reliably
quantified by an exponential function (see Figure 2 for
examples). Importantly, this analysis highlighted a striking
degree of within-region variability (Figure 2)—even within
the anterior cingulate cortex (ACC), which sat at the apex
of the hierarchy identified in Murray et al. (2014); there
was a spectrum of timescales including many neurons with
short timescales. Further studies then applied the same single-
neuron analysis to many different brain regions throughout
the cortical hierarchy (Figure 3), including posterior parietal
cortex (Wasmuht et al., 2018), lateral prefrontal cortex (lPFC;
Cavanagh et al., 2016, 2018; Wasmuht et al., 2018; Fascianelli
et al., 2019; Fontanier et al., 2020; Kim and Sejnowski,
2020), orbitofrontal cortex (OFC; Cavanagh et al., 2016,
2018; Fascianelli et al., 2019), cingulate cortex (Cavanagh
et al., 2016, 2018; Fontanier et al., 2020), premotor cortex
(Cirillo et al., 2018), and frontopolar cortex (Fascianelli et al.,
2019). All of these regions contained single neurons with a
diversity of timescales, suggesting that brain regions possessing
a heterogonous distribution of timescales is a generalized
feature of cortical organization. Despite this work predominantly
focussing on higher-level cortical regions, it would be reasonable
to predict that lower-level sensory regions may also contain
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FIGURE 1 | Temporal receptive fields vary across cortical brain regions. (A) Topography of temporal receptive fields defined using fMRI data recorded during the
passive listening to stories. The color in the voxel heatmap depicts the shortest period to which the original auditory story stimulus could be scrambled and a reliable
inter-subject correlation still be obtained (red: story played backward; yellow: a story with word-order scrambled; green: a story with sentence-order scrambled; blue:
a story with paragraph-order scrambled). Early auditory areas (A1+) were reliable across subjects even on the most scrambled stimuli, whereas activity in higher
regions such as the temporal-parietal junction (TPJ) responded reliably only in the least scrambled condition. There was a gradual hierarchical progression of
timescales along the temporal-parietal axis. Data originally published in Lerner et al. (2011), figure reproduced from Hasson et al. (2015), with permission.
(B) Spike-count autocorrelation method for assigning neuronal timescales. Spike counts for each neuron during the pre-trial fixation periods are subdivided into
non-overlapping 50 ms bins. This data from this matrix is correlated across trials to produce a measure of autocorrelation as a function of time-lag between bins. The
data is averaged across all neurons recorded in a cortical region before the rate of decay is captured with an exponential fit. The tau parameter determines the
intrinsic timescale of the cortical region. (C) Intrinsic timescales of seven cortical regions as a function of their position in the anatomical hierarchy. Regions further up
in the hierarchy have longer timescales. Each of the different data points (circles) from each brain region were collected by a different research lab, with the lines
between datapoints indicating multiple brain areas collected by the same research lab. Reproduced with permission from Murray et al. (2014). (D) A large-scale
biophysically-realistic neural network simulation shows a hierarchy of timescales in response to visual input. An important feature of the model is the inclusion of
anatomical data regarding inter-regional connectivity shown here. In the graph, as in panel (B), autocorrelation is plotted as a function of time lag. Brain regions with
more prolonged, stable autocorrelation functions are those at the apex of the cortical hierarchy. Reproduced with permission from Chaudhuri et al. (2015).

heterogenous timescales. This appears likely from single-neuron
autocorrelograms (Murray et al., 2014), and is supported by a
previous study which observed heterogeneity of autocorrelation
decay when recording intracellularly from neurons in cat
striate cortex (Azouz and Gray, 1999). Variability in single-
neuron timescales has also been observed in several early visual
areas of the mouse brain (Siegle et al., 2019), and it will be
interesting to explore this more conclusively in future studies of
primate cortex.

Once it had been established single neurons possessed
different individual timescales, these studies next investigated
whether this variation was functionally significant. A simple way
to approach this question was to test the relationship between
timescales quantified during the resting (fixation) period of the
task with the strength of a neuron’s subsequent task-related
activity. For example, encoding of the value of the chosen option
during a decision making task may arise as a consequence of
the process of evidence integration during a temporally extended
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FIGURE 2 | A Heterogeneity of single-neuron timescales exist within a brain region. Data recorded from the ventrolateral prefrontal cortex (VLPFC) during a working
memory task (Cavanagh et al., 2018). (A) Autocorrelation structure of five VLPFC neurons, plotted as a function of time within the pre-trial fixation period. As in
Figure 1B, these are calculated by correlating the spike count autocorrelation across trials. Despite being recorded in the same brain region, there is a large degree
of diversity. (B) Autocorrelation structure of VLPFC neurons, plotted as a function of the time lag between bins. As in Figure 1B, the data from above have been
sorted by the time lag. Each of the lines corresponds to an exponential fit of the decaying autocorrelation of one of the neurons’ heatmaps above (corresponding
color). There is substantial heterogeneity in the individual neurons making up the whole region average. Each neuron has an exponential decay reasonably distinct
from the population average. (C) Histogram showing the single neuron exponential decay time constant assigned to all neurons within VLPFC. The vertical lines mark
the example neurons shown in this figure. The thicker blue line marks the population mean.

decision process (Hunt et al., 2012, 2015), or may also support
maintaining value information until later in the trial when
learning can occur by assigning credit to the chosen option
(Rangel and Hare, 2010; Jocham et al., 2016; Enel et al., 2020).
Because both evidence integration and working memory for
value are temporally extended processes, it might be expected
that single neurons with longer intrinsic timescales are more
involved in these cognitive processes. This relationship could
be explored by correlating timescales with the coding strength
of each neuron, or alternatively by subdividing a brain region’s
entire population by a median split of timescales and comparing
the task-related activity in the two groups (Cavanagh et al.,
2016). Together, these analyses revealed that prefrontal neurons

with longer timescales exhibited stronger chosen value coding
when a decision was being made. Moreover, long timescale
neurons in OFC continued to signal the chosen value until
an outcome was received (Figure 4A). Neurons with longer
timescales were therefore more involved in both choice and
maintaining a representation of the expected outcome across
delays which could support credit assignment processes.

The apparent relationship between intrinsic timescales and
task-related processing can also be extended to another cognitive
process—working memory. Whereas decision-making requires
the gradual integration of evidence across time (Gold and
Shadlen, 2007), working memory involves the maintenance of
task-relevant information in the absence of direct sensory input
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FIGURE 3 | Heterogeneity of single-neuron timescales exist within multiple brain regions across several studies. (A) Histograms of single-neuron timescales for
dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC). Data were recorded during a value-based decision-making
task. Adapted from Cavanagh et al. (2016), where originally published with a CCBY4 licence. (B) Histograms of single-neuron timescales for lateral prefrontal cortex
(lPFC), frontal eye field (FEF), and lateral intraparietal area (LIP). Data were recorded during a change-detection working memory task. Adapted from Wasmuht et al.
(2018), where originally published with a CCBY4 licence. (C) Histogram of single-neuron timescales for DLPFC, VLPFC, OFC, and ACC. Data were recorded during
an oculomotor delayed working memory task. Adapted from Cavanagh et al. (2018), where originally published with a CCBY4 licence. (D) Histogram of
single-neuron timescales for dorsal premotor cortex (PMd), recorded during a rule-based working memory task. Adapted from Cirillo et al. (2018), where originally
published with a CCBY4 licence.

(Goldman-Rakic, 1995). A number of studies demonstrated
that neuronal timescales predicted the strength of mnemonic
encoding on a variety of different working-memory paradigms,
with longer timescale neurons again playing a greater role
in the maintenance of mnemonic information (Nishida et al.,
2014; Cavanagh et al., 2018; Cirillo et al., 2018; Wasmuht
et al., 2018; Fascianelli et al., 2019; Fontanier et al., 2020; Kim
and Sejnowski, 2020; Figure 4B). This effect was present in
multiple brain regions [lPFC, cingulate cortex, frontal eye field

(FEF), premotor cortex], and for multiple different modalities
of mnemonic information (spatial location/response direction,
expected reward size, stimulus color).

While the results discussed so far had uncovered the
relationship between neuronal timescales and the strength of
encoding, they did not address another important computational
property: the pattern with which this information was encoded.
The temporal dynamics of population encoding has become
of increasing interest and controversy in both decision-making
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FIGURE 4 | Functional roles of single-neuron timescales during cognitive tasks. (A) Long timescale neurons in the orbitofrontal cortex (OFC) are more involved in
decision-making and the maintenance of value information until the outcome. The graph shows the coefficient of partial determination (CPD) of chosen value coding
for long timescale (blue) and short timescale (red) neurons within OFC. Long timescale neurons have stronger value coding at the time of choice, then throughout the
trial until the end of the outcome period. Adapted from Cavanagh et al. (2016) where originally published with a CCBY4 licence. (B) Long timescale neurons in the
ventrolateral prefrontal cortex (VLPFC) are more involved in the maintenance of spatial working memory information. The graph shows the accuracy with which a
linear classifier could decode the remembered spatial location from a subpopulation of neurons with long (purple) and short (timescales). The neural population with
longer timescales shows stronger signaling of working memory information—specifically during the delay period. The dashed horizontal line shows chance-level
classifier performance. The black horizontal bar shows a significant difference between the two populations. Adapted from Cavanagh et al. (2018) where originally
published with a CCBY4 licence. (C) Correlation between the onset latency of significant stimulus encoding with the intrinsic timescale in the lateral prefrontal cortex.
There is a significant correlation—neurons with shorter timescales encode information more quickly following stimulus onset. Each dot represents one neuron, the
black line indicates a linear fit to the data with the shaded area depicting the 95% confidence interval of the fit. Adapted from Wasmuht et al. (2018) where originally
published with a CCBY4 licence. (D) VLPFC long-timescale neurons have more stable working memory encoding than VLPFC short timescale neurons. The
heatmaps show the cross-temporal stability of spatial coding in the two populations. In the long timescale subpopulation, there is greater stability of spatial coding:
the off-diagonal elements are warm in color, meaning that the same population code persists throughout the delay epoch following the spatial cue. Although a stable
state is reached during delay-one, this is disrupted by the presentation of the distracting reward cue, and there is only a weak non-significant cross-temporal
generalization between delay-one and delay-two. In the low time-constant population, coding is always dynamic (i.e., on diagonal heat), so no stable state is
established. Adapted from Cavanagh et al. (2018) where originally published with a CCBY4 licence.

and working memory research fields (Latimer et al., 2015;
Constantinidis et al., 2018; Lundqvist et al., 2018). Competing
explanations propose that the pattern of neural encoding

is either stable (Constantinidis et al., 2018), time-varying
(Lundqvist et al., 2018) or even activity-silent (Stokes, 2015),
during working memory. While these discrepancies may
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relate to the task paradigm studied, or the brain region
recorded from, it also possibly reflects the inherent neuronal
properties—such as intrinsic timescales—of the cells sampled.
To explore this, two studies compared the cross-temporal
encoding dynamics of short and long timescale neurons
(Cavanagh et al., 2018; Wasmuht et al., 2018). When the
population of lateral prefrontal neurons were split according
to their timescale, the group with longer timescales exhibited
stable mnemonic coding whereas those with shorter timescales
displayed dynamic coding (Figure 4D). These results reveal that
in addition to the strength of encoding, intrinsic timescales
can also explain computational dynamics, which here has
proven useful in reconciling stable and time-varying working
memory theories. While in these two studies the target of
working memory was an object or spatial array, a similar
separation of stable and dynamic subspaces has recently been
found for value-coding neurons in OFC and ACC as well,
suggesting this may be a general property of PFC coding
(Enel et al., 2020).

Surprisingly, although long timescale neurons exhibited a
stable pattern of encoding, this was disrupted by the presentation
of a salient distractor (Cavanagh et al., 2018; Figure 4D). One
may have predicted that the maintenance of stable encoding
would be important to shield mnemonic information from
distraction, and that long timescale neurons would be essential
for this process. This result may instead indicate that the
function of these long timescale neurons is the integration of
multiple pieces of task-relevant information, rather than the
stable maintenance of individual pieces of information. These
alternative hypotheses tie directly in to the ideas proposed at
the start of this review: is the function of a temporal receptive
field to maintain information for a fixed time window, or to
integrate all of the information occurring within that window?
Unfortunately, all of the cognitive paradigms reviewed so far have
been unable to arbitrate between these two hypotheses because
the task-relevant stimuli do not vary sufficiently across time.
Although the decision-making task discussed earlier (Cavanagh
et al., 2016) involves the gradual integration of implicit, noisy
value estimates across time (Gold and Shadlen, 2007; Hunt
and Hayden, 2017), these internal estimates are not accessible
to the experimenter. Future work could utilize a decision-
making paradigm with experimenter controlled time-varying
evidence (Kira et al., 2015; Cavanagh et al., 2020), which requires
the combination of many different stimuli. A paradigm such
as this dissociates individual information from the integrated
total, and would help to determine whether intrinsic timescales
better predict a functional role in information integration
or maintenance.

So far, most of the research in this area has focussed
on how long timescale neurons may be more functionally
important for extended cognitive processes. However, there
has been less evidence presented regarding the possible roles
of short timescale neurons. This has been addressed by a
recent study which demonstrated that during an inter-trial
period neurons with short timescales encoded momentary
feedback information more strongly (Fontanier et al., 2020). This
contrasted with long timescale neurons, which at this point of

the task preferentially encoded information which was relevant
for future decisions which would occur in subsequent trials.
Additionally, there has also been some evidence to suggest
that neurons with shorter timescales may encode information
at a shorter latency (Wasmuht et al., 2018; Figure 4C). It
is unknown whether neuronal timescale varies as a function
of cortical layer, but as we discuss further below, this result
would be consistent with shorter timescale neurons residing in
layer IV (and so receiving earlier input), and longer timescale
neurons residing in layers II and III (where local recurrent
excitation would allow temporally extended computation to
occur). Furthermore, it has been suggested that short timescale
neurons may utilize a time-varying dynamic representation
in order to increase coding dimensionality (Wasmuht et al.,
2018)—a computational feature which may be crucial for
complex behavior (Rigotti et al., 2013). However, these ideas
will have to explored more specifically in future studies (see also
section on ‘‘Computational Advantages of a Diversity of Within-
Region Neuronal Timescales’’).

In addition to quantifying the rate of exponential decay
of spike-count autocorrelation, it is important to consider
other features of the autocorrelograms. Single-neuron
autocorrelograms also significantly vary in their offset, and
the importance of this parameter has yet to be explored. One
recent study also identified important heterogeneity in the
initial time-lag before autocorrelation begins to decay as a
function of time (Fontanier et al., 2020), a feature which was
particularly prominent in cingulate cortex (Murray et al.,
2014; Cavanagh et al., 2016, 2018; Fontanier et al., 2020).
Related to the time-lag of autocorrelograms, other studies
in rodents have demonstrated diversity in the time-lag of
stimulus representations (Harvey et al., 2012; Morcos and
Harvey, 2016; Scott et al., 2017). This pattern of activity could
arise from network architectures facilitating the sequential
activation of individual neurons, and may be a mechanism
through which a dynamic population code could underlie the
retention of information in working memory (Goldman, 2009;
Rajan et al., 2016).

Aside from analyzing resting spike-count autocorrelation,
other researchers have devised different methods to quantify
single neuron temporal receptive fields (Bernacchia et al., 2011;
Scott et al., 2017; Dragomir et al., 2020; Hart and Huk, 2020;
Spitmaan et al., 2020). The majority of these have focussed on
the temporal dynamics of task-related encoding—highlighting
a heterogeneity for the duration of information maintenance
across neurons within the same brain region. An advantage
of the autocorrelation approach is that by considering resting
activity, it can quantify the intrinsic properties of the neuron,
and then determine how these intrinsic properties influence the
neuron’s role in computations. Hence, this approach can provide
broader insights about the underlying cortical architecture (see
also later section on ‘‘The Anatomical and Biophysical Basis of
Single Neuron Timescales’’). Furthermore, during the pre-trial
fixation period, the subjects are in a controlled, attentive state
without eye movements or knowledge of the forthcoming
task stimuli. This minimizes the potential confounds of any
task-related responses, and facilitates an analysis method that
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can be applied and compared across many datasets. However,
there are also important advantages to quantifying timescales
using patterns of task selectivity—such as having access to
a greater amount of data than that limited to the fixation
period. This may help to identify neurons with timescales much
longer than can be captured with an exponential limited to a
1,000 ms fixation window. A further advantage of this method
is being able to relate the extracted timescales more directly
to behavior. These timescales may be far longer than those
quantified using resting autocorrelation (Bernacchia et al., 2011;
Spitmaan et al., 2020), and the two may or may not be directly
related (Spitmaan et al., 2020). While quantifying timescales
directly using task selectivity has provided interesting results,
a more detailed discussion of these is outside the scope of
this review.

THE ANATOMICAL AND BIOPHYSICAL
BASIS OF SINGLE NEURON TIMESCALES

This section will set out to address what factors contribute to the
diversity of single neuron timescales (Figure 5A). As a starting
point, it will consider factors which have already been suggested
to contribute to the diversity of timescales at the level of cortical
regions, and try to apply these at a more local level.

Local Connection Patterns
When addressing the biophysical basis of intrinsic timescales at
the single neuron level, it is helpful to first consider existing
work probing the determinants of timescales at the level of
cortical regions (Chaudhuri et al., 2015). Chaudhuri et al. (2015)
developed a large-scale dynamical model of macaque neocortex
where each brain area is described by a recurrent network
(Figure 1D). Both local and inter-regional circuit mechanisms
contributed to a hierarchy of timescales across cortical areas
(Figure 5B), which closely resembled the experimental timescales
derived from autocorrelation (Murray et al., 2014). A particularly
important feature of the model was that regions higher in the
cortical hierarchy were endowed with stronger local excitatory
connection strength, motivated by the empirical observation that
pyramidal neurons in these regions possess a greater number of
dendritic spines (Elston, 2000, 2003). However, the experimental
evidence suggests there is widespread heterogeneity in spine
density within cortical regions (Elston, 2003)—mirroring the
variability in single neuron timescales presented in this review. It
is therefore important to consider whether local, within region,
differences in excitatory connection strength contribute to single
neuronal timescales.

By extending the inferences made at the level of cortical
regions (Chaudhuri et al., 2015), it is likely that neurons
with the longest timescales have the strongest levels of local
recurrent connections. One way to examine this hypothesis is
to consider noise correlations—the spike count correlation
between pairs of simultaneously recorded neurons—as
an indirect measure of connection strengths (Cohen and
Kohn, 2011). Intriguingly, initial analyses suggest longer
timescale cells exhibit higher noise correlations—and hence
stronger local connection strengths (Wasmuht et al., 2018;

Figure 5C). There is also evidence suggesting that the
stable population codes generally observed in higher cortical
areas are supported by stronger coupling between neurons
(Runyan et al., 2017). In addition to the strength of local
connectivity, the architecture of those connections may be
of relevance. Aside from the temporal domain, it has been
shown directly that neurons in mouse primary visual cortex
with stronger connectivity share more similar spatial receptive
fields (Cossell et al., 2015; Lee et al., 2016). Future studies
could examine whether there is a similar association for
temporal receptive fields. Interestingly, theoretical work has
proposed classes of network architecture that could facilitate
a diversity of timescales differentially concentrated in separate
parts of the wider network. This can be realised through
localized eigenvectors in the network’s connectivity matrix
(Chaudhuri et al., 2014).

Significant insights into the role of local connectivity in single
neuron timescales have also been provided by computational
modeling. Computational accounts have stressed the importance
of heterogeneous local connection weights for producing a
diversity of single neuron timescales (Bernacchia et al., 2011;
Chaudhuri et al., 2014). A separate body of theoretical work
has also investigated how a closely related temporal feature of
neural activity, population sequences where individual neurons
have dynamic responses with heterogenous latencies, may arise
(Goldman, 2009; Harvey et al., 2012; Rajan et al., 2016). This
may be through a highly structured feedforward architecture
(Goldman, 2009), or a random network with minimally adjusted
connections (Rajan et al., 2016). It is plausible that such
architectures could also account for a heterogeneity of timescales.
For instance, neurons at different positions in a feedforward
network may have a different timescale as well as latency,
although this has yet to be explored.

Recent work employing artificial spiking recurrent neural
networks (RNN) has also provided further evidence of
the importance of local connection patterns in determining
neuronal timescales (Kim and Sejnowski, 2020). RNNs trained
to perform working memory tasks were shown to contain
neurons with a heterogeneity of timescales (Figure 5D). As in
the electrophysiological data, neurons with longer timescales
exhibited stronger and more stable encoding. Interestingly,
a heterogeneity of timescales only emerged once RNNs
had been trained to perform a temporally extended task
(as opposed to a task not requiring the maintenance of
information across time; Figure 5D), and was most dependent
upon local connection strengths. Surprisingly, the connection
strengths between pairs of inhibitory neurons were particularly
important. Despite the fact that the networks were trained
with a biologically implausible gradient descent learning
algorithm, it will be important to explore these insights with
more biophysically realistic network architectures along with
experimental data.

Inter-regional Connection Patterns and
Cortical Layer
In addition to local connectivity, the other vital architectural
feature facilitating heterogenous timescales across brain areas
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in a biophysical circuit model was the pattern of inter-
regional connectivity (Chaudhuri et al., 2015; Figures 1D,
5B). The specific constellation of inputs and outputs to
a brain region was critically important in determining its
timescale. In short, the higher a brain region is located in an
anatomical hierarchy, as defined by its inter-areal connections
(Markov et al., 2014a), is strongly predictive of its average
neuronal time-constants (reviewed in Wang, 2020). When
applying this insight to single neurons, we should consider
connectivity profiles at the level of cortical regions merely a
helpful sketch of an infinitely more detailed neural architecture.
Within a given brain region, the incoming and outgoing
projections from each neuron are inevitably varied. A minority
of neurons may receive direct projections from other regions,
or be closely connected with other cells that do, whereas
further neurons may be relatively distant from extra-regional
input. Therefore, it is possible this heterogeneity in inter-areal
projections may be another contributor to determining single
neuron timescales.

The inter-region connectivity profile may relate to the
cortical layer within which the neuron is situated. For instance,
neurons with feedforward connections typically reside in
supragranular layers, while those with feedback connections
inhabit the infragranular layers (Felleman and Van Essen, 1991;
Markov et al., 2014b). Interestingly, the cortical layer may
also determine the degree of local connectivity, with neurons
in layer III of prefrontal cortex thought to have particularly
strong recurrent connections (Goldman-Rakic, 1995; Kritzer
and Goldman-Rakic, 1995) reflected by an increase in spine
density in prefrontal and parietal cortices relative to early sensory
areas (Elston, 2003; Elston et al., 2011; Gilman et al., 2017).
Recent studies have leveraged new technologies to demonstrate
that task-related working memory activity mainly resides in
supragranular layers (Markowitz et al., 2015; Bastos et al., 2018;
Finn et al., 2019), providing experimental evidence that recurrent
circuitry may be important for generating persistent activity.
In future studies, laminar electrode probes may also provide
insight into the relationship between neural timescales and
cortical layer.

Beyond single neuron electrophysiology studies, recent work
has shown that the functional connectivity between brain
regions, as determined by resting state fMRI BOLD signal
or magnetoencephalography (MEG), is also closely related
to the hierarchical heterogeneity in local circuit properties
(Demirtas̨ et al., 2019). A large-scale biophysical model of
cortex, with the intrinsic properties such as the levels of
excitation and inhibition of individual brain regions varied
according to their hierarchical position (Burt et al., 2018),
was able to closely mirror human resting state functional
connectivity measures (Demirtas̨ et al., 2019). It was also
able to predict a hierarchical topography of spectral features
of resting-state MEG. An important advance of this study
was that it accounted for heterogenous circuit properties
between regions (although not within them). This suggests
that at a more local level, the within-region heterogeneity
we have discussed in this article (which we posited to be
important in determining timescale) may also have an important

influence on functional connectivity and oscillatory activity. This
provides a link between neuronal timescales and large scale
brain networks.

Cell Type and Receptor Expression
The neuron type, for instance whether it is excitatory or
inhibitory, likely has an impact on a cell’s timescale. In prominent
spiking circuit models for extended cognitive processes, such
as decision-making and working memory, pyramidal cells
and interneurons play different functional roles (Brunel and
Wang, 2001; Wang, 2002). Subgroups of pyramidal cells
exhibit stimulus-specific persistent activity for particular choice
options or memoranda, while interneurons provide non-selective
inhibition. If this architecture is indeed present in primate cortex,
it is likely excitatory neurons embedded within richly reverberant
pools should have longer timescales than interneurons, as
well as other non-selective pyramidal neurons. Some recent
experimental evidence using neuronal spike width as a proxy
for cell type suggests that the ratio of putative pyramidal
to inhibitory neurons increases progressively up the cortical
hierarchy, possibly facilitating stronger persistent dynamics
(Torres-Gomez et al., 2020). Although using this technique could
reveal information about the biophysical basis of single neuron
timescales, a more reliable investigation of the role of different
cell types may require experimental techniques currently
only available in rodents. This may also uncover dissociable
timescales in different types of GABAergic interneurons which
are hypothesized to play distinctive roles in persistent activity
(Wang et al., 2004).

Another important determinant of neuronal timescales
may be neurotransmitter receptor expression. Slow decaying
NMDA receptor (NMDA-R) synaptic currents, which allow
post-synaptic neurons to remain depolarized for a greater length
of time, are thought to be critical for the stability of neural activity
(Wang, 2001). NMDA-R expression is variable across neurons,
and given its importance for persistent activity, likely contributes
to a neuron’s timescale. This could be tested empirically using
iontophoresis of NMDA-R antagonists (Wang et al., 2013). The
specific subunit combination of the NMDA-R may also be of
relevance. NMDA-R are heterotetramers, meaning they are the
assembly of four distinct subunits. Each NMDA-R typically
consists of two NR1 subunits, together with two NR2 subunits.
While the eight possible splice variants of the NR1 subunit are
relatively similar, the four varieties of NR2 subunits (NR2A,
NR2B, NR2C, NR2D) are more heterogeneous. The NR2 subunit
expressed in each receptor is therefore important in determining
its kinetic properties (Monyer et al., 1994; Vicini et al., 1998).
The NR2 subunits are differentially expressed across different
cell types, brain regions, and at different stages of development
(Watanabe et al., 1992; Monyer et al., 1994). Interestingly, recent
work has shown that the NR2B subunit is increasingly expressed
further up the anatomical hierarchy, with the greatest expression
in prefrontal cortex (Wang et al., 2008; Burt et al., 2018).
Therefore, at a more local level, the degree to which a neuron
expresses the NR2B subunit may be important in determining its
timescale. In addition to the NMDA-R, other neurotransmitter
systems may be relevant, particularly those exerting ascending
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neuromodulation such as dopamine (Arnsten et al., 2015) and
acetylcholine (Croxson et al., 2011).

In summary, we have discussed a broad range of factors
which may contribute to a neuron’s timescale—namely cellular
morphology, connectivity profile, and receptor expression
(Figure 5A). When randomly sampling neurons within the
macaque prefrontal cortex, the morphology, cell-type, cortical
layer and synaptic features are unknown. Recorded neurons
are therefore likely sampled from separate subnetworks
with differing underlying properties. This may explain the
heterogeneity observed in neuronal timescales.

COMPUTATIONAL ADVANTAGES OF A
DIVERSITY OF WITHIN-REGION
NEURONAL TIMESCALES

The general advantages of processing information across a
range of temporal scales at the whole brain level are clear.
Short timescales allow one to respond rapidly to important
changes in the environment, while long timescales facilitate the
integration of information to improve the signal-to-noise of
working-memory and decision-making computations. Previous
perspectives have addressed the computational advantages of a
diversity of processing timescales in detail, and suggested these
processes may occur in different brain areas. However, here
we will specifically consider why it would be computationally
advantageous for individual brain regions to also possess their
own diversity of timescales.

While the distinction of neuronal timescales at the level of
cortical regions has proven important, this has most commonly
been framed in the context of processing simple sensory stimuli.
In reality, the brain must also process much more complex
features of the environment across a range of timescales. The
computation of many of these complex features is limited to
cortical association areas, as neural computations are constrained
by a region’s anatomy. These computations often require the
integration of many different attributes, but not necessarily
across time. To compute the value of a reward—its probability,
magnitude, any delay before receiving it, and the acquisition
costs must be integrated. Like transient sensory stimuli, values
can also evolve sporadically. It is thus important that values are
dynamically tracked to facilitate rapid responses to the sudden
appearance of a highly rewarding stimulus that is too good
to miss, but also integrated gradually across time to improve
signal-to-noise ratio and maximize decision-making accuracy.
By extension, if the computation of complex features such
as value are limited to higher cortical regions, it would be
advantageous if neural populations within cortical association
regions also had a range of diverse timescales for processing
value. There is now some experimental evidence showing how
this may occur—with neurons in cingulate cortex showing
different responses according to their timescale. During an inter-
trial period, short timescale neurons signalled the outcome from
the immediately preceding trial, whereas long time scale neurons
encoded a separate piece of information which was relevant to
future decisions on subsequent trials (Fontanier et al., 2020).

Another useful implementation for this diversity of timescales
would be in reinforcement learning (Sutton and Barto, 1998).
Here, agents compute reward expectation by using a temporal
filter to weigh previous outcomes. The optimal timescale for
the filter is dependent upon the volatility of the environment;
in a stable setting a long temporal filter allows more accurate
predictions, whereas in a dynamic setting a short temporal
filter should be employed to track changing payoffs (Behrens
et al., 2007). Through applying a differential weighting to
neurons with different reward timescales in response to changes
in environment volatility, efficient reward expectations could
be estimated. There is already experimental evidence for
heterogenous reward timescales, with neurons integrating to
different degrees across previous outcomes (Bernacchia et al.,
2011). A similar concept has been explored in a recent
neuroimaging study, where ACC was shown to possess a
range of learning rates when humans made decisions in
a volatile environment (Meder et al., 2017). It would be
interesting for future studies to explore how these timescales
are utilized. Specifically, whether the outputs of neurons
with different timescales are indeed weighted differently by a
decoder somewhere within the brain according to the current
environmental volatility. This would be in line with similar
previous observations of how neural population activity can
be flexibly weighted according to current behavioral demands
(Raposo et al., 2014), and shed light on how a brain region may
utilize its diversity of timescales.

A brain region potentially capable of implementing these
ideas is the ACC. ACC neurons not only encode choice and
reward history (Seo and Lee, 2007), ACC activity encodes
reward information and learning rates over diverse temporal
scales (Bernacchia et al., 2011; Meder et al., 2017). Moreover,
in the case of both the anatomical connection density patterns
(Chaudhuri et al., 2015) and intrinsic neuronal time constants
(Murray et al., 2014; Cavanagh et al., 2016), ACC is at the top of
the cortical hierarchy, potentially organized in local anatomical
gradients (Meder et al., 2017). The simultaneous representation
of multiple time constants in ACC may allow the computation
of reward trajectories by comparing estimates of recent and past
reward rates.

In addition to adaptively weighting neurons according to their
timescales, the temporal dimensionality of neural representations
is also relevant for decoding. When encoding an item in
working-memory, one computational perspective suggests that
a stable pattern of neural population activity is preferable—as
irrespective of the passage of time, a downstream decoder can
utilize the same readout weights for the interpretation of a
mnemonic representation (Murray et al., 2017). As we have
shown earlier in this piece, neurons with long timescales may
be particularly adapted to perform this stable maintenance
function (Cavanagh et al., 2016, 2018). A recently emerging,
and highly influential, concept in computational neuroscience
has been the importance of mixed selectivity in maximizing
the dimensionality of neural representations (Rigotti et al.,
2013; Fusi et al., 2016; Stringer et al., 2019). In tasks with
multiple features, prefrontal neurons generally encode these
features with non-linear interactions, and this in turn maximizes
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the number of different available linear classifiers which could
be utilized for readout. In addition to mixing the activity
across neurons, varying the activity across time would further
increase the dimensionality (Wasmuht et al., 2018). Therefore,
while the stable coding schema offers some advantages, this
is at the expense of minimizing the possible dimensionality of
encoding relative to a population whose activity varies across
time. By possessing subpopulations of neurons with different
timescales, the prefrontal cortex is simultaneously providing
easily-interpretable readout, as well as a high dimensional
one—dependent upon which neurons a downstream decoder
chooses to listen to at any given time. This would appear an
important advantage of individual brain regions being capable of
processing information across different timescales.

In addition to determining the value of stimuli, flexibly
applying abstract rules is another important aspect of higher-
level cognition (Miller and Cohen, 2001). It requires an agent
to modify their response to a stimulus according to dynamically
changing contexts or goals. Similar to value computations,
experimental evidence suggests the neural substrates for rule
based processing reside within higher cortical areas such as
prefrontal cortex (Buckley et al., 2009); with neurons encoding
abstract rules and rapidly altering how stimulus features are
mapped onto actions (Wallis et al., 2001; Buschman et al.,
2012; Mante et al., 2013). These rules are often implemented in
a hierarchical fashion (Botvinick et al., 2009) which naturally
necessitates the organization of behavior at a range of different
timescales. Such behaviors often need to be applied rapidly based
upon a single salient piece of information, and this would not
be possible if prefrontal cortex was only capable of processing
information across long timescales as suggested from previous
studies (Murray et al., 2014; Hasson et al., 2015).

Another cognitive process which may involve a diversity
of neuronal timescales is evidence accumulation. Evidence
accumulation refers to the process by which information favoring
alternative hypotheses is gradually integrated over time, and has
been proposed to underlie perceptual, value-based, and many
other forms of decision (Gold and Shadlen, 2007; Krajbich et al.,
2010; Shadlen and Kiani, 2013). A series of recent behavioral
studies have revealed that the timescale across which evidence
is accumulated can be flexibly adjusted according to features of
the stimulus or environment (Ossmy et al., 2013; Glaze et al.,
2015; Bronfman et al., 2016; Levi et al., 2018; Piet et al., 2018;
Ganupuru et al., 2019). For instance, in change detection tasks,
humans weigh evidence differently according to how long they
expect the intervening ‘‘change’’ in a noisy background stimulus
to last (Ossmy et al., 2013). By adopting a shorter accumulation
timescale for expected signals with a briefer duration, humans
can perform this challenging task effectively. One mechanism
by which the decision timescales could be adjusted is through
individual brain regions having access to neural representations
accumulating evidence across a diversity of timescales- as we
have proposed in this review. This solution would provide a
flexibility which could solve many more complex problems
faced in the real world. For instance, Ossmy et al. (2013)
contemplate a real-world example whereby a radar operator must
interpret whether signal fluctuations may represent a missile,

a passenger plane, or noise. In this problem, the brain must
simultaneously accumulate evidence to detect the two important
features (missile and plane), which may have different signal
patterns/durations. A brain region utilizing a heterogeneity of
timescales and applying them to integrate the same visual signal
would be well suited to solve this problem. Another example
of where this may be useful is situations where different types
of decisions, which may use different criteria, must be made
based on the same stimulus. A recent study suggested that
during a similar change detection task, humans used separate
timescales for the initial decision that they had detected a
stimulus change, and a second decision to gauge their confidence
(Ganupuru et al., 2019). This provides further evidence to
suggest that the brain simultaneously has access to multiple
neural representations of accumulated evidence across different
timescales. These concepts will need to be explored further in
future neurophysiological studies probing flexible timescales in
evidence accumulation.

Interestingly, work from computational modeling studies
suggests that a heterogeneity of timescales is not a default
property of neural networks (Kim and Sejnowski, 2020). This
heterogeneity only begins to emerge after the network is trained
to perform a temporally extended task. Networks trained to
perform a simpler response-based task, without any temporal
component, had shorter and less heterogenous timescales. This
is further evidence that this heterogeneity is present to support
the computations discussed in this review: decision-making and
working-memory.

Although many of the studies above focus on the processing
of task-relevant stimuli, it is also likely that a similarly
broad range of timescales of operation may be needed when
performing motor control; in particular for temporally extended
sequences of complex actions. For example, a recent theoretical
account of motor cortex dynamics used a network model
with balanced excitation and inhibition to generate ‘‘stability-
optimized circuits’’ (SOCs) that could generate complex
movements (Hennequin et al., 2014). The authors found that
in order to generate such movements, the time constant of
membrane and synaptic dynamics in the SOCs (∼200 ms)
had to be set to match the dominant timescale in the data
they were trying to model (Churchland et al., 2012), giving
these connections a slower time-constant than other randomly
connected synapses in the same model. They argued that such
segregation of fast and slow time-constants may even arise within
the same neuron, via the respective contribution of proximal
and distal synapses in the dendritic arbor. Further evidence
supporting a diversity of timescales within a single motor control
region comes from functional MRI studies of sequential skilled
motor performance in humans (Yokoi and Diedrichsen, 2019).
Here, contrary to the common hypothesis of an anatomical
division of labor between different levels of a motor control
hierarchy, it was instead found that the representation of (short-
timescale) movement ‘‘chunks’’ and (long-timescale) movement
‘‘sequences’’ can be spatially overlapping in premotor and
parietal areas.

One important consideration is how the resting
autocorrelation time constants of individual neurons (generally
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ranging from tens to hundreds of milliseconds) can be related
with behaviors that occur across timescales which are orders
of magnitude longer. Many of the behaviors discussed in this
section occur across timescales much greater than the longest
individual neuronal timescale measured. This likely reflects that
these behaviors are generated by network-level states, to which
the contribution of individual neurons is at least somewhat
redundant. Furthermore, as the timescales are assigned during
a short window of resting activity, their values likely reflect
only a fraction of the duration of persistent activity which could
potentially be supported. It is also important to remember this
same challenge applies to current circuit models which have
assigned timescales of similar magnitudes to cortical regions
(Chaudhuri et al., 2015).

IMPLICATIONS FOR FUTURE
ELECTROPHYSIOLOGY STUDIES

In this review, we have demonstrated that an individual
neuron’s intrinsic timescale while at rest provides insight into its
functional properties and roles during cognitive tasks. This has
important implications for how neurophysiological datasets are
collected and analyzed. For instance, one commonly employed
tactic in neurophysiology recordings in areas such as the lateral
intraparietal sulcus has been to preselect which neurons to
record from based upon their properties during a memory-
guided saccade task (Gnadt and Andersen, 1988), in order
to establish that neuron’s receptive field. When using this
technique, investigators select neurons which exhibit stable,
persistent activity before examining their properties during a
cognitive task of interest. It is therefore likely that they are
predominantly sampling neurons with longer timescales. While
this approach has proven fruitful, and it is understandable
given the technological challenges of recording from sufficient
numbers of neurons, it has likely led to a biased perspective of
the overall neural dynamics. For instance, it may have overstated
the proportion of neurons exhibiting stable activity during
working-memory tasks and gradual ramping activity during
perceptual decision-making (Goldman-Rakic, 1995; Gold and
Shadlen, 2007). This is important because it entirely overlooks
the roles of neurons with non-classical response profiles. It
also has arguably led to an over-emphasis of the capabilities of
individual neurons, supported by idealised examples, and the
disregarding of more sophisticated population-level solutions
to computational problems (Rigotti et al., 2013). A more
complete understanding of neural computations requires us to
understand the roles of all of the neurons in these cognitive
processes, and the recording of as representative a sample as
possible in order to appreciate how neurons function together
as a population. Fortunately, new technologies are becoming
increasingly available that will allow investigators to record from
many neurons simultaneously across each cell layer (Sofroniew
et al., 2016; Jun et al., 2017). This should hopefully facilitate a
more unbiased characterization of the heterogeneity of neuronal
responses. If researchers are particularly interested in a certain
subpopulation of neurons with stable activity, they will still
be able to find these neurons post hoc using the timescale

method discussed in this review. However, they will also have
access to a plethora of extra information about what neurons
with other timescales are doing, and how the population as a
whole behaves.

Although this review has primarily focussed on macaque
neurophysiology studies, future work may also seek to apply
the timescale analyses to high-density electrophysiological
recordings collected from rodents (Siegle et al., 2019); where
cognitive processes are being studied with an increasingly
sophisticated repertoire of techniques. These include the
precise perturbation of neural circuits, recording from
genetically identifiable neurons and the implementation of
neuropsychiatric disease models. These experiments would
provide some more concrete insights into the determinants of
single neuron timescales.

One important limitation of the majority of
neurophysiological datasets considered in this review is
that they study a behavior which requires the prolonged
maintenance/integration of information. It therefore makes
sense that a prominent role for long timescale neurons in these
computations was established. However, to fully explore the
functional importance of a diversity of timescales, tasks which
require tracking information (and modulating behavior) over
both short and long timescales should be explored (Behrens
et al., 2007; Daw et al., 2011; Massi et al., 2018). Future work
should try to establish if there is an important role for neurons
with shorter timescales in such tasks. Another important
consideration is to study a task which simultaneously requires
the dynamic tracking of complex information, as well as its
gradual integration. As suggested earlier in this piece, one
possibility would be to record neurophysiological activity on an
evidence integration task, where subjects must combine many
samples with unique characteristics. This would make clearly
dissociable predictions for the neural representations to expect
in shorter timescale (momentary evidence) and longer timescale
(integrated evidence) neurons.

Furthermore, while the partition of neurons into short
and long timescale provides intuition and is necessary when
analyzing the patterns of coding at the population level, it
is a relatively coarse simplification of the underlying concept
of a heterogeneity of single-neuron timescales. Ideally, a task
design would demonstrate the utility of a diverse continuum of
timescales. For instance, subjects could be trained to temporally
filter previous rewards across a different number of trials
according to a cue presented each trial. This should require
the processing of reward across a range of timescales, and
the trial-wise adaptive weighting of each timescale population
dependent on the behavioral cue.

CONCLUSION

In summary, we have reviewed important electrophysiological
evidence from a series of recent studies that convincingly
demonstrate the heterogeneity of timescales at the level of
single neurons within a cortical region. This heterogeneity is
functionally relevant for the computations that neurons perform
during decision-making and working memory. A neuron’s
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timescale is likely determined by the neurotransmitter it releases,
its local connectivity pattern, receptor expression, and cortical
layer. It is important for individual brain regions to have
neurons with a heterogeneity of timescales, as many high-level
cognitive processes such as learning, planning, and rule-based
behavior require making adaptive decisions to changing
environmental demands. These computations generally occur
in higher cortical regions which have a long timescale when
considered as a whole-brain region, but individual neurons in
these areas display a diversity of timescales. A heterogeneity
of timescales also offers a compromise between robust stable
representations that are easy to read out and those which
are most efficient and high dimensional. Future experimental
work further demonstrating some of the advantages of short
timescale neurons in higher cortical areas, and how a population
may effectively utilize a whole distribution of timescales, will
further strengthen our arguments about their computational
role. The method we have outlined has already provided
important computational insights and will prove an increasingly
valuable tool as researchers start to record from more
neurons simultaneously.
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