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The locus coeruleus (LC), a small brainstem nucleus, is the primary source of the
neuromodulator norepinephrine (NE) in the brain. The LC receives input from widespread
brain regions, and projects throughout the forebrain, brainstem, cerebellum, and spinal
cord. LC neurons release NE to control arousal, but also in the context of a variety
of sensory-motor and behavioral functions. Despite its brain-wide effects, much about
the role of LC-NE in behavior and the circuits controlling LC activity is unknown. New
evidence suggests that the modular input-output organization of the LC could enable
transient, task-specific modulation of distinct brain regions. Future work must further
assess whether this spatial modularity coincides with functional differences in LC-NE
subpopulations acting at specific times, and how such spatiotemporal specificity might
influence learned behaviors. Here, we summarize the state of the field and present new
ideas on the role of LC-NE in learned behaviors.

Keywords: locus coeruleus, noradrenaline (norepinephrine), neuromodulation, learning, inhibition, arousal,
learned behavior

INTRODUCTION

Norepinephrine (NE) is one of the four main neuromodulators in the brain, exerting widespread
influence over almost all cortical and subcortical brain regions. Neurons in the locus coeruleus
(LC) release NE to regulate baseline arousal and to facilitate a variety of sensory-motor and
behavioral functions (Aston-Jones and Cohen, 2005; Sara, 2009; Sara and Bouret, 2012; Poe et al.,
2020). Dysfunction in the LC-NE system has been implicated in the etiology of ADHD (Arnsten,
2011), schizophrenia (Friedman et al., 1999), anxiety or stress (Valentino and Van Bockstaele, 2008;
Arnsten et al., 2015; Reyes et al., 2015), and depression (Delgado and Moreno, 2000), as well as in
the cognitive decline observed in aging and Alzheimer’s disease (Weinshenker, 2008).

Despite its brain-wide effects and established involvement in CNS disorders, much about
even the normal function of the LC-NE system in the brain remains unknown. For example,
the conditions under which LC-NE neurons are transiently activated and the modes of NE
action during learned behaviors are poorly understood, especially in comparison to other
neuromodulatory systems, such as dopamine (Schultz et al., 1997; Schultz, 1998, 2016; Engelhard
et al., 2019). There are at least three reasons for this gap. First, the activation of phasic NE has
been traditionally examined in the context of sensory, motor, or goal-oriented events with little
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consideration of its role in signaling temporal stimulus-action-
reward sequences or task parameters such as uncertainty. Second,
the functions of phasic NE have been interpreted in the context
of global or brain-wide influences, without considering selective
spatial targeting. Third, the LC is a small nucleus, with a
small number of neurons projecting throughout the brain, thus
exhibiting relatively low innervation density as compared to
other neuromodulatory systems, which typically have a larger
number of neurons with a distinct projection network (e.g.,
substantia nigra and ventral tegmental area for dopamine).
For this reason, methods for recording and manipulating LC-
NE activity during behavior have been technically challenging.
Recent studies have begun to overcome many of these challenges,
enabling a more thorough understanding of the role of LC-NE
in different aspects of cognition and behavior. Here, we review
the current state of the field and present new ideas on the
organization, activation, and function of LC-NE neurons.

ANATOMY OF THE NE SYSTEM

Despite its small number of neurons [∼3,000 neurons in the
rodent brain (Sara, 2009) and ∼50,000 in the human brain
(Sharma et al., 2010)], the LC serves as the primary source of
NE in the forebrain with a highly divergent set of projections.
Indeed, most cortical and subcortical areas receive dense LC-NE
axonal innervation with the marked exception of the striatum
(Pickel et al., 1974; Jones and Moore, 1977; Nomura et al., 2014),
which receives limited innervations from the LC (Zerbi et al.,
2019; Figure 1A). LC is reported to receive inputs from up
to 111 distinct brain regions, including most brain-stem and
forebrain regions (Schwarz et al., 2015; Breton-Provencher and
Sur, 2019; Figure 1B). Brainstem inputs, most notably from
the gigantocellular reticular nucleus (Jones and Yang, 1985) –
which responds to tactile, visual, vestibular, and olfactory stimuli
(Tabansky et al., 2018) – result in LC activation following salient
sensory stimuli. Meanwhile, top-down inputs from the prefrontal
cortex (PFC) and central amygdala can modulate the intensity
of LC activation (Sara and Hervé-Minvielle, 1995; Jodo et al.,
1998; McCall et al., 2015). These convergent inputs suggest its
recruitment in both bottom-up, sensory induced, as well as top-
down, goal-directed, regulation of behavior. This input-output
organization leaves the LC poised to modulate brain function
in response to external stimuli and internal states, and modify
it through learning. Determining the contexts that trigger LC
activity and how, in turn, this activity affects brain circuits is
critical to understanding the role of LC-NE in cognition.

LOCAL LC CIRCUITS

Norepinephrine neuronal bodies make up a dense LC “core,”
with LC-NE dendrites extending into a pericoeruleus “shell”
region. The pericoerulear region also contains GABAergic
(LC-GABA), glutamatergic, neuropeptide-S-expressing, and
cholinergic neurons (Xu et al., 2004; Boucetta et al., 2014; Cox
et al., 2016). Whether all these neuronal subtypes make direct

connections with LC-NE neurons, as well as their function in
LC modulated behaviors, remains unresolved. Nonetheless,
the neuronal subtype that has received the most attention is
the LC-GABA population, which forms inhibitory synapses
on LC-NE neurons (Aston-Jones et al., 2004; Jin et al., 2016;
Breton-Provencher and Sur, 2019; Kuo et al., 2020; Figure 2A).
Tracing experiments indicate that these LC-GABA neurons
receive inputs from largely the same brain regions as LC-NE
neurons, with only several regions exhibiting preferential
projections to either LC-GABA or LC-NE neurons (Breton-
Provencher and Sur, 2019; Figures 2B,C). Direct recordings
from LC-GABA neurons show that they are highly active during
wakefulness (Cox et al., 2016; Breton-Provencher and Sur, 2019).
A subpopulation of LC-GABA neurons are active simultaneously
with LC-NE neurons, reflecting coincident inputs to both LC-NE
and LC-GABA populations (Breton-Provencher and Sur, 2019).
Coincident inputs to LC-NE and LC-GABA neurons play a
critical role in controlling the phasic activity of LC-NE neurons
(Kuo et al., 2020) and resultant transient increases in arousal in
response to salient sensory stimuli (Breton-Provencher and Sur,
2019). Based on retrograde labeling, LC-GABA neurons would
receive preferential, or non-coincident, inputs from several brain
regions, suggesting that these regions can exert inhibitory control
of LC-NE activity (Breton-Provencher and Sur, 2019; Figure 2C).
Further studies using input mapping with electrophysiology
are required to confirm the existence of preferential inputs
to LC-GABA neurons. Yet, preferential inputs to LC-GABA
neurons have been reported in previous experiments studying
PFC inputs. Inactivation of the PFC in rats shows an increase
in firing rate in the LC (Sara and Hervé-Minvielle, 1995), and
axonal photo-activation of PFC inputs in the LC decreases
baseline LC-mediated arousal levels (Breton-Provencher and
Sur, 2019). Based on tracing experiments (Figure 2C), there
are several other regions that likely exert preferential inputs
to LC-GABA neurons, such as the superior colliculus or the
intermediate reticular nucleus, but the function and nature of
these input regions on the LC have been largely unexplored.

Whether the other neuronal subtypes in the LC shell – e.g.,
glutamatergic, neuropeptide-S-expressing, or cholinergic – form
direct connections with LC-NE neurons, or play a role in shaping
LC-NE activity, remains unknown. However, these neuronal
subtypes are predominantly active during wakefulness (Boucetta
et al., 2014; Cox et al., 2016), indicating that they could be
involved in spontaneous or learned behaviors. Future research
using physiological recordings and manipulations targeting these
different neuronal cell-types will enable a more comprehensive
understanding of LC local circuits.

LC-NE REGULATION OF AROUSAL AND
ATTENTION

One of the strongest behavioral correlates of LC-NE activity is
its link with vigilance states. LC-NE neurons are silent during
REM sleep, display low levels of activity during non-REM sleep,
and are most active during wakefulness (Aston-Jones and Bloom,
1981a; Swift et al., 2018; Hayat et al., 2020). Manipulating LC
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FIGURE 1 | Anatomy of the LC-NE system. (A) Anatomy of the outputs originating from the LC nucleus in human and mouse. Shaded areas indicate major
sub-regions that potentially send input to LC. In this illustration, we have assumed that input regions identified in mouse are similar in humans (B) Distal inputs to
LC-NE neurons obtained by retrograde tracing using rabies virus targeted at LC-NE neurons in mice. Input regions are grouped by: cortex (CTX), striatum (STR),
pallidum (PAL), hypothalamus (HY), amygdala (AMY), midbrain (MB), medulla (MY), and cerebellum (CB). The thickness of each line represents the strength of the
input from each region. Input strength was calculated by counting the number of cells retrogradely labeled in a specific area and dividing it by the total number of
retrogradely labeled neurons. Regions providing less than 0.5% of inputs were left out of this diagram. Local inputs from the pons were also excluded. PFC,
prefrontal cortex; MO, motor area; SS, somatosensory area; Acb, nucleus accumbens; CP, caudoputamen; BST, bed nucleus of stria terminalis; MS/NDB, medial
septal/diagonal band nucleus; MPO, medial preoptic area; DMH/PVH, dorsomedial/paraventricular nucleus; LHA, lateral hypothalamic area; ZI, zona incerta; PSTN,
parasubthalamic nucleus; CEA, central amygdala; SNc, substantia nigra; MRN, midbrain reticular nucleus; IPN, interpeduncular nucleus; PAG, periaqueductal gray;
SC, superior colliculus; IC, inferior colliculus; PRP, nucleus prepositus; IRN, intermediate reticular nucleus; GRN, gigantocellular reticular nucleus; SPV, spinal nucleus
of the trigeminal; CBX, cerebellar cortex; and CBN, cerebellar nuclei. Data in (B) from Breton-Provencher and Sur (2019).

FIGURE 2 | Circuits controlling local inhibition of LC-NE+ neurons. (A) Illustration of a coronal view of the LC and medial pericoeruleus area showing the location of
LC-GABA and -NE neurons. (B) Distal inputs to LC-GABA neurons obtained by retrograde tracing using rabies virus targeted at LC-NE neurons. Input regions are
grouped by: cortex (CTX), striatum (STR), pallidum (PAL), hypothalamus (HY), amygdala (AMY), midbrain (MB), medulla (MY), and cerebellum (CV). The thickness of
each line represents the strength of the input from each region. Input strength was calculated by counting the number of cells retrogradely labeled in a specific area
and dividing it by the total number of retrogradely labeled neurons. Regions providing less than 0.5% of inputs were left out of this diagram. Local inputs from the
pons were also excluded. (C) Comparison between the input strength to LC-NE versus LC-GABA for all distal brain regions targeting the LC area. The darkness of
each square in the top graph represents the fraction of input each region contributes to total input. Regions are divided between three types depending on whether
they send coincident or non-coincident inputs to LC-NE or LC-GABA neurons. See Figure 1 for a list of abbreviations. Data in (B,C) from Breton-Provencher and
Sur (2019).
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activity modulates vigilance state. High levels of photo-activation
of LC-NE neurons, mimicking LC phasic activity, promotes
sleep-to-wake transitions (Carter et al., 2010), while lower photo-
activation levels, resembling increased tonic activity, impair the
power of theta and delta frequencies measured with EEG during
sleep (Swift et al., 2018). Similarly, minimal photo-activation
of tonic LC-NE increases the probability of sensory-evoked
awakenings (Hayat et al., 2020). On the other hand, reducing
LC-NE activity with photo-inactivation decreases wakefulness
durations (Carter et al., 2010). Together, these results suggest that
LC-NE plays an important role in controlling vigilance states,
likely as part of a complex network involving neurons from the
brainstem, mid-brain, thalamus, and hypothalamus (Berridge,
2008; Lee and Dan, 2012; Gent et al., 2018).

The link between LC-NE activity and arousal is likely relevant
for explaining the role of LC-NE in learned behaviors during
wakefulness. LC activation tightly correlates with pupil size and
arousal level in mice (Reimer et al., 2016; Breton-Provencher and
Sur, 2019), monkeys (Joshi et al., 2016), and humans (Murphy
et al., 2014; Elman et al., 2017; DiNuzzo et al., 2019). This
activity of LC-NE neurons alone is sufficient to promote global
arousal in mice, as photo-activation or -inhibition of LC-NE
neurons during wakefulness increases or reduces arousal levels,
respectively (Carter et al., 2010; Lovett-Barron et al., 2017;
Breton-Provencher and Sur, 2019; Hayat et al., 2020). The mode
of activation of LC-NE neurons seems to play a key role in
arousal. Indeed, phasic activation over long periods (>1 h),
but not tonic activation, of LC-NE activity increases arousal
(Carter et al., 2010). Change in arousal can occur following phasic
LC-NE activation by salient or novel sensory stimuli (Aston-
Jones and Bloom, 1981b; Grant et al., 1988; Vankov et al., 1995;
Takeuchi et al., 2016). Often, this phasic activation scales with the
strength of behavioral action associated with the stimulus (Grant
et al., 1988; Breton-Provencher and Sur, 2019). Optimal cognitive
performance correlates with moderate levels of baseline LC-NE
activity, while uncontrolled LC-NE activity can lead to hyper-
arousal and anxiety behaviors (Valentino and Van Bockstaele,
2008; McCall et al., 2015, 2017; Li et al., 2018), exemplifying
the inverted-U relationship between brain functions and NE
activation (Yerkes and Dodson, 1908; Usher et al., 1999; Aston-
Jones and Cohen, 2005; McGinley et al., 2015).

Arousal alters attention by suppressing low-salience stimuli
while enhancing responses to highly salient or goal-directed
information; accordingly, LC-NE is also thought to be critically
involved in regulating attention through its brain-wide release
(Lee et al., 2018). Older adults typically exhibit a decline in
LC functional connectivity that correlates with an inability to
suppress non-salient information during arousal (Lee et al.,
2018). Global LC-mediated changes in arousal can alter attention
via gain control, though the mechanism by which this gain
control occurs remains unresolved. It has been shown that
pharmacological blockade of NE activity impairs the membrane
depolarization of cortical neurons that would naturally occur
during high levels of arousal (Constantinople and Bruno, 2011;
Polack et al., 2013; Schiemann et al., 2015). Arousal levels have
also been shown to modulate microglial response to brain injury
via β2 adrenergic receptors (Stowell et al., 2019). However,

a detailed analysis of the cell types and neuronal subtypes
being affected by NE during brain state changes is lacking.
Moreover, we have a poor understanding of the degree of brain-
wide modulation by LC-NE activity in vivo in awake behaving
animals. Finally, defining the function of LC-NE activity as a
global broadcast system of arousal might be too simplistic for
understanding its role in learned behavior, as we discuss later with
the emergence of modular functional data in the LC-NE system.

ACTIVATION OF LC-NE NEURONS
DURING LEARNED BEHAVIOR

The role of LC-NE neurons extends beyond arousal, attention,
and anxiety. Recordings or pharmacological manipulations of
phasic NE activity suggest a dual involvement in behavior and
cognition. First, LC activation is critical for sustained attention, as
its phasic activity correlates with behavioral responses in learned
behaviors (Bouret and Sara, 2004; Clayton et al., 2004; Rajkowski
et al., 2004; Bouret and Richmond, 2009, 2015; Kalwani et al.,
2014; Varazzani et al., 2015; Jahn et al., 2020). Non-targeted
recordings in the LC show a transient increase in firing rate
coinciding with behavioral response in tasks involving operant
or instrumental conditioning. This increase prior to motor
execution scales with the amount of effort or vigor exerted
(Rajkowski et al., 2004; Varazzani et al., 2015), but also with
expected reward size (Bouret and Richmond, 2015). During
periods of poor behavioral performance, LC activity is decreased.
Thus, it has been hypothesized that transient LC activity during
a learned behavior is critical for maintaining focused attention
on a task. Supporting this hypothesis, long-lasting blockade
of LC activity slows reward seeking behaviors (Jahn et al.,
2018), and pairing LC activity with a sensory stimulus improves
this response (Martins and Froemke, 2015). Though there is
abundant evidence for LC-NE activity facilitating behavioral
execution, how this is achieved, especially in the context of other
LC-NE functions, is an outstanding question in the field.

In addition to its role in facilitating behavioral execution,
LC activation is critically involved in learning and memory. LC
projections to the hippocampus, amygdala, and PFC influence
spatial learning and memory formation (Kempadoo et al.,
2016; Takeuchi et al., 2016; Uematsu et al., 2017; Wagatsuma
et al., 2017; Kaufman et al., 2020). For example, during passive
reinforcement learning, LC axonal activity in the hippocampus
is associated with the timing of reward in spatial memory
encoding (Kaufman et al., 2020). In tasks requiring active
learning, LC activity correlates with an animal’s ability to
form new stimulus/response associations: attentional set-shifting
paradigms show that LC activity is involved in the learning of
a new discrimination and in making extra-dimensional shifts
(Devauges and Sara, 1990; Tait et al., 2007; Janitzky et al., 2015;
Cope et al., 2019; Glennon et al., 2019). In rats performing a
linear maze navigation task, when animals undergo an extra-
dimensional shift requiring them to use visual cues instead of the
previously indicative spatial cues, boosting NE pharmacologically
accelerates the detection of the cue-shift and learning of a new
cue (Devauges and Sara, 1990). It has also been shown that in
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rats performing a task requiring a shift in association to a new
sensory cue within the same modality (intra-dimensional shift),
LC spiking activity precedes prelimbic cortex spiking activity,
suggesting that NE plays a critical role in the updating of task
rules (Bouret and Sara, 2004). Further, decreasing LC-NE activity
in the PFC over long durations with chemogenetics impairs a
rat’s ability to disengage from a cognitive task (Tervo et al., 2014;
Kane et al., 2017).

One mechanism by which LC-NE activity could enable
learning is through encoding of environmental novelty. In
naïve animals, electrophysiological measurements show that
LC activity increases in response to novel or salient stimuli
(Hervé-Minvielle and Sara, 1995; Vankov et al., 1995; Takeuchi
et al., 2016; Breton-Provencher and Sur, 2019), and this activity
quickly habituates (Hervé-Minvielle and Sara, 1995; Vankov
et al., 1995). In trained animals, non-targeted measurements of
LC spiking activity during learning of an operant conditioning
task shows transient LC activity linked with unexpected reward
(Bouret and Sara, 2004). Indeed, transient increase in LC activity
may represent “unexpected uncertainty” and serve as a neural
interrupt signal for unexpected events (Yu and Dayan, 2005;
Dayan and Yu, 2006). However, it remains unclear whether
increased LC activity in response to unexpected stimuli is causal
for learning mechanisms, and how this might co-exist with its
role in behavioral execution.

LC-NE ACTIVITY IN HUMAN COGNITION

It has been widely observed that LC dynamics correlate with
fluctuations in pupil diameter, both in human and animal
studies (Murphy et al., 2014; Joshi et al., 2016; Reimer et al.,
2016; Breton-Provencher and Sur, 2019). Many studies have
taken advantage of this correlation to study the role of the
LC in arousal (Krishnamurthy et al., 2017), learning (Nassar
et al., 2012), and uncertainty (Urai et al., 2017) in human
subjects. One such study suggests that LC-NE supports learning
through global modulations of neural gain (Lee et al., 2018).
High neural gain would enhance attention for selective stimulus
features, whereas low gain would broaden attention, promoting
processing of multiple stimulus features (Eldar et al., 2013;
Lee et al., 2018). fMRI data show that periods of high gain
and focused learning are associated with tightly clustered
functional connectivity, suggesting that increased gain enhances
selective interactions in brain networks (Lee et al., 2018).
In addition to the evidence for LC-NE activity modulating
feature processing through changes in the gain of global
networks, other experiments have implicated LC-NE in learning
through driving behavioral responses to uncertainty and volatility
(Krishnamurthy et al., 2017; Urai et al., 2017; Lawson et al.,
2021). Indirect measurements of NE activity in humans using
pupillometry report a correlation between unexpected outcomes
and increases in transient LC activity (Browning et al., 2015).
Experiments using human subjects performing a probabilistic
learning task show that blocking NE binding to β-adrenergic
receptors globally causes subjects to rely more on their prior
expectations when uncertainty is high (Lawson et al., 2021).

Similarly, in a study using an auditory localization task where
the predictability of the location varied over time, arousal was
found to adjust the strength of perceptual biases in a changing
environment (Krishnamurthy et al., 2017). These studies again
highlight the potential roles of LC-NE in human cognition:
driving attention and behavioral execution, and facilitating
learning through updating of priors. Although pupil dilations
strongly correlate with LC-NE activity, other neuromodulators
such as acetylcholine and serotonin also show some degree of
correlation with pupil size (Reimer et al., 2016; Larsen and
Waters, 2018; Cazettes et al., 2021). Further tools to investigate
neuromodulator dynamics will be required to disentangle
the role of LC-NE from that of other neuromodulators in
human behaviors.

THEORIES OF LC FUNCTION

Two predominating theories attempt to explain the role of the
LC in sensory-motor behavior: the adaptive gain theory (Aston-
Jones and Cohen, 2005) and the network reset theory (Bouret
and Sara, 2005; Yu and Dayan, 2005; Dayan and Yu, 2006).
The adaptive gain theory seeks to explain the phasic and tonic
modes of LC-NE activity. Phasic activity prevails during optimal
behavioral performance, where transient increases in LC-NE
activity facilitate task-specific decision processes (Usher et al.,
1999; Aston-Jones and Cohen, 2005). In contrast, tonic activity
prevails during periods of poor performance, where a general
increase in LC-NE activity increases the gain of a network
indiscriminately, making targeted circuits more responsive to any
stimulus (Usher et al., 1999; Aston-Jones and Cohen, 2005). Thus,
through adaptive gain, LC-NE activity optimizes the tradeoff
between exploitation and exploration behaviors by switching
between phasic and tonic activity, respectively. However, this
theory does not explain which environmental stimuli would
cue the LC to switch between these two modes. Further, this
theory does not offer an explanation for whether different
phasic activities exist temporally within tasks, and what the
roles of these temporally distinct phasic activations might be.
The network reset theory, on the other hand, suggests that
contexts requiring a change in behavior transiently activate LC-
NE neurons (Bouret and Sara, 2005; Yu and Dayan, 2005;
Dayan and Yu, 2006). These activating contexts lead LC-NE
neurons to induce widespread cortical arousal and reset network
activity in the brain. Similarly, it has been suggested that LC-
NE activity signals “unexpected uncertainty,” causing a reset in
network activity to enable an updating of priors (Yu and Dayan,
2005; Dayan and Yu, 2006). By signaling the need to update
priors, LC-NE would suppress top-down, expectation driven
information in favor of bottom-up sensory-induced signals to
enable learning and behavioral optimization. However, it is not
clear how LC responses during execution would not lead to
a network reset, and how phasically induced arousal relates
to the commonly described tonic regulation by NE of arousal
and internal state.

Though these theories of gain-modulation and network reset
are not mutually exclusive, neither alone can fully explain the
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role of LC-NE in the brain, and little progress has been made
in either refining or unifying them in the past 15 years. Recent
technological advances and increased tool availability enabling
precise measurements and manipulations of LC spiking activity
in awake behaving mice present a means of evaluating these
theories or advancing alternative proposals. Future studies on
the role of LC-NE in learned behavior will require well-designed
behavioral experiments to address these dual functions, while also
considering the heterogeneous nature of LC activity and potential
for spatial modularity of outputs.

MODULAR OUTPUTS OF THE LC

One way to reconcile the divergent roles for LC-NE activity is
suggested by recent evidence of spatial modularity within the
LC-NE neuronal population (Chandler et al., 2019; Foote and
Berridge, 2019; Poe et al., 2020). Historically, the LC has been
considered a homogenous nucleus, such that NE is uniformly
released to forebrain, brainstem, cerebellum, and spinal cord
(Aston-Jones and Waterhouse, 2016). Yet, retrograde labeling
shows that morphological characteristics and location within
the LC nucleus is predictive of the particular region a LC
neuron innervates (Loughlin et al., 1986a,b). Recent findings
using projection-based viral genetic labeling has confirmed this
view (Schwarz et al., 2015; Hirschberg et al., 2017; Uematsu
et al., 2017; Plummer et al., 2020; Poe et al., 2020). Retrograde
labeling of LC-NE neurons from the infralimbic, prelimbic,
motor cortices or the amygdala, olfactory bulb, and medulla
yields very few axons in other regions; these data suggest
modularity in NE neuron outputs (Hirschberg et al., 2017;
Uematsu et al., 2017; Plummer et al., 2020; Poe et al., 2020).
However, other reports using the same approach demonstrate
broad outputs from the LC, with broad collateralization of
LC-NE axons in most brain regions excluding the olfactory
bulb and medulla (Schwarz et al., 2015). Retrograde tracings
also demonstrate limited modularity of LC-NE axons projecting
to primary sensory cortices (Kim et al., 2016). Moreover, a
high throughput method for mapping projections from the LC
shows that LC neurons can preferentially target one cortical
area, but also innervate large areas of cortex at reduced density
(Kebschull et al., 2016). LC-NE neurons may also display
functional modularity: simultaneous recording of LC neuron
activity in anesthetized rats shows ensembles where the activity
of subgroups of neurons correlates in time (Totah et al.,
2018). So far, no data exist on whether functional modularity
exists in awake behaving animals and whether this modularity
originates from a combination of distant and local (e.g., LC-
GABA) inputs.

Our current understanding of the LC-NE circuitry suggests
at least partially distinct populations of LC-NE neurons with
respect to their projection targets and functional organization
(Figure 3A). These distinct LC-NE neurons would be able to
confer target specific NE release through spatial modularity.
In this spatial model of modularity, subpopulations of LC-NE
neurons could receive different types of inputs. Distinct inputs
to LC-NE neuron with highly convergent axons would enable

local NE release (Figure 3B). In other behavioral contexts,
inputs to LC-NE neurons with highly divergent axons, or global
inputs to most LC-NE neurons, would enable global NE release
(Figure 3B). Distinct outputs from LC neurons to cortical
or subcortical targets would then encode distinct behavioral
correlates. These proposals thus represent testable hypotheses of
LC function in learned behaviors derived from spatial modularity
of its inputs and outputs.

MOLECULAR HETEROGENEITY IN
THE LC

The suggestion of a modular input-output organization in
the LC raises the question of whether LC-NE subpopulations
exhibit different molecular signatures that could confer
different functional properties. Again, though the LC has
often been considered a homogenous nucleus, there is
evidence to suggest that LC-NE neurons are a molecularly
heterogeneous population. For example, though all LC neurons
contain NE, separable subpopulations also contain other
neuropeptides, such as Neuropeptide Y, galanin, and cocaine-
and-amphetamine-regulated transcripts (Holets et al., 1988;
Koylu et al., 1999; Simpson et al., 1999; Devoto et al., 2001,
2005). These subpopulations are found throughout the LC
but have biased distributions; however, the anatomy of the
projections from these neurons as well as the functional
relevance of this co-release is uncharacterized (Holets et al.,
1988). Galanin release from LC has been suggested to mediate
active-coping behaviors, but whether this release occurs in
projection-specific LC neurons is not known (Tillage et al.,
2020). It has also been shown that LC projections release the
neuromodulator dopamine in the hippocampus (Kempadoo
et al., 2016; Takeuchi et al., 2016; Wagatsuma et al., 2017)
and midline thalamus (Beas et al., 2018), where it plays a
significant role in memory consolidation and stress responses,
respectively. The extent to which dopamine is co-released
from LC terminals in other areas of the brain, and how this
co-release might affect other behaviors, remains unknown.
In addition to having subsets of neurons capable of co-
release of neuropeptides and neurotransmitters, LC neurons
themselves appear to exhibit variability in neurotransmitter
receptor expression, potentially enabling subpopulations
to be activated by different inputs. LC neurons express
receptors for many different neurotransmitters, such as GABA,
orexin/hypocretin, and acetylcholine (Egan and North, 1986;
Luque et al., 1994; Mansour et al., 1994; Marcus et al., 2001).
In addition to these receptors, LC-NE neurons express several
adrenoceptor subtypes, making LC-NE neurons themselves
responsive to NE release. Indeed, it has been suggested that
these adrenoceptor subtypes are differentially expressed
throughout the LC, making subpopulations of LC-NE neurons
differentially responsive to LC-NE activation (Young and
Kuhar, 1980; Chamba et al., 1991). Like many other aspects
of LC organization and function, the role of these different
molecularly defined subpopulations remains unexplored, but
provides a means by which LC-NE subpopulations could
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FIGURE 3 | Spatiotemporal dynamics of the LC-NE system. (A) Anatomical organization of inputs to and outputs of LC. Note, LC-GABA neurons were included in
this illustration as potential mechanism for nuancing local LC-NE activity, but, so far, no data exist on the relationship between local LC-GABA and specific LC-NE
outputs. (B) Spatial modularity of LC-NE release. Top – Example activity of inputs to LC-NE neurons (orange), LC-NE neurons (blue), and local LC-NE release
(purple). Bottom – Local versus global release of NE in output regions is dependent on which LC-NE neurons are activated by a given input. (C) Temporal modularity
of LC-NE neuromodulation. Top – activity of local NE release in two given output regions and underlying neuronal activity in each region. Note, we assume that NE
release is spatially global for simplicity. We also assume that NE neuromodulation increases neuronal activity in both target regions. Bottom – Due to differential NE
receptor expression in brain regions, heterogenous expression of NE receptors on different types of brain cells, or the underlying function of a specific brain region,
temporal integration can be local or global.

be differentially activated to facilitate distinct aspects of
learned behavior.

TARGET-SPECIFIC SPATIAL AND
TEMPORAL EFFECTS OF LC-NE
ACTIVITY

Local integration of NE release by targets is an important way by
which the activity of single LC neurons exhibiting multiple task
components, with projections to multiple areas, can nonetheless
be utilized for separate functions. Due to different NE receptor
expression throughout the cortex (Goldman-Rakic et al., 1990;
Schiemann et al., 2015), heterogenous expression of NE receptors
on different types of brain cells (Hertz et al., 2010), or the
underlying activity of a specific brain region, it is possible that
the same NE signal can have different effects in output regions.
Indeed, specific functions have been attributed to NE from
region-specific pharmacological or optogenetic manipulations
of LC activity. In subcortical regions, LC-NE activity in the
hippocampus is critical for contextual memory formation
(Wagatsuma et al., 2017) and place map plasticity (Kaufman
et al., 2020). In the basolateral amygdala, photostimulating LC
axons increases anxiety-like behavior (McCall et al., 2017). In
the context of memory formation, inactivating LC projections
to the basolateral amygdala impairs memory acquisition,
while inactivating LC-NE projections in the infralimbic cortex
impairs memory extinction (Uematsu et al., 2017). In cortical
regions, pharmacological blockade of local NE receptors in
visual, somatosensory, or motor cortex reduces membrane

depolarization of neurons that is typically associated with state
changes (Constantinople and Bruno, 2011; Polack et al., 2013;
Schiemann et al., 2015). This depolarization in the presence of
NE normally leads to an increase in firing rate of neurons and
ultimately, increased sensory sensitivity (Polack et al., 2013).
In prefrontal cortex regions such as the anterior cingulate
cortex and limbic cortex, local manipulation of NE activity
influences sustained attention (Berridge et al., 2012; Spencer
and Berridge, 2019), memory (Berridge et al., 2012; Spencer
and Berridge, 2019), decision making, and task acquisition
(Tait et al., 2007; Tervo et al., 2014; Cope et al., 2019;
Joshi and Gold, 2019). NE release in the anterior cingulate
cortex promotes exploration and behavioral variation (Tervo
et al., 2014). In a set-shifting task, manipulating NE activity
in the prelimbic or infralimbic cortex improves the ability
of animals to learn new associations (Tait et al., 2007; Cope
et al., 2019). Importantly, most of these functions related to
LC-NE activation are linked in time to specific components
of internal state or behavior, so that NE release within a
target enables the subsequent contribution of that target to
brain state or function. Thus the different effects of LC-
NE signals on processing and behavior not only reflect
differential targeting of LC-NE outputs (spatial modularity)
but also the differential processing of NE signals in time
based on the functional role of the target as well as its
regional and cellular NE receptor expression and availability
(temporal modularity). In combination with spatial modularity,
local and global temporal integration of NE signals in
diverse targets is therefore an important mechanism of LC-NE
function (Figure 3C).
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DISCUSSION – FUTURE PROSPECTS

Understanding the complex role of LC-NE signals in facilitating
distinct aspects of behavior will require understanding the
timescales on which LC-NE neurons are activated, how this
activity affects performance in a learned behavior, and how these
LC-NE signals are used by target regions to facilitate behavioral
responses and learning. As in human studies manipulating the
discriminability of a target, a learned behavior for studying
LC-NE in model systems should incorporate different levels of
sensory uncertainty. Thus, a task dependent on trial-history that
incorporates sensory uncertainty and necessitates a goal-directed
behavioral choice would enable a more unified understanding
of the role of LC-NE in learned behaviors. Another important
goal for the field is developing an understanding of how NE
interacts with other neuromodulators to modulate brain states
and behaviors. An established task that can be used across
neuromodulatory systems would be well-suited for this goal.
For example, in the cholinergic system, an auditory go/no-
go task was used to show that cholinergic neurons encode
reinforcement surprise, and that these responses scale with
uncertainty (Hangya et al., 2015). Using varying tone intensities,
the difficulty was modulated on a trial-by-trial basis to reflect
different degrees of uncertainty. A similar task might be used
to study how LC-NE neurons encode task-relevant responses
and uncertainty, all within the same framework. Additionally,
a novel two-alternative forced choice task in head fixed mice
has been used to assay perceptual and value-based decision
making (Burgess et al., 2017; Steinmetz et al., 2019). This task,
which has been standardized across laboratories, could be applied
toward studying the role of LC in learned behaviors. Behaviors
such as these, incorporating both behavioral execution and
learning, combined with cutting-edge tools such as optogenetics,
targeted labeling of neuronal populations, deep-brain imaging,
and imaging of NE receptor dynamics, combined with specific
hypotheses of LC-NE function as proposed here, will help
elucidate the role of LC-NE in cognition.

CONCLUSION

Despite the diverse roles of the LC in regulating arousal,
attention, and facilitating more complex behaviors, our
understanding of this nucleus is quite limited. Recent studies,
however, are changing our understanding of the LC. What was
formerly considered a homogenous nucleus exerting global,
uniform influence over its many diverse target regions, is now
suggested to be a heterogenous population of NE releasing cells,
potentially exhibiting both spatial and temporal modularity that
govern its function. These observations, combined with a rapidly
expanding neuroscience toolkit, enable updating of existing
theories, or potentially forming new ones, to explain the roles
of LC-NE in learned behaviors.
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