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Classically, the cerebellum has been thought to play a significant role in motor
coordination. However, a growing body of evidence for novel neural connections
between the cerebellum and various brain regions indicates that the cerebellum also
contributes to other brain functions implicated in reward, language, and social behavior.
Cerebellar Purkinje cells (PCs) make inhibitory GABAergic synapses with their target
neurons: other PCs and Lugaro/globular cells via PC axon collaterals, and neurons in the
deep cerebellar nuclei (DCN) via PC primary axons. PC-Lugaro/globular cell connections
form a cerebellar cortical microcircuit, which is driven by serotonin and noradrenaline.
PCs’ primary outputs control not only firing but also synaptic plasticity of DCN neurons
following the integration of excitatory and inhibitory inputs in the cerebellar cortex. Thus,
strong PC-mediated inhibition is involved in cerebellar functions as a key regulator of
cerebellar neural networks. In this review, we focus on physiological characteristics
of GABAergic transmission from PCs. First, we introduce monoaminergic modulation
of GABAergic transmission at synapses of PC-Lugaro/globular cell as well as PC-
large glutamatergic DCN neuron, and a Lugaro/globular cell-incorporated microcircuit.
Second, we review the physiological roles of perineuronal nets (PNNs), which are
organized components of the extracellular matrix and enwrap the cell bodies and
proximal processes, in GABA release from PCs to large glutamatergic DCN neurons and
in cerebellar motor learning. Recent evidence suggests that alterations in PNN density
in the DCN can regulate cerebellar functions.

Keywords: Deep cerebellar nuclei, serotoinin, eyeblink conditioning, axon collateral, noradrenaline, Lugaro cell,
globular cell, chondroitinase ABC

INTRODUCTION

Although the cerebellum is well known to play a crucial role in fine movement and motor activity
(Ito, 1984), recent evidence suggest that the cerebellum is increasingly implicated in a variety
of brain functions, including reward prediction (Wagner et al., 2017; Heffley et al., 2018; Carta
et al., 2019; Kostadinov et al., 2019), motor planning (Gao et al., 2018; Chabrol et al., 2019;
Wagner et al., 2019), and higher cognitive functions such as language and social behavior (Fiez
and Petersen, 1998; Van Overwall et al., 2014; Schmahmann et al., 2019). Although the novel neural
connections between the cerebellum and other brain areas and individual cellular elements are
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being unveiled rapidly (Judd et al., 2020; Kebschull et al., 2020;
Kozareva et al., 2020), to achieve a comprehensive understanding
of cerebellar functions, characterization of synaptic transmission
and modulatory actions on neuronal and synaptic factors in the
cerebellum is required. Inhibitory GABAergic transmission from
Purkinje cells (PCs), the sole output neuron of the cerebellar
cortex, has not been fully understood. This is because in vitro
studies using cerebellar brain slices are mostly accompanied by
PCs with damaged or cut axons, and it is difficult in identifying
their target neurons among the numerous heterogeneous
interneurons in the cerebellar cortex (Lainé and Axelrad, 2002;
Crook et al., 2007; Simat et al., 2007; Schilling et al., 2008; Hirono,
2016; Prestori et al., 2019). In the historical view of the canonical
neuronal network of the cerebellum, PCs project their primary
axons to neurons in the deep cerebellar nuclei (DCN; Figure 1A):
the fastigial (medial), interpositus, and dentate (lateral) (Ito
et al., 1964; Obata et al., 1967; Chan-Palay, 1977; De Zeeuw
and Berrebi, 1996; Mouginot and Gähwiler, 1995; Teune et al.,
1998; Gauck and Jaeger, 2000; Najac and Raman, 2015). PC-
mediated GABAergic inhibition regulates the rate and timing
of DCN excitatory neuron output to cortical targets (Shin and
De Schutter, 2006; Shin et al., 2007). DCN neurons produce the
final output of the cerebellum by integrating the inhibitory inputs
with excitatory inputs from mossy and climbing axon collaterals
(Gauck and Jaeger, 2000; Rowland and Jaeger, 2005; Bengtsson
et al., 2011; Steuber and Jaeger, 2013; Bengtsson and Jörntell,
2014). In the cerebellar cortex, the neuronal types targeted by
PC axon collaterals have been controversial. PC axon collaterals
have been suggested to form functional synaptic contacts with
other PCs during early mouse development (Orduz and Llano,
2007; Watt et al., 2009). Recent electrophysiological studies
demonstrated that even in adult mice, PC axon collaterals form
synapses onto all PCs, Lugaro cells, globular cells (a subgroup
of Lugaro cells) (Figures 1A,B), and one third of molecular
layer interneurons (Hirono et al., 2012; Witter et al., 2016).
Additionally, PCs form synaptic contacts with granule cells in a
lobule-dependent manner (Guo C. et al., 2016). Therefore, it is
important to characterize GABAergic transmission from PCs and
their neuronal modulation.

The cerebellum receives beaded fibers, including various
amines and peptides, such as serotonin (5-HT) and noradrenaline
(NA) (Ito, 2009; Figure 1A). Serotonergic beaded fibers, the
third largest population of afferent fibers into the cerebellum
only to mossy and climbing fibers, arise from the raphe
nuclei and the gigantocellular reticular formation adjacent
to the raphe nuclei, forming dense plexuses in the granule
cell layer and the PC layer (Bishop and Ho, 1985; Kerr
and Bishop, 1991; Longley et al., 2020). A dense plexus of
serotonergic fibers extending from various brainstem nuclei is
also present in the DCN, however, they are not collaterals of
the fibers innervating into the cortex (Kitzman and Bishop,
1994), suggesting that the cerebellar cortex and DCN could be
controlled independently by serotonergic signals. By contrast,
noradrenergic neurons in the brainstem nucleus, locus coeruleus,
project their beaded afferent fibers not only to the cerebellar
cortex, which are densely expressed in the granule cell layer
especially under the PC layer (Nelson et al., 1997), but also

to the DCN (Hökfelt and Fuxe, 1969; Olson and Fuxe, 1971;
Siggins et al., 1971; Nedelescu et al., 2017). Although cerebellar
motor learning is affected by 5-HT (Miyashita and Watanabe,
1984; Trouillas et al., 1995; Oades et al., 2008; Frings et al.,
2010) and NA (Bickford et al., 1992; Paredes et al., 2009;
Wakita et al., 2017), there has been few evidence for their
modulatory action on GABAergic transmission from PCs and
intrinsic neuronal excitability of Lugaro/globular cells and large
glutamatergic DCN neurons. Therefore, first, we introduce
the characteristics of GABAergic transmission at synapses
between PC axon collaterals and Lugaro/globular cells, and PC
primary axons and large glutamatergic neurons in the DCN,
focusing on 5-HT- and NA-mediated modulatory effects on
GABAergic transmission.

In the mature central nervous system (CNS), perineuronal
nets (PNNs), which are extracellular matrices enwrapping the
cell bodies and proximal processes of neurons, form ladder-like
structures and restrict the structural neuronal plasticity (Fawcett
et al., 2019; Reichelt et al., 2019). It has been reported that PNNs
not only control excitability of neurons and synaptic activity
as a neuromodulator (Dityatev and Rusakov, 2011; Balmer,
2016), but also regulate action of other neuromodulators by
changing their diffusion in the extracellular space (Sylantyev
et al., 2008; Gundelfinger et al., 2010). Interestingly, PC target
neurons, Lugaro/globular cells in the cerebellar cortex and large
DCN neurons, express the formation of PNNs around their
soma and proximal processes, where PC terminals innervated
predominantly (Figure 1; De Zeeuw and Berrebi, 1996; Chan-
Palay, 1997; Uusissari and Knöpfel, 2008). Thus, second, we
especially focus on the physiological significance of PNNs, which
are expressed in the DCN and enwrap synapses between PCs and
the large DCN neurons, in dynamic regulation of GABAergic
transmission as well as in cerebellar motor learning.

LUGARO/GLOBULAR CELLS IN THE
CEREBELLAR CORTEX

Morphological Characteristics and
Incorporated Microcircuit of
Lugaro/Globular Cells
Inhibitory interneurons in the cerebellar cortex are more
heterogeneous than knowledge in traditional categorization
(Lainé and Axelrad, 2002; Crook et al., 2006; Simat et al.,
2007; Schilling et al., 2008; Hirono, 2016; Prestori et al., 2019;
Kozareva et al., 2020). Lugaro cells, which were reported for
the first time in the cat cerebellum, have unique morphological
characteristics and are located just below PCs in the granular
cell layer, or within the PC layer (Lugaro, 1894). Their typical
cell bodies are spindle-shaped and dendrites project on both
sides of the cell bodies oriented in the parasagittal plane (Lugaro,
1894; Fox, 1959). Their axons project into the molecular layer
and then travel long in the mediolateral axis alongside parallel
fibers (Palay and Chan-Palay, 1974; Lainé and Axelrad, 1996).
Lugaro cells are glycinergic/GABAergic interneurons and their
number is very low, i.e., it is one fifteenth of that of PCs in
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FIGURE 1 | Perineuronal net-expressing cerebellar neurons targeted by Purkinje cells. (A) A Purkinje cell (PC) axon collateral makes GABAergic synapses with a
Lugaro/globular cell (LC/GlC). A PC primary axon innervates a large glutamatergic neuron in the deep cerebellar nuclei (DCN). These PC target neurons are
enwrapped by perineuronal nets (PNNs). 5-HT and NA are released from their beaded afferent fibers originated from the brainstem. (B) A GlC in the GAD67+/GFP

mouse cerebellum shows immunoreactivity for anti-calretinin antibody (red), thus its cell body is show in yellow (indicated by an arrow). (C) Cell bodies of large
glutamatergic DCN neurons are immunolabeled by SMI32 antibodies (blue) and surrounded by PNNs as shown by Wisteria floribunda agglutinin-staining (magenta)
and PC axon terminals, which show immunoreactivity against calbindin (green). (B) is from Hirono et al. (2012). (C) is our unpublished data.

the rat cerebellar cortex (Sahin and Hockfield, 1990; Dieudonné
and Dumoulin, 2000). Lugaro cells are mainly divided into
two subgroups on the basis of their morphology: fusiform
Lugaro cells within the granule cell layer (Lugaro, 1894; Geurts
et al., 2001; Crook et al., 2006) and globular cells, whose
cell body is small and globular-shaped and located under
the PC layer (Lainé and Axelrad, 2002; Simat et al., 2007;
Schilling et al., 2008; Hirono et al., 2012). Immunohistochemical
staining with antibodies against Kv4.3, mGluR1α, Rat303,
SMI311, and chondroitin sulfate proteoglycans (CSPGs) has been
performed for detailed anatomical studies of Lugaro/globular
cells (Sahin and Hockfield, 1990; Geurts et al., 2001; Hsu et al.,
2003; Víg et al., 2003; Crook et al., 2007). A novel reporter
mouse line, which expresses Yellow Cameleon preferentially
in Lugaro/globular cells, demonstrated their dendritic and
axonal arborizations in relation to cerebellar compartments
(Miyazaki et al., 2020). Furthermore, a recent transcriptomic
study suggested cell type markers for putative Lugaro cells (Htr2a
or Edil3) and for putative globular cells (Aldh1a3 or Slc6a5)
(Kozareva et al., 2020).

In the parasagittal plane, axons of Lugaro/globular cells make
synapses with basket/stellate cells (Lainé and Axelrad, 1998),

and the transverse axons of Lugaro/globular cells innervate
Golgi cells (Dieudonné and Dumoulin, 2000; Dumoulin et al.,
2001; Hirono et al., 2012). Inhibitory synaptic signals from
approximately 10 Lugaro/globular cells converge on one Golgi
cell. One Lugaro/globular cell presumably forms divergent
contacts with approximately 150 Golgi cells (Dieudonné and
Dumoulin, 2000; Dieudonné, 2001; Dumoulin et al., 2001),
suggesting that Lugaro/globular cells can synchronize activity
among Golgi cells.

Lugaro/globular cells make a transverse microcircuit within
the cerebellar cortex that contains not only PC-Lugaro/globular
cell synapses but also other synapses of Lugaro/globular cells
to basket/stellate cells, which in turn inhibit PCs, and to Golgi
cell-granule cell contacts (Dieudonné, 2001; Simat et al., 2007;
Hirono et al., 2012; Miyazaki et al., 2020; Figure 2A). The
basal firing levels of PCs regulates the membrane potential of
Lugaro/globular cells via a PC-Lugaro/globular cell feedback
loop. The firing of Lugaro/globular cells, evoked by glutamatergic
or monoaminergic synaptic inputs, thus, causes rectifying the
PC firing (Strahlendorf et al., 1984; Hirono et al., 2012; Prestori
et al., 2019). A recent morphological study also proposed
that Lugaro cells can disinhibit cerebellar cortical activities
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FIGURE 2 | Schematic representation of a Lugaro/globular cell-incorporated
microcircuit. (A) The functional connection between a Purkinje cell (PC) and a
Lugaro/globular cell (LC/GlC) is represented in microzone A. The LC/GlC
forms synaptic connections with a basket/stellate cell (BC/SC) in the sagittal
plane and project its long and transversal axons, which intersect several
microzones. Its axon collaterals form synaptic contacts with Golgi cells (GoCs)
in microzone B. Thus, firing of the LC/GlC likely synchronize firing of PC
groups between different microzones. Red and blue arrows denote excitation
and hyperpolarization of neurons, respectively. (B) A microcircuit equipped
with PC-GlC synapses suggesting serotonergic excitation of the GlC
enhancing GABA/glycine release, which in turn facilitates the PC firing
resulting from disinhibition at BC/SC-PC and GoC-granule cell (GrC)
synapses. NA can excite the GlC, and enhance directly GABA release from a
BC/SC to a PC, resulting in entirely the reduction of PC firing rate. (A) is
modified from Dieudonné (2001); Simat et al. (2007) and Hirono et al. (2012).
(B) is from Hirono et al. (2017).

in a compartment-dependent manner (Miyazaki et al., 2020).
Therefore, the Lugaro/globular cell-incorporated microcircuit
can synchronize the firing of PCs among different microzones
and presumably play a significant role in cerebellar motor
control leading to the optimization of multiple muscle activity in
motor tasks.

Electrophysiological Characteristics of
Lugaro/Globular Cells
Identification of Lugaro/globular cells under Nomarski optical
microscopy is difficult because of their low number and
the size of their cell body being similar to that of Golgi
cells. Whole-cell patch-clamp recordings, however, were applied
to them in acute slices of the rodent cerebellum. These
electrophysiological studies revealed that Lugaro/globular cells
are normally quiescent but get excited and exhibit robust firing

following administration of 5-HT (Dieudonné and Dumoulin,
2000; Dumoulin et al., 2001; Dean et al., 2003; Hirono et al.,
2012). This evidence suggests that these cells are the main
targets of 5-HT released from serotonergic beaded afferent
fibers in the cerebellar cortex. Lugaro/globular cells exhibit
inhibitory synaptic currents at higher frequencies compared
to Golgi cells (Dieudonné, 2001; Hirono et al., 2012, 2017),
since their somata and proximal dendrites are enwrapped by
calbindin-positive boutons, meaning they are synaptic inputs
from PCs (Palay and Chan-Palay, 1974; Lainé and Axelrad,
2002; Crook et al., 2007; Simat et al., 2007). Electrophysiological
and optogenetic approaches have demonstrated that PCs form
direct and GABAergic monosynapses onto Lugaro/globular cells,
meaning that outputs from several PCs inhibit them (Hirono
et al., 2012; Witter et al., 2016). By contrast, fast glutamatergic
excitatory synaptic inputs onto Lugaro/globular cells show
depression by paired-pulse stimulation only at short interpulse
intervals (< 100 ms), meaning that they receive mossy fiber
inputs (Dieudonné, 2001; Hirono et al., 2012). Other synaptic
contacts to Lugaro/globular cells, such as climbing fibers, granule
cell fibers, Golgi cell axons, and Lugaro cell axons have been
demonstrated morphologically (Miyazaki et al., 2020) but not
yet physiologically.

Neuromodulation of GABAergic
Transmission Between PCs and
Lugaro/Globular Cells
5-HT released from serotonergic dense plexuses in the granule
cell layer and the PC layer could control the excitability
of Lugaro/globular cells by acting on their pre- and post-
synaptic sites. The 5-HT-mediated membrane depolarization
of Lugaro/globular cells is likely attributed to the activation
of 5-HT2 or 5-HT6 receptors postsynaptically (Dieudonné,
2001). Our recent evidence indicates that globular cells
are depolarized through the activation of 5-HT2A receptors,
which facilitates phosphatidylinositol turnover, but not 5-
HT6 receptors (Hirono et al., 2017). On the other hand, 5-
HT and agonists for 5-HT1B receptors exert a reduction in
GABA release from PCs to globular cells, indicating that 5-
HT1B receptors are expressed on presynaptic terminals of
PC axon collaterals (Hirono et al., 2017; Table 1). Because
5-HT1B receptors are normally coupled to the G protein
(Gi/o), which negatively regulates adenylyl cyclase, the 5-HT-
mediated inhibitory effects could be attributed to a decrease
in phosphorylation levels of proteins associated with synaptic
transmitter release. This indicates that 5-HT regulates the
membrane excitability of PCs and Lugaro/globular cells via
the differential modulatory effects on both GABAergic synaptic
circuits and the membrane potential.

Noradrenergic beaded fibers are abundant just below the
PC layer (Nelson et al., 1997). Thus, NA is likely released
abundantly to cell bodies of Lugaro/globular cells to be more
effective. Interestingly, globular, but not Lugaro cells, are
excited to elicit firing during administration of NA (Hirono
et al., 2012), suggesting that globular cells could express α1-
and/or β2-adrenoceptors similar to molecular layer interneurons
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TABLE 1 | Monoaminergic modulation of GABAergic transmission onto LC/GIC or large DCN neuron.

PC-LC/GIC PC-DCN neuron

5-HT Pre ↓ 5-HT1B (Hirono et al., 2017) ↓ 5-HT1B (Saitow et al., 2009)

Post ↑ 5-HT2A (Dieudonné, 2001; Hirono et al., 2017) ↑ 5-HT2A, 5-HT5 (Saitow et al., 2009; Zhang et al., 2014)

NA Pre ↓ α2 (Hirono et al., 2017) NR

Post ↑ only GIC α1 and/or β2 (Hirono et al., 2017) ↓ α2, ↑ β2 (Di Mauro et al., 2013)

PC, Purkinje cell; LC, Lugaro cell; GIC, globular cell; DCN, deep cerebellar nucleus; NR, not reported.

(Saitow et al., 2000; Hirono and Obata, 2006). NA also
inhibits synaptic release of GABA from the PC axon collateral
terminals onto globular cells via α2-adrenoceptor activation
(Hirono et al., 2017; Table 1). Because the mouse cerebellar
cortex expresses α2A and α2B, but not α2C-adrenoceptors
(Talley et al., 1996; Hirono et al., 2008), α2A- and/or α2B-
adrenoceptors located on presynaptic terminals of the PC
axon collateral could mediate the noradrenergic attenuation
of GABAergic transmission. Previous papers have reported
that NA enhances GABAergic inhibition at basket/stellate cell-
PC synapses through the activation of presynaptic α1- and
β-adrenoceptors (Llano and Gerschenfeld, 1993; Cheun and
Yeh, 1996; Kondo and Marty, 1998; Mitoma and Konishi,
1999; Saitow et al., 2000; Hirono and Obata, 2006). Thus,
soon after PC firing facilitation mediated by the NA-evoked
firing of globular cells, PC firing is thought to be reduced by
NA-induced enhancement of GABAergic inhibition onto PCs
(Figure 2B). Furthermore, in contrast to serotonergic afferent
fibers in the cerebellum, which run along the mediolateral
direction and influence many microzones (Hökfelt and Fuxe,
1969; Bishop and Ho, 1985; Longley et al., 2020), noradrenergic
afferent fibers travel mainly along the rostrocaudal axis in a
few microzones (Longley et al., 2020), suggesting that NA-
induced firing of globular cells could synchronize PC firing
in a few microzones transiently just after NA-evoked globular
cell firing. In addition to the control of PC firing mediated
by the NA-driven globular cell-incorporated microcircuit, NA
modulates excitatory inputs onto PCs as follows: NA enhances
parallel fibers and increases spontaneous spike firing of
PCs under in vivo conditions (Guo A. et al., 2016). The
activation of β2-adrenoceptors potentiates parallel fiber-PC
synaptic transmission, while the activation of α1- and α2-
adrenoceptors depresses the transmission (Lippiello et al., 2015).
NA also reduces the glutamate release at climbing fiber-PC
synapses via presynaptic α2-adrenoceptor activation (Carey and
Regehr, 2009). Therefore, NA exerts more complicated effects
in the cerebellar cortex through activating various types of
adrenoceptors with the affinity for NA: α2- (high affinity), α1-
(intermediate affinity) and β-adrenoceptors (low affinity) (Atzori
et al., 2016). As the locus coeruleus project their afferent fibers
to the cerebellar cortex (Nelson et al., 1997), firing modes of the
locus coeruleus neurons can change the concentration of NA
in the cerebellar cortex. In response to the different behavioral
states such as sleep, quiet wake, active wake, and fight-or-
flight, projection neurons in the locus coeruleus fire in distinct
modes (Aston-Jones and Cohen, 2005; Atzori et al., 2016). Thus,
at each behavioral state, the locus coeruleus-NA system play

a role in fine tuning of PC firing to contribute to adequate
cerebellar functions.

LARGE GLUTAMATERGIC NEURONS IN
THE DCN

GABAergic Transmission Between PCs
and Large Glutamatergic DCN Neurons
The DCN, lateral, interpositus and medial, consist of six types
of neurons: glutamatergic, GABAergic and two glycinergic
projection neurons, and GABAergic or GABAergic/glycinergic
and glutamatergic local interneurons (Chan-Palay, 1977;
Uusisaari et al., 2007; Uusisaari and Knöpfel, 2011; Ankri et al.,
2015). Large glutamatergic DCN neurons provide the sole
output of the cerebellum to various brain areas, including the
brainstem and thalamus (Kelly and Strick, 2003; Proville et al.,
2014). Recent studies have demonstrated that large glutamatergic
DCN neurons make monosynaptic transmission to the ventral
tegmental area (VTA) (Carta et al., 2019), and that climbing
fibers contribute to reward prediction but not error prediction for
cerebellar motor learning (Holloway and Lerner, 2019). The VTA
is known to project its dopaminergic axons to the frontal cortex
which controls reward, motivation, and cognition, suggesting
that neuronal activity of the DCN neurons can play a crucial role
in higher cognitive functions, as well as in motor learning.

Direct GABAergic inhibition from PCs generates post-
hyperpolarization rebound firing of large DCN neurons (Llinás
and Mühlethaler, 1988; Aizenman and Linden, 1999; McKay
et al., 2005; Baumel et al., 2009; Hoebeek et al., 2010; Bengtsson
et al., 2011). Based on the reports that the firing rates of large
DCN neurons are regulated in a linear manner by the inhibitory
input rate (Gauck and Jaeger, 2000; Shin and De Schutter, 2006;
Shin et al., 2007), the synchronicity and the extent of inhibitory
PC input from the cerebellar cortex can play a role not only
in the rate but also in the temporal precision patterns of firing
of DCN neurons. Rebound firing responses depend on the
duration and strength of membrane hyperpolarization and are
significant for creating cerebellar timing signals (Aizenman and
Linden, 1999; Koekkoek et al., 2003). Furthermore, it is involved
in the formation of excitatory synaptic long-term potentiation
(LTP) of transmission between mossy fibers onto large DCN
neurons (Racine et al., 1986; Pugh and Raman, 2006, 2008; Person
and Raman, 2010). The LTP has been thought to contribute
to facilitating firing of large neurons in the DCN (Wu and
Raman, 2017; Yarden-Rabinowitz and Yarom, 2017), and to
be one of critical synaptic mechanisms underlying cerebellar
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motor learning, including ocular reflex adaptation (Miles and
Lisberger, 1981; Kassardjian et al., 2005; Shutoh et al., 2006;
Okamoto et al., 2011) and delay eyeblink conditioning (Krupa
et al., 1993; Medina and Mauk, 1999; Attwell et al., 2002;
Christian and Thompson, 2003; Kistler and De Zeeuw, 2003;
Wetmore et al., 2008).

Monoaminergic Modulation of
GABAergic Transmission Between PCs
and Large Glutamatergic DCN Neurons
Compared to the large number of reports that neural activity
in the cerebellar cortex is modulated by 5-HT, there are fewer
reports studying serotonergic modulation of neuronal activity
of the DCN (Gardette et al., 1987; Kitzman and Bishop,
1997; Di Mauro et al., 2003; Saitow et al., 2009; Murano
et al., 2011). Exogenous administration of 5-HT facilitated
spontaneous firing in most neurons in the DCN. A study
on the interpositus nuclei demonstrated that 5-HT elicits a
slow depolarization in their neurons (Saitow et al., 2009),
whose underlying mechanism is that the activation of 5-HT5
receptors, which are normally coupled to the Gs proteins,
increases intracellular cAMP levels and augments HCN channel
activation, leading to the induction of inward currents in large
DCN neurons. In the cerebellar fastigial nucleus of adult rats,
5-HT2A receptors are expressed and their activation elicits
excitatory effect on neurons (Zhang et al., 2014; Table 1). These
discrepancies are likely caused by differences in experimental
aspects such as the contribution of synaptic transmission
regulating neuronal excitability, the experimental sample (brain
slices vs. in vivo), and the animal age (juvenile vs. adults). By
contrast, 5-HT applied microiontophoretically suppressed firing
of neurons of the medial nucleus and caused complicated effects
(inhibitory, excitatory, and biphasic) on neurons not only of
the interpositus but also of lateral nuclei (Di Mauro et al.,
2003). As described below, 5-HT evokes slow excitatory inward
currents postsynaptically, which facilitate discharge of DCN
neurons, and subsequently attenuate the impact of rebound firing
after repetitive inhibition by suppressing the GABA-mediated
hyperpolarization. The impact of rebound depolarization is
interrupted by 5-HT at relatively high concentrations because
the 5-HT-mediated depolarization facilitates significantly the
background spikes of DCN neurons. Thus, 5-HT may prevent
the induction of LTP at synapses between mossy fibers and large
DCN neurons. By contrast, 5-HT also modulates GABA release
from presynaptic terminals on large DCN neurons (Saitow et al.,
2009). GABAergic transmission is inhibited by the activation of
presynaptic 5-HT1B receptors (Table 1).

It is possible that NA released from noradrenergic beaded
fibers modulates activity of large DCN neurons. The β-adrenergic
agonist isoproterenol can enhance the responses of DCN neurons
to GABA applied microiontophoretically (Gould et al., 1997),
meaning that β-adrenoceptors are postsynaptically expressed on
large DCN neurons and modulate GABA inhibition. Di Mauro
et al. (2013) tested the NA-mediated effects on inhibitory GABA
responses in neurons of the various DCN (medial, posterior
and anterior interpositus, and lateral), and showed that NA

levels alter the responsiveness of DCN neurons to GABA.
They indicated that NA modifies GABA responses through the
activation of likely postsynaptic α2- and/or β-adrenoceptors
(Table 1). In the inferior vestibular nucleus, NA directly regulates
the excitability of neurons by the activation of α1-, α2- and β2-
adrenoceptors (Peng et al., 2016). In any case, NA-mediated
alteration of neuronal activity in each of these nuclei would
have functional significances. Changes in NA concentration, as
commonly observed in behavioral state, stress or aging, could
influence neural activity of DCN neurons. Whereas spontaneous
firing of PCs in each behavioral state is regulated by NA-mediated
complex mechanisms as described previously, the NA-mediated
effect on GABA release from presynaptic terminals of PC primary
axons in the DCN has yet to be tested.

PHYSIOLOGICAL ROLES OF
PERINEURONAL NETS IN THE DCN

General Information on Perineuronal
Nets
A PNN is the fourth most important element for the tetrapartite
synapse in addition to presynapses, postsynapses, and glial cells,
and serves as a regulator of synaptic functions and plasticity
(Dityatev and Rusakov, 2011; Chelini et al., 2018). The major
components of PNNs are CSPGs, which have a core protein
with long chondroitin sulfate chains, tenascin-R, link proteins,
and hyaluronic acid, and are synthesized by both neurons
and glial cells (Oohashi et al., 2015). To date, it has been
reported that during brain development, PNNs contribute to the
normal maturation of neuronal circuits, including fast-spiking
parvalbumin-positive neurons (Cabungcal et al., 2013; Reichelt
et al., 2019). PNNs morphologically restrict the production of
new synapses and the pruning of old synapses, and contribute
to the regulation of neuronal plasticity in various brain areas,
such as the visual cortex and the amygdala (Pizzorusso et al.,
2002; Gogolla et al., 2009; Carulli et al., 2010; Shen, 2018). To
remove PNNs, enzymatic or genetic techniques have been widely
adopted, and studies using these methods have demonstrated
that PNN deletion enhances the formation of memories by
facilitating plasticity and encoding new information that occurs
by attenuating forgetting or learning information easily (Sorg
et al., 2016; Fawcett et al., 2019; Reichelt et al., 2019). Moreover,
PNNs have been focused on as the cause of the pathophysiology
of brain disorders. Aberrant PNNs have been reported to
be associated with neurodegenerative and neuropsychiatric
disorders through abnormal neuroplasticity (Sorg et al., 2016;
Suttkus et al., 2016; Wen et al., 2018; Fawcett et al., 2019; Reichelt
et al., 2019). By contrast, it has not been elucidated whether
PNNs can regulate cerebellar neuronal circuits dynamically
and functionally, nor how PNNs contribute to the regulation
of motor learning.

Expression of Perineuronal Nets in the
Cerebellum
Perineuronal nets are detected in the brain using labeled Wisteria
floribunda agglutinin (WFA), which is a lectin that recognizes
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the N-acetylgalactosamine segments of sugar chains in PNNs.
In many brain regions, PNNs preferentially enwrap inhibitory
parvalbumin-positive neurons, which are highly active and
involved in critical periods of brain development, and play
a crucial role in the regulation of neuronal functions and
synaptic plasticity (Cabungcal et al., 2013; Fawcett et al., 2019;
Reichelt et al., 2019). In the cerebellar cortex, Lugaro/globular
cells, which receive strong GABAergic inhibition from PCs via
their axon collaterals, are recognized by a monoclonal antibody
against aggrecan, Cat-301 (Sahin and Hockfield, 1990; Zaremba
et al., 1990; Crook et al., 2007), which means that they are
surrounded by PNNs. On the other hand, both the cell bodies
and the proximal dendrites of large and excitatory DCN neurons,
which are primarily glutamatergic (Telgkamp and Raman, 2002;
Uusisaari et al., 2007), are surrounded by PNNs (Figures 1C,
3A) in which aggrecan is the primary CSPG (Zaremba et al.,
1990; Carulli et al., 2004, 2006, 2007; Zimmermann and Dours-
Zimmermann, 2008; Foscarin et al., 2011; Bekku et al., 2012).
Later, we will focus on the physiologically significant roles
of PNNs surrounding large glutamatergic DCN neurons in
dynamic regulation of GABAergic transmission as well as in
cerebellar motor learning.

Functional Roles of PNNs in GABAergic
Transmission Between PC and Large
Glutamatergic DCN Neuron
To examine the role of PNNs, techniques for the pharmacological
or genetic removal of PNNs have been used. Chondroitinase ABC
(ChABC) is a commonly used enzyme that degrades chondroitin
sulfate glycosaminoglycans (GAGs). The DCN acutely treated
with ChABC indicated a significant reduction in the intensity of
WFA labeling by 30% around large DCN neurons and showed
potentiates presynaptic release of GABA (Hirono et al., 2018;
Table 2). Under the lower density of PNNs, a decrease in the
amplitude of inhibitory postsynaptic currents (IPSCs) evoked
by a high frequent repetitive stimulation is steeper, which is
similar to that observed in the DCN of juvenile mice (Turecek
et al., 2016; Saitow et al., 2018), reflecting a high tendency for
neuronal plasticity and cerebellar motor learning compared to
adults. On the other hand, stable overexpression of ChABC for
a long time in the DCN through a lentiviral vector (LV) removed
90% PNNs from large DCN neurons (Carulli et al., 2020). The
LV-ChABC mice showed that chronic ChABC treatment evoked
the configuration of new GABAergic terminals and a decrease in
expression of vesicular glutamate transporter (VGLUT) 1 in the
DCN, leading to the attenuation of the spontaneous firing of large
DCN neurons (Table 2).

Manipulation of specific genes related to PNNs can resolve
PNN components. In mice lack of each PNN component
such as HAPLN1, HAPLN4, and tenascin-C, the number of
PC terminals on large neurons in the DCN was reported
to be affected (Bekku et al., 2003, 2012; Foscarin et al.,
2011; Stamenkovic et al., 2017; Edamatsu et al., 2018). By
contrast, mouse cerebellar slices acutely treated with ChABC
did not show anatomical changes of synapses on large DCN
neurons; thus, acute enzymatic removal of PNNs did not

change the size or number of PC axon terminals on large
DCN neurons (Hirono et al., 2018). Thus, ChABC-mediated
acute removal of PNNs by enhances the release probability of
GABA rather than the new formation of presynaptic terminals
of PC axons. Similarly, in the hippocampus, after treatment
with ChABC for 24 h, CA1 pyramidal cells also showed
an increase in the frequency of sIPSCs without changing
the amplitude, and a theta burst stimulation-induced long-
term plasticity in GABAergic transmission in the opposite
way (Shi et al., 2019). Thus, it is concluded that PNNs can
control presynaptic functions of PC axons in the DCN, and
modulate synaptic plasticity and membrane excitation of large
neurons in the DCN.

Potential Mechanisms Underlying PNN
Regulation of Presynaptic GABA Release
There are likely four potential mechanisms underlying the
augmentation of GABA release from terminals of PC axons
with acute ChABC-mediated digestion of PNNs: first, releasing
the limitation of extracellular Ca2+ availability, second, altering
the conductance of presynaptic voltage-dependent Ca2+

channels, third, facilitating the release machinery of GABA,
and fourth, augmenting the presynaptic basal intracellular
Ca2+ concentrations in PC axon terminals. The most possible
mechanism could be that negatively charged CSPGs buffer
Ca2+ through interacting electrically (Crank, 1975) and
confine the efficiency of extracellular Ca2+ around PC axon
terminals (Hrabětová et al., 2009; Nicholson and Hrabětová,
2017). The extracellular matrix slows down Ca2+ diffusion
around synapses, with this effect being attenuated by ChABC-
mediated PNN deletion. However, the ChABC-mediated GABA
release facilitation was not affected either by alterations in
extracellular Ca2+ concentrations or by inhibition of voltage-
dependent Ca2+ channels (Hirono et al., 2018). Thus, the
latter two explanations described above could be plausible.
PNN degradation could facilitate the release machinery by
enhancement of its Ca2+ sensitivity and/or the intrinsic activity,
or actuation of intracellular Ca2+ release in terminals of PC
axons. CSPG removal could change the activity of type IIa
receptor-type protein tyrosine phosphatases (RPTPs), leukocyte
common antigen-related (LAR) proteins, PTPσ, and PTPδ,
because they bind to CSPG-chondroitin sulfates (Shen et al.,
2009; Fisher et al., 2011). CSPGs are known to control PTPσ

and LAR receptors since ablation of the carbohydrate chains
of CSPGs by ChABC causes regeneration of axons by the
inactivation of PTPσ through its clustering (Coles et al., 2015;
Lang et al., 2015). Cerebellar PCs are reported to express
PTPσ and NgR3, which bind to CSPG-chondroitin sulfates
(Funahashi et al., 2008; Brown et al., 2020). Therefore, ChABC-
mediated chondroitin sulfate digestion, which can inactivate
these receptors, likely change the balance between tyrosine
phosphorylation and dephosphorylation, resulting in facilitating
the release machinery for GABA release (Figure 3B). Recently,
an alternative mechanism has been proposed that PNN depletion
by ChABC administration reduces presynaptic GABAB receptors
(Dzyubenko et al., 2020). Further investigations are needed to
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FIGURE 3 | Perineuronal net-expressing in the deep cerebellar nuclei and schematic diagram of a GABAergic presynaptic terminal. (A) Perineuronal nets, which are
labeled by Wisteria floribunda agglutinin (green), are expressed in the deep cerebellar nuclei: interpositus (Int), lateral (Lat) and medial (Med) nucleus of a mouse
coronal section (upper panel). Schematic view of the three nuclei in the mouse cerebellar coronal section (lower panel). (B) A chondroitin sulfate proteoglycan (CSPG)
binds to receptor-type protein tyrosine phosphatase (RPTP) via the chondroitin sulfate binding N-terminal of the RPTP. The intracellular domains of the RPTP may
alter the release of GABA by directly controlling the release machinery or the intracellular Ca2+ concentration through changes of the phosphatase activity, or by
interacting with Slitrk3, p250GAP, and liprin-α (Südhof, 2012). The CSPG may also regulate the expression of presynaptic GABAB receptors (Dzyubenko et al.,
2020). (A) is our unpublished data.

TABLE 2 | Comparisons of phenotypes in the mouse DCN treated with ChABC.

Characteristic ChABC treatment (pharmacologically)
(Hirono et al., 2018)

ChABC expression (genetically)
(Carulli et al., 2020)

Effect Acute Chronic

WFA intensity 30% Reduction 90% Reduction

Morphology of GABAergic terminals No change Smaller and Increase

Morphology of glutamatergic terminals NR VGLUT1 Decrease

Electrophysiological characterization of DCN neurons No change of RMP Lower spike activity

GABAergic transmission Potentiation NR

Behavioral characterization (EBC) Facilitation Facilitation

EBC, eyeblink conditioning; NR, not reported; RMP, resting membrane potential.

identify the exact molecular mechanism of the PNN-mediated
modulation of presynaptic GABA release.

Large DCN neurons display post-inhibitory rebound firing
after the relief of hyperpolarization induced by GABAergic
transmission from PCs. Acute in vitro PNN depletion by
ChABC treatment remarkably enhanced inhibitory GABAergic
transmission between PCs and large DCN neurons, which
induced an augmentation of hyperpolarization, thus, facilitating
the rebound firing in the neurons, meaning improvements in
cerebellar motor learning, as described in the next section
(Hirono et al., 2018). In vivo electrophysiological recordings from
neurons in the interpositus nuclei of LV-ChABC mice indicated
that chronic PNN deletion markedly suppressed the baseline
activity of the neurons (Carulli et al., 2020). They suggested that
this firing reduction of DCN neurons could reduce the level
of rebound firing in DCN neurons at the time of expression
of conditioned responses (CRs) seen during delay eyeblink
conditioning (ten Brinke et al., 2017). On the other hand, the
LV-ChABC mice also demonstrated an increase in the density of
GABAergic terminals around DCN neurons. Thus, the enhanced

inhibition could facilitate the rebound firing as observed in the
cerebellar slices acutely treated with ChABC.

PNNs in the Interpositus Nuclei Control
Motor Learning of Delay Eyeblink
Conditioning
Chondroitinase ABC was directly injected into various brain
areas, and in vivo experiments with PNN deletion demonstrated
the significance of PNNs in brain functions such as learning
and memory (Pizzorusso et al., 2002; Corvetti and Rossi, 2005;
Gogolla et al., 2009; de Vivo et al., 2013; Romberg et al., 2013;
Banerjee et al., 2017). Inactivation of the DCN via lesions or
pharmacological treatments has been reported to restrict the
increases in CRs of trained mice (Yeo et al., 1985; Attwell et al.,
2002; Ohyama et al., 2006; Boele et al., 2010; Sakamoto and Endo,
2010). Additionally, the activation of the interpositus nuclei is
required for obtaining CRs during delay eyeblink conditioning
(Heiney et al., 2014; ten Brinke et al., 2017). Therefore, the roles
of PNNs expressed in the interpositus nuclei in delay eyeblink
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conditioning were tested pharmacologically and genetically by
PNN digestion. Both the ChABC-injected and LV-ChABC mice
exhibited significant enhancements in their CR rates, suggesting
that PNN depletion in the interpositus nuclei facilitates CR
acquisition (Hirono et al., 2018; Carulli et al., 2020). This
facilitation of motor learning is similar to observations in other
brain regions, where PNN loss leads to synaptic reorganization
structurally and facilitates memory formation in adulthood
(Corvetti and Rossi, 2005; Gogolla et al., 2009; Romberg et al.,
2013; de Vivo et al., 2013), however, a novel role of PNNs in
controlling GABA release from presynaptic terminals in the DCN
is proposed, and a novel mechanistic insight for the functional
synaptic plasticity regulated by PNNs has been demonstrated
to influence behavioral flexibility in adulthood (Hirono et al.,
2018). The developmental increase in PNN expression suppresses
GABA release from PC axons to large DCN neurons and disturbs
new formation of memories. This developmental change may
also conserve cerebellar memories encoded before adulthood.
Intriguingly, a reduction of PNNs in the DCN is observed during
the acquisition and consolidation of eyeblink conditioning of
adult mice (Carulli et al., 2020). These findings demonstrate that
modulation of PNNs is significant for the dynamic regulation
of GABAergic transmission in the DCN and for fine control of
cerebellar motor learning.

Regulation of PNN Density by Voluntary
Exercise
As described above, degradation of PNNs in the DCN enhances
cerebellar motor learning. Additionally, a reduction in PNNs
surrounding large DCN neurons occurs during the acquisition
and consolidation of eyeblink conditioning (Carulli et al., 2020).
These findings lead us to suggest that environmental stimuli
could be useful in facilitating cerebellar functions including
motor learning and cerebellum-mediated cognitive functions,
because it was proposed that animals exposed to an enriched
environment (EE) show decrease in PNNs in the CNS (Sale
et al., 2007; Madinier et al., 2014), leading to facilitate neural
plasticity. The EE has been suggested to enhance learning,
facilitate recovery from brain lesions and brain disease, and
postpone age-dependent cognitive decline (Nithianantharajah
and Hannan, 2006; Pang and Hannan, 2013; Hirase and
Shinohara, 2014). Indeed, mice exposed to an EE have also
demonstrated a reduction in PNNs in the DCN (Foscarin et al.,
2011; Stamenkovic et al., 2017). Foscarin et al. (2011) reported
that the EE decreased the expression of mRNAs coding for key
PNN molecules, and enhanced the activity of matrix degrading
enzymes matrix metalloproteinases 2 (MMP-2) and MMP-9, via
a dynamic interaction between PC axons and DCN neurons. It is
possible that these mice could exhibit the CR at a significantly
higher rate in delay eyeblink conditioning, suggesting an
improvement in their motor performance (Figure 4). This
expectation could be supported by the evidence that acquisition
and expression of learning of delay eyeblink conditioning in mice
are enhanced in a locomotor activity-dependent manner on a
running wheel (Albergaria et al., 2018). They suggest that the
enhanced eyeblink conditioning could be attributed to facilitation

of the mossy fiber-granule cell connection by locomotor activity,
however, there is another likely reason that the locomotor activity
could reduce PNN expression in the DCN and improve cerebellar
motor learning (Figure 4).

Increased motor activity such as voluntary wheel running
can reduce the PNN expression. In rat experiments, free access
to a running wheel caused PNN deletion in the hippocampus,
but not in the DCN (Smith et al., 2015). Thus, additional
studies in which mice are exposed to a running wheel are
required, and a correlation between the running distances and
the PNN expression levels in the DCN should be demonstrated.
Considering that the voluntary wheel running evokes structural
plasticity of the NA system: shortened inter-varicosity intervals
in the cerebellum (Nedelescu et al., 2017), it is still possible that
voluntary exercises in an EE and on a running wheel can improve
not only cerebellar motor learning but also cognitive functions
through several neuronal mechanisms, presumably including
alternations of PNN density in the DCN.

CONCLUSION AND FUTURE
DIRECTIONS

A variety of neuronal modulators are involved in controlling
cerebellar neural circuits. The characterization of the modulation
of synaptic transmission and intrinsic neuronal excitation is
significant for a precise comprehension of cerebellar motor
learning and cognitive processing depending on the cerebellum.
PCs project not only their primary axons to the DCN but also
collaterals within the cerebellar cortex, especially around the PC
layer to form negative feedback connections. Both the GABAergic
transmission from PCs is important because the primary axons
transmit signals, which are formed by PCs after integrating
excitatory and inhibitory input signals, and the axon collaterals
form Lugaro/globular cell-incorporated microcircuits. Thus,
we focused on the characteristics of PC-mediated GABAergic
transmission and the modulatory effects of monoamines and
PNNs on synaptic transmission.

5-HT excites Lugaro/globular cells and large DCN neurons
through pre- and post-synaptic mechanisms. The activation
of presynaptic 5-HT1B suppresses the release of GABA from
PC axon terminals, and the activation of 5-HT2A receptors
(and 5-HT5 receptors for large DCN neurons) depolarizes
the membrane potential of postsynaptic neurons. Thus, 5-HT
released in the cerebellar cortex activates the Lugaro/globular
cell-incorporated microcircuit, facilitating and synchronizing
the activity of PC clusters, followed by a return to the basal
activity of Lugaro/globular cells. 5-HT-evoked excitatory effects
on large glutamatergic DCN neurons could be independent
of the 5-HT-mediated activation of the microcircuit in the
cerebellar cortex, because serotonergic fibers from various
brainstem nuclei innervate separately into the cerebellar cortex
and DCN (Kitzman and Bishop, 1994). In the cerebellar cortex,
NA postsynaptically excites globular cells but not Lugaro cells
presumably via the activation of α1- and/or β2-adrenoceptors.
This postsynaptic excitation could be reinforced by a NA-
mediated presynaptic effect, which is a NA-mediated inhibition
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FIGURE 4 | Voluntary exercise in an enriched environment or on a running wheel could facilitate cerebellar motor learning. (A) A mouse exercises in an enriched
environment (EE) or on a running wheel. EE or voluntary wheel running likely reduces the density of perineuronal nets (right panels): the upper image shows large
neurons surrounded by perineuronal nets labeled by Wisteria floribunda agglutinin (green) in the mouse deep cerebellar nucleus, and the lower shows a predicted
image from a mouse kept in an EE or on a running wheel. The upper image is our unpublished data. (B) Voluntary exercise could improve conditioned responses
(CRs) of cerebellar motor learning in delay eyeblink conditioning. The upper image is an example of eyelid movement during mouse delay eyeblink conditioning
(Hirono et al., 2018). The lower graph shows predicted learning curves obtained from a mouse kept with (Runner) or without (Sedentary) a running wheel,
respectively.

of GABA release from PC axon collaterals through α2A and/or
α2B–adrenoceptor activation. Thus, NA-mediated activation of
a globular cell-incorporated microcircuit could also synchronize
PC firing, followed by inhibition caused by NA-evoked excitation
of basket/stellate cells. However, little is known regarding the
direct effects of NA on the membrane potential of the large DCN
neurons and GABA release from the terminals of PC primary
axons. It has been reported that postsynaptic activation of α2-
and β-adrenoceptors enhanced and decreased GABA responses,
respectively. Further studies will be needed to determine NA-
mediated direct effects on pre- and post-synaptic sites between
PC-large DCN neuron synapses. Awake animals show sustained
discharge of noradrenergic neurons in the locus coeruleus and
of serotonergic neurons in the raphe nuclei. Animals in more
active conditions such as in an aspect of active waking, alertness,
or stress exhibit facilitation of firing of monoaminergic neurons.
Previous studies demonstrated several relationships between
the firing of these monoaminergic neurons and motor activity
(Jacobs et al., 1991; Veasey et al., 1995, 1997; Mendlin et al., 1996).
It will be of importance to demonstrate that in active animals, the
excitatory effects of 5-HT and NA on Lugaro/globular cells can
contribute to motor coordination of the cerebellum additively or
synergistically.

In the CNS, PNNs, which predominantly wrap inhibitory
parvalbumin-positive neurons, regulate synaptic plasticity and
neuronal functions and are involved in controlling various brain
functions such as learning and memory. PNN digestion facilitates
GABAergic transmission at PC-large DCN neuron synapses.
Acute pharmacological PNN removal functionally facilitates
GABA release from presynaptic PC terminals, whereas chronic
PNN removal increases the number of PC terminals on large

DCN neurons. Mice that received ChABC pharmacologically
or genetically in the interpositus nuclei showed CRs in delay
eyeblink conditioning at a higher rate than that of control mice.
This evidence suggests that PNN alteration makes memories
flexible or consolidated, thereby affecting the flexibility of
functions of the mature cerebellum. Whereas Lugaro/globular
cells are known to be parvalbumin-negative, large glutamatergic
DCN neurons surrounded by PNNs may be parvalbumin-
positive neurons because it has been reported that parvalbumin-
positive large bipolar neurons are present in the DCN
(Bastianelli, 2003) and their synaptic dysfunction generates an
action tremor (Zhou et al., 2020). As PNNs regulate spontaneous
firing of large glutamatergic DCN neurons, which project their
axons to various brain areas such as the brainstem, thalamus, and
VTA, alternations in PNN density in the DCN can regulate not
only cerebellar motor learning but also cognitive functions that
depend on the cerebellum. Thus, future studies on mechanisms
underlying the manipulation of specific components in the PNNs
formed in the DCN will be important to unravel the physiology
of cerebellar motor learning and cognitive processing.

Whereas PNNs in the mature CNS are known to restrict
neuronal plasticity, a reduction in PNNs has been observed in
multiple brain disorders, including cognitive dysfunction (Paylor
et al., 2018), depression (Yu et al., 2020), Alzheimer’s (Bruckner
et al., 1999; Baig et al., 2005; Morawski et al., 2010; Crapser
et al., 2020), epilepsy (McRae and Porter, 2012; Pollock et al.,
2014; Tewari et al., 2018; Chelyshev et al., 2020), schizophrenia
(Pantazopoulos et al., 2010; Mauney et al., 2013; Enwright
et al., 2016; Steullet et al., 2017), and bipolar disorders (Testa
et al., 2019). Thus, to elucidate mechanisms underlying the
regulation of PNN density related to neuronal plasticity in the

Frontiers in Neural Circuits | www.frontiersin.org 10 June 2021 | Volume 15 | Article 661899

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-15-661899 June 10, 2021 Time: 13:17 # 11

Hirono et al. Modulation of Purkinje Cell-Mediated Inhibition

CNS (Zaki and Cai, 2020) could be useful for finding out effective
treatments for neurological disorders and psychiatric illnesses.
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