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The medial septum (MS), as part of the basal forebrain, supports many physiological
functions, from sensorimotor integration to cognition. With often reciprocal connections
with a broad set of peers at all major divisions of the brain, the MS orchestrates
oscillatory neuronal activities throughout the brain. These oscillations are critical in
generating sensory and emotional salience, locomotion, maintaining mood, supporting
innate anxiety, and governing learning and memory. Accumulating evidence points
out that the physiological oscillations under septal influence are frequently disrupted
or altered in pathological conditions. Therefore, the MS may be a potential target for
treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies)
to restore healthy patterns or erase undesired ones. Recent studies have revealed
that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss
here that stimulus timing is a critical determinant of treatment efficacy on multiple time
scales. On-demand stimulation may dramatically reduce side effects by not interfering
with normal physiological functions. A precise pattern-matched stimulation through
adaptive timing governed by the ongoing oscillations is essential to effectively terminate
pathological oscillations. The time-targeted strategy for the MS stimulation may provide
an effective way of treating multiple disorders including Alzheimer’s disease, anxiety/fear,
schizophrenia, and depression, as well as pain.

Keywords: medial septum, oscillation, oscillopathy, deep brain stimulation, epilepsy, Alzheimer’s disease,
anxiety/fear, depression

Abbreviations: ACh, acetylcholine; AChE, acetylocholinesterase; AD, Alzheimer’s disease; AMPA, α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid; CA1, field CA1 of the cornu ammonis; CA3, field CA3 of the cornu ammonis;
CaBP, calbindin; ChAT, choline acetyltransferase; CR, calretinin; DA, dopamine; DBS, deep brain stimulation; DG,
dentate gyrus; DSM-5, Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; EC, entorhinal cortex; EEG,
electroencephalography; GAD, glutamic acid decarboxylase; HCN, hyperpolarization-activated cyclic nucleotide-gated;
HDB, horizontal limb of diagonal band; HPC, hippocampus; LEC, lateral entorhinal cortex; LFP, local field potential; LS,
lateral septum; MAM, methylazoxymethanol; MDD, major depressive disorder; MEC, medial entorhinal cortex; MRN,
median raphe nucleus; MS, medial septum; NAc, nucleus accumbens; NBM, nucleus basalis of Meynert; NI, nucleus
incertus; NMDA, N-methyl-D-aspartate; PCP, phencyclidine; PPI, prepulse inhibition; PV, parvalbumin; REM, rapid eye
movement; SST, somatostatin; SPW–R, sharp wave-ripple; SuM, supramammillary nucleus; TLE, temporal lobe epilepsy;
TMN, tuberomammillary nucleus; VDB, vertical limb of diagonal band; VGluT, vesicular glutamate transporter; VNS, vagus
nerve stimulation; VP, ventral pallidum; VTA, ventral tegmental area.
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We first describe the anatomy of the medial septum (MS) in
section “Anatomy of the Medial Septum.” We then provide
information on how the MS regulates oscillatory activities in the
brain in section “Roles of the MS in Physiological Oscillations.”
In section “The Medial Septum as a Target for Deep Brain
Stimulation for Epilepsy Control and Beyond,” we discuss the
possibility of the MS as a target of deep brain stimulation (DBS)
for controlling oscillopathies (epilepsy, Alzheimer’s disease,
anxiety/fear, schizophrenia, depression, and pain).

ANATOMY OF THE MEDIAL SEPTUM

The septal region is conventionally split into four subregions
based on anatomical location: the lateral, medial, posterior
and ventral groups. Ample evidence stresses the importance of
respecting the distinct nature of the septal region’s subregions.
Unfortunately, however, many studies that investigate various
septal areas refer to them by using the vague term “septum” and
fail to precisely define the actual region within the scope of the
study. It is particularly important to separate the medial and
lateral septal nuclei because these two regions receive and send
different modalities through their afferent and efferent fibers,
occasionally to the same brain regions, and these modalities have
distinct functional roles in information processing.

In this review, we focus on the medial group referred to as
the “medial septum (MS),” which consists of the medial septal
nucleus and the diagonal band of Broca.

Neuronal Populations in the Medial
Septum
The chemoarchitecture of the MS allows us to distinguish at least
three major neuronal populations: cholinergic, GABAergic, and
glutamatergic neurons (Dutar et al., 1995).

There are approximately 10,000 cholinergic neurons,
containing the enzyme choline acetyltransferase (ChAT), in
the rodent MS (Colom, 2006). They are located mainly at the
lateral zone of the MS and some of them are surrounded by
parvalbumin (PV)-positive neurons. Activation of the cholinergic
neurons results in slow excitation of the glutamatergic neurons
in the MS. Double staining techniques identified different
subpopulations of the cholinergic neurons, which co-release
glutamate, nitric oxide, or neuropeptides (e.g., galanin) along
with acetylcholine (ACh) (Melander et al., 1985; Forloni et al.,
1987; Sotty et al., 2003).

GABAergic neurons in the MS, present at approximately
half the number of the MS cholinergic neurons in rodents,
express glutamic acid decarboxylase (GAD) (Colom, 2006).
They are relatively large and almost exclusively express GAD67;
only a few of them express GAD65 (Castañeda et al., 2005).
MS GABAergic neurons form non-overlapping subgroups with
intracellular calcium-binding protein expression; each expresses
either calbindin (CaBP), calretinin (CR), or PV (Freund, 1989;
Kiss et al., 1997). The PV-expressing GABAergic neurons are
projection neurons located in the midline zone, while the
others are local inhibitory neurons (Ang et al., 2017). The
main role of the GABAergic neurons is to synchronize the

septal network during the its most characteristic oscillation, the
theta rhythm (see section “Roles of the MS in Physiological
Oscillations”).

The third neuronal population, approximately 16,000 neurons
in rodents, is formed by relatively small glutamatergic neurons of
diverse morphology. They express vesicle glutamate transporter
1 and 2 (VGluT1 and VGluT2) and are either projection or
local neurons. Upon activation, MS glutamatergic neurons
evoke strong and fast excitation of intermingled cholinergic
and GABAergic neurons (Manseau et al., 2005; Müller and
Remy, 2018). In addition to the strong bidirectional interplay
between the cholinergic and GABAergic neurons (Leranth and
Frotscher, 1989), immunohistochemical and electrophysiological
studies confirmed that glutamatergic interneurons are also
extensively interconnected in the intraseptal local networks
(Manseau et al., 2005; Huh et al., 2010). They act mainly
through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptors on their peers, and only to a lesser extent
through N-methyl-D-aspartate (NMDA) receptors (Manseau
et al., 2005). This enables the various functional states necessary
to generate the characteristic oscillatory patterns of the MS
(Robinson et al., 2016).

Note that so far there is no consensus about the exact
number and proportion of these neuronal populations of the
MS. Particularly the ratio of GABAergic and cholinergic neurons
is still in debate. On one hand, studies reported twice as much
cholinergic neurons as GABAergic ones (Brashear et al., 1986;
Gritti et al., 1993). On the other hand, others provided data
about 1:6 ratio of cholinergic to GABAergic neurons (McGeer
et al., 1984; Smith and Booze, 1995). This uncertainty may
root in the different antibodies and staining techniques applied
(Semba, 2000). The total number of neurons of each population
differently vary with age as well. The total number of MS neurons
decreases about 30% with aging, whereas the number of MS
GABAergic neurons remain stable over time (Bender et al.,
1996). It is also noteworthy to mention that these neuronal
populations are not completely exclusive. For example, glutamate
is used as a local transmitter by MS GABAergic and cholinergic
neurons (Gritti et al., 2003). It is reported that MS cholinergic
neurons use both ACh and GABA as transmitter in the HPC
(Takács et al., 2018). The extent of overlap of the three neuronal
populations may depend on the examined species. For example,
in mice, Takács et al. showed that almost all MS cholinergic
neurons express vesicular GABA transporter as well (Takács
et al., 2018). On the contrary, in rats and cats, the overlap
between cholinergic and GABAergic neurons is relatively low
(below 2% in the entire basal forebrain) (Brashear et al., 1986;
Takeuchi et al., 2021a).

Synaptic Connections of the Medial
Septum
In the subsequent subsections, we outline the long-range
afferent and efferent connections of the MS neurons. In
most cases these pathways consist of fibers operating with
multiple neurotransmitters, thus we overview them structure
by structure rather than focusing primarily on the types
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of neurotransmitters (Figure 1). Due to its importance, the
reciprocal connection of the MS with the hippocampal formation
is discussed first. For a discussion of anatomy from a different
point-of-view on a transmitter by transmitter basis, see the
following articles (Sun et al., 2014; Ang et al., 2017; Müller
and Remy, 2018). For example, using combinations of cell
type specific Cre-driver mouse lines and monosynaptic rabies
viral vectors, Sun et al. showed that 66% of septohippocampal
neurons that innervate HPC CaMKIIα-positive cells were
cholinergic and 27% of them were GABAergic. They also
showed that 67% of septohippocampal neurons that innervate
HPC GABAergic neurons were GABAergic, and 12 and 27%
of them were cholinergic and glutamatergic, respectively.

Note that despite these sophisticated experiments, there still
may be overlaps between immunohistochemically identified
MS neuronal types.

The Septo–Hippocampal–Septal Loop
(Septo–Entorhinal–Septal Loop)
The anatomical and functional interplay between the MS and
the hippocampal formation is very important in many cognitive
functions, including learning and memory. The MS and the
hippocampus (HPC) have reciprocal connections establishing a
prominent contribution of the MS to HPC theta oscillations.
The MS cholinergic, GABAergic, and glutamatergic neurons all
project to the HPC cornu ammonis 1 region (CA1).

FIGURE 1 | Schematic diagram of the septal connections discussed in this article. The three major neuronal populations maintain a delicate intraseptal network. The
medial septal region receives a variety of afferents from the lateral septum, PFC, and forms bidirectional connection with amygdala, EC and a broad range of other
neocortical areas, hypothalamus, and brainstem. Unidirectional, overwhelmingly cholinergic efferent fibers are innervating the thalamus and the lateral and medial
habenula. For simplicity, specific neurotransmitters and the intraseptal origins or targets of the pathways are only marked in the septohippocampal connections. The
medial septum is highly interconnected with the hippocampus as well. These pathways have significant roles in generation or regulation of different hippocampal
oscillations. Colored arrows indicate important connections contributing to oscillations in the septo-hippocampal axis. Magenta arrows show glutamatergic, cyan
cholinergic, green (blunt) GABAergic, and orange serotonergic innervations. Glutamatergic neurons in the medial septum more likely regulate other theta generating
medial septal neuronal populations; however, roles of their projections to the hippocampus in oscillations are largely unknown. The GABAergic neurons have roles in
theta generation by disinhibiting the hippocampal pyramidal neurons. The cholinergic connections are not only important in the theta generation, but they also
suppress SPW-R generation although whether this suppression acts on the hippocampal pyramidal or interneurons remains elusive. ACC, anterior cingulate cortex;
dlTN, dorsolateral tegmental nucleus; EC, entorhinal cortex; IN, interneuron; LC, locus coeruleus; LH, lateral habenula; LHyp, lateral hypothalamus; MH, medial
habenula; PCm, medial precentral cortex; NI, nucleus incertus; NTS, nucleus tractus solitarius; OB, olfactory bulb; OFC, orbitofrontal cortex; PCC, posterios
cingulate region; PC, piriform cortex; pHyp, posterior hypothalamus; PFC, prefrontal cortex; PMB, posterior mammillary bodies; PY, pyramidal neuron; nPO, nucleus
pontis oralis; RS, retrosplenial cortex; SI, substantia innominate; SuM, supramammillary nucleus; TMN, tuberomammillary nucleus; VLM, ventrolateral medulla; VTA,
ventral tegmental area.
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Projecting axons of all the MS neurons enter the HPC via
the fimbria/fornix. The cholinergic projections are nearly 65%
of the total MS to HPC projections although the percentage
greatly varies depending on the targeted subregion and neuronal
type as mentioned above: larger on excitatory neurons than that
on inhibitory neurons in CA1 region of the HPC (Frotscher
and Léránth, 1985; Klausberger and Somogyi, 2008; Teles-Grilo
Ruivo and Mellor, 2013; Sun et al., 2014). A lesion study revealed
that MS cholinergic projections reach the dorsal HPC and the
medial entorhinal cortex (MEC) via the fornix, whereas they
reach the ventral HPC and the lateral entorhinal cortex (LEC)
via the fimbria (Mitchell et al., 1982). MS cholinergic neurons
for example innervate the HPC CA1 and activate the oriens-
lacunosum-moleculare (O-LM) neurons, a subgroup of HPC
somatostatin (SST)-positive GABAergic interneurons. The O-LM
neurons in turn inhibit the distal dendrites of HPC pyramidal
neurons, which inhibits the temporoammonic inputs from the
entorhinal cortex (EC) (Reece and Schwartzkroin, 1991; Leão
et al., 2012; Haam et al., 2018). On the other hand, other SST-
positive GABAergic interneurons in the HPC are capable of
controlling the Schaffer collaterals (Müller and Remy, 2018).
Therefore, the MS cholinergic innervation can balance inputs of
the HPC CA1 in a pathway-specific manner.

A subpopulation of MS GABAergic neurons that expresses PV
and hyperpolarization-activated cyclic nucleotide-gated (HCN)
channels presumably provides the theta rhythmic drive to the
HPC (Varga et al., 2008). The septal PV/HCN GABAergic
neurons inhibit and then disinhibit PV-positive GABAergic
neurons in the HPC in a theta rhythmic manner (Varga
et al., 2008). The activated PV-positive GABAergic neurons
subsequently control the activation of principal neurons in the
dentate gyrus (DG), the HPC cornu ammonis 3 region (CA3) and
the HPC CA1 (Freund and Antal, 1988).

Some MS neurons that co-express neuropeptides project
to the HPC. For example, galanin-expressing MS cholinergic
neurons project to the ventral HPC (Melander et al., 1985).
N-Acetylaspartylglutamate-expressing MS neurons project to the
dorsal HPC (Forloni et al., 1987).

GABAergic neurons in the stratum oriens of the HPC CA1
form their synapses with dendrites and cell bodies of the MS
neurons, which forms a feedback loop (Toth et al., 1993). SST-
positive GABAergic neurons of the DG also project to the
MS, where they strongly inhibit MS glutamatergic neurons and
weakly inhibit MS GABAergic and cholinergic neurons. These
hippocampo-septal neurons are strongly activated during sharp
wave–ripples (SPW–Rs) (Jinno et al., 2007; Yuan et al., 2017).

Septal glutamatergic efferents reach the HPC CA3, CA1, and
the DG (Colom et al., 2005). The septal glutamatergic fibers
terminate on the CA1 oriens/alveus interneurons. Experiments
on mice have found that the activation of the CA1 oriens/alveus
interneurons by the septal glutamatergic fibers accords with
the actual running speed of the mice (Freund and Buzsáki,
1996). Therefore, the firing rate and the number of activated MS
glutamatergic neurons can predict the future running speed in
mice (Fuhrmann et al., 2015). The MS glutamatergic neurons
make excitatory synapses on the MS GABAergic neurons and the
MS GABAergic neurons then make inhibitory synapses on the

GABAergic interneurons in the HPC. Therefore, the activation
of MS glutamatergic neurons then increases the firing rate of
the CA1 pyramidal neurons by disinhibition through a chain of
feedforward inhibition at higher running speed.

The MS also has reciprocal connections with the EC. Septal
projections arise from the ventrolateral MS, mostly from the
vertical and horizontal limbs of the diagonal band of Broca (VDB
and HDB, respectively) (Woolf et al., 1984). The septal efferents
run to the EC of both hemispheres and were proved to be mainly
cholinergic (Alonso and Köhler, 1984). The septal efferents
terminate in layers I and II in the MEC and LEC. A part of the
EC neurons show monosynaptic and/or polysynaptic GABAA
receptor-mediated responses upon optogenetics activation of
axon terminals of MS cholinergic neurons, which suggests that
the MS cholinergic neurons are able to co-transmit GABA with
ACh (Desikan et al., 2018; Takács et al., 2018). The MS cholinergic
neurons target mainly the layer I and II 5-HT3 receptor-positive
interneurons in the MEC, but other layer I and II LEC neurons
were also regulated by the MS through the 5-HT3 receptor-
positive interneurons in these layers (Desikan et al., 2018).

Afferent Innervation of the Medial Septum
The MS receives many neuromodulatory afferents including
cholinergic ones from the dorsolateral tegmental nucleus,
adrenergic ones from the locus coeruleus, serotonergic ones from
the raphe nuclei, dopaminergic ones from the ventral tegmental
area (VTA), histaminergic ones from the hypothalamus, and
GABAergic ones from the HPC and the lateral septum (LS)
(Segal, 1982; Semba et al., 1988). The ascending fibers from
the brainstem to the MS mainly pass through the medial
forebrain bundle. They not only innervate the MS neurons with
neuromodulatory inputs, but also pass through the MS to target
the LS and the HPC (Risold and Swanson, 1997a,b).

The noradrenergic fibers, originating from the ventrolateral
medulla (A1 cell group) and nucleus tractus solitarii (A2 cell
group) of the brainstem, project to the MS and modulate
septal gonadotropin hormone-releasing hormone (GnRH)-
secreting neurons (Kaba et al., 1983; Kim et al., 1987;
Wright and Jennes, 1993; Hosny and Jennes, 1998). The
locus coeruleus noradrenergic system also reaches the MS
(Lindvall and Stenevi, 1978).

The raphe complex is one of the midbrain nuclei. It
sends serotonergic fibers to the MS and the LS (Fuxe, 1965;
Conrad et al., 1974). These afferents originating from the
median raphe nucleus (MRN) desynchronize hippocampal
electroencephalography (EEG) (Assaf and Miller, 1978). This
is an indirect effect via the MS through the excitation of
the GABAergic cells in the MS expressing 5-HT2A receptors,
rather than a direct serotonergic influence of the HPC
(Leranth and Vertes, 1999).

Combined retrograde studies proved that the A10
dopaminergic neurons of the VTA send ascending projections
to the diagonal band of Broca and the LS (Swanson, 1982;
Kalivas, 1985).

The LS is one of the key input areas of the MS (Swanson
and Cowan, 1979). The dorsal part of the LS projects almost
exclusively to the nucleus of the diagonal band, whereas the
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intermediate and ventral parts of the LS project to the whole
extent of the MS. Leranth et al. (1992) highlighted that the LS
projections targeting the MS are sparse. The LS rather projects
denser on the hypothalamus and the hypothalamus projects back
to the MS (Leranth et al., 1992).

The supramammillary nucleus (SuM) of the hypothalamus
was identified as a modulator/driver of the HPC theta rhythm
generation during some behavioral tasks and during urethane
anesthesia as well (Kirk and McNaughton, 1991; Kirk and
McNaughton, 1993; Kirk et al., 1996). Neurons in the SuM fire
in a theta burst manner in response to non-rhythmic inputs
from the reticular formation (Kocsis and Vertes, 1994). The CR-
positive aspartate/glutamatergic neurons of the SuM then excite
the MS cholinergic neurons and the HPC pyramidal neurons
(Frotscher and Léránth, 1985, 1986; Leranth and Kiss, 1996; Kiss
et al., 2000). These indicate a complex supramammillary–septal–
hippocampal loop: the recipient HPC principal neurons of the
MS terminate on the CaBP-positive GABAergic neurons of the
LS, which close the circuit by providing feedback to the SuM CR
neurons (Risold and Swanson, 1996). Moreover, the GABAergic
MS neurons and the SuM CR neurons directly innervate the LS
(Leranth et al., 1992; Leranth and Kiss, 1996).

The histaminergic neurons of the hypothalamus found in the
tuberomammillary nucleus (TMN) innervate the GABAergic and
MS cholinergic neurons with particularly dense axon terminals
(Panula et al., 1989). Their activity shows clear circadian
rhythmicity (Mochizuki et al., 1992). It was shown to maintain
wakefulness, because lesion of the TMN histaminergic neurons
resulted in increased slow-wave sleep and hypersomnolence (Lin
et al., 1989). The histaminergic innervation to the MS has roles in
learning and memory (Xu et al., 2004b).

Other hypothalamic regions, such as the posterior
hypothalamus and the nucleus pontis oralis also send afferents
to the MS. These afferents are cholinergic and act primarily on
the muscarinic receptors of the MS. Their electrical stimulation
can evoke theta oscillations through the activation of the MS
(Bland et al., 1994). Diencephalic afferents were also identified
from the lateral preoptic and lateral hypothalamic areas. The
premammillary and supraoptic nuclei project to the caudal
and rostral parts of the MS, respectively (Swanson, 1976;
Saper et al., 1979).

A reciprocal connection between the MS and the nucleus
incertus (NI) was proved by retrograde labeling of NI. These
projections are passing through the MS (Goto et al., 2001;
Olucha-Bordonau et al., 2003) and may modulate the HPC theta
rhythms by a potential mediator peptide, relaxin-3 (Ma et al.,
2009b), which is co-released with GABA (Tanaka et al., 2005).
An inhibitory feedback projection was also described from the
MS to the NI, which modulates the ascending afferents of NI
(Sánchez-Pérez et al., 2015).

Tract-tracing experiments identified further afferents of the
MS from the amygdala and the prefrontal cortex (Russchen et al.,
1985; Sesack et al., 1989; Hurley et al., 1991).

Efferent Projections From the Medial Septum
The efferent connections of the lateral and medial parts of the
MS are topographically organized. Regarding the hippocampal

formation, the lateral part of the MS preferentially projects to
the ventral parts of the subiculum, the HPC, the MEC and the
LEC. On the other hand, the medial parts of the MS mainly
project to the dorsal and ventral HPC, and the dorsolateral EC
(Gaykema et al., 1990). The lateral and intermediate parts provide
efferents to the olfactory regions, taenia tecta, medial and cortical
amygdaloid nuclei, and the LEC (dorsolateral and ventrolateral
ECs). The medial part of the MS sends fibers to the vertical
diagonal band; anterior cingulate cortex; retrosplenial cortex;
medial precentral and motor areas; indusium griseum; olfactory
regions; and the orbital prefrontal cortex (Woolf et al., 1984;
Woolf and Butcher, 1986).

Investigation of the cholinergic system and projections
from the pontomesencephalic tegmentum to the thalamus and
basal ganglia revealed information about the septal efferent
connections (Woolf et al., 1984). Woolf et al. found that the
olfactory bulb receives almost all MS fibers from the HDB
(Woolf et al., 1984). Later it was identified that most of
the cholinergic septal efferents originate from the medial half
of HDB, while most of the non-cholinergic efferents arise
from the lateral half of the HDB. Approximately 30% of the
HDB projection neurons are GAD-positive (Záborszky et al.,
1986). Purely cholinergic projections were described from the
caudodorsal medial septal nucleus and both limbs of the diagonal
band to the amygdala, from the HDB to piriform cortex, and
from the ipsilateral MS to the magnocellular preoptic/ventral
pallidal area (Woolf et al., 1984; Woolf and Butcher, 1986).
Cholinergic projections of VDB origin also innervate the
substantia innominata (Parent et al., 1988). Cholinergic efferents
from MS innervate the posterior cingulate region (Woolf et al.,
1984), as well as the rostral anterior cingulate cortex; this
latter pathway seems to be involved in maintaining anxiety
during chronic pain, independently from the septo-hippocampal
pathway (Jiang et al., 2018a,b). These fibers form synapses
with GABAergic interneurons in the cingulate and retrosplenial
cortices (Semba, 2000).

Although research interest regarding the efferent connections
of the MS was biased toward the cholinergic system and its role
in attention, the MS GABAergic and glutamatergic projections
should not be neglected. A significant portion of the non-
cholinergic fibers project to the thalamus, the hypothalamus and
the brainstem. The cholinergic fibers targeting cortical areas are
frequently coupled with GABAergic fibers, but cholinergic axons
outnumber the GABAergic fibers in these bundles (Semba, 2000).

The medial habenula receives GABAergic and glutamatergic
inputs from the MS (Choi et al., 2016), in addition to the
cholinergic innervation described by Woolf and Butcher (Woolf
and Butcher, 1986). Results of the former study indicated that
septal GABAergic input alone was able to modulate the firing
of medial habenula neurons via activation of GABAA receptors,
combined with a delayed inhibition through GABAB receptors.
These septal fibers are under massive control in the medial
habenula by endocannabinoid signaling, which is hypothesized to
be important in anxiety and depression (Vickstrom et al., 2020).
The glutamatergic septal inputs to the lateral habenula and to
the preoptic area have key roles in inducing place aversion and
enhanced locomotion, respectively (Zhang et al., 2018).
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Horseradish peroxidase injection in the posterior mammillary
bodies indicated a direct connection with the MS. Anterograde
tract tracing of the lateral and vertical diagonal band resulted
in labeled fibers which were passing through the medial
forebrain bundle and innervating the SuM before they enter the
mammillary bodies (Meibach and Siegel, 1977).

The MS sends mostly non-cholinergic efferent projections to
the raphe nuclei. The MS fibers reach the basal mesencephalon
and the rostro-medial pontine nuclei before they project to the
caudal part of the dorsal raphe and the central superior raphe
nucleus. The VDB fibers reach the raphe nuclei by two routes:
some of them enter both raphe nuclei by passing through the
basal mesencephalon whereas the others reach the dorsal raphe
through the pedunculopontine nucleus (Kalén and Wiklund,
1989). Importantly, DBS of the MS in humans was found
effective to relieve chronic pain (see section “Roles of the MS
in Physiological Oscillations”). The exact pathway responsible
for this analgesic remains unclear; however, the descending
inhibitory pathway from the MS to the dorsal horn neurons
of the spinal cord via the raphe nucleus may play a key role
(Hagains et al., 2011).

It is worth mentioning some other target brain areas of
the MS neurons. The MS cholinergic and GABAergic neurons
project to the mediodorsal nucleus of the thalamus. They might
have significant roles in modulating thalamic excitability (Gritti
et al., 1998). The MS GABAergic neurons project to the lateral
hypothalamus as well. This pathway presumably regulates food
intake (Sweeney and Yang, 2016).

ROLES OF THE MS IN PHYSIOLOGICAL
OSCILLATIONS

There are three prominent physiological oscillations in the
septo-hippocampal axis: theta, gamma, and SPW–Rs (Colgin,
2016). The MS has been indicated to have an important
role in governing these physiological oscillations with massive
interconnection with the hippocampal formation (Dutar et al.,
1995; Müller and Remy, 2018), although the exact origin of these
oscillation is still in debate.

Generation and Modulation of Theta
Oscillations
Contributions to Theta Oscillations
Theta oscillations are 4–12 Hz rhythms with a relatively high
amplitude dominating the HPC local field potential (LFP).
The MS is considered to be a key structure in generating
theta oscillations (Petsche et al., 1962). They emerge during
active exploration, voluntary movements (e.g., walking, running,
jumping), rapid eye movement (REM) sleep and certain brain
states related to arousal (e.g., freezing behavior in an anxious
environment) (Vanderwolf, 1969; Bland, 1986). Type 1 theta
(fast) and type 2 theta (slow) are distinguished based on their
sensitivity to atropine (a muscarinic ACh receptor antagonist)
(Sainsbury and Montoya, 1984): Type 1 and 2 theta oscillations
are atropine-resistant and atropine-sensitive, respectively. Type
1 theta is associated with spatial navigation and movement,

whereas type 2 theta is associated with arousal and anxiety
on sensory salience (Sainsbury and Montoya, 1984; Buzsáki,
2002). In vitro and in silico experiments suggest that theta
oscillations can be intrinsically generated in the HPC inhibitory
and excitatory networks (Buzsáki, 2002; Goutagny et al., 2009;
Neymotin et al., 2011). However, extensive in vivo studies have
suggested that external drivers, including those from the MS,
are involved in the theta oscillations as well (Wang, 2002). For
example, lesions of the MS abolish theta oscillations in the septo-
hippocampal axis (Partlo and Sainsbury, 1996) and cooling of the
MS slows the theta rhythms (Petersen and Buzsáki, 2020).

Both MS GABAergic and cholinergic neurons contribute
to the theta rhythms (Smythe et al., 1992; Yoder and Pang,
2005; Ma et al., 2012). MS GABAergic neurons target HPC
interneurons exclusively (Unal et al., 2015). Therefore, their burst
firing disinhibits HPC pyramidal neurons in a theta phase-locked
manner (King et al., 1998; Borhegyi et al., 2004). A subpopulation
of these HPC-targeting MS GABAergic neurons, which express
PV and HCN channels, specifically drives theta rhythm in the
HPC (Varga et al., 2008; Hangya et al., 2009). In vitro studies have
suggested that hyperpolarization-activated (H) currents can be
identified as pacemaker currents in the MS GABAergic neurons.
The H currents presumably contribute rhythmic activity of
the PV/HCN MS GABAergic neurons along with network-level
interactions and then theta oscillations in the septo-hippocampal
axis. This suggestion arises because in vivo injection of a
H current blocker into the MS did indeed reduce discharge
frequency of the PV/HCN MC GABAergic neurons and power
of theta oscillations in the HPC (Xu et al., 2004a; Varga et al.,
2008). The intervention to MS GABAergic neurons affects theta
oscillations in the MEC as well, there MS GABAergic neurons
project (see section “Theta Oscillations and Cognitive Maps”).
The synaptic transmission at the synapses formed between these
MS GABAergic neurons and HPC GABAergic interneurons
exhibits a rapid recovery of short-term depression by excitation
trains, which enables highly efficient transmission at the synapses
even with frequent transmissions (Yi et al., 2021). The HPC to
MS feedback projections via the HPC GABAergic neurons also
contribute to the theta oscillations in the septo-hippocampal axis
(Kang et al., 2017).

MS cholinergic neurons target both HPC pyramidal and
GABAergic interneurons (Sun et al., 2014). They fire in a more
irregular way compared with MS GABAergic neurons, but their
firings are still phase-locked to theta oscillations (King et al.,
1998). Selective destruction of the MS cholinergic neurons leads
to a decrease of the theta amplitude in the dorsal HPC, leaving
the frequency of the oscillation intact (Zheng and Khanna, 2001).
Optogenetic activation of the MS cholinergic neurons increases
the theta power in mice (Vandecasteele et al., 2014).

As noted in section “Anatomy of the Medial Septum,” the
MS receives synaptic inputs from brain regions outside the
septo-hippocampal axis, and the inputs to the MS regulate theta
oscillations in the septo-hippocampal axis as well. For example,
serotonergic projections from the MRN alter the firing pattern of
the MS neurons, which results in the desynchronization of theta
oscillations in the HPC (Leranth and Vertes, 1999). Serotonin
depletion in the MS by 5,7-dihydroxytryptamine increases theta
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frequency, which facilitates spatial learning (Gutiérrez-Guzmán
et al., 2017). Electrical or optogenetic activation of the NI also
provokes theta oscillations in the HPC via MS GABAergic
neurons (Albert-Gascó et al., 2018; Lu et al., 2020).

It is important to note that the above observations were
almost entirely made with rodents. Therefore, translation of the
findings to clinical studies needs careful consideration. The septo-
hippocampal connections in primates are very similar to those
of rodents (Gulyás et al., 1991). However, to date there are very
few human studies about the exact anatomy of the MS and its
projections. Due to the obvious ethical considerations, mainly
epilepsy patients are involved in the studies, where the network-
level functions might have already been altered. Previously, only
one type of theta in the human HPC was known, with a lower
frequency than those in rodents (Jacobs, 2014). Recently Goyal
et al. (2020) identified distinct faster (∼8 Hz) and slower (∼3 Hz)
theta oscillations. The faster oscillations are more evident in
the posterior HPC (equivalent to the dorsal HPC of rodents)
and their power is proportional to movement speed. The slower
oscillations are more prevalent in the anterior HPC (equivalent
to the ventral HPC in rodents) without any relationship to
movement speed. Furthermore, another study proved that theta–
gamma phase amplitude coupling (PAC) also exists in humans,
and this supports memory (Vivekananda et al., 2021). These
studies indicate that the physiological roles of theta oscillations
are similar in rodents and humans.

Theta Oscillations and Learning and Memory
The HPC is involved in cognitive functions, including learning
and memory (O’Keefe, 1993; Bird and Burgess, 2008; Aronov
et al., 2017; Korotkova et al., 2018; Mastrogiuseppe et al., 2019).
Theta oscillations in the septo-hippocampal axis are thought to
support learning and memory because disruption of the theta
oscillations by MS inactivation impairs HPC-dependent memory
as well (Mizumori et al., 1990; Bannerman et al., 2004; Lecourtier
et al., 2011; Wang et al., 2015).

Disruptions of either MS GABAergic or cholinergic neurons,
which impair theta oscillations in the septo-hippocampal axis,
impair HPC-dependent memory as well. For example, intraseptal
muscimol injection impaired memory in a spontaneous
alternation and continuous multiple trial inhibitory avoidance
task; the memory impairment was blocked by intra HPC
injection of bicuculline (Krebs-Kraft et al., 2007). This suggests
that septohippocampal GABAergic neurons support the
memory. In addition, chemogenetic silencing of MS GABAergic
terminals in the HPC disturbed memory retrieval (Sans-Dublanc
et al., 2020). Furthermore, optogenetic silencing of these neurons
specifically in REM sleep prevented memory consolidation
(Boyce et al., 2016). Selective pharmacological lesion of MS
GABAergic neurons impaired extinction of learned avoidance in
rats (Pang et al., 2011).

The MS cholinergic neurons along with theta oscillations are
known to be essential for memory because selective lesion of
the cholinergic neurons by 192 IgG-saporin resulted in spatial
memory impairments (Easton et al., 2011; Jeong et al., 2014).
Sugisaki et al. (2011) showed that the MS cholinergic neurons are
crucial for spike timing dependent plasticity in the HPC CA1.

The theta oscillations in the septo-hippocampal axis are
important for development of the memory circuits during
postnatal periods (Reh et al., 2020). Random optogenetic
activation of the MS during postnatal days 21–25 to disrupt
HPC theta oscillations caused spatial learning deficits later (in
postnatal days 50–60) in rats (Kloc et al., 2020).

Theta Oscillations and Cognitive Maps
The MS-governed theta oscillations in the septo-hippocampal
axis precisely organize firings of HPC and MEC neurons by
providing a temporal window, in which the neurons fire in a
phase-locked manner (O’Keefe and Recce, 1993; Tsanov, 2017).
The temporally organized firings of HPC and MEC neurons
implement cognitive maps including spatial representation by
place and grid cells, which thereby enables spatial navigation by
path integration with head-direction and speed cells (O’Keefe,
1976; Hafting et al., 2005; McNaughton et al., 2006; Iwase
et al., 2020). The time window of the theta oscillations
also enables HPC and MEC neurons to implement time-
compressed representations of the cognitive maps by phase
precession (O’Keefe and Recce, 1993; Buzsáki and Llinás, 2017).
Pharmacological inactivation of the MS diminished the theta
oscillations and the precisely organized firing patterns of the
HPC and MEC neurons (e.g., disruption of spatially periodic
firing of the grid cells) (Koenig et al., 2011; Wang et al., 2015),
which in turn caused distortion of cognitive maps implemented
in the septo-hippocampal axis. The distortion was on the spatial
(physical) cognitive map in the brain, which might be analogous
to distortion of mental cognitive maps in patients with psychiatric
disorders (e.g., schizophrenia). Along with the theta oscillations,
the MS provides speed (movement velocity) information to the
HPC and the MEC, which is essential for path integration within
the spatial cognitive map (which might be used in other cognitive
maps) (Hinman et al., 2016; Justus et al., 2017). The glutamatergic
and GABAergic neurons in the MS convey the speed information
to the HPC and the MEC with theta oscillations (Kaifosh et al.,
2013; Bender et al., 2015; Fuhrmann et al., 2015) and inactivation
of the MS disrupted the representations of speed signals there,
resulting in poor performance of spatial tasks (Hinman et al.,
2016; Jacob et al., 2017) (see section “Contributions to Theta
Oscillations” as well). Thus, the normal septal activity providing
theta oscillations to the HPC–EC loop is presumably crucial for
recognizing navigation (where we are now) in the cognitive maps
implemented by neuronal firings in the brain.

Theta Oscillations and Anxiety/Fear
The type 2 theta oscillation arises in the septo-hippocampal
axis in anxious environments or with novelty (Sainsbury and
Montoya, 1984). The anxiety signal is related to the ventral
HPC, and is represented as synchrony with the medial prefrontal
cortex and the amygdala (Kjelstrup et al., 2002; Bannerman
et al., 2003; McEown and Treit, 2009; Adhikari et al., 2010;
Likhtik et al., 2014). Lesion or inactivation of the MS disrupts
the type 2 theta oscillation and decreases anxiety behaviors in
rats (Menard and Treit, 1996; Bannerman et al., 2004; Degroot
and Treit, 2004). The anxious environment-induced type 2 theta
oscillation and associated anxiety were shown to be dependent
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on the MS cholinergic neurons because lesion or inactivation
of MS cholinergic neurons reduced them (Nag et al., 2009).
They are also regulated by phospholipase C β4 in the MS
and a T-type voltage-gated calcium channel (Cav 3.2), which is
highly expressed in the septo-hippocampal axis (Shin et al., 2009;
Gangarossa et al., 2014; Arshaad et al., 2021). The anxiety-related
theta oscillations in the septo-hippocampal axis are externally
regulated. For example, activation of the MRN diminished the
theta oscillations and was anxiolytic (Hsiao et al., 2013). In
contrast, inhibition of the MRN via activation of local GABAergic
interneurons in the nucleus enhanced the theta oscillations and
promoted anxiogenic outcomes (Hsiao et al., 2012).

Modulation of Gamma Oscillations
Gamma oscillations are 25–150 Hz low-amplitude rhythms in
the LFP (Bragin et al., 1995; Buzsáki and Wang, 2012; Colgin,
2016). Gamma oscillations in the hippocampal formation are
classified into several frequency bands (e.g., slow, mid, fast
gamma) (Colgin et al., 2009; Schomburg et al., 2014; Lasztóczi
and Klausberger, 2016). The distinct gamma oscillations give
rise to different mechanisms in a pathway-specific manner and
coordinate neuronal ensembles in the upstream and downstream
brain regions (Schomburg et al., 2014; Fernández-Ruiz et al.,
2017). They are involved in different information processing
(e.g., velocity, where, what) (Zheng et al., 2015; Fernández-
Ruiz et al., 2021). The MS-governed theta oscillations provide
temporal windows for temporal organization of these frequency-,
pathway-, and function-specific gamma oscillations in theta
cycles in a phase–phase coupling or phase–amplitude coupling
manner (Canolty and Knight, 2010; Belluscio et al., 2012;
Schomburg et al., 2014). The MS is essential for the cross-
frequency coupling (Neymotin et al., 2011; Radiske et al., 2020),
which is thought to be important in learning and memory
(Lisman and Buzsáki, 2008; Tort et al., 2009; Amemiya and
Redish, 2018).

Modulation of Sharp Wave–Ripples
Sharp wave–ripples (SPW–Rs) are episodes caused by highly
synchronous excitation in the HPC, each of which consists of
a single high-amplitude wave followed by a fast 110–250 Hz
oscillatory event at the pyramidal cell layer (Buzsáki, 2015). They
occur during awake immobility, consummatory behaviors and
slow-wave sleep, and are associated with memory consolidation
and replays (Girardeau and Zugaro, 2011; Buzsáki and Silva,
2012; Pfeiffer and Foster, 2013; Buzsáki, 2015).

It is known that the majority of the MS neurons are
inhibited during SPW–Rs, when the HPC neurons fire in a high
probability (Dragoi et al., 1999). On the other hand, when MS-
governed theta oscillations dominate in the septo-hippocampal
axis, SPW–Rs do not occur (Buzsáki and Silva, 2012). The switch
of the two exclusive states is controlled by the MS cholinergic
inputs to the HPC because optogenetic activation of the MS
cholinergic neurons enhanced theta oscillations and suppressed
occurrence of SPW–Rs in the HPC (Vandecasteele et al., 2014).
The additional theta enhancement and ripple suppression by
optogenetic activation of MS cholinergic neurons were evident
in anesthetized (sleeping) mice. The additional modulations by

the cholinergic signaling can be observed during awake quiescent
states as well but not during awake moving states, when awake
ripples do and don’t occur, respectively (Vandecasteele et al.,
2014). In the quiescent states, endogenous muscarinic ACh
receptors do not seem saturated because systemic administration
of pilocarpine, a muscarinic agonist, or donepezil, an AChE
inhibitor, still abolishes occurrence of ripples in head-fixed
awake mice (Norimoto et al., 2012). In contrast, muscarinic
ACh receptors are presumably saturated in the HPC during the
moving states. Vandecasteele et al. suggested that SPW–Rs are
initiated by the excitatory recurrent collaterals of CA3 pyramidal
neurons, when the subcortical controlling neurotransmitters,
including ACh, are reduced (Vandecasteele et al., 2014). ACh
presumably restricts this SPW–R initiation and its spread by
inhibiting the glutamate release on the presynaptic terminal of
CA3 neurons. The MS is not required for generation of SPW–Rs.

THE MEDIAL SEPTUM AS A TARGET
FOR DEEP BRAIN STIMULATION FOR
EPILEPSY CONTROL AND BEYOND

As we described in the previous sections, the MS governs
physiological oscillatory brain activities, which are closely related
to normal functions of the brain. In particular neurological and
psychiatric disorders where normal oscillations are disrupted, the
normal functions of the brain are also disrupted (Mathalon and
Sohal, 2015; Braun et al., 2018; Takeuchi and Berényi, 2020).
If the disrupted oscillations are governed by the MS, patterned
stimulation of the MS with DBS technology (Kringelbach et al.,
2007; Krauss et al., 2020) may be able to compensate for
the disrupted septal-governed oscillations or mitigate abnormal
oscillations, and might be able to modulate symptoms of those
oscillopathies as well (Takeuchi and Berényi, 2020). In addition,
recent results of clinical trials of gamma frequency entrainment
of the brain by sensory stimulation in dementia patients indicate
that oscillations can be a therapeutic target (Chan et al., 2021).
Stimulation of the MS affects oscillations in many brain regions
and then various functions via its widespread efferents (“proxy
stimulation”; Takeuchi et al., 2021a) (and possibly via afferents
as well). In addition, the stimulation of the MS is effective to
modulate oscillations in the limbic system. For example, studies
showed that electrical and optogenetic stimulation of the MS is
robustly transmitted to the HPC at the same frequency that is
applied within the delta to gamma frequency bands (Sinel’nikova
et al., 2009; Zutshi et al., 2018; Takeuchi et al., 2021a). Earlier
study of the MS stimulation in humans in 1950 reported a high
complication rate, but it was likely related to the inexperience
of the teams with depth electrode placement (Baumeister, 2000;
Fisher, 2015). A more modern study on human MS stimulation
reported good tolerance of the MS stimulation, with no side
effects reported (Schvarcz, 1993). In general, the identified
complication rate of modern DBS treatments for Parkinson’s
disease is 6.5% for any complications (McGovern et al., 2013).
It should be noted that implantation of depth electrodes in
humans must be carefully judged with an acceptable risk–
benefit ratio.
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In this section, we briefly review pathological changes of
the MS in epilepsy and other oscillopathies, and possible MS-
mediated intervention strategies for these oscillopathies. Note
that the roles of MS in diseases discussed here are mainly based
on results of experiments using animal models. Their validity for
human disorders is uncertain and thus the proposed therapeutic
strategies are hypothetical.

Epilepsy
Epilepsy is a neurological disorder characterized by an enduring
predisposition to generate epileptic seizures (Fisher et al.,
2014). Epileptic seizures come with hypersynchronous neuronal
activities (seizure waves) and loss of consciousness and/or
convulsion. Approximately 1% of the world’s population have
epilepsy and one-third of people with epilepsy are refractory
for pharmaceutical treatments (Kwan et al., 2011; Chen et al.,
2018). Temporal lobe epilepsy (TLE) is one of the most refractory
types of epilepsy. In TLE, the HPC is typically a focus of
seizures. Uncontrolled seizures of TLE may become secondarily
generalized, which increases risks of sudden unexpected death
in epilepsy (Bone et al., 2012; Massey et al., 2014). DBS
has been investigated for controlling seizures of drug-resistant
epilepsy (Li and Cook, 2018). Stimulation of the anterior
nucleus of the thalamus, the centromedian nucleus of the
thalamus, and the HPC, have been found to be effective in
reducing seizures in drug-resistant epilepsy patients. A few
clinical studies have been conducted to study anti-epileptic
effects of stimulation of the cerebellum and the nucleus
accumbens (NAc). Fisher has predicted possible benefits of
MS stimulation for drug-resistant epilepsy based on evidence
from septum stimulation in animal models of epilepsy and
clinical studies on septum stimulation in schizophrenia and
pain patients (Fisher, 2015). However, there have been no
clinical studies of MS stimulation for epilepsy patients to date.
Here, we summarize the recent evidence that MS stimulation
can alleviate symptoms of epilepsy in animal studies and
propose a closed-loop MS stimulation strategy for more
sophisticated therapy.

In the healthy septo-hippocampal axis, the rhythms in the
MS (LFP and unit firings) are very coherent and strongly
coupled to the HPC, mainly in the theta frequency range
(5–12 Hz). This coherent coupling is disrupted in epileptic
conditions of animals. The amplitude of the theta oscillation in
the septo-hippocampal axis is significantly reduced in animal
models of TLE (Colom et al., 2006; Kitchigina et al., 2013).
This disruption in theta oscillation is due to both changes in
functional coupling between the MS and the HPC and anatomical
alterations in the septo-hippocampal axis (e.g., coherence, theta,
unit-theta and unit-epileptic spike phase-locking are altered; and
there is loss of SST-positive interneurons in the DG) (Colom
et al., 2006; García-Hernández et al., 2010; Hofmann et al.,
2016). The reduction of the neuronal connections between the
MS and HPC was also found in TLE patients (Wang et al.,
2020b). The hypothesis is that the MS reduces the seizure
susceptibility of the HPC by generating the theta rhythm in
the septo-hippocampal axis (Fisher, 2015). In fact, theta activity
in the MS (either spontaneous or sensory-evoked) has been

shown to abolish epileptiform events in the HPC of animals
(Kitchigina and Butuzova, 2009).

Epileptic brains have at least two distinct stable oscillatory
states: interictal (resting) and ictal (hypersynchronous) states
(Takeuchi and Berényi, 2020). These states have been validated
by in vivo animal and human recordings and in silico modeling
studies (Jirsa et al., 2014; Kalitzin et al., 2019). Practically, four
brain states can be determined across a spontaneous seizure
episode: interictal, preictal, ictal, and postictal suppression
periods (Figure 2). For intelligent intervention of epilepsy via
MS stimulation, stimulus parameters (intensity, pulse width,
frequency, inter-burst interval etc.) and how the stimulus is
delivered (e.g., open-loop or closed-loop) should be determined
or switched dependent on the targeted states. This is because
the open-loop MS stimulation at a certain frequency (e.g.,
theta) decreases seizure susceptibility during the interictal state
whereas it induces pro-seizure effects during the ictal state in
rats (Takeuchi et al., 2021a). In the following paragraphs, we
discuss intervention strategy of epilepsy via MS stimulation for
each brain state, based on experimental facts.

During the interictal state (usually resting period), theta
rhythm stimulation of the MS can be suggested to reduce
seizure susceptibility (Figure 2i). The original idea that theta
rhythm activities in the septo-hippocampal axis suppress or
oppose epileptic seizures came from the fact that seizure
occurrence is less during arousal and REM states (Ng and
Pavlova, 2013), when theta band activities dominate. Animal
experiments demonstrated that theta rhythm stimulation of the
MS increased seizure threshold (decreased seizure susceptibility)
in rat and mouse models of TLE (Izadi et al., 2019; Wang
et al., 2021). Studies with optogenetic technology suggested that
cholinergic tone in the HPC originated from the MS, which
decreases during ictal periods, was crucial for the anti-seizure
effects of the MS stimulation (Wang et al., 2020b; Takeuchi
et al., 2021a). The SST-positive/oriens-lacunosum-moleculare
GABAergic interneurons in the HPC presumably mediate the
anti-seizure effects by the MS cholinergic signaling (Haam et al.,
2018; Wang et al., 2020b). Importantly, the MS-mediated theta
rhythm induction in the septo-hippocampal axis can be induced
by vagus nerve stimulation (VNS), which is less invasive than
DBS (Broncel et al., 2018).

It is noteworthy to mention that the MS stimulation might
be employed to prevent development of epileptogenesis after for
example traumatic brain injury (Pitkänen et al., 2015). This is
because the activation of MS cholinergic neurons during HPC
electrical kindling of mice prevented development of seizure
susceptibility (Wang et al., 2020b).

During the preictal state, the effective strategy would be
to decrease seizure susceptibility by inducing theta rhythms
in the septo-hippocampal axis by MS rhythm stimulation (or
VNS) (Figure 2ii). The preictal state is defined as the time
shortly before the onset of an ictal episode when oscillatory
brain activities vary from the interictal state. Detecting the
preceding changes in oscillatory activities of the brain enables
us to predict an upcoming ictal episode and then to prevent
development of seizures by intervention (Kuhlmann et al.,
2018). The preceding changes in oscillatory activities before
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FIGURE 2 | A spontaneous seizure (ictal) episode with convulsion of a rat kainate-induced chronic model of temporal lobe epilepsy (TLE). (A) Local field potentials
(LFPs) in the hippocampus (HPC), the medial entorhinal cortex (MEC), and the prefrontal cortex (PFC), time-frequency spectrogram of the third HPC channel, sample
entropy, and behavioral manifestations over an ictal episode. Racine’s score: 1, mouth and facial movements; 2, head nodding; 3, forelimb clonus; 4, rearing; 5,
rearing and falling (Racine, 1972). (B) Enlarged LFPs and snapshots of video monitoring green-labeled in (A).

ictal episodes can be, for example, global transient increase of
entropy in hippocampal and cortical LFPs in rats (Figure 2A)
and 1–3 Hz oscillations in the deep posteromedial cortex
in humans (Vesuna et al., 2020). The detection of the
preceding activities in real time with a closed-loop intervention

(brain stimulation) system have already been implemented in
the form of the responsive neurostimulation system (RNS R©

System) in patients, although its stimulation target is not
the MS (Morrell, 2011). However, the current detection
algorithm of the RNS R© System is not perfect and it involves
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hundreds of false positive detections per day. The unnecessary
stimulation of the MS may induce maladaptation in the limbic
system and increase seizure susceptibility (kindling effects)
(Racine, 1972).

Once seizures have already developed (during ictal states)
(Figure 2iii), the responsive MS electrical (or optogenetic)
stimulation at a fixed frequency (open-loop) cannot effectively
stop seizures (but see Miller et al., 1994; Hristova et al.,
2021). Rather, electrical stimulation of the MS at a fixed
frequency worsens symptoms of TLE seizures; it induces
secondary generalization of partial seizures (Figure 3). We
have recently found that closed-loop seizure rhythm stimulation
of the MS effectively terminates seizures once they have
developed (Takeuchi et al., 2021a; Figure 3). In the study,
the LFP in the HPC were continuously monitored with
depth electrodes and each MS stimulation was triggered
by each deflection of the HPC LFP. The precise stimulus
timing of the MS was essential for the seizure-terminating
effects; the better that MS stimulation followed the seizure
rhythm, the better the seizure-terminating effects were obtained
(Takeuchi et al., 2021a).

When ictal episodes have finished, convulsions cease
and the LFP traces become flat (postictal state/postictal
suppression) (Figure 2iv). Normally, LFPs or EEGs of animals or
patients recover within 10 min, and they regain consciousness.
However, in severe cases seizure episodes recur and animals or
patients cannot recover from the repeated convulsions (status
epilepticus). In such emergency cases, the current recommended
therapy is administration (preferably intravenous infusion) of
benzodiazepine drugs (e.g., diazepam) followed by phenytoin
infusion for example (Glauser et al., 2016). Therapeutic effects
of the MS stimulation during status epilepticus have not
yet been studied.

The DBS electrode in the MS could be used both for
theta rhythm stimulation during the preictal (or interictal)
state and for seizure rhythm stimulation during the ictal state
(Takeuchi et al., 2021a). The same DBS electrode in the MS can

serve as a recording electrode because it needs to be implemented
as a closed-loop system.

The MS stimulation has been shown to be effective in
rodent models of TLE with and without obvious damages of
HPC (chronic intrahippocampal kainite model, HPC electrical
kindling model), which correspond to human epilepsy with and
without sclerosis (Wang et al., 2020b, 2021; Hristova et al., 2021;
Takeuchi et al., 2021a). In addition, the MS stimulation has
been shown to improve cognitive alterations, which are often
comorbid in epilepsy, in animal models of TLE (Izadi et al., 2019;
Wang et al., 2021).

The closed-loop on-demand brain stimulation technology has
several advantages compared with conventional open-loop DBS:
it can be more effective (Morrell, 2011; Berényi et al., 2012;
Takeuchi et al., 2021a); it can decrease aversive effects because
it does not interfere with normal physiological functions (e.g.,
learning and memory) or induce maladaptation of the neuronal
circuit (e.g., kindling effects) (McIntyre and Gilby, 2009); it
prevents development of tolerance; and the therapeutic effects
last longer (Shih et al., 2013; Kozák and Berényi, 2017).

Alzheimer’s Disease
Alzheimer’s disease (AD) is a chronic neurodegenerative disease
with well-defined neurological characteristics: amyloid beta
plaques, neurofibrillary tangles, and neuronal loss (Takeuchi
and Berényi, 2020). AD accounts for nearly 70% of dementia
cases worldwide. AD diagnosis is carried out using standardized
mental status examinations and the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) (American Psychiatric
Association, 2013). EEG for oscillatory disturbances in the brain
has emerged as an alternative examination of AD patients
(Cassani et al., 2018).

Oscillatory disturbances in the brain have been characterized
in AD patients (e.g., decrease of high-frequency components,
including gamma-band oscillations). Disruptions of
theta oscillations, gamma oscillations and theta–gamma
cross-frequency phase–amplitude coupling are commonly

FIGURE 3 | Closed-loop seizure rhythm-driven medial septum (MS) electrical stimulation effectively terminates seizures of HPC origin and suppresses secondary
generalization. The precisely timed activation of MS GABAergic neurons may underlie the seizure-terminating effect. In contrast, responsive open-loop MS
stimulation does not mitigate (but rather promotes) seizures of HPC origin. ACh, cholinergic neurons; Glut, glutamatergic neurons; HPC, hippocampus (after
Takeuchi et al., 2021a).
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observed in the HPC (Goutagny et al., 2013; Ahnaou et al.,
2017; Michels et al., 2017; Bazzigaluppi et al., 2018; Wang
et al., 2020a) and the EC of various rodent models of AD
(Nakazono et al., 2017). The oscillatory disturbances can be
causes of cognitive disturbances of AD patients because these
oscillations are essential for memory encoding and retrieval.
The theta and gamma disruptions in AD are partially due to
dysfunctions of SST- and PV-positive interneuron circuits in
the HPC, respectively (Chung et al., 2020). In addition, these
oscillatory disturbances can originate from disfunctions of the
MS in AD because HPC gamma oscillations are modulated
by HPC oscillations and HPC oscillations are generated and
modulated by the MS cholinergic tone (Butler et al., 2016).
There is accumulating evidence for the septal involvement in
AD. For example, the number of cholinergic neurons of the
basal forebrain, including the MS, was severely decreased in
post-mortem brains of AD patients with decreased cholinergic
innervation to the HPC (Nelson et al., 2014; Hampel et al., 2018).
Amyloid beta injection into the MS induced degeneration of
MS cholinergic neurons, disrupted rhythmic activities of MS
GABAergic neurons, decreased power of theta oscillations in the
HPC, and induced memory deficit of rats (Colom et al., 2010;
Villette et al., 2010).

Thus, it is possible to raise a hypothesis that cognitive
disfunctions of AD are alleviated by restoring theta and gamma
oscillations in the septo-hippocampal axis using DBS.

To date, many preclinical studies have provided evidence that
supports this hypothesis. For example, electrical stimulation of
the MS (MS-DBS) improved the performance of MS cholinergic
neuron-lesioned rats in the Morris water maze task (Jeong et al.,
2014, 2017). Chronic electrical stimulation of the fornix (the
axonal connection between the MS and the HPC) decreased
amyloid beta deposition in the brain of an AD rat model
(Leplus et al., 2019). The memory enhancement via the MS-
DBS was associated with increased cholinergic signaling in the
HPC. Pharmacological enhancement of cholinergic tone by an
acetylcholinesterase (AChE) inhibitor restored decreased theta
and gamma oscillations and their cross-frequency couplings in
the HPC of an AD mouse model (Kumari et al., 2020). The
restoration of impaired HPC oscillatory patterns correlated with
the improvement of HPC-dependent long-term spatial memory.
The relationship between the restoration of healthy oscillatory
patterns in the HPC and the memory enhancement might be
causal. This is suggested because optogenetic gamma stimulation
of PV-positive neurons in the MS during memory retrieval
rescued impaired spatial memory in an AD mouse model (J20-
APP) (Etter et al., 2019). The MS theta-rhythm stimulation also
improved novel object recognition and spatial learning in chronic
epileptic models and a traumatic brain injury model in rodents
(Lee et al., 2015, 2017; Wang et al., 2021). The theta oscillations
in the septo-hippocampal axis can be induce by VNS as well as
less invasive stimulation (Broncel et al., 2018).

For human applications, the nucleus basalis of Meynert
(NBM) and the fornix have already been investigated as DBS
target in AD patients with promising outcomes, technical
feasibility, and good tolerance (Mirzadeh et al., 2016). DBS
of both independently increased glucose metabolism in the

brain and improved cognition of patients (Laxton et al., 2010;
Kuhn et al., 2015). The stimulation of the NBM may increase
cholinergic tone in the brain like that of the MS although
their primary target structures are the neocortex and the HPC,
respectively (Figure 4A). On the other hand, AChE inhibitors
have reached limited success in treating AD patients and the
cholinergic neurons degenerate in the NBM of AD patients. Thus,
it is not clear whether NMB stimulation would restore healthy
oscillations. The stimulation of the fornix would have activated
the MS as the fornix is not only a major fiber bundle within the
memory circuit of Papez but also the axonal connection between
the MS and the HPC. Therefore, together with evidence of animal
studies, the MS could be a DBS target for improving or slowing
cognitive deficit of AD patients (Figure 4A). Closed-loop phase-
specific DBS technology may provide further sophisticated DBS
therapies for AD patients (Senova et al., 2018).

Although it is only speculative whether the MS is involved,
gamma frequency sensory stimulation has been shown to
effectively prevent AD pathology and to improve cognitive
functions in animal models of AD (Adaikkan and Tsai, 2020).
This finding has been followed by preliminary but promising
results of clinical trials (Chan et al., 2021).

Anxiety/Fear
Chronic and exaggerated anxiety and fear are symptoms of some
psychiatric disorders, including generalized anxiety disorder
and post-traumatic stress disorders (American Psychiatric
Association, 2013). It has been suggested that oscillations
in the septo-hippocampal axis are involved in anxiety/fear
expression and that the expression is regulated by other limbic
networks (Çalışkan and Stork, 2019). For example, increased
theta and gamma oscillations within the ventral HPC have been
suggested as a biomarker for heightened and impaired fear
extinction both in animals and humans. In particular, theta
oscillations in the septo-hippocampal axis are suggested to be
crucial for anxiety-related behaviors because most anxiolytic
(but not anti-psychotic) drugs reduce the frequency of theta
oscillations elicited by reticular stimulation; and the immobility-
related type 2 theta occurs both during innate predator-elicited
arousal/anxiety and during learned anticipatory fear following
standard-footshock conditioning (Korotkova et al., 2018).

As noted in section “Roles of the MS in Physiological
Oscillations,” many animal studies have provided evidence that
the MS is related to anxiety/fear generation and its regulation.
For example, electrolytic lesion of the MS, which decreased
AChE activity in the HPC, reduced anxiety of rats during
successive alleys tests (innate anxiety) and reduced freezing in
contextual conditioned fear (learned fear) (Bannerman et al.,
2004). Pharmacological inhibition of the MS (with tetrodotoxin,
muscimol, or lidocaine infusion) decreased unconditioned and
conditioned anxiety (Degroot et al., 2001; Degroot and Treit,
2004; Lamprea et al., 2010), whereas pharmacological activation
of the MS (with bicuculline) increased innate anxiety in rats
(Ashabi et al., 2011). Cholinergic neurons are involved in MS-
mediated anxiety/fear. This is suggested because immunotoxin-
mediated ablation or chemogenetic inhibition of the MS
cholinergic neurons reduce innate anxiety in mice (e.g., increased
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FIGURE 4 | A schema of hypothetical therapeutic strategies of brain disorders via the medial septum. (A–E) Potential therapeutic strategies of Alzheimer’s disease,
anxiety/fear, schizophrenia, depression, and pain. ACC, anterior cingulate cortex; ACh, acetylcholine; HPC, hippocampus; MS, medial septum; NBM, nucleus
basalis of Meynert; PFC, prefrontal cortex; RN, raphe nucleus, SC, spinal cord; VNS, vagus nerve stimulation.

time spent in open arms of an elevated plus-maze test) (Nag et al.,
2009; Zhang et al., 2017). In contrast, chemogenetic activation of
the MS cholinergic neurons reduced theta frequency in the EC
and increased innate anxiety in mice (Carpenter et al., 2017).
The MS cholinergic neurons are also essential for acquisition,
expression, and extinction of fear memory (Knox, 2016). More
specifically, MS cholinergic neurons that project to the rostral
anterior cingulate cortex, but not those to the ventral HPC,
maintain innate (pain-induced) anxiety in mice (Jiang et al.,
2018b). On the other hand, MS cholinergic neurons that project
to the ventral HPC are required for expression of learned fear
in rats (Staib et al., 2018). A knockout and knockdown study
suggested that phospholipase C β 4 in the MS is required
for maintaining proper levels of cholinergic theta oscillations
in the HPC and innate anxiety in mice (Shin et al., 2009).
Studies with physostigmine (an AChE inhibitor) also suggested
that proper levels of cholinergic tone in the MS or HPC are
essential for maintaining proper levels of innate anxiety in rats
(Degroot et al., 2001; Sienkiewicz-Jarosz et al., 2003). These
reports suggest a possibility that stimulation of MS activity can
modify anxiety/fear levels.

DBS has been investigated to alleviate various neurological
and psychiatric disorders, including anxiety disorders (Blomstedt
et al., 2013; Freire et al., 2020). However, to date, no precisely
controlled clinical study with septal stimulation has been
conducted to reduce anxiety. Heath and Mickle noted that MS
stimulation of patients with intractable pain made patients feel

alertness along with an immediate relief of pain and an improved
sense of well-being (Gol, 1967; Fisher, 2015). Gol has reported
that MS stimulation (4–12 V, 2–5 kHz) in chronic intractable
pain patients made patients feel comfortable and relaxed (Gol,
1967). The comfortable state remained up to 24 h after cessation
of MS stimulation. A pilot study showed that VNS, which
restores normal oscillatory patterns in the septo-hippocampal
axis, was effective in alleviating anxiety of treatment-resistant
anxiety disorder patients (George et al., 2008; Broncel et al., 2018;
Figure 4B).

Schizophrenia
Schizophrenia is a severe psychiatric disorder characterized by
positive symptoms (e.g., delusions, hallucinations, paranoia)
and negative symptoms (e.g., loss of motivation, apathy, asocial
behavior or loss of affect, poor use and understanding of
speech) (American Psychiatric Association, 2013). Schizophrenia
patients also have impaired sensorimotor gating and cognitive
dysfunctions including disrupted working memory. The
symptoms of schizophrenia may stem from typical physiological
endophenotypes: the enhanced gamma oscillations and the
hyperactive mesolimbic dopamine (DA) system, which are
related to the glutamate and the DA hypotheses of schizophrenia,
respectively. MS stimulation might normalize the enhanced
gamma oscillations in the HPC in humans as well (Figure 4C).
The normalized HPC activity might then lead to normalization
of the hyperactive mesolimbic DA system. This idea is based on
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the finding that MS stimulation normalized enhanced gamma
oscillations in the HPC of rats and alleviated schizophrenia-like
symptoms (Ma and Leung, 2014), and also because the glutamate
and DA hypotheses may be bridged with the hyperactive HPC
and VTA pathways in schizophrenia (Kätzel et al., 2020).

The glutamate hypothesis is supported by the evidence
that systemic administration of NMDA receptor blockers (e.g.,
phencyclidine, PCP; ketamine) induces schizophrenia-like
psychosis in humans (Krystal et al., 1994). The administration
of the NMDA receptor blockers induced abnormal gamma
oscillations along with psychosis in humans and the abnormal
gamma oscillation is one of the endophenotypes of schizophrenia
patients (Baldeweg et al., 1998; Lee et al., 2003; Uhlhaas
and Singer, 2010). The abnormal gamma oscillations with
psychosis by NMDA receptor blockers are presumably elicited
by preferential inhibition of NMDA receptors on the PV-
positive GABAergic interneurons, which mimics hypofunction
of PV-positive GABAergic interneurons in schizophrenia
patients (Gonzalez-Burgos and Lewis, 2012). Abnormal gamma
oscillations may be suggested as a cause of symptoms of
schizophrenia because intervention in the abnormal oscillations
with, for example, repeated transcranial magnetic stimulation
concomitantly alleviated symptoms of schizophrenia patients
(cognitive dysfunctions) (Farzan et al., 2012). The mesolimbic
DA hypothesis of schizophrenia originated from clinical
observations that symptoms of patients with seizure locus
in the midbrain were similar to those of schizophrenia, the
fact that amphetamine (a DA transporter blocker) induces
schizophrenia-like symptoms, and the fact that blockers of DA
D2 receptors (neuroleptics) alleviate symptoms of schizophrenia
patients, especially positive symptoms (Davis et al., 1991;
McCutcheon et al., 2019).

There is accumulating evidence to suggest that the MS
is involved in the schizophrenia-like phenotypes in animals.
For example, sensorimotor gating deficit is evaluated as
prepulse inhibition (PPI) and auditory sensory gating in rodent
models, which are closely related to theta and gamma band
oscillations in the septo-hippocampal axis (Hajós et al., 2008;
Jin et al., 2019). Psychoactive drugs (PCP, ketamine, MK801 or
amphetamine) enhanced gamma oscillations in the HPC and
induced schizophrenia-like phenotypes in rats (sensory gating
deficits, hyperlocomotion). Inactivation of the MS by muscimol-
infusion normalized the enhanced gamma oscillations in HPC
and alleviated the schizophrenia-like phenotypes induced by
the psychoactive drugs (Ma and Stan Leung, 2000; Ma et al.,
2004, 2009a, 2012). The enhanced gamma oscillations and altered
PPI and auditory gating created by psychoactive drugs in rats
were mediated by GABAergic neurons in the MS because they
were abolished by ablation of the MS GABAergic neurons by
orexin-saporin (Ma et al., 2012). Importantly, DBS of the MS
(100 Hz burst stimulation at 16.7% duty cycle) normalized the
enhanced gamma oscillations and alleviated the schizophrenia-
like phenotypes in ketamine-treated rats (Ma and Leung, 2014).

In the DA hypothesis of schizophrenia, the positive symptoms
of schizophrenia are thought to be caused by hyperactivity of
midbrain dopaminergic neurons, which is positively modulated
by pyramidal neurons in the ventral HPC via NAc and the ventral

pallidum (VP) (Sonnenschein et al., 2020). Brain imaging studies
of schizophrenia patients have suggested hyperactivity of the
anterior HPC, which corresponds to the ventral HPC of rodents
(Kätzel et al., 2020; Sonnenschein et al., 2020). The hyperactivity
of the ventral HPC (also characterized by enhanced gamma
oscillations) leads to hyperactivity of the DA neurons in the
VTA via the trisynaptic ventral HPC –> NAc –> VP –> VTA
pathway (Sonnenschein et al., 2020). The MS modulates the
activity of the ventral HPC. The pharmacological activation of
the MS by a local infusion of NMDA induced activation of
DA neurons in the VTA via ventral HPC activation in healthy
rats (Bortz and Grace, 2018a,b). In contrast, the same activation
of the MS leads to inhibition of DA neurons in the VTA
in the prenatal methylazoxymethanol (MAM) rats, a rodent
model of schizophrenia; this opposite effect is presumably due
to hypofunctions of PV-positive interneurons in the ventral HPC
in the model (Bortz and Grace, 2018a,b; Sonnenschein et al.,
2020). The activation of the MS also alleviated a schizophrenia-
like behavioral phenotype in MAM rats (Bortz and Grace,
2018a). Together, these reports suggest that the stimulation of
the MS might be beneficial in regulating positive symptoms
of schizophrenia by normalizing hyperactive HPC represented
with increased gamma oscillations based on the glutamate
hypothesis (Figure 4C). In turn, normalizing HPC activity by MS
stimulation might normalize HPC –> NAc – > VP –> VTA
pathway based on DA hypothesis. However, there is no strong
evidence yet to support this idea.

For clinical application, Heath, a psychiatrist of Tulane
University, performed initial studies of brain stimulation as a
therapy of schizophrenia in the 1950s (Fisher, 2015). His study
was based on the hypothesis that schizophrenia is disorder of
emotion and stimulation of areas of the brain related to emotion
could modulate symptoms of schizophrenia. The MS is one of
the areas of the brain believed to be linked to emotions. He
found that the patients felt pleasure with the MS stimulation, but
the therapeutic outcomes were not favorable (Baumeister, 2000;
Fisher, 2015). Fisher pointed out that “The Tulane group had
little experience with electrode implantation, and as noted above,
initial complication rates were high.” (e.g., infections, seizures)
(Fisher, 2015). The MS stimulation might be revisited with
current sophisticated DBS technique if the scientific rationale is
established for it with an acceptable risk–benefit ratio.

Depression
Major depressive disorder (MDD) is a common and
persistent mental illness with extreme sadness and low mood
disproportionate to any possible causes (American Psychiatric
Association, 2013). MDD lowers the quality of life of patients
and causes a tremendous social burden (Greenberg et al., 2015).

Recent studies have suggested there are oscillatory
disturbances in the limbic brain areas of MDD patients
and rodent models of depression (Fitzgerald and Watson, 2018;
Takeuchi and Berényi, 2020). The oscillatory disturbances are
known to be related to symptoms of MDD because the mood
reported by patients could be decoded using oscillations in the
multiple limbic regions (Reardon, 2017; Sani et al., 2018). They
can be utilized as predictors of responses to treatment with
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antidepressants as well (Baskaran et al., 2012). Furthermore,
the symptoms of MDD have been alleviated by interventions
of the abnormal oscillations in patients (Noda et al., 2017;
Reardon, 2017).

Recent advances of biological studies have shown that
the oscillations in the septo-hippocampal axis are affected
by depression and involved in its symptoms. For example,
olfactory bulbectomy, a model of depression, decreased the
number of cholinergic neurons in the MS (Kang et al., 2010).
Systemic administration of an antidepressant drug (reboxetine,
a norepinephrine reuptake inhibitor) increased theta power and
gamma power in the HPC and increased theta phase-locking of
septal-unit activities (Hajós et al., 2003). MS is also known as
the pleasure center of the brain (Olds and Milner, 1954; Bishop
et al., 1963). Studies investigating MS’s relationship to rewarding
and pleasure raise a possibility that stimulation of the MS might
be effective for alleviating symptoms of MDD (Figure 4D).
Although pharmacological treatments become dominant after
the discovery of the first antidepressant, imipramine (Kuhn,
1958), DBS f has been revisited for patient with MDD resistant
to pharmacological treatments (Mayberg et al., 2005). DBS of
the medial forebrain bundle has been already employed for the
patients of treatment-resistant depression and revealed to be
effective (Dandekar et al., 2018). The anti-depressive effects of
the medial forebrain bundle stimulation may be mediated by the
activation of the MS because the rewarding effects of the medial
forebrain bundle encourage rats to repeated self-stimulation
(Olds and Milner, 1954) and septal lesions attenuate this effect
(Jacques, 1979; Fisher, 2015).

The feeling caused by MS electrical stimulation has been
reported in earlier studies of depression, epilepsy, schizophrenia,
and refractory pain patients (Bishop et al., 1963; Gol, 1967;
Schvarcz, 1993). Their reports included “good,” “well-being,”
“relaxed,” or “pleasurable” feelings, which can be built up
to a sexual orgasm (Heath, 1972; Moan and Heath, 1972).
They successfully alleviated depressed states of patients by
septal stimulation. However, the euphoria induced by septal
stimulation can be addictive in both humans and animals and
can cause repeated self-administration (stimulation) until they
become exhausted (Olds and Milner, 1954; Bishop et al., 1963).
Therefore, it is important to limit availability of stimulation
to avoid addiction by setting appropriate stimulus parameters
(e.g., maximum number of stimulations, minimum duration of
interstimulus interval) (Oshima and Katayama, 2010).

Pain
Pain is an important function that alerts individuals to, for
example, a tissue injury with nociception and unpleasant feelings.
Pain normally disappears when the tissue injury is cured.
However, if pain persists and becomes chronic, the chronic pain
(e.g., neuropathic pain) significantly decreases the quality of life
of patients. The tremendous pain of, for example, cancer patients
with continuous tissue invasion should be properly controlled
as well. Existing therapy, including analgesic drugs (such
as narcotics, non-steroidal anti-inflammatory drugs, analgesic
adjuvant), cannot control every type of pain, including chronic
and continuous pain. Therefore, DBS has been investigated for

those treatment-resistant types of pain (Levy, 2003; Bittar et al.,
2005; Pereira et al., 2014). The septum has been one of the targets
for DBS for intractable pain.

The MS is a part of the pain system in the brain. The MS
receives afferents from the nociceptive system/pathway (e.g.,
the spinal cord) and an electrophysiological study showed that
more than 50% neurons in the MS are activated by peripheral
nociceptive stimulation (Dutar et al., 1985; Burstein et al., 1987).
Another study showed that chronic peripheral inflammation
induced by complete Freund’s adjuvant induces c-Fos expression
in the MS neurons. Approximately 70% of the c-Fos-positive
MS neurons were cholinergic neurons and the remaining were
glutamatergic or GABAergic neurons (Jiang et al., 2018a).

Accumulating evidence from rodent studies has implicated the
MS in both processing and regulation of pain (Ang et al., 2017).
For encoding of pain-related memory, the theta oscillations
in the septo-hippocampal axis are essential to acquire the
memory of the pain-induced negative affects. The peripheral
nociceptive stimulation (e.g., hind paw injection of formalin,
noxious heat stimulation on the tail) induced theta oscillations
in the septo-hippocampal pathway, and electrical lesion of the
MS attenuated the sensory-evoked type 2 theta oscillations in the
HPC suggesting that the MS transmits pain-related information
to the HPC (Khanna, 1997). The nociception-induced theta
oscillations increased signal-to-noise ratio of sensory-evoked
firing of pyramidal neurons in the HPC CA1 area for processing
of nociceptive information (Zheng and Khanna, 2001). The
selective lesion of either MS GABAergic or cholinergic neurons
disrupted the nociception-induced theta oscillations in the HPC
(Ang et al., 2015). Attenuation of the nociception-induced theta
oscillations by deleting GABAergic signaling in the MS disrupted
the memory of the pain-induced negative affect. However, the
attenuation of the nociception-induced theta oscillations did not
significantly decrease formalin-induced nociceptive behaviors of
mice (Ang et al., 2015).

The MS has roles in the regulation of pain as well. On one
hand, the MS maintains awareness of pain. This idea is supported
by the evidence that inhibition of the MS by muscimol (a
GABAA receptor agonist) or AMPA/NMDA antagonist reduced
experimental neuropathic pain of mice (Ariffin et al., 2018) and
that infusion of muscimol or zolpidem (an allosteric modulator
of GABAA receptors) suppressed formalin-induced licking and
flinching (Lee et al., 2011). Inactivation or lesion of the MS also
prolonged analgesic effects of general anesthesia (Ma et al., 2002;
Leung et al., 2013).

On the other hand, the MS controls exaggerated pain.
Importantly, it is known that electrical stimulation of
the MS inhibited the firing rate of wide dynamic range
neurons in the spinal cord dorsal horn evoked by the
peripheral noxious stimulation (pressure, pinch, heat) in
anesthetized rats and cats (Carstens et al., 1982; Hagains et al.,
2011). Those analgesic effects induced by the MS electrical
stimulation are supposed to be mediated by activation of
the descending pain inhibitory system (Figure 4E). Recent
studies have revealed that selective inhibition of the MS
cholinergic neurons with chemogenetic technology attenuates
nociceptive behaviors of mice models of chronic inflammatory
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pain. The MS cholinergic neurons projecting the rostral anterior
cingulate cortex are hyperactive in the chronic inflammatory
state, and selective inhibition of the pathway induced the same
analgesic effects (Jiang et al., 2018a). On the other hand, the MS
cholinergic neurons projecting the ventral HPC are hypoactive,
and selective activation of the pathway induced analgesic effects
in the pain model (Jiang et al., 2018a). This report suggested that
whether activation of MS cholinergic neurons inhibit or facilitate
pain is dependent on their projections.

In humans, Heath and Mickle found that septal stimulation
induced an immediate relief of chronic pain in patients (Fisher,
2015). In 1967, Gol studied the effect of the MS on his six severe
pain patients (Gol, 1967). In the case of one of his patients,
the patient had satisfactory analgesia by septal stimulation (4–
12 V peak-to-peak, 20–60 µs duration at 2–5 kHz). The patient
had severe cancer pain from metastatic lesions in the spine and
the hip, but he felt no pain and was comfortable while being
stimulated. The analgesic effect was not frequency dependent
between 2 and 5 kHz but was stimulus intensity-dependent.
In the other cases, septal stimulation partially alleviated their
severe pain. They felt comfort with the septal stimulation,
although the pain was still perceived. The analgesic effect with
the septal stimulation persisted from several hours to 24 h after
the stimulation. However, only one patient out of six cases
with multiple electrode insertions in the septum had satisfactory
relief of pain. The septal stimulation was well-tolerated by
all six patients. Schvarcz also reported the analgesic effect of
septal electrical stimulation. Twelve of 19 implanted patients
experienced partial relief of pain by septal stimulation (Schvarcz,
1993). It was noted that low-intensity septal stimulation induced
pain relief and higher-intensity stimulation induced a feeling
of well-being and relaxation. Tasker pointed out that septal
stimulation gave rise to feelings of flushing, paresthesia, nausea,
nystagmus and a feeling of warmth (Tasker, 1982). Stimulation
of the MS can exert an inhibitory effect on access to the

spinothalamic tract (Tasker, 1982) as suggested by animal
experiments (Carstens et al., 1982; Hagains et al., 2011).
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