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Addiction is a complex disease that impacts millions of people around the world.
Clinically, addiction is formalized as substance use disorder (SUD), with three primary
symptom categories: exaggerated substance use, social or lifestyle impairment, and
risky substance use. Considerable efforts have been made to model features of
these criteria in non-human animal research subjects, for insight into the underlying
neurobiological mechanisms. Here we review evidence from rodent models of SUD-
inspired criteria, focusing on the role of the striatal dopamine system. We identify distinct
mesostriatal and nigrostriatal dopamine circuit functions in behavioral outcomes that are
relevant to addictions and SUDs. This work suggests that striatal dopamine is essential
for not only positive symptom features of SUDs, such as elevated intake and craving,
but also for impairments in decision making that underlie compulsive behavior, reduced
sociality, and risk taking. Understanding the functional heterogeneity of the dopamine
system and related networks can offer insight into this complex symptomatology and
may lead to more targeted treatments.
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INTRODUCTION

Addiction is characterized by a transition from recreational drug use to compulsive, disordered
use, punctuated by cycles of abstinence, withdrawal, craving, and relapse. Features of human drug
use are complicated by social and political factors, including stigmatization, criminalization, and
barriers to treatment access. Over the past 30 years, the prevailing scientific consensus has identified
addiction as a chronic disease, codified as substance use disorder (SUD). SUDs are characterized
by pharmacological effects of tolerance and withdrawal, as well as a core set of behavioral features
defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). These can be
grouped into three major categories: I. Impaired control of substance use; II. Social impairment;
and III. Risky use of substance (Figure 1, top). Significant research efforts have been made to
characterize the neurobiological and psychological underpinnings of these behavioral symptoms.
The hope is that understanding the basic science behind these behaviors will lead to more effective
treatments for SUD, and other psychiatric illnesses with comorbid symptoms (such as compulsive
gambling, ADHD, and schizophrenia).

Research making use of non-human animals is essential to this effort. Leveraging convergent
biology of reward learning and decision-making systems across species, addiction scientists
have established a variety of animal models to investigate drug-related behaviors (Figure 1).
While considerable debate exists surrounding the translational efficacy of individual models
to the complexity of human addiction (for recent review, see Venniro et al., 2020), they
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DSM-V Behavioral Criteria for Substance Use Disorder
Group I

Impaired control of substance use

    Taking the substance in larger amounts
    or more often than you meant to

    Spending a lot of time getting, using, or
    recovering from use of the substance

    Cravings and urges to use the substance

    Wanting to cut down or stop using the
    substance but not managing to do so

Group II
Impaired social behavior

Group III
Risky substance use

    Using substances again and again, even
    when it puts you in danger

    Continuing to use, even if you have a
    physical or psychological problem that
    could have been caused by or made
    worse by the substance
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FIGURE 1 | Behavioral models used to classify phenotypes of substance use disorder. (Top) The behavioral criteria of SUDs (circled letters) can be sorted into three
main categories: impaired control of substance use (Group I), impaired social behavior (Group II), and risky substance use (Group III). (Left) Common rodent
experimental models and the SUD criteria they are thought to best approximate. Note that most models capture multiple SUD features. (Right) Mesostriatal circuits
(light purple), including dopamine projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAC), and nigrostriatal circuits (dark purple), including
dopamine projections to the dorsomedial (DMS) and dorsolateral striatum (DLS), have generally dissociable roles in different components of major SUD models. In
the middle panels, the most clearly defined roles for these two systems in each SUD category are listed.

nonetheless offer powerful experimental insight
into neurobehavioral mechanisms that govern core
features of drug use.

Among brain systems, dopamine (DA) circuits are a key
modulator of behaviors associated with SUDs. Via several

mechanisms, including direct excitation of DA neurons
(nicotine, alcohol), blockade of terminal DA reuptake
(amphetamine, cocaine), and DA neuron disinhibition (opioids
and cannabinoids), nearly all drugs used by humans acutely
increase signaling of DA within the striatum, and blocking
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DA receptors decreases the reinforcing effects of many drugs
(Wise and Bozarth, 1987; Johnson and North, 1992; Nutt et al.,
2015; Volkow et al., 2017; Nestler and Lüscher, 2019; Solinas
et al., 2019; Wise and Robble, 2020). The connection between
DA and drug use is further supported by in vivo measurements
of drug-evoked DA release in human and non-human animal
studies (Hernandez et al., 1987; Chiara and Imperato, 1988;
Robinson et al., 1988; Pontieri et al., 1995; Ito et al., 2002;
Porrino et al., 2004; Volkow et al., 2006; Belin and Everitt,
2008; Willuhn et al., 2012, 2014). Humans with a history of
drug use, including those meeting DSM criteria for SUDs, have
altered DA system transmission and function (Stewart, 2008;
Volkow et al., 2009; Diana, 2011; Leyton and Vezina, 2014;
Ikemoto et al., 2015; Leyton, 2017). As such, popular theories
of addiction and compulsive behavior are built on the notion of
altered activity in the DA system (Robinson and Berridge, 1993;
Everitt and Robbins, 2005; Wise, 2009; Keiflin and Janak, 2015;
Nestler and Lüscher, 2019). Advances in neuroscience research
technology and theory surrounding addiction-like behaviors in
animal models of reward seeking have afforded the opportunity
to characterize the role of precisely defined brain circuits and
regions in behavior. In this review, we will discuss current
evidence for regional and circuit-specific functions within the
DA system in different aspects of addiction-like behavior, in
the context of animal studies derived from DSM criteria for the
behavioral features of SUDs.

DOPAMINE CIRCUITS

Most of the brain’s neurons are in two midbrain regions
(Figure 1): the ventral tegmental area (VTA) and substantia nigra
pars compacta (SNc). DA neurons in the VTA largely project
to the ventral striatum, in particular, the nucleus accumbens
(NAc) core and shell, comprising the mesostriatal pathway,
and to other frontal targets in the pallidum, amygdala, and
prefrontal cortex (Swanson, 1982; Ikemoto, 2007). Intermingled
with DA neurons in the VTA are a substantial fraction of
GABAergic and glutamatergic neurons (Olson and Nestler, 2007;
Nair-Roberts et al., 2008; Bouarab et al., 2019). The SNc, in
contrast, contains DA neurons that project almost exclusively
to the dorsomedial (DMS) and dorsolateral (DLS) striatum,
comprising the nigrostriatal pathway (Beckstead et al., 1979;
Swanson, 1982; Fields et al., 2007; Ikemoto, 2007; Britt et al.,
2012). At their targets in the striatum, DA neurons primarily
contact GABAergic medium spiny neurons (MSNs) that contain
excitatory type 1 (D1-MSNs), or inhibitory type 2 (D2-MSNs)
DA receptors (Gerfen, 1984; Kupchik et al., 2015). Dopamine’s
modulatory influence on striatal activity via these outputs is
a predominant mechanism of behavioral control in reward
learning and motivation. Notably, many drugs act in the striatum
to increase DA release locally, via regionally specific terminal
mechanisms (Collins and Saunders, 2020), which plays a key role
in heterogeneous mechanisms of drug use, craving, and relapse
behaviors that underlie features of SUDs (Koob and Bloom, 1988;
Ahmed and Koob, 1998; Lobo et al., 2010; Thompson et al., 2010;
Oliver et al., 2019).

Dopamine neurons across VTA and SNc circuits exhibit
considerable heterogeneity with respect to behavioral function
(Figure 1; Björklund and Dunnett, 2007; Lammel et al., 2014;
Morales and Margolis, 2017; Cox and Witten, 2019; Collins
and Saunders, 2020). In the classic framework, mesostriatal
DA neurons contribute to learning and execution of goal-
directed behaviors, while nigrostriatal DA, especially in the
DLS, is involved in movement control and the execution of
rigid, habitual actions (Haber et al., 2000; Hassani et al., 2001;
Everitt, 2014; Burton et al., 2015; Saunders et al., 2018; Cox
and Witten, 2019). From an extensive literature, deficits in
VTA and SNc DA signaling typically impair learning and
reward-directed behaviors, or movement planning, execution
and vigor, respectively. Exaggerated VTA and SNc DA signaling,
conversely, underlies compulsive motivation and behavioral
inflexibility (Robinson and Berridge, 1993; Cardinal et al., 2002;
Everitt and Robbins, 2005; Wise, 2005). In the context of
Pavlovian learning, sensory cues associated with increased VTA
DA neuron activity evoke approach behavior and acquire value
that supports second-order conditioning of instrumental actions,
which is critical for persistent and adaptive reward pursuit
(Berridge, 2007; Flagel et al., 2011; Saunders and Robinson, 2012;
Saunders et al., 2018). Nigrostriatal DA neurons, especially those
projecting to the DMS, are important for linking instrumental
actions with outcomes they produce (Yin et al., 2005). Further,
activation of SNc DA neurons evokes movement, and their
activity encodes movement initiation (Dodson et al., 2016;
Coddington and Dudman, 2018; da Silva et al., 2018), suggesting
they contribute more generally to movement invigoration. VTA
DA neuron activity and release in the NAc is in contrast
engaged when animals emit cue- or goal-directed movements
(Carelli, 2004; Burton et al., 2015; Howe and Dombeck,
2016; Mohebi et al., 2019). As such, mesostriatal DA can be
conceptualized as generating a motivational “pull” to cues and
the rewards they predict, while nigrostriatal DA provides a
“push” that underlies general behavioral invigoration or arousal
(Bolles, 1967; Ostlund, 2019). Thus, while dissociable, normal
activity in these parallel circuits is necessary for successful
reward seeking and reward-based decision making (Arias-
Carrión and Pǒppel, 2007; Aarts et al., 2011; Hsu et al.,
2018; Le Heron et al., 2018, 2020; Cox and Witten, 2019;
Collins and Saunders, 2020).

Via its roles in signaling expectation, value, and action
invigoration, DA has strong influence on both goal-directed
and habitual actions that result from reward learning. These
fundamental behavioral classifications are each maladapted in
addiction (Tiffany, 1990; Singer et al., 2018; Ostlund, 2019;
Hogarth, 2020; Vandaele and Ahmed, 2021). Given that
drugs impinge heavily on DA circuitry, functional, circuit-level
differences within the DA system have important implications
for the understanding of SUDs. In the following, we will
review some of the ways in which mesostriatal and nigrostriatal
DA pathways regulate behaviors associated with major SUD
criteria. Notably, emerging work highlights that striatal DA
is essential not only for features of SUDs characterized by
exaggerated behavior, such as drug use and craving, but
also for behavioral deficits, including impairments in decision
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making that underlie compulsive behavior, reduced sociality,
and risk taking.

CATEGORY I – IMPAIRED CONTROL OF
SUBSTANCE USE

A hallmark of SUDs is a progression to impaired control over
drug use, associated with increased drug intake, craving, and
relapse vulnerability. As such, a major DSM criterion includes
behavioral features such as “taking the substance in larger
amounts or more often,” “spending a lot of time getting, using,
or recovering from use of the substance,” and “cravings and urges
to use the substance.” Animal studies of these SUD features are
among the most common, leveraging the power of drug self
administration models. The self administration models that align
best with Category I SUD criteria are shown in Figure 1. Rodents,
like humans, will readily self administer most commonly used
drugs, such as; opioids, alcohol, cocaine, amphetamine, nicotine,
and cannabinoids. In widely used paradigms, rats and mice are
trained to engage in behaviors (typically, lever presses, or nose
port responses) to receive drug doses delivered intravenously,
orally, or via inhalation. Drug-associated cues and contexts,
as well as small “priming” drug doses, stress and pain play a
central role in promoting and maintaining drug use and relapse
(Stewart, 1984; Balster and Lukas, 1985; Goeders and Guerin,
1994; Shaham et al., 2003; Chaudhri et al., 2008; Spanagel, 2017).
In relapse models, the resumption of drug seeking following
abstinence can be used as a behavioral index of drug “craving”.
Notably, drug craving assessed in animal models undergoes
“incubation” in the weeks to months following abstinence from
many drug types. That is, the longer it has been since the last
drug exposure, the greater the probability and intensity of relapse
(Grimm et al., 2001; Venniro et al., 2016). This sensitization of
the relapse-inducing power of drug cues in particular results in a
persistent threat of a return to drug use, a feature of SUDs that is
especially difficult to treat.

A major development in rodent addiction models came when
it was discovered that giving rats extended access to drugs
promotes an escalation of intake, where more drug is taken in
a shorter time period, mimicking a central tenet of human SUDs.
This has been observed with many drugs, including cocaine,
heroin, methamphetamine, alcohol, and nicotine (Ahmed and
Koob, 1998; Ahmed et al., 2000; Roberts et al., 2000; Kitamura
et al., 2006; O’Dell et al., 2007). Escalation of drug intake
following extended access is associated with other addiction-like
features, including increased motivation for drug, drug seeking
in the face of high effort cost, and seeking despite negative
consequences. This approach has since informed a large portion
of preclinical addiction research, including attempts to create
a DSM-inspired composite addiction phenotype that can be
applied to rodents (Deroche-Gamonet et al., 2004; Robinson,
2004; Vanderschuren and Everitt, 2004; O’Neal et al., 2020). More
recently, intermittent access drug self administration models have
gained attention (Zimmer et al., 2012; Kawa et al., 2019a). In these
paradigms, brief periods of drug availability are interspersed with
longer drug unavailability periods. This intermittency promotes

rapid, binge-like drug intake that may better approximate some
human drug use patterns. Intermittent self administration of
cocaine, alcohol, and opioids, despite resulting in much less
total drug intake compared to extended access models, promotes
escalation of intake and elevated drug craving (Simms et al., 2008;
Zimmer et al., 2012; Calipari et al., 2013; Kawa et al., 2016; O’Neal
et al., 2020; Fragale et al., 2021; Samaha et al., 2021). Binge-
like self administration can also develop in rats given extended,
continuous access to cocaine, and individual differences in binge
patterns early in self administration training predict the intensity
of future use (Tornatzky and Miczek, 2000; Belin et al., 2009).
Finally, some rodent models have also incorporated a behavioral
economics framework to quantify drugs as commodities, to
examine choice elasticity and demand (Oleson and Roberts,
2009; Bentzley et al., 2013; Mohammadkhani et al., 2019).
This approach is useful for standardization of core behavioral
indices related to decision making and motivation, which could
facilitate quantitative comparisons across different tasks and
reward modalities.

Mesostriatal
Drugs act on DA circuits to promote synaptic plasticity that
amplifies VTA activity and DA signaling in the NAc, even
following a single exposure (Ungless et al., 2001; Mameli et al.,
2009; Pascoli et al., 2012; Ungless and Grace, 2012; Ji et al.,
2017; Morel et al., 2019; Thompson et al., 2021). Within the
mesostriatal pathway, DA release evoked by drugs occurs via
multiple mechanisms that impinge on VTA cells and their axon
terminals (Ritz et al., 1987; Thomas et al., 2008; Volkow et al.,
2009; Mark et al., 2011; Ford, 2014; Lammel et al., 2014).
Given the central role that mesostriatal DA plays in reward
learning and behavioral reinforcement (Fouriezos and Wise,
1976; Corbett and Wise, 1980; Witten et al., 2011; Steinberg et al.,
2014), this system is key in the control of drug seeking, drug
cue-evoked motivation, and craving. Manipulation of VTA DA
neuron activity can regulate drug self administration in animal
models. One way this has been studied is through manipulation
of DA D2 autoreceptors. Activation of these receptors decreases
activity of DA neurons and phasic DA release through a negative
feedback loop (Schmitz et al., 2003), leading to changes in drug-
taking behavior. Dopamine binding on VTA D2 receptors is
negatively correlated with cocaine and amphetamine seeking and
consumption (Buckholtz et al., 2010; Bello et al., 2011). Further,
elevating VTA DA neuron activity via D2 knockdown increases
cocaine self administration (Chen et al., 2018) and blocking the
negative feedback activity of these receptors increases cocaine
self administration (McCall et al., 2017). Additionally, rats with
knockdown D2Rs will also work harder for sucrose and cocaine
(de Jong et al., 2015). In line with this, reducing DA signaling
in VTA neurons blunts cocaine self administration motivation,
as measured by impaired behavior on a progressive ratio task
(Ranaldi and Wise, 2001). These studies illustrate some ways that
alterations in normal signaling with the mesostriatal pathway can
alter motivation for drugs. Elevating VTA DA neuron activity can
also promote impulsive choice behavior, for example, where rats
prefer small, immediate rewards over larger rewards that require
a longer waiting period (Bernosky-Smith et al., 2018), another
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component of impaired control over reward seeking behavior
that is common in SUDs (de Wit, 2009; Dalley and Ersche, 2019).

Mesostriatal DA signaling is important for the escalation of
drug intake. Repeated drug exposure, via passive administration
or self administration, generally increases DA signaling in
the NAc and produces exaggerated drug seeking motivation
(Robinson and Berridge, 2001). Recent work, however, highlights
how the pattern of drug intake can produce starkly different
effects on mesostriatal DA circuits (reviewed in Samaha et al.,
2021). Extended or long access to drug self administration,
which produces escalation of drug intake, craving, and other
addiction-like behaviors across a variety of drug types (Ahmed
and Koob, 1998; Vanderschuren and Ahmed, 2013; Ahmed,
2018), is also associated with blunted drug-evoked NAc DA
signaling, especially in cocaine use models (Mateo et al., 2005;
Calipari et al., 2014; Willuhn et al., 2014; Siciliano et al.,
2015). Intermittent, binge-like cocaine use, in contrast, sensitizes
mesostriatal DA signals, relative to animals with a history of
extended or continuous access, despite also producing strong
escalation of intake and craving after much less total drug
exposure (Kawa et al., 2019a). Intermittent drug exposure also
selectively potentiates cocaine’s actions to inhibit DA transporter
function, to facilitate elevated NAc DA signaling, relative to
continuous or extended access (Calipari et al., 2013).

The distinction between the impact of extended versus
intermittent access self administration on NAc DA signaling
illustrates how DA circuits are sensitive to a number of
features of drug experience, and careful consideration of the
details of animal behavior models are critical for interpreting
reported brain mechanism outcomes. For example, extended
drug access may produce blunted NAc DA responses during
well predicted and well learned drug-taking actions, an acute
“hypodopaminergic” state that could promote greater drug
taking to make up the reward deficit (Blum et al., 2000, 2015;
Leyton and Vezina, 2014). Simultaneously, DA responses to
drug-paired cues and unpredicted drug exposure can become
sensitized, which underlies exaggerated cue-evoked drug seeking
motivation, especially after a period of abstinence (Robinson and
Berridge, 2001; Bradberry, 2007; Kawa et al., 2019b). Thus, it is
possible for DA to be both down and upregulated in the context
of SUD models, depending on specific DA circuits, task features,
and when the signals are measured. Notably, humans use drugs in
a variety of patterns, depending on the reason for use, the drug’s
pharmacology and route of administration, and various other
social and cultural factors (Gardner, 2011; Allain et al., 2015), so
animal models featuring extended, continuous, and intermittent
exposure are all likely important for capturing different features
of addiction that reflect complex adaptations in the DA system.

Drug seeking responses maintained by the conditioned
reinforcing value of cocaine-paired cues rely on VTA activity
(McFarland and Kalivas, 2001; Shaham et al., 2003; Ciano and
Everitt, 2004; Yun et al., 2004; Kufahl et al., 2009; Lüscher and
Malenka, 2011; Mahler and Aston-Jones, 2012). This feature of
mesostriatal control of addiction-like behavior is clear in models
of relapse, which is often precipitated by exposure to a cue or
location that was previously paired with drug delivery. VTA DA
neurons mediate drug-cue induced relapse behaviors, and drug

cues elicit VTA DA activity and DA release in the NAc with
cocaine, alcohol, and other drugs (Ito et al., 2000; Phillips et al.,
2003; Aragona et al., 2009; Ostlund et al., 2014; Wolf, 2016; Liu
et al., 2020). Under periods of abstinence, VTA activity and NAC
DA release facilitates relapse to cocaine, heroin, and alcohol in the
presence of these cues (Shaham et al., 2003; Saunders et al., 2013;
Corre et al., 2018; Mahler et al., 2019). Conversely, drug seeking
is reduced by inactivation of the mesolimbic pathway (McFarland
and Kalivas, 2001; Chaudhri et al., 2009; Saunders et al., 2013;
Corre et al., 2018; Mahler et al., 2019; Valyear et al., 2020).
These data fit within the framework of mesostriatal DA primarily
controlling cue-guided or goal-directed drug seeking motivation.

Nigrostriatal
A crucial part of SUDs is that drug taking is no longer
recreational, but can become habitual, characterized by inflexible
drug-taking actions that are insensitive to feedback and
changing contingencies. A central feature of the organization of
dopamine-striatum circuitry is the transition from ventromedial
signaling early in reward learning, when behaviors are primarily
goal directed, to later signaling in dorsolateral striatum that
accompanies the development of habit-like behaviors (Haber
et al., 2000; Joel et al., 2002; Ikemoto, 2007; Burton et al.,
2015). This transition is readily demonstrated across drug classes
in animal models (Zapata et al., 2010; Clemens et al., 2014;
Hodebourg et al., 2019; Zhou et al., 2019), where habit-like
behaviors are associated with nigrostriatal activity. Notably, the
nigrostriatal DA pathway is less directly activated by acute drug
exposure in animals with limited drug use history, compared to
the mesostriatal pathway (Mereu et al., 1987; Ito et al., 2002;
Keath et al., 2007; Belin and Everitt, 2008; Murray et al., 2012;
Willuhn et al., 2012, 2014). Drug use is thought to accelerate the
transition to addiction-like behaviors via progressive engagement
of the dorsolateral striatum. Evidence from rodent self-
administration models supports this notion. Dopamine signaling
in response to cocaine and cocaine-associated cues is initially
strongest in the NAc as rats learn to self administer the drug. Over
time, the DA response to cocaine delivery in the NAc weakens,
and DLS DA signaling emerges (Ito et al., 2002; Willuhn et al.,
2012, 2014). Further, the emergence of robust DLS DA signaling
predicts the degree of escalation of drug use, and DA signaling
and activity in the DLS is necessary for robust cocaine and
alcohol self administration only after extended drug use (Belin
and Everitt, 2008; Corbit et al., 2012; Murray et al., 2012; Willuhn
et al., 2012, 2014). In line with this, DLS D1-MSN activity is
associated with escalated methamphetamine self-administration
(Oliver et al., 2019). Extended nicotine self administration is
associated with exaggerated neural activity in the SNc and DLS
(Clemens et al., 2014). DLS DA signaling is necessary for cocaine
self administration maintained on second-order reinforcement
schedules (Vanderschuren et al., 2005), which is thought to
reflect the development of stimulus-response associations that
are resistant to extinction. Further, within the DLS, well learned
alcohol seeking actions are preferentially encoded over drug
receipt (Fanelli et al., 2013), which is consistent with the notion
of this system in mediating habitual or ritualistic features of
drug taking (Everitt and Robbins, 2005). Together these results
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suggest that the nigrostriatal DA pathway is recruited to promote
the escalation of drug use and rigid drug-intake patterns, which
underlies the development of addiction-like states in SUDs.

An inability to change behavior in response to changing
outcome value is proposed to be a key reason behind drug craving
and the draw of drug-associated cues. Interestingly, SNc DA
neurons have been shown to encode reward values over the long
term, even when these rewards are no longer expected (Kim et al.,
2015). This could suggest that even if tolerance to some of the
pharmacological features of a drug is developed, SNc DA retains
the drug taking “habit” via an inflexible memory of the reward
when first experienced. Disordered memory could also impact
relapse susceptibility. For example, inflating rewarding memories
of drug use, or decreasing memories of negative experience,
could make one more likely to use a drug even after a period of
abstinence. Supporting this general notion, in one study where
rat SNc DA neurons were chemically lesioned, lesioned rats
performed worse on a task that delivered negative feedback
for poor performance (Da Cunha et al., 2001). Exaggerated or
otherwise altered nigrostriatal activity that accompanies drug
exposure may produce a state of feedback insensitivity that
promotes exaggerated behaviors in SUDs.

CATEGORY II – IMPAIRED SOCIAL
BEHAVIOR

The social and lifestyle consequences of SUDs are perhaps
the most difficult to study in non-human animals, as this
category includes behavioral features such as “continuing to use,
even when it causes problems in relationships” and “giving up
important social, occupational, or recreational activities because
of substance use”. Common models of social behavior that
align with SUD diagnostic criteria are shown in Figure 1.
Recent modeling efforts have focused on elements of sociality
that are readily measured in species like rodents, including
social interaction and affiliative and rearing behaviors, and the
effects of social experience on decision making. Importantly,
the interaction between social experience and drug-related
behaviors is bidirectional. Conspecific-based stressors, including
disrupted parental care, social isolation, and social defeat or
subordinate status, generally increase future self administration
of amphetamine, cocaine, alcohol, and heroin (Schenk et al.,
1987; Bardo et al., 2013). In contrast, positively valenced or
rewarding social interactions can be protective against cocaine
and heroin self administration, craving, and other addiction-like
behaviors, even in rats with extensive drug-taking experience
(Banks and Negus, 2017; Venniro et al., 2018, 2019). Social play
is highly rewarding in most mammals and relies on normal
function in striatal DA systems (Vanderschuren et al., 1997;
Manduca et al., 2016). As such, social behavior can be disrupted
with prenatal or adolescent drug exposure (Trezza et al., 2014;
Achterberg et al., 2019). Further, isolation from social play,
particularly during adolescence, can promote future drug use and
decision-making deficits associated with addiction (McCutcheon
and Marinelli, 2009; Lesscher et al., 2015). Like social exposure,
other forms of environmental enrichment and access to other

non-food rewards, such as an exercise wheel, can have protective
effects against escalation of cocaine self administration (Zlebnik
and Carroll, 2015). While much remains to identify neural
mechanisms of these effects, this work potentially underscores
the importance of prosocial, lifestyle, and community-based SUD
treatments for humans (Higgins et al., 2003; Meyers et al., 2011;
Stitzer et al., 2011).

Mesostriatal
Given its core role in reward processes, the mesostriatal pathway
has a central role in social behavior. Social interaction increases
mesostriatal DA signaling and NAc neurons are active during
approach to both novel conspecifics and pair-bonded partners
(Robinson et al., 2002; Gunaydin et al., 2014; Scribner et al.,
2020). Mesostriatal DA neurons projecting to the NAc are
necessary for normal social interaction behavior (Gunaydin
et al., 2014). Inhibition of mesostriatal DA neurons can disrupt
exploration of novel conspecifics (Bariselli et al., 2018) and
stimulating these neurons can enhance social preference (Bariselli
et al., 2016). Drug-evoked changes in VTA DA signaling and
physiology can impact these social behaviors. For example,
neonatal exposure to amphetamine increases VTA DA activity
and decreases social behavior in adulthood (Fukushiro et al.,
2015). This may be due to a D1-specific mechanism in the NAc,
as blocking D1-like DA receptors in this region rescues impaired
social bonding behavior in amphetamine-treated male prairie
voles (Liu et al., 2010). Further, following repeated exposure
to amphetamine, female prairie voles show decreased social
bonding behavior, accompanied by decreased DA D2 receptor
immunoreactivity and increased DA levels in the NAc. Notably,
administering oxytocin can restore social bonding and NAc
DA levels, suggesting an interaction between oxytocin and DA
systems in social behavior and drug use (Young et al., 2014).

In addition to drugs affecting mesostriatal DA signaling and
social behavior, social interactions can in turn alter drug taking
and signaling as well. Social defeat stress has been shown to
enhance the long-term potentiation of glutamatergic signaling
in the VTA as well as potentiate cocaine conditioned place
preference (Stelly et al., 2016). Further, increased cocaine use
following social defeat stress can be mimicked by directly infusing
corticotropin releasing factor into the VTA, which modulates
DA neurons (Leonard et al., 2017). Maternal separation can also
disrupt reward seeking and DA signaling in the mesostriatal
pathway. For example, female, but not male mice subjected
to maternal separation and social isolation show a decreased
conditioned place preference for a palatable reward and a
decreased level of D1 receptor mRNA in the NAc (Sasagawa et al.,
2017). Social isolation can also reduce the total dendritic length
of MSNs in the NAc (Wang et al., 2012), while increasing DA
signaling (Hall et al., 1999; Yorgason et al., 2016). The ability
to produce aberrant or exaggerated mesostriatal DA signaling
is thus one mechanism by which social stressors can produce
addiction vulnerability.

Nigrostriatal
Given its role in movement control, the function of nigrostriatal
DA in the context of Parkinson’s disease (PD) models has
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driven most research investigations. Notably, while severe PD
is primarily characterized by motor impairments, patients also
experience cognitive and emotional deficits that affect social
behavior. As such, some (Tadaiesky et al., 2008; Matheus
et al., 2016) suggest this pathway could be critical for social
impairments seen in people with SUD’s. Supporting this, in rats,
nigrostriatal damage can increase depression-like symptoms and
cognitive impairments in a social recognition test, as well as
promote social withdrawal (Tadaiesky et al., 2008; Matheus et al.,
2016). Interestingly, these effects were observed after an initial
anhedonic response which mapped onto changes in dorsal striatal
D1 and D2 receptor activity. Specifically, DA lesions increased the
density of D1 and D2 receptors in the DLS after 7 days, which
returned to control levels at 21 days when the anhedonic-like
effects were no longer present and social withdrawal emerged.
Cholinergic interneurons (ChIs) in the dorsal striatum, which
can regulate DA release locally via terminal mechanisms (Collins
and Saunders, 2020), may also play a role in regulating social
behaviors in mild nigrostriatal lesioned mice. For example,
inhibiting striatal ChIs reverses social memory impairments
caused by DA depletion (Ztaou et al., 2018). While the connection
between nigrostriatal DA and socially-based behavioral changes
in the context of SUDs has not been characterized in animal
models, this system is engaged by social experiences (Robinson
et al., 2002). Lesions of the substantia nigra in general seem
to reduce some social behaviors, including mate investigation
and social grooming (Eison et al., 1977). Other studies have
shown that rats with SNc lesions exhibit no difference on a
social interaction test (Loiodice et al., 2019), however, so the
connection between nigrostriatal DA signaling and normal social
behaviors, independent of non-specific motor effects, requires
more consideration.

Rearing conditions also affect the nigrostriatal dopaminergic
pathway. Social enrichment can reverse the behavioral effects of
nigrostriatal lesions in mice. Specifically, it slows the progressive
nature of lesioning damage as well as reverses motor impairments
(Goldberg et al., 2012). Social isolation increases DA release
and uptake in the dorsal striatum in rats, via alterations in DA
transporter function, which results in greater psychostimulant
potency (Yorgason et al., 2016). Together these studies show that
disruptions to the nigrostriatal dopaminergic pathway produce
social and cognitive deficits and different social conditions can
affect this pathway and in turn, drug reactivity.

CATEGORY III – RISKY SUBSTANCE USE

The DSM criteria for risky use of substances includes “using
substances again and again, even when it puts you in danger”
and “continuing to use, even when you know you have a
physical or psychological problem that could have been caused
or made worse by the substance”. Common decision-making
tasks thought to capture these SUD criteria are shown in
Figure 1. Recently, animal models of behaviors related to this
SUD criterion have become more common, including “risky”
choice assessment, conflict procedures, and punishment-resistant
intake models (Venniro et al., 2020).

Risky substance use is associated with compulsivity, which
in animal models is typically operationalized as a continuation
of behavior despite negative consequences. This is measured
in a few ways. For example, rodent tasks that approximate
human gambling conditions can assess cost-benefit decision
making, sensitivity to loss or punishment, and performance
under conditions of uncertainty as metrics of risk taking
(Orsini et al., 2015; Winstanley and Clark, 2016; Lüscher et al.,
2020). Approach-avoidance paradigms impose a situation of
motivational conflict on the research subject, between the urge
to seek out a reward and avoid an aversive or costly stimulus
(Oleson and Cheer, 2013). In related punishment-based models,
reward seeking actions also result in the delivery of noxious
or otherwise aversive stimulus, such as footshock, or a bitter
taste. A history of escalated use of several drugs, including
cocaine, alcohol, and opiates promotes punishment resistance
(Vanderschuren and Everitt, 2004; Pelloux et al., 2007; Marchant
et al., 2013; Hopf and Lesscher, 2014; Blackwood et al., 2020;
Monroe and Radke, 2021; Domi et al., 2021). Notably, these
tasks are particularly useful for assessing individual differences
in addiction-like behavior, as only a subset of animal subjects
will persist in drug seeking in the face of high cost (Shaham
et al., 2003; Everitt and Robbins, 2005; Cooper et al., 2007;
Vanderschuren et al., 2017; Giuliano et al., 2018).

Mesostriatal
Ventral tegmental area DA neuron stimulation, in the absence
of other reward-related stimuli, can lead to compulsive-like
behavior. When given the option to self stimulate VTA DA
neurons in the face of a punishing footshock, a subset of mice
will perseverate, enduring high shock levels (Pascoli et al., 2015).
Mesostriatal DA signaling is also important for conflict-based
behaviors. In rats, phasic DA signaling in the NAc encodes
motivational conflict: cues signaling threats evoke greater DA
release compared to neutral cues, and this signal correlates with
successful behavioral avoidance (Oleson et al., 2012; Gentry
et al., 2016). Further, blocking NAc DA abolishes, and increasing
NAc DA potentiates, drug-seeking behavior in a task where
rats were required to cross an electrified barrier to receive
infusions of cocaine (Saunders et al., 2013). Notably, this effect
was strongest in the subset of rats who were willing to experience
the highest shock levels, suggesting a link between mesostriatal
DA and individual differences in motivation in the face of
adverse consequences.

Disruptions to the mesostriatal pathway modulate so-called
risk-based decisions that incorporate cost-benefit probabilities
(Orsini et al., 2015). For example, DA signaling within the NAc
encodes risky decisions in gambling-inspired tasks (Sugam et al.,
2012). Notably, subsets of VTA DA neurons have different roles
in risky decision making (Verharen et al., 2018). Activation of the
mesostriatal pathway reduces sensitivity to loss and punishment,
while activating the VTA-PFC pathway promotes risky decisions
when there is no loss present. Further, stimulating the VTA after a
non-rewarded risky choice, which overrides the phasic dip in DA
release that would normally occur, biases rats to choose a risky
reward in the future and reduces sensitivity to reward omissions
(Stopper et al., 2014).
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Hyperdopaminergic states, such as those evoked by drugs,
can lead to disordered decision making that favors risk taking,
feedback insensitivity, and behavioral inflexibility (Stalnaker
et al., 2009; Izquierdo et al., 2010; Groman et al., 2018). Drug
exposure can affect future risk-based decisions, via alterations in
mesostriatal DA. For example, adolescent alcohol exposure in rats
reduces overall mesostriatal DA tone, but potentiates phasic DA
release, an effect that positively correlates with risk preference,
and is reversed when the DA signal is normalized (Schindler et al.,
2016). Adolescent drug exposure selectively disrupts NAc DA
encoding of costs (Nasrallah et al., 2011), suggesting that feedback
insensitivity associated with addiction-like behavior relies on
specific drug-induced mesostriatal adaptations. Interestingly,
the role of mesostriatal DA in risky decision making may be
somewhat sex dependent, as males exhibit decreased cue-induced
risky choice behavior following VTA inhibition while females
exhibit increased risky choice (Hynes et al., 2021). These results
suggest that altering VTA DA activity leads to an impairment
of decision making that is facilitated by, and could contribute
to, risky drug use.

Outside of the striatum, VTA projections to the prefrontal
cortex also play a major role in reward seeking in risky situations.
During reward-seeking actions, risk of punishment diminishes
synchrony between the VTA and PFC (Park and Moghaddam,
2017). Further, during learning, phasic activity in the PFC of
rats encodes risky seeking actions but not safe taking actions
or reward delivery, suggesting that the PFC is preferentially
involved in the learning of punishment probability. This effect
was also sex specific, with females exhibiting greater sensitivity
to probabilistic punishment than males (Jacobs and Moghaddam,
2020). However, this effect may not be mediated by VTA-PFC DA
projections per se, given some studies showing that these neurons
do not exhibit differential activity under threat of punishment
(Verharen et al., 2020).

Nigrostriatal
The role of nigrostriatal DA in habit-like actions underlies its
connection to compulsive behaviors that contribute to risky drug
use (Everitt and Robbins, 2005). One characteristic of habit-like
behavior is an encoding of a stable reward value despite changes
to the reward itself. Notably, a subset of DA neurons in the
lateral SNC demonstrate a “sustain-type” firing pattern that is
insensitive to changes in expected reward after extended learning
(Kim et al., 2015). Further, DLS DA axon terminals don’t exhibit
a clear decrease in activity when the actual reward is smaller than
predicted, unlike terminals in dorsomedial and ventral striatum
(Tsutsui-Kimura et al., 2020). This lack of feedback within the
nigrostriatal pathway in learning could result in drug-taking
behavior despite a negative consequence or in risky situations.

In an approach-avoidance decision making task, dopamine’s
actions within the DMS have opposing effects on behavior, with
D1-MSN activation facilitating approach and D2-MSN receptors
suppress approach. In contrast, DLS DA manipulations don’t as
clearly affect approach-avoidance behavior (Nguyen et al., 2019).
However, after extended access to cocaine self administration,
DLS inactivation selectively reduces self administration in the
face of punishment, compared to unpunished use (Jonkman
et al., 2012). Further, individual differences in the extent to which

alcohol seeking engages activity in the DLS predicts susceptibility
to punishment resistance (Giuliano et al., 2019), suggesting a
specific role in compulsivity and threat-based feedback. DMS
inactivation increases risky choice on a probabilistic discounting
task in rats, suggesting that it in contrast can facilitate flexibility
in reward prediction (Schumacher et al., 2021). Taken together,
these results are consistent with the notion that SNc-DLS
DA projections contribute to inflexible behavior, the SNc-DMS
projections promote flexibility in goal-directed behavior, both of
which are engaged during risk-reward decisions (Lerner et al.,
2015; Vandaele and Ahmed, 2021). Recent evidence suggests
that unlike other DA neurons, projections to the caudal “tail”
portion of the dorsal striatum preferentially encode threatening
stimuli and threat avoidance, relative to positively valenced
stimuli (Menegas et al., 2018). This suggests they could have a
critical role in risk-based decisions and compulsivity. Notably,
the effect of a history of drug exposure on nigrostriatal and striatal
tail function in conflict or avoidance tasks remains relatively
unexplored. Nevertheless, the above data suggest that in SUD
patients, dysregulation or imbalance of DA signaling across
SNC output targets could promote risk insensitivity to underlie
dangerous substance use.

Further insight into the connection between altered
nigrostriatal DA signaling and compulsive behavior comes
from PD patients receiving DA replacement therapy, which can
result in impulse control disorders that lead to risky decision
making. Levodopa treatment, for example, can be effective
at restoring motor function associated with nigrostriatal DA
degeneration in Parkinson’s, but a subset of patients experience
an increase in addiction-like behaviors, including compulsive use
of levodopa itself (Lawrence et al., 2003; Evans et al., 2006). These
effects are partially mediated by the emergence of D1-receptor
supersensitivity that results from nigrostriatal DA neuron
degeneration (Gerfen, 2003). Notably, and consistent with the
human PD phenomenon, a subset of parkinsonian rats display
high sensitivity to DA replacement drugs, after a history of drug
self administration (Engeln et al., 2013). More work on the link
between Parkinson’s states and the behavioral effects of DA
replacement in animal models will be useful in understanding
nigrostriatal DA’s role in risky and disordered drug use (Cenci
et al., 2015; Napier et al., 2020).

OTHER CONSIDERATIONS FOR ANIMAL
MODELS OF SUBSTANCE USE
DISORDER

Drug Type and Route of Administration
Given historical patterns in addiction research, much of the
current conceptualization of SUD is based on behavioral
modeling in a relatively narrow range of compounds, compared
to the broad scope of drug types and routes of administration
used by humans. Much of the work discussed here, for
example, made use of stimulant drugs (primarily cocaine),
although application of SUD animal models to non-stimulant
drugs is becoming more common. This is an important
consideration for future research, given that the majority of
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drug use in contemporary humans is of non-stimulant drugs,
including opioids, cannabis, and alcohol (Substance Abuse and
Mental Health Services Administration, 2019). More SUD-model
research on a broader set of drugs is critical because not all drugs
engage the same learning mechanisms to produce patterns of
addiction-like behaviors. Nicotine, for example, is relatively weak
as a primary reinforcer of drug self administration, compared
to other drugs (Pontieri et al., 1996). Instead, nicotine may
augment reward seeking to promote addiction-like behavior by
potentiating the motivational value of other stimuli and actions
via non-associative mechanisms (Donny et al., 2003; Chaudhri
et al., 2006). This heterogeneity is underscored by the fact that
while most self administered drugs increase DA release and
act on striatal circuits, they do so to different degrees, and
through different mechanisms that may produce unique signaling
patterns with specific behavioral relevance (Wise and Bozarth,
1987; Johnson and North, 1992; Nutt et al., 2015; Volkow et al.,
2017; Nestler and Lüscher, 2019; Solinas et al., 2019; Wise
and Robble, 2020). Further complications come from the fact
that some drugs used by humans, such as some hallucinogens,
do not as reliably increase DA signaling, and are not readily
self administered by rodents, making the application of SUD
behavioral models described here difficult (Griffiths et al., 1979;
Fantegrossi et al., 2008; Serra et al., 2015).

Drugs are taken by humans through different routes of
administration, including most commonly via oral consumption,
intravenous or subcutaneous injection, or inhalation. The route
of delivery affects the pharmacological impact that drugs have
on the brain and peripheral physiology, producing unique
neurobiological changes and vulnerabilities to addiction-like
behaviors (Jones, 1990; Gossop et al., 1992; Cone, 1998; Allain
et al., 2015). Intravenous injection and smoking produce the
fastest rise and highest drug concentration in the blood, which is
associated with greater DA signaling and neural activity in reward
circuits (Samaha et al., 2021). Notably, the large majority of drug
self administration animal models have relied on intravenous
or oral consumption drug delivery, which may obscure unique
neurobiological and behavioral adaptations produced by other
delivery routes. Smoked cannabis and nicotine are among the
most consumed drugs by humans, for example, underscoring the
need for SUD models that are amenable to inhalation exposure.
Recent work has progressed on this front, with technology for
vapor-based delivery of cannabis, cannabinoids, nicotine, and
other drugs in rodents (Nguyen et al., 2016; Marusich et al., 2019;
Freels et al., 2020).

Co-substance/Poly-Drug Use Models
Simultaneous or serial use of multiple drug types is a common
feature of human behavior and is reflected in many SUD
patients. Alcohol, nicotine, and cannabis are commonly used
alongside drugs like cocaine and heroin, for example, and
poly-use SUD patients experience worse treatment outcomes,
compared to patients who primarily use a single drug (Leri
et al., 2003; Mccabe et al., 2006; Substance Abuse and Mental
Health Services Administration, 2019; Crummy et al., 2020;
Compton et al., 2021). Despite this, animal models of SUDs have
nearly exclusively made use of single-drug procedures, studying
drug effects in isolation. Given the unique adaptations in the

DA system produced by different drug types, this single-drug
focus likely prevents understanding of unique brain changes
associated with poly-drug use. From a treatment perspective,
a given individual’s specific drug combination history could
produce individualized SUD vulnerabilities that are not captured
in classic models. Recently, more emphasis has gone to modeling
poly-drug use in rodents (reviewed in Crummy et al., 2020). For
example, rats will readily self administer some drug cocktails,
including cocaine and heroin (Crombag and Shaham, 2002).
This produces DA responses in the NAc that are greater than
those evoked by either drug alone (Hemby et al., 1999). In line
with this, exposure to both methamphetamine and morphine
results in greater locomotor activity than either drug in isolation
(Trujillo et al., 2011), and sequential self administration of
alcohol and cocaine produces unique neuroadaptations in the
NAc compared to cocaine alone (Stennett et al., 2020). Thus,
some single-drug studies may actually produce below threshold
neurobiological changes, resulting in failure to detect SUD-like
features that are more common in poly-use humans. Other work
has been done on drug combinations that are popular among
humans, such as alcohol and nicotine. Access to both of these can
have synergistic effects on reward-related behaviors in rodents,
although individual preferences for one drug or the other may
drive co-self administration competition (DeBaker et al., 2020;
Angelyn et al., 2021). Poly-drug studies can also offer insight
into unique, drug-specific pathways to addiction-like behavior
and treatment. For example, social defeat stress more reliably
produces escalation of speedball self administration, compared to
heroin self administration (Cruz et al., 2011). Further, methadone
treatment, commonly used in human opioid use patients, is
effective at reducing both cocaine and heroin relapse in rat
models (Leri et al., 2003). Notably, little is known about unique
adaptations in nigrostriatal DA circuits associated with poly-drug
use. If some drug combinations evoke greater DA release in the
NAc compared to others, they may also produce exaggerated SNc
DA activity, facilitating a more rapid transition to habit-like drug
related behaviors.

Individual Differences in Substance Use
Disorder Vulnerability
Variability in drug use profiles is highlighted by the fact that
among all recreational drug users, only ∼20% progress to meet
some DSM diagnostic criteria of SUD (Substance Abuse and
Mental Health Services Administration, 2019). Furthermore,
in the current framework, a SUD diagnosis requires the
presence of only two or more criteria (Figure 1). While more
severe cases of SUD typically involve several common criteria
(American Psychiatric Association, 2013), mild to moderate
cases can present with relatively divergent behavioral features.
This creates challenges for treatment, as there is no singular
“addiction phenotype”: the SUD of one person can look quite
different from another person. Animal studies have underscored
this by demonstrating that only a small fraction of rodents,
when given access to drugs, will progress to develop multiple
addiction-like behavioral criteria (Deroche-Gamonet et al., 2004;
Robinson, 2004; Vanderschuren and Everitt, 2004; O’Neal et al.,
2020). Further, and perhaps more striking, when given the choice
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between a drug reward and a non-drug reward, such as food or a
mate, only a small fraction of rats choose the drug option (Lenoir
et al., 2007; Cantin et al., 2010). This non-drug preference persists
even in rats with a history of extended drug self administration
(Caprioli et al., 2015), but can be overcome with high drug doses
and in tasks that equate the rate of reinforcement for drug and
non-drug rewards, at least for cocaine (Thomsen et al., 2013;
Beckmann et al., 2019). This suggests that individual differences
in drug metabolism may intersect with and impact decision
making in the context of drug use, contributing to individual
vulnerabilities to SUD. This represents a challenge for animal
models, where the comparatively limited genetic diversity of
research subjects may elide some variability factors. Recent work
has made use of “heterogeneous stock” rodents – the product
of multiple strain crossings - to increase genetic diversity and
investigate individual differences in addiction-like behavior and
reward learning in the context of drug use (Hughson et al., 2019;
de Guglielmo et al., 2021; King et al., 2021; Sedighim et al., 2021).
One such study identified a relationship between gut bacterial
content and behavioral features of impulsivity and attention
(Peterson et al., 2020). Thus, individualized peripheral systems
such as the microbiome can impinge on central brain systems,
including DA circuits, in ways that could produce unique SUD
vulnerabilities (Lucerne et al., 2021).

Humans exhibit considerable individual differences in SUD
characteristics as a function of sex, gender, age, and social
and environmental demographics (Brady and Randall, 1999;
Degenhardt et al., 2017; Substance Abuse and Mental Health
Services Administration, 2019). The factors that promote
exaggerated drug use in only a fraction of people are likely
myriad, but individual differences in DA system activity and
function play a key role (Piray et al., 2010; Saunders et al.,
2013). For example, humans with genetic polymorphisms that
result in elevated DA system activity show greater reward
cue-evoked striatal activity and craving that could denote a
predisposition toward exaggerated drug use (Wittmann et al.,
2013; Ray et al., 2014). Consistent with this, in animal models,
variability in DA signaling and expression of striatal DA receptors
is associated with higher drug cue responsivity and relapse
(Flagel et al., 2007; Verheij and Cools, 2008; Piray et al.,
2010; Saunders et al., 2013; Klanker et al., 2015; Ferguson
et al., 2020). Furthermore, at certain stages of the estrus cycle,
female rodents have larger NAc DA signals in response to
cocaine and cocaine-associated cues, which is thought to underlie
their generally higher propensity for addiction-like behaviors
(Becker and Cha, 1989; Becker, 1999; Calipari et al., 2017;
Johnson et al., 2019).

Given the circuit-specific DA functions in reward learning
and addiction-like behavior, some of which we have outlined
here, a detailed appreciation of the anatomical locus of variability

within DA systems in humans will be essential to forming a link
to unique SUD-related vulnerabilities. This will require a better
understanding of the DA system across multiple levels of analysis,
from genetic and developmental trajectories to in vivo circuit
connectivity and activity patterns. Critically, much work remains
to better understand how the larger mesocorticostriatal network
changes over time as both an antecedent and consequence of drug
taking. A functional circuit diagram, coupled with computational
approaches for modeling preclinical individual and sex-based
differences in decision making strategies (Groman et al., 2019;
Chen et al., 2021), will be important for determining the
neurobehavioral mechanisms underlying unique vulnerabilities
for different types of SUD.

CONCLUSION

Here we have reviewed evidence for overlapping, but distinct
mesostriatal and nigrostriatal DA circuit functions in behavioral
outcomes that are relevant to addictions and SUDs (summarized
in Figure 1). Dopamine innervation to the striatum contributes
to multiple, parallel functions in the context of addiction-like
behavior, with the mesostriatal pathway providing a “pull” toward
drug seeking by signaling drug and drug-associated stimulus
value, especially early in the use cycle. The nigrostriatal pathway,
and particularly DLS projecting DA neurons, in contrast are
more important for generating the “push” toward exaggerated
drug use by controlling rigid, feedback insensitive drug-seeking
actions. Notably, as highlighted above, striatal DA is important
not only for these positive symptom features of SUDs, including
exaggerated seeking and craving, but also for impairments in
decision making that underlie compulsive behavior, reduced
sociality, and risk taking. Through the use of animal models,
greater understanding of the functional heterogeneity of the DA
system and related networks can offer insight into this complex
symptomatology and may lead to more targeted treatments.
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