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Many animals live in groups and interact with each other, creating an organized collective
structure. Social network analysis (SNA) is a statistical tool that aids in revealing
and understanding the organized patterns of shared social connections between
individuals in groups. Surprisingly, the application of SNA revealed that Drosophila
melanogaster, previously considered a solitary organism, displays group dynamics and
that the structure of group life is inherited. Although the number of studies investigating
Drosophila social networks is currently limited, they address a wide array of questions
that have only begun to capture the details of group level behavior in this insect. Here,
we aim to review these studies, comparing their respective scopes and the methods
used, to draw parallels between them and the broader body of knowledge available.
For example, we highlight how despite methodological differences, there are similarities
across studies investigating the effects of social isolation on social network dynamics.
Finally, this review aims to generate hypotheses and predictions that inspire future
research in the emerging field of Drosophila social networks.
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INTRODUCTION

Collective behavior can be defined as a manifestation of group-level patterns produced by simple
interactions between individuals (Sumpter, 2010). Animals display a wealth of interesting collective
behaviors such as migrating geese flying in V-shaped formation, flocks of starlings turning in
unison, schools of fish splitting and reforming while outmaneuvering a predator, honeybees
foraging, and the division of labor in ant colonies (Sumpter, 2010). How individuals organize these
interactions depends on their social environment. Several factors, such as the composition and
size of the group, alter the social environment and may affect expression of collective behaviors.
The African migratory locust illustrates this phenomenon: crowded group conditions alter the
morphology, physiology, and behavior of individual locusts, resulting in aggressive swarms (Gillett,
1973). Similarly, manipulating group composition in the fruit fly affects the mating behavior and
cuticular hydrocarbon profile of individuals through differences in gene expression (Kent et al.,
2008; Krupp et al., 2008; Billeter et al., 2012). These examples, easily seen by the naked eye,
emphasize that interactions between individuals defines the social environment, and, in turn, the
social environment influences the behavior of the collective group.

The relationship between individual interactions and collective behavior of animal groups can
be studied in numerous ways. Simple informative assays have been developed that compute the
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distance to an animal’s nearest neighbor through static images or
video sequences (Simon et al., 2012). More elaborate approaches
involve tracking the identity and motion of animals in video
recordings with machine vision software (Branson et al., 2009;
Grover et al., 2009; Eyjolfsdottir et al., 2014; Crall et al., 2015;
Wario et al., 2015; Robie et al,, 2017), and this has inspired
the application of machine learning algorithms to classify and
predict various social behaviors (Kabra et al,, 2013). Research
on collective behavior of animals often converges on the
theme that simple rules applied to pair-wise interactions drive
emergent group structures (Mersch et al., 2013; Baracchi and
Cini, 2014; Pasquaretta et al., 2016a). Although more remains
to be uncovered about how animals form collective units, our
understanding has progressed from experiments quantifying
social interactions on an individual basis to social network
analyses that emphasize the group as an entity.

Social network analysis (SNA) relies on statistical tools to
identify patterns of interaction in groups and consequences
of social structure (Krause et al., 2009). Applications of SNAs
originated in the 1930s to study sociological factors of human
populations (Moreno, 1934; Lewin, 1951; Wasserman and Faust,
1994; Scott, 2000). Later, SNAs were applied to studying
exclusively the social structure of non-human primates (Sade,
1965; Fedigan, 1972; Pearl and Schulman, 1983; Sade et al., 1988;
Kudo and Dunbar, 2001; reviewed in Brent et al, 2011). In
the last 20 years, SNAs have been applied to various animals
in the field and laboratory such as fish (Croft et al, 2004),
birds (Boogert et al., 2014), insects (Otterstatter and Thomson,
2007; Formica et al., 2017; Stroeymeyt et al., 2018), and other
mammals including spotted hyenas (Ilany and Akgcay, 2016),
elephants (Goldenberg et al., 2016), and giraffes (Shorrocks and
Croft, 2009). Across this literature of animal behavior, a social
network is defined as any number of nodes interconnected via
social ties between them (Krause et al., 2009). Nodes are defined
as social entities that represent an individual animal. Edges
represent the connection between two nodes (social relationship
or interaction), and these can be weighted or unweighted (see
Figure 1). Unweighted networks are binary and consider only
the presence or absence of an interaction between individuals.
Weighted networks assign numerical values to all edges in
the network, and these values typically reflect the strength or
frequency of interactions between nodes. Weighted networks
summarize the history and structure of the group and unweighted
networks emphasize the distribution of interactions within the
group, and each approach has different strengths and limitations.
In a directed network, edges represent both the connection
of nodes and the directionality of an incoming or outgoing
interaction. In an undirected network, edges represent the sum
of all interactions between a pair of nodes but does not take
the direction of interactions into account (see Figure 1). Finally,
a social network represents connections between nodes over
time. Social networks may be static, meaning all connections
between nodes over a period of time are represented in a
single network that represents a history of social connections.
Alternatively, iterative approaches to networks have been studied.
Iterative refers to a process of generating multiple transient social
networks over a set interval of time to measure dynamic social

properties of animal groups (Schneider et al., 2012; reviewed
by Blonder et al., 2012; Farine, 2017). Iterative networks offer
opportunities to analyze how social connections and group-wide
network properties change throughout time.

Both static and iterative social networks derive from pair-wise
interactions, which are analyzed to assess pattern and structure.
In some cases, network measures describe individual nodes,
and in other cases qualities of the entire network. Degree is
the number of edges connected to a single node. In a directed
network, in-degree represents the sum of incoming interactions,
and out-degree represents the sum of outgoing interactions from
a single node. Every node in a network has these degree scores,
and the degree distribution is used to characterize features of a
network, such as whether it is random. In a weighted network,
the strength of a node is calculated as the sum of the edges’ weights
connected to that node. Edges are often weighted by the number
of interactions between nodes to emphasize short interactions
or by the duration of interactions between nodes to emphasize
longer social interactions (Bentzur et al., 2020). In a directed and
weighted network, the in-strength is the sum of the incoming edge
weights, and out-strength is the sum of the outgoing edge weights.
The density of the network is defined as the number of actual
connections between nodes divided by the maximum number
of connections possible between nodes in the network. This
measurement indicates how densely individuals are connected
throughout the network. There are a variety of properties that
measure different aspects of the network. Examples of these
properties are listed and defined in Table 1.

Social network analysis provide researchers with a powerful
tool that contributes to our understanding of mechanisms
underlying collective behaviors. The aim of SNA across animals
has been dedicated to understanding how ecology and evolution
affect collective behavior. For instance, there is evidence that
wild animals occupy consistent positions in social networks when
introduced to new environments (Krause et al., 2017; Canteloup
et al., 2020), and across changing seasons (Blaszczyk, 2018;
Stanley et al., 2018b; Rose and Croft, 2020). Also, social network
structures of animals analyzed in captivity are consistent with
those studied in the wild (Brandl et al., 2019; Ripperger et al.,
2019), suggesting that there is order to animal social groups
that can be predictably recreated and measured using statistical
approaches. Other factors of biological relevance are known to
influence the social network position of animals such as age
(Baracchi and Cini, 2014; Liao et al., 2018), development (Boogert
etal., 2014; Brandl et al., 2019) and reproductive success (Oh and
Badyaev, 2010; Formica et al., 2012). Social networks also map
how a single animal is connected to the larger population and this
can offer insight into probabilities of disease contagion (Sah et al.,
2018). The ability to relate biological factors to social networks
makes SNA an appealing means to further study animal behavior.

Traditionally SNAs were used to study animals in the field, but
increasingly more work has emerged that apply SNA to animals
in the laboratory. This shift is a result of recent advancements in
the automated identification and tracking of individuals (Branson
et al., 2009; Straw and Dickinson, 2009; Greenwald et al,
2015; Hong et al,, 2015; Robie et al., 2017). Increased interest
in applying SNAs to the genetic model organism, Drosophila
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FIGURE 1 | Visualization of the methods involved in acquiring Drosophila social networks. (A) First videos with a specific number of flies confined in an arena are
acquired and the position, orientation and identity of each fly is tracked with machine vision software (e.g., Ctrax). This information acquired from tracking can be
used to calculate a variety of behavioral element measures such as the average locomotor activity of the flies. To generate networks, criteria that define a directed
interaction are necessary. Typically, three parameters are used: (i) the angle connecting the center of the interactee fly relative to the interactor fly (shown with red
arrows); (i) the distance between the two flies’ center of mass; and (i) how long these conditions must be maintained for. The criteria can be defined manually,
based on observation (fixed criteria) or automatically computed through a published algorithm (automated criteria; see Schneider and Levine, 2014). Once the criteria
are selected, social networks can be generated each time they are met in the tracked videos. Networks can be computed with the following properties: (i) directed -
the directionality of incoming or outgoing interactions are recorded; (i) undirected — the directionality of interactions are not recorded; (iii) weighted — interactions are
weighted to reflect the strength or frequency of interactions between nodes; (iv) unweighted - networks are binary and only consider the presence or absence of
interactions between individuals. (B) Visualization of static networks, a conventional form of SNA where every observed social interaction within a video sequence is
combined into a single, large social network that encompasses the entire history of social interactions. To avoid saturation of node connections, static networks can
be weighted. (C) Visualization of the iterative network method (published by Schneider et al., 2012) where a variety of network iterations are generated throughout a
single video sequence. Once a threshold number of unique interactions are observed, one iteration is generated. Each subsequent unique interaction creates a new
iteration where the oldest interaction is removed. Each iteration is normalized to randomly generated networks with equal degree distributions. All iterations also have
the same number of interactions. As a result, degree distribution and density are controlled through this method.
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TABLE 1 | A list of common social network measurements defined by their both technical definition and their general applications.

Application References

Network measure Definition

Degree Number of edges connected to a single node. In-degree
refers to the number of interactions a node receives, and
out-degree refers to the number of interactions a node
outputs.

Strength In networks with weighted edges, strength is the sum of all
edge weights connected to a node. In-strength refers to the
sum of all edge weights a node receives, and out-strength
refers to the sum of all edge weights a node outputs.

Density Proportion of actual connections in a network over the
number of theoretically possible connections.

Betweenness Number of shortest paths that traverse a node.

centrality

Calculated as inverse between the shortest path between
two nodes, from one node to all other nodes in the network
and weighted for number of connections among nodes.

Weighted closeness
centrality
Eigenvector centrality  Directly related to the number of contacts a node has and
to the relative weight of the nodes to which it is connected.
Information centrality
index

Calculated by combining all the paths present in a network
and assigning a weight to them that is equal to the inverse
of the path length.

Clustering coefficient A measure of how interconnected nodes are to one another.

Modularity A measure of how a network can be subdivided into
clusters of sub-networks.
Assortativity A measure of the homogeneity of the degree distribution of

a network.
Global efficiency A measure of redundant pathways in the overall network

and how efficient information can spread.

Wasserman and
Faust, 1994

In all types of networks, degree informs how popular a
single node is toward receiving and/or relaying connections.

In weighted networks, strength informs overall how popular  Bentzur et al., 2020
a single node is toward receiving and/or relaying

connections relative to the weight of each connection.

Measures to what extent the network connections are filled
out between nodes.

Bentzur et al., 2020
Measures how central a node is in a network for relaying Newman, 2010
information and maintaining the network cohesion.

Pasquaretta et al.,
2016a

Measures how central a node is in a network for relaying
information and maintaining the network cohesion.

Measures how central a node is in a network for relaying Pasquaretta et al.,

information and maintaining the network cohesion. 2016a
It reflects the amount of information per individual contained Pasquaretta et al.,
in all possible paths that originate from and end with that 2016a

individual.

Typically used to measure how cliquish nodes are in a Newman, 2010

network.
Typically used to measure how cliquish nodes are in a
network.

Pons and Latapy,
2005
Distinguishes whether nodes in a network all have a similar ~ Newman, 2010
degree.

Latora and

Marchiori, 2001

Distinguishes whether the overall network has shorter or
longer paths between nodes.

melanogaster has surfaced. Although the number of these
studies is currently limited, the research questions addressed
are surprisingly diverse. Such studies also provide insight into
the social diversity and group-level complexity of these ‘simple’
organisms. However, the SNA approach differs in these studies
at the experimental, statistical, and conceptual levels. The aim
of this review is to compare the scope, objectives, and methods
of these studies, and attempt to draw parallels between them
and the broader literature of animal social networks. In the
process, we highlight the benefit of Drosophila insects toward
studying complex social phenomena and we attempt to generate
hypotheses and predictions that may inspire future experiments.

Drosophila SOCIAL NETWORKS

Social Space

Social network analysis relies on a concrete definition of social
behavior to fill connections between nodes. This definition
varies across animal species and the scope of the study. For
example, social networks generated from animals in the field
often considers individuals socially connected if they are found in
a common geographical location (Goldenberg et al., 2016; Deng
etal, 2017; Brandl et al., 2019). More precise animal interactions
may be used to build social networks and examples include
grooming or dominance interactions observed in a variety of
mammals (Madden et al., 2009; Blaszczyk, 2018; Biittner et al.,

2019). Social networks can also be produced from animals in
the laboratory, based on precise social interactions observed or
tracked in video sequences. Examples include physical contact
between the antennae of ants (Blonder and Dornhaus, 2011),
and the transfer of regurgitated food (trophallaxis) observed in
bees (Gernat et al., 2018). What forms of social communication
occur in Drosophila? Decades of investigation into the genetic,
neurological, and physiological basis of social behavior in D.
melanogaster offers the consensus that social communication
involves various combinations of visual, acoustic, tactile, and
chemosensory cues (von Schilcher, 1976; Agrawal et al., 2014;
Bontonou and Wicker-Thomas, 2014). As we will discuss
below, social networks in Drosophila are derived from physical
encounters between conspecifics, like SNA in ants and bees
(Blonder and Dornhaus, 2011; Gernat et al., 2018). In this section
we discuss the social space of flies, defined as spatial criteria
between the bodies of flies that approximate social interactions.
This can be conceptualized as a physical space that once crossed,
scores a social interaction. Also, we note that the terminology in
the field is not consistent. Social distance is used by some authors
(Simon etal., 2012; Brenman-Suttner et al., 2020) and social space
by others (Schneider and Levine, 2014; Montagrin et al., 2018).
We favor social space and use it here as a matter of preference,
not rigor, since these terms may be used interchangeably.

The first observation of organized spatial positioning in
Drosophila is credited to Sexton and Stalker, who noticed
that groups of female Drosophila paramelanica touch one
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another with their forelegs to maintain uniform spacing at
high group density (Sexton and Stalker, 1961). This observation
was rediscovered by Schneider et al. (2012) over 50 years later
in D. melanogaster. Repeated video recordings of flies in a
homogenous group revealed ‘touching’ behavior, which involves
the foreleg of an ‘interactor’ touching the ariste, head, body,
wing, or leg of an ‘interactee.” Before touching, the interactor
would typically approach the side of the interactee’s body at
acute angles, unlike in courtship when males tap the rear of a
female’s abdomen. This behavior can be classified using three
social space parameters: (i) distance of the shortest line segment
connecting the center of mass between the interacting flies; (ii)
angle of the line segment connecting the centers of mass of
both flies and the line segment protruding from the head of the
interactor; (iii) the time fulfilled during these touch encounters
(Figure 1). Schneider et al. (2012) defined a social interaction
between multiple flies as distance < 2 body lengths, angle < 90
degrees, and time > 1.5 s. Since this was repeatedly observed
in a social context devoid of courtship behavior, these social
space criteria arguably represent the most basic unit of social
communication in flies. As flies house gustatory taste receptors
within bristles on their legs (Vosshall, 2007), it is possible flies
use touch, taste or both as a form of social communication, in
addition to visual and olfactory sensory modalities (Vosshall and
Stocker, 2007; Zhu, 2013). Additional studies have applied similar
criteria for scoring social interactions, with some modification
that involved relaxing the angle parameter (Bentzur et al., 2020)
and restricting the distance parameter (Dawson et al., 2018;
Liu et al., 2018).

Social space criteria defined by Schneider et al. (2012) were
derived by observation and applied as a standard across different
types of flies. This method did not consider differences in social
space criteria that could occur between strains and species.
This issue was addressed by the development of an algorithm
that analyzes spatial positioning between flies and maps their
typical social space in an unsupervised fashion (Schneider
and Levine, 2014). More specifically, the algorithm analyzes
the spatial positions of every fly in all tracked videos. Then
background noise is eliminated by analyzing spatial positions of
“virtual trials” which consist of fly tracks randomly sampled from
separate videos. With that background subtraction, the algorithm
identifies distance, angle and time parameters that are over-
represented in videos of flies socially interacting compared to the
non-social virtual trials. This can be interpreted as the typical
spatial boundary between flies from the analyzed videos. Any fly
crossing this boundary within the videos is considered socially
interacting. For the remainder of this review, we will refer to
social space criteria generated from this algorithm as “automated
criteria” and all other criteria derived from human observation as
“fixed criteria.”

The social space algorithm was first applied to male and female
Canton-S and Oregon-R strains of Drosophila melanogaster.
The automated criteria that were computed differed from the
previously published fixed criteria (distance < 2 body lengths,
angle < 90 degrees, and time > 1.5 s; Schneider et al., 2012). The
distance parameters ranged between 1.75 and 2 body lengths, the
angle parameters ranged between 115 and 160 degrees and the

time parameters ranged between 0.4 and 0.6 s (Schneider and
Levine, 2014). Using different methods of image analysis over
time, Simon et al. (2012) and Jiang et al. (2020) demonstrated
that the average nearest neighbor distance between flies studied
in a group converges between 1.5 and 2 body lengths. Other
researchers studying group dynamics in Drosophila have also
applied a distance criterion between 1 and 3 body lengths based
on their own observation (Pasquaretta et al., 2016a; Bentzur
et al., 2020; Wice and Saltz, 2021). A recent comparative study
conducted on 20 drosophilid species found that the average social
distance of each species ranges between 1 and 3 body lengths.
Additionally, the authors observed that the average leg length of
each species relative to their body size positively correlated with
social distance. This finding suggests that the variation in the
social distance of flies can be explained by their morphology, and
it further confirms that 2 body lengths is a reliable social space
criterion to capture social encounters between individual flies in
a group setting.

When using social space criteria to score the social behavior
of flies in a group, it is important to consider how to
minimize false-positive interactions. For instance, the automated
criteria estimated by Schneider and Levine (2014) displayed
an increase in the angle parameters and a decrease in the
time parameters compared to the fixed criteria. A wider angle
and a shorter time parameter would lead to an increase
in the number of interactions, and indeed Schneider and
Levine (2014) reported an increase of hundreds of social
interactions with the automated criteria. Additionally, false-
positive social interactions may occur when two flies, interacting
over long periods of time, momentarily slip outside of the
social space boundary. This may result in a lengthy interaction
between two flies getting counted as several short interactions.
Stricter social space criteria have been applied by other
researchers, perhaps with the intention of minimizing false-
positive interactions. One straightforward approach is reducing
the distance parameter so that social interactions are only
counted when flies are in close proximity. For example, Liu
et al. (2018) recorded interactions exclusively when one fly’s
head approached and touched another fly’s rear. Another
strategy is the implementation of a ‘gap length’ parameter,
which is a set time interval required to elapse before additional
interactions between the same pair of flies are counted (Liu
et al., 2018; Bentzur et al., 2020). Bentzur et al. (2020) reported
that implementing a gap length of 4 s substantially reduced
the number of consecutive interactions occurring between the
same pairs of flies. Another alternative to filtering excessive
interactions is counting subsequent social interactions between
unique pairs of flies as done by Schneider et al. (2012). That
is, interactions between A and B will not be counted two times
in a row. When defining social space criteria, there is a trade-
off between filtering false-positive and accepting the loss of
true positive interactions and balancing this depends on the
researcher. Finally, social space criteria should be redefined if
different social contexts are being compared. Flies engaging in
aggressive or sexual acts may posture their bodies differently
than the touch events described previously and adjusting social
space criteria to reflect this may become useful toward future
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pursuits in the automated behavioral classification of Drosophila
social interactions.

Social Networks

Within recent years, there has been increased interest
applying SNA to study the sociality of Drosophila insects from
computational, behavioral, neurobiological, and evolutionary
perspectives (Schneider et al, 2012; Schneider and Levine,
2014; Pasquaretta et al., 2016a,b; Liu et al., 2018; Bentzur et al,,
2020; Jezovit et al., 2020; Rooke et al.,, 2020; Alwash et al.,
2021). All these studies consist of analyzing video footage
tracked by machine vision software and applying social space
criteria to generate social networks. Despite differences in the
methodology of these experiments (see Table 2), remarkably
similar experimental questions have been addressed (see Table 3).
In this section, we review recent SNAs applied to Drosophila.
We compile the various hypotheses tested in these studies and
comment on the overlap found in the social network data. We
also summarize the SNA methods in these studies and discuss
the advantages of each for studying Drosophila social networks.

Video Acquisition and Tracking

First, the precision of social network data depends on reliable,
error-free video tracking. The number of errors accumulated by
video tracking is dependent on the level of contrast between
the flies and the arena background, the length of the videos,
and the number of flies (Robie et al., 2017). The most common
tracking platform across the Drosophila social network literature
is Ctrax, an open-source machine vision tracker (Branson et al.,
2009). An inconvenient limitation of Ctrax is the requirement
to tediously review the tracking data for errors that involve, for

example, inconsistent identification of the same individual fly
or changes in the size and orientation of the tracks. Each of
these errors requires manual review and correction. In a recent
experiment that repeatedly filmed 10 flies in an arena for 15 min,
an automated error fixing script was applied to edit the tracking
errors from Ctrax (Bentzur et al., 2020). An alternative called
Flytracker, has been developed that claims to produce error-free
tracking (Liu et al., 2018). Recently, Wice and Saltz (2021) cross-
evaluated the performance of Flytracker with manual annotation
of fly identities from 700 random frames and reported a strong
correlation between automated tracking and manual tracking.
While these alternatives may increase the speed of data collection,
there is always the danger of harboring tracking errors that
could lead to a loss of precision and integrity of the SNA.
When considering a video tracking pipeline, the speed versus
the precision should be weighed appropriately depending on the
research objectives. For example, if social networks are generated
from interactions defined by distance and angle parameters
between flies, then it may be worth thoroughly reviewing and
fixing tracking errors that swap identities, and that alter the size
and orientation of the fly tracks, as done by multiple studies
(Schneider et al., 2012; Jezovit et al., 2020; Rooke et al., 2020;
Alwash et al., 2021). If the objective is to generate social networks
from interactions defined exclusively by the distance between
flies, errors in the orientation of the tracks, for example, can be
tolerated and ignored.

Static and Iterative Network Generation

Three recent studies analyzed Drosophila social networks using
the more conventional static network approach (Liu et al., 2018;
Bentzur et al., 2020; Wice and Saltz, 2021). This method generates

TABLE 2 | A comparison of all published-to-date Drosophila social network studies with their network analysis methods summarized.

Publication Social interaction criteria Summary of network Group Length of video  Tracking Post-tracking
analysis size recordings software correction
Schneider et al., 2012  Time: 1.5 s. Unweighted, directed, iterative 12 flies 30 min Ctrax Yes (Fixerrors)
Distance: 2 body lengths.
Angle: 90°
Pasquaretta et al., Time: 0.5 s. Weighted, directed, iterative. 12 flies 4h Ctrax Yes (Fixerrors)
2016a Distance: 1 body length.
Liuetal, 2018 Touch only: head to tail contact for Weighted, directed, static 16 flies 1h Flytracker No
0.5s.
Gap length between interactions: 0.5 s.
Bentzur et al., 2020 Time: 2 s. Weighted, undirected, static 10 flies 15 min Ctrax Yes (FixTRAX)
Distance: 2 body lengths.
Angle: <0°
Jezovit et al., 2020 Automated method (Schneider and Unweighted, directed, iterative 12 flies 30 min Ctrax Yes (Fixerrors)
Levine, 2014)
Rooke et al., 2020 Automated method (Schneider and Unweighted, directed, iterative 6 flies, 30 min Ctrax Yes (Fixerrors)
Levine, 2014) 12 flies,
24 flies
Alwash et al., 2021 Automated method (Schneider and Unweighted, directed, iterative 12 flies 30 min Ctrax Yes (Fixerrors)
Levine, 2014)
Wice and Saltz, 2021 Time: 0.6 s. Weighted, directed, static 20 flies 20 min Flytracker Yes*
Distance: <2.5 body length.
Angle: <160°

*Authors cross-validated tracking by hand-annotating fly identities in a random sample of 700 frames.
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TABLE 3 | A summary of the research objectives and hypotheses tested in all
published-to-date Drosophila social network studies.

Research objective Publications

Quantification of the emerging
properties of Drosophila social
networks and group formation

Schneider et al., 2012; Pasquaretta

et al., 2016a; Liu et al., 2018; Bentzur
et al., 2020; Jezovit et al., 2020; Rooke
et al., 2020; Alwash et al., 2021
Schneider et al., 2012*; Liu et al., 2018;
Bentzur et al., 2020

The experimental effects of social
isolation on social networks and group
formation

Schneider et al., 2012; Bentzur et al.,
2020; Rooke et al., 2020

The experimental effects of sensory
deprivation on social networks and

group formation

Schneider and Levine, 2014
Pasquaretta et al., 2016a,b

Analysis of social space
Diffusion analysis - modeling spread of
information flow between flies

The experimental effects of density and ~ Rooke et al., 2020

group size on social networks

Investigating the evolutionary factors of  Jezovit et al., 2020; Wice and Saltz,

social networks and group formation 2021
Genetic underpinnings/heritability of Alwash et al., 2021; Wice and Saltz,
social networks and group formation 2021

Investigation of social networks from
mixed groups

Pasquaretta et al., 2016a; Bentzur
et al., 2020; Wice and Saltz, 2021

*See Figure 2 for re-analyzed data.

a single network that represents the entire history of social
interactions within a single video (visualized in Figure 1). The
number of connections within these networks varies depending
on the number of interactions observed. All three of these studies
weighted the networks, offering additional information on the
strength of connections. Four other Drosophila social network
studies published to date utilized a dynamic iterative approach
(Schneider et al., 2012; Jezovit et al., 2020; Rooke et al., 2020;
Alwash et al., 2021). This method, published by Schneider et al.
(2012), generates directed and unweighted iterations of networks
in groups of flies. Unlike static networks, the iterative approach
generates multiple networks from a single video at a controlled
network density from a sliding boxcar filter (Kossinets and
Watts, 2006; visualized in Figure 1). To summarize, one network
iteration is built exclusively from a threshold number of unique
interactions. When an additional unique interaction is observed,
the oldest unique interaction is removed from the network
and the newest interaction is added and this forms the second
network iteration. This pattern continues and can produce
hundreds or thousands of social network iterations in a single
video, all offering snapshots of changing network structure over
time. To score and compare the network measures of different
types of fly groups, each iteration is standardized to thousands
of random network permutations with equal in-degree and out-
degree distributions. This normalization by degree distribution
is then followed by averaging all iterations to summarize the
network measure to a single data point. The result is an averaged
z-score of all network iterations per video. This use of the z-score
normalization attempts to evaluate properties of the group-
wide behavioral interaction patterns independent of the observed
individual interaction patterns (degree distribution). Overall this
iterative method removes the confounds of network density and

TABLE 4 | Summary of the advantages and disadvantages involved in simplistic
network analyses with fewer parameters (less information column) compared to
more complex analyses that require more input but controls more confounds

(more information column).

Factor Less information More information
Interaction Fixed: Treatment-specific:
definition e Assumes all individuals and e Requires criteria for all

Directionality
of interaction

Value of
interaction

Network
definition

Data
normalization

social treatments interact in
the same manner.
e Can use published criteria.

Undirected:
e Assumes any interaction is
bidirectional.
Unweighted:
e Assumes many interactions
between two individuals are
as important as a single
interaction.
e Straightforward methods for
network-permutations.
Static:
e The network is the

accumulation of all interactions

over the experimental period.

o If structure changes over time,

this can be hidden.

e If un-saturated, comparisons
between different network
densities introduce confounds
between density and
organization of the network.

Standardized Z-score:
e Normalizes all measures to a
standard scale.
o Allows plotting various
network measurements on
the same axis.
e Does not control for anything
beyond measurement units.

experimental treatments.

o Ability to control for

differences in interaction

patterns when looking at

group-level phenotypes.
Directed:

e Assumes interactions are

directional.

Weighted:
o Keeps track of “strong” vs.
“weak” interactions, be it
time spent interacting or
number of interactions.
e Permutation methods often
fail with small networks.

Iterative:
e Can handle arbitrarily long
experimental timeframes.
e Requires a ‘density’ cut-off
value.

Network permutation Z-score:
e Usually done by generating
randomized networks with a
controlled network feature
(e.g., degree distribution) and
standardizing observed
networks to null distribution
of random networks.
e Takes individual-level
interaction propensities into
account.
e Provides unbiased
measures of network
organization.

degree distribution when comparing networks across different
treatment groups (Schneider et al., 2012).
The static and iterative methods each have their advantages

and disadvantages (see Table 4). An advantage of the static
network approach is that the results are intuitive, whereas the
iterative approach is far more abstract to interpret. For example,
in a static network, the betweenness centrality score (defined in
Table 1) can be compared to each network node and the node
with the highest score can be interpreted as being critical to the
cohesion of the network. In the iterative approach, every node’s
score is averaged in each network iteration and all iterations are
averaged. As a result, the iterative analysis sacrifices information
about the individual fly in exchange for measuring the overall
group. Another distinction between the two methods lies in
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the network density. The iterative method controls the density
of networks by capping the number of social interactions per
network and analyzing iterations of density-controlled networks.
It was found that iterative networks capped at a 25% network
density for groups of 12 flies, which are networks consisting of
33 unique interactions, were more robust than other network
densities (Schneider et al., 2012). The static approach simply
allows all social interactions in a single video trial to fill out into a
single network and therefore network density may vary between
video trials. However, network density can be an informative
behavioral measure of the animal group since denser networks
indicate more social activity and this is not directly measured
through the iterative approach. Instead, to gauge differences in
network density in the iterative approach the researcher can
compute the number of iterations, which is associated with higher
social activity. Finally, the static and iterative approaches may
be combined as seen in Pasquaretta et al. (2016a) where static
networks were generated every 15 min from multiple hours
of footage. This combines the simplicity of the static network
methods with the advantage of measuring dynamic group activity
over multiple time points.

Social Experience

While the methods of generating and analyzing Drosophila social
networks differ, one question many of the studies address is how
social experience affects the group dynamics of flies (Schneider
et al, 2012; Liu et al., 2018; Bentzur et al., 2020). Schneider
et al. (2012) examined the effects of 3-day social isolation by
measuring the network properties of groups of flies that were
all separately reared in isolation, compared to groups of flies
reared in a socialized environment. There were no significant
differences found in the average network measures between these
treatments (Schneider et al., 2012). A limitation to this study was
the use of the same fixed criteria (2 body lengths, 90 degrees,
and 1.5 s) for the isolated flies and socialized flies. This did not
consider potential differences in the social interaction patterns
of isolated versus socialized flies. Therefore, to better understand
how social experience influences the behavior of flies, we re-
analyzed the Schneider et al. (2012) data using automated criteria
(Figure 2). Indeed, we find that socially isolated flies tend to
engage in longer social interactions than socialized flies (housed-
together treatment). On the other hand, a treatment of socialized
flies that were combined from separate housing groups (mixed-
together treatment) tend to have a shorter interaction time
compared to the housed-together treatment. We then generated
social networks using the iterative approach and found that
social isolation significantly affects the network structure. For
example, global efficiency (defined in Table 1) is significantly
higher in isolated flies, indicating that isolated flies have more
redundant connections in their networks. Isolated flies also
display a significantly lower betweenness centrality, indicating
that there are fewer central individuals serving as a hub in the
network. Across all measures, we observe greater variability in
networks of isolated flies compared to the controls, particularly
in assortativity and clustering coefficient (defined in Table 1).
Lack of social experience in these groups of isolated flies may be
contributing to these less predictable network measures. Other
behavioral measures, such as the average interaction rate and

percentage of interactions reciprocated, were also significantly
lower in groups of isolated flies. The new analysis shown here
underscores the importance of the automated criteria and makes
the findings of Schneider et al. (2012) consistent with recent
studies that have addressed these questions in other ways (Liu
et al., 2018; Bentzur et al., 2020).

Liu et al. (2018) took a different approach to the same
question. Rather than isolate virgin flies for 3 days, 9-day old
flies were isolated for 6 days. Replicates of static, directed, and
weighted social networks were generated from multiple video
sources and then averaged. Liu et al. (2018) revealed groups of 16
flies that had been isolated tend to be more active, interact more
often and produce networks with a higher clustering coefficient
than groups of socialized flies. Additionally, a time course of 1-
day to 6-day long isolation treatments showed that the average
clustering coefficient is significantly greater than that of socialized
flies at all time points. This suggests that a single day of isolation
is sufficient to alter the clustering coefficient of flies, and this may
be robust since we also report a higher clustering coeflicient in
isolated flies (Figure 2). In fact, Liu et al. (2018) also report a
higher global efficiency in isolated flies, which also agrees with
our re-analyzed data (Figure 2). This similarity illustrates that
network measures are robust in flies of different ages since groups
of 3-day old flies raised in isolation produce similar networks to
9-day old flies.

A more recent experiment by Bentzur et al. (2020) also found
social isolation affects fly networks. Like Schneider et al. (2012),
these authors collected flies as virgins and isolated or socialized
them for 3 days before recording their behavior. In this study,
the authors generated static networks, and they were analyzed
two ways: (1) weighting nodes by the number of interactions
to emphasize short and acute social patterns; (2) weighting
nodes by the length of interactions to emphasize long-lasting
social interaction patterns. The authors found that isolated flies
displayed a lower average betweenness centrality than socialized
flies in networks weighted by the number of interactions and the
length of interactions, and our re-analyzed data further validates
this finding (Figure 2). Bentzur et al. (2020) also found that, on
average, isolated flies have a lower modularity score (defined in
Table 1) in networks weighted both ways, indicating that isolated
flies produce networks that are less compartmentalized. This
can be attributed to their finding that social isolation leads to
flies being more active as measured by increased velocity, and
decreased instances of flies physically clustering and interacting
over long periods. However, higher locomotor activity may
lead to more frequent social interactions, resulting in a higher
network density, and a higher average degree/strength. Indeed,
this was reported in isolated flies (Liu et al., 2018; Bentzur et al.,
2020) and may serve as a confound when assessing network
structure. Alternatively, the aggregate clustering observed in
socially experienced flies could reduce the number of social
interactions, skewing the data to a lower network density.
Interestingly, in networks weighted by the length of interactions,
Bentzur et al. (2020) found no significant difference in the
network density between isolated and experienced flies. Perhaps
measuring networks weighted by length of interactions reduces
the confounds that arise from differences in locomotor activity
and frequency of social encounters because these networks
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FIGURE 2 | Emerging properties of social networks after social isolation. Data from Schneider et al. (2012) re-analyzed with automated criteria compared to the
original published data with fixed criteria reveals social experience significantly affects social interaction measures (A-D) and social network measures (E-H). Flies
were divided into three treatments: (i) Housed together (white) meaning all 12 flies in one video trial were raised together (n = 15 trials); (i) Mixed together (light gray)
meaning all 12 flies in one video trial were unfamiliar with each other from being raised with other flies (n = 22 trials); (i) Isolated (dark gray) meaning all 12 flies in one
video trial were completely socially isolated since eclosion (n = 24 trials). (A) Flies of the mixed group have significantly lower average interaction duration when
analyzed using the automated criteria (o < 0.0001). (B) Flies of the isolated treatment have significantly lower rates of interaction when analyzed using the automated

High Betweenness
Centrality

(Continued)

Frontiers in Neural Circuits | www.frontiersin.org 9

December 2021 | Volume 15 | Article 755093


https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles

Jezovit et al. Drosophila Social Networks

FIGURE 2 | criteria (p < 0.0001). (C) Average proportion of interactions reciprocated were significantly lower in the isolated groups when analyzed using the
automated criteria (o < 0.0001). (D) Movement did not significantly differ between the three treatments (p = 0.0909). (E) No significant differences between the three
treatments were observed for assortativity when analyzed using the automated criteria (p = 0.1027). (F) No significant differences between the three treatments were
observed for clustering coefficient when analyzed using the automated criteria (p = 0.9540). (G) Groups of isolated flies form networks with a significantly higher
global efficiency compared to controls when using automated criteria (o < 0.0001). (H) Groups of isolated flies form networks with a significantly lower betweenness
centrality compared to controls (o < 0.0001). Panels (A-H) were analyzed with one-way ANOVA with ranks to determine if statistical differences exist between the
groups. Outliers were removed from all the datasets. Bars indicate mean. Letters indicate statistical significance. (E-H) Networks were generated from the following
automated criteria: distance = 1.5 body lengths, angle = 115°, time = 0.55 s (housed-together); distance = 1.5 body lengths, angle = 110°, time = 0.5 s
(mixed-together); distance = 1.5 body lengths, angle = 110°, time = 0.95 s (isolated). Measurements were standardized using z-scores as described by Schneider
et al. (2012). Panels (I-L) defines and visualizes the network measurements analyzed [taken from Schneider et al. (2012)]. (I) Assortativity is the correlation between
nodes of a similar degree (degree shown as number inside node). Low assortativity indicates nodes of a dissimilar degree tend to interact whereas high assortativity
indicates more nodes of a similar degree tend to interact. (J) Clustering coefficient reflects the interconnectedness of the nodes in a given network. Networks with
low clustering coefficient have a higher proportion of nodes (see focal node highlighted in red) with neighbors that are unlikely to interact. Networks with high
clustering have a higher proportion of nodes (see focal node highlighted in red) whose neighbors are interconnected. (K) Global efficiency of a network is a
measurement of the average shortest path length that information would flow through. Networks with a low efficiency score indicates less efficient information flow
on average because the connections between nodes require more steps (visualized by 4 steps required for information to reach the two highlighted nodes through
red arrows). Networks with high efficiency have less distances on average between nodes (visualized by 3 steps required for information to reach the two highlighted

nodes through red arrows). (L) Betweenness centrality is a measure of how many shortest paths traverse a node, which can indicate the relative importance of a
node for information flow. Networks with low betweenness centrality have fewer nodes that are critical for network cohesion. This is visualized by the node
highlighted with the red dotted circle; this node can easily be bypassed. In the example network with high betweenness centrality, the node highlighted with the red
dotted circle cannot be bypassed for information to travel through the network, and networks with high betweenness centrality have more central nodes like that.

favor connections between flies that spend longer periods of
time socializing.

Despite the differences in methodology, three studies overlap
in showing how social experience affects the group dynamics of
flies. Two recent publications were the first to report these effects
(Liu et al., 2018; Bentzur et al., 2020), and re-analyzing data from
Schneider et al. (2012) further validates these two independent
studies. Flies isolated for 3 days form social networks with a
lower betweenness centrality (Bentzur et al., 2020) (Figure 2H).
This results in less cohesive social networks with fewer central
individuals holding the group together. Additionally, isolated
flies form networks with a lower modularity (Bentzur et al,
2020), which indicates social isolation leads to less complex
network structures. Taken together, these studies show that
isolating flies hinders their ability to socialize within groups.
This appears to contradict the finding that flies isolated for 1-
6 days form networks with a higher clustering coefficient (Liu
et al,, 2018) (Figure 2F), indicating isolated flies on average may
form cliquish groups. However, an automated classifier trained
to detect instances of multiple flies physically aggregating found
that isolated flies aggregate less than socialized flies (Bentzur
et al., 2020). This illustrates the point that social networks
capture patterns not necessarily intuitive to the human eye and
future experiments would benefit by applying machine learning
classifiers to measure additional qualities of social interactions.
Measuring a wealth of behavioral classifiers, as done by Bentzur
et al. (2020), would help validate and interpret the more abstract
social network measures. Another recent experiment by Sun
et al. (2020) studied the social attraction of free-walking flies
by measuring their proximity to immobilized flies in arenas.
With this assay, the authors found evidence that isolated flies
exhibited a decrease in social attraction when compared to
socialized flies. Finally, we find evidence that isolated flies are
just as active as socialized flies and engage in fewer social
interactions on average (Figure 2), which contradicts other
studies (Liu et al,, 2018; Bentzur et al., 2020). This highlights
the benefit of automated criteria for generating social networks
(Table 4). The behavior of the flies filmed may fluctuate

based on experiments being completed at different times. The
automated algorithm (Schneider and Levine, 2014) can take
these behavioral fluctuations into account and estimate social
space criteria reflective of the flies’ behavior in the current
experiment. Additionally, automated criteria can take behavioral
differences between experimental treatments into account. For
example, if socially isolated flies tend to interact differently than
socially experienced flies, the automated criteria can correct for
this and generate social networks that best represent the social
environment being measured.

Effect of Density and Group Size on Social Networks

Each study that compared social networks of isolated and
socialized flies examined groups of different sizes. A recent
experiment by Rooke et al. (2020) demonstrated that group
size affects features of social networks by comparing groups of
6, 12, and 24 flies across three different arena sizes. First, the
authors found that the average locomotor activity of flies was
similar across different group sizes and arena sizes, suggesting
flies regulate their movement to compensate for decreased space.
In terms of the social networks, the authors generated iterative,
unweighted, and directed networks at controlled network density
as published by Schneider et al. (2012). Rooke et al. (2020) found
that groups of 6 and 12 flies form networks with a significantly
lower average clustering coeflicient than groups of 24 flies, and
this was consistent across three different arena sizes. Additionally,
groups of 12 and 24 flies form networks with a significantly
higher average betweenness centrality than groups of 6 flies.
This suggests that larger groups, on average, have more flies
that are central and maintain greater cohesion across the group.
Although the number of social interactions increases as the arena
size and group size increase, properties of the social networks
remain consistent across the same group size. Since the social
networks were all generated at a controlled network density, and
all flies were reared with equal social experience, differences in
the network measures can be attributed to differences in group
size. No matter how confined or dispersed a group of flies may be,
the properties of the group shift only when the size of the group
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changes. Perhaps individual flies may be sensitive to changes in
group size based on visual feedback and through the perception of
pheromone concentration and organize themselves in the group
according to these signals.

Sensory Modalities and Group Formation

With D. melanogaster being one of the most popular organisms
for behavioral genetic experiments, the wide availability of
mutant strains and genetic tools to manipulate gene expression
have been applied to social network experiments. To date,
social networks have been generated for flies with disrupted
visual, olfactory, gustatory, and acoustic modalities (see Table 5).
Schneider et al. (2012) reported that the gustatory mutant
poxn®XBs6 displayed an extreme reduction in the ability to form
social networks (Schneider et al., 2012). More specifically, 40%
of the videos filmed of these mutants did not harbor enough
social interactions to form a single iterative network (Schneider
et al,, 2012). Recently, Jiang et al. (2020) also reported that poxn
mutants, in addition to a range of other gustatory mutants,

TABLE 5 | Summary of various genes and sensory manipulations studied in
Drosophila social network experiments.

Mutation/ Role Network findings References
gene
orco Olfactory mutation. Reduction in the ability to  Schneider
form networks. etal., 2012
lav' Hearing impaired mutation.  No effect on social Schneider
network measures. etal., 2012
poxn® Gustatory mutation. Reduction in the ability to  Schneider
XBs6 form networks. etal., 2012
wile Mutation associated with ~ Increased global Schneider
neurological and visual efficiency. etal., 2012
defects and reduced life
span.
lush Olfactory binding protein lush-inhibited fly networks Rooke et al.,
that is sensitive to male increased clustering 2020
pheromones. coefficient and
betweenness centrality
values in groups of 12
and 24 flies.
foraging Pleiotropic gene that The rover allele had Alwash
influences several higher global efficiency etal., 2021
metabolic, physiological, values while sitter allele
behavioral (foraging) and had higher clustering
developmental phenotypes. coefficient and
assortativity values.
or65a Olfactory receptor neurons — Or65a-inhibited fly Bentzur
that mediate chronic networks had increased et al., 2020
responses to male-specific  strength and decreased
pheromone cVA. betweenness centrality
values, along with
reduced modularity.
or67d Olfactory receptor neurons  Inhibition of or67d Bentzur
that mediate acute neurons did not influence et al., 2020
responses to male-specific  social networks.
pheromone cVA.
cyp6a20  Associated with increased  Networks with a mixture  Bentzur
aggression. of WT and et al., 2020

cyp6a20-knockdown
mutants leads to a
reduction in betweenness
centrality values.

displayed an impaired ability to form physical social clusters.
Together, this suggests chemosensory receptors are crucial for
maintaining the sociality of flies.

Schneider et al. (2012) also demonstrated that hearing-
impaired inactive mutants (iav') produced social networks that
were not significantly different from wild-type flies. Surgical
removal of ariste to ablate auditory perception in flies also had no
effect on social clustering behaviors (Jiang et al., 2020). However,
Jiang et al. (2020) reported that iav! mutants form more dispersed
social clusters, unlike wild-type flies that are more tight-knit. This
is also reflected in social space criteria for iav! mutants where
the distance parameter was estimated to be larger than wild-type
flies (Schneider and Levine, 2014). Although auditory mutants
may socially interact and cluster less than wild-type flies, there
is currently no evidence that manipulating auditory cues within
a group of single-sex flies affects measures of social network
structure (Schneider et al., 2012).

To disrupt vision, experiments have been conducted on flies
in the dark. Schneider et al. (2012) reported that groups of
flies filmed in the dark display a lower clustering coefficient
and higher betweenness centrality, but these effects were
not considered significant when accounting for multiple test
correction (Schneider et al., 2012). Bentzur et al. (2020) found
that groups of socially isolated flies behave more similarly in the
light and dark compared to socially experienced flies. The authors
reported that in networks of socially experienced flies, visual
disruption leads to a significantly lower average betweenness
centrality, opposite of what was reported by previous studies
(Schneider et al, 2012). Despite disagreement in the social
network data when subjecting flies to darkness, multiple studies
report similarities in how flies aggregate and physically cluster.
Using automated behavioral classification, Bentzur et al. (2020)
reported that groups of flies in the dark aggregate less often and
for shorter periods of time on average. Data by Jiang et al. (2020)
also found that wild-type flies in the dark, along with norpA33
visual mutants, cluster together less than wild-type flies. These
two recent studies reinforce observations by Schneider et al.
(2012) that darkness decreases the average interaction duration
among groups of flies.

Arguably olfaction is the dominant sensory mechanism
Drosophila depends on to locate foraging sites and conspecifics.
Ablating olfaction is complex because Drosophila insects possess
multiple olfactory receptors that are encoded by multiple genes.
The olfactory mutant, orco, is known to have a severe loss of
smell because it is deficient for a co-receptor that complexes with
a variety of odorant receptors (Vosshall and Hansson, 2011).
Social networks of orco mutants have been shown to have a
significantly lower global efficiency than wild-type flies, with
orco heterozygotes displaying an intermediate score (Schneider
et al., 2012). This may indicate that the copy number of the
orco gene leads to social interactions that, on average, result in
a greater social distance between individuals in the network. In
the same study, the orco mutants displayed a higher clustering
coefficient and a higher assortativity compared to controls,
although the differences were not statistically significant after
multiple test correction (Schneider et al., 2012). Also, the orco
mutant aggregates less with conspecifics compared to wild-type
flies (Jiang et al., 2020). Overexpressing an orco transgene in the
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olfactory system of these mutants led to the flies aggregating like
wild-type flies (Jiang et al., 2020). This is similar to an observation
of ant orco mutants that displayed a reduction in their ability
to follow pheromone trails and cluster with other ants (Trible
etal., 2017). This cross-species reduction in aggregation suggests
that olfaction is crucial for the sociality of numerous insects, and
it is no surprise that olfactory mutants produce social networks
different from wild-type flies.

Behavioral Genetic Studies on Group Formation
In addition to studying the social behavior of fly mutants,
the Drosophila model system offers genetic tools to manipulate
the expression of genes in a tissue-specific manner through
the GAL4-UAS system (Elliott and Brand, 2008). This system
was applied to recent social network studies to examine the
downstream behavioral effects of ablating specific olfactory
sensing cells (Bentzur et al., 2020; Rooke et al., 2020). One
experiment examined the social networks of flies where the
olfactory receptor neurons Or65a and Or67d were inhibited by
driving the expression of kir2.1 in those cells. These olfactory
receptors are known to be sensitive to cVA, a male-specific
pheromone that mediates aggressive and copulatory behaviors in
male flies (Bontonou and Wicker-Thomas, 2014). Interestingly,
flies with inhibited Or67d neurons did not produce social
networks drastically different from wild-type flies despite there
being evidence that Or67d plays a role in social attraction
(Bentzur et al., 2020; Sun et al., 2020). However, the inhibition
of Or65a neurons leads to a significantly decreased average
betweenness centrality (Bentzur et al., 2020). Another experiment
focused on inhibiting the olfactory support cells that express
the gene lush, which is expressed in trichoid sensillae of flies
and aids in the binding of ligands to olfactory receptors (Rooke
et al., 2020). By driving the expression of kir2.1 in all lush-
expressing cells, Rooke et al. (2020) found that lush-inhibited
flies produce social networks different from controls in larger
group sizes. More specifically, groups of 6 lush-inhibited flies
formed social networks with an average clustering coefficient
and betweenness centrality that resembles the wild-type controls.
However, in groups of 12 and 24, the lush-inhibited flies formed
social networks with a significantly higher betweenness centrality
and clustering coefficient than wild-type controls (Rooke et al.,
2020). Together, results of these studies indicate that different
olfactory genes, expressed in different tissues, may play different
roles in regulating group-wide social connections in flies.
Transgenic tools have also been used to manipulate the
foraging (for) gene in a recent SNA study. This gene expresses
natural polymorphisms in flies that influence behavioral
phenotypes in the larval stage called rovers and sitters
(Sokolowski, 1980). Alwash et al. (2021) demonstrated that
networks of adult rovers and sitters form different social
networks, suggesting this gene influences the behavior of adult
flies. Sitter flies were shown to display a higher interaction
duration and were more likely to reciprocate interactions,
whereas rover flies were more active and displayed higher
interaction rates. Compared to rovers, sitters formed networks
with a higher assortativity and clustering coefficient, as well
as a lower global efficiency suggesting there is less efficient

information flow within these groups of flies. Alwash et al. (2021)
also used separate transgenic lines, generated by Allen et al.
(2017; see for details), that carry 1 copy, 2 copies and 4 copies of
the for allele, respectively. By comparing social networks across
these lines, it was found that for gene dosage affects the average
assortativity, clustering coefficient and global efficiency measures.
Additionally, the average interaction duration, the average rate
of interactions, the proportion of interactions reciprocated and
the activity of flies all changed across different dosages of for.
The authors confirm that many of the social network differences
observed between rovers and sitters are influenced by the for
locus. These findings characterize the influence of a specific gene
on social network dynamics in Drosophila, shedding light on the
genetic underpinnings of sociality.

Multiple independent experiments that measured the social
behavior of Drosophila mutants and transgenic flies with
inhibited neurons revealed that sociality of flies is multisensory.
In unisex groups of D. melanogaster, auditory sensory systems
do not appear to play a role in social organization (Table 5).
Visual, gustatory, and olfactory manipulations cause flies to
behave differently than wild-type flies in several ways (Schneider
et al, 2012; Bentzur et al., 2020; Jiang et al, 2020; Rooke
et al., 2020). However, these studies investigating the sensory
mechanisms behind collective behavior are limited to unisex
groups. It is possible that mixed groups of male and female flies
may generate social structures that depend on a wider range of
sensory systems since, for example, auditory cues are critical for
courtship in flies (von Schilcher, 1976). Future studies should
consider manipulating the composition of the social groups when
inhibiting genes of interest to widen our knowledge of Drosophila
social structures, like how Rooke et al. (2020) studied flies with
lush inhibition at a variety of group sizes. It remains difficult to
define how differences in precise network measures of mutants
translate to differences in social organization, especially since
various social network experiments utilize different methods
of generating and analyzing networks. However, experiments
that focused on social attraction and aggregation of flies used
similar mutants and transgenic tools and found overlapping
results to social network studies (Bentzur et al, 2020; Jiang
et al., 2020; Sun et al., 2020). For example, Sun et al. (2020)
reported that a combination of both vision and olfaction are
crucial for the social attraction behavior of flies. This suggests
that social networks capture some aspect of group-level social
organization that is genetically and neurologically controlled.
Recent work has demonstrated that the for gene plays a role in the
social organization of adult flies since different polymorphisms
are associated with differences in social network structure and
manipulating the for gene influences this structure (Alwash
et al,, 2021). Further experimentation in social attraction and
aggregation of flies at the neuronal and genetic level can assist
in unraveling how abstract social network measures translate to a
real-world group structure.

Social Transmission

To date, one group analyzed Drosophila social networks to
directly study information flow, like many social network
studies on ant colonies (Blonder and Dornhaus, 2011;

Frontiers in Neural Circuits | www.frontiersin.org

December 2021 | Volume 15 | Article 755093


https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles

Jezovit et al.

Drosophila Social Networks

Mersch et al,, 2013;  Stroeymeyt et al, 2018). Social
communication within Drosophila groups can inform naive
flies about the presence of oviposition sites (Battesti et al,
2014) and the presence of predatory insects (Kacsoh et al,
2018). Pasquaretta et al. (2016a) applied SNA to examine how
information spreads within a group of informed and naive flies.
This was done by video recording a 4-h training phase designed
to inform focal flies of an oviposition site. Then social networks
were generated within groups consisting of 8 informed flies and
4 uninformed flies (Pasquaretta et al., 2016a). Static, directed,
and weighted social networks were generated every 15 min from
4 h of video footage. Afterward, every trained and untrained
female fly was subjected to an oviposition site choice assay to
determine if the mean and variance of social network measures
predict whether uninformed flies follow or avoid the choices
made by informed flies. Uninformed flies followed the correct
choice when informed flies had less variable network distances
from other individuals, as measured by weighted closeness
centrality (defined in Table 1). Uninformed flies also followed
when informed flies had a similar number of social contacts,
as measured by eigenvector centrality (defined in Table 1) and
when informed flies exchanged information to a similar extent,
as measured by information centrality index (defined in Table 1).
On the contrary, uninformed flies were less likely to follow the
correct choice when they had a high betweenness centrality
in the social network. Taken together, this suggests that when
informed flies participate in most social interactions within
the group, the uninformed flies are more likely to follow, and
information is passed from the informed to the uninformed
flies. In groups where uninformed flies were central to group
cohesion (high betweenness centrality), the informed flies had
less influence in transmitting the site preference. The authors
also reported a remarkable finding where informed flies were
more likely to avoid the media they were trained to prefer if
they formed clusters, measured by a higher mean clustering
coefficient. Properties of a social group are complex, and this
highlights how individual foraging preferences can shift based
on social associations within a group.

Diseases can also be transmitted via social interactions
within a group. Utilizing the SNA approach in bumblebee
colonies, for example, shed light on the relationship between
interaction rate and parasitic transmission (Otterstatter and
Thomson, 2007; Naug, 2008). So far, no studies to date have
used SNA to explore how social interaction and network
properties affect disease transmission in Drosophila. However,
one study by Dawson et al. (2018) investigated how the social
environment affects cancer progression in flies. In a homogenous
group, cancerous flies were found to have higher interaction
rate and duration than in heterogeneous groups consisting
of cancerous and healthy flies. Additionally, Dawson et al.
(2018) showed that tumor progression is slower when cancerous
flies are kept in a homogenous group, and tumor progression
is faster when cancerous flies are in isolation or within a
group of healthy individuals. The use of the SNA approach
can allow us to investigate the relationship between disease
progression and social interactions even further by analyzing
global network measures.

Evolution of Social Organization

Recently, a social network comparative study was conducted
on 20 drosophilid species. Generating iterative, directed, and
unweighted networks from groups of 12 male flies and groups
of 12 female flies across all species, Jezovit et al. (2020) found
no phylogenetic patterns for the species differences observed in
assortativity, clustering coefficient, betweenness centrality, and
global efficiency. This mirrors the results of a social network
comparative analysis conducted on primates that also reported no
evidence of phylogenetic signal in species-specific social networks
(Pasquaretta et al, 2014). However, significant phylogenetic
signal was found for the variation observed in social distance
Jezovit et al. (2020). Social distance also correlated with the
relative leg length of each species, suggesting morphological traits
can influence behavioral evolution in flies. Next, the authors
extracted averaged climate data from the geographic range of
each drosophilid species and tested for correlations with each
species’ averaged social network score. The authors found that
variation in the climate data predicted species differences in
the social network measures better than the differences found
in the flies’ general behavioral characteristics such as average
locomotor activity, average interaction duration, and average
tendency to reciprocate interactions. Considering that each fly
species descended from an inbred stock domesticated to the
laboratory environment, it is surprising that factors of each
species’ environment predicted differences in their social network
measures. From these findings, we hypothesize that group-
level organization is a behavioral trait that adapted to the
abiotic selective pressures of each species’ habitat. For example,
Drosophila species from tropical environments tend to have
shorter cuticular hydrocarbons and rely more on visual sensory
modalities than arid-adapted species (reviewed by Jezovit et al.,
2017) and these ecological categories may also be relevant to
species’ social structures measured by SNA. Finally, Jezovit et al.
(2020) collected two independent datasets of social networks for
5 species, separated by 2 years at the time of collection. Consistent
trends in the relative species’ differences were found for average
assortativity, clustering coefficient, betweenness centrality, and
global efficiency. This replication shows that species-specific
social networks are robust and may represent phenotypes
that emerge from physiological and behavioral mechanisms in
individual flies.

Another recent comparative study by Wice and Saltz
(2021) investigated the evolutionary relevance of social network
measures across 20 different D. melanogaster strains. The
authors generated static and directed social networks from
mixed groups of flies using fixed criteria (see Table 2). These
groups consisted of 10 males and 10 females, and each
individual was genotypically distinct. The authors measured
in-strength, out-strength, betweenness centrality, clustering
coefficient, and eigenvector centrality for each fly within the
group, and then compared the distribution of these measures
for each genotype. This study stands out from other social
network studies in that the authors were focused on measuring
the characteristics of individual nodes and not the overall
network structure. By comparing average network measures
across numerous strains, the authors reported the broad
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sense heritability measure of clustering coefficient, betweenness
centrality, and eigenvector centrality. Interestingly, betweenness
centrality displayed the highest broad sense heritability score
where genotypic differences account for 16.6% of the variation in
this network measure (Wice and Saltz, 2021). This corroborates
a prediction made by Schneider et al. (2012) that betweenness
centrality may be a heritable trait based on robust differences
observed between two D. melanogaster strains. To study
environmental effects on social network measures, the authors
reared the flies in various environments differing in calorie
concentration and in the ratio of protein to carbohydrate
content. The authors found no effect of environmental
variation on betweenness centrality, similar to what Jezovit
et al. (2020) found when comparing social networks across
multiple Drosophila species. There is also evidence that various
drosophilid species maintain consistent group structures across
separate experiments, reinforcing the idea that social networks
are emergent properties built from some genetic foundation
shared by the individuals in the group (Jezovit et al., 2020).
This view is strengthened by emerging evidence of specific
genes accounting for differences in social networks within
Drosophila (Bentzur et al., 2020; Rooke et al,, 2020; Alwash
et al., 2021). If social networks measure some heritable aspect
of social behavior, then we can begin to consider that these
properties are phenotypes that diversified through evolutionary
selection mechanisms.

FUTURE DIRECTIONS

Throughout this review, we have outlined experiments that
all suggest Drosophila insects form organized and reproducible
social networks when individuals aggregate. Despite Drosophila
having long been considered solitary, a variety of organized
collective behaviors have been uncovered in recent years. These
collective behaviors provide a conceptual understanding of how
social networks may function in fly groups. For example, flies in
groups collectively escape from environmental threats (Ramdya
et al, 2015) and enhance the survival of offspring through
communal oviposition (Lihoreau et al., 2016). Oviposition site
choice is influenced by social interaction with conspecifics.
Battesti et al. (2012) demonstrated that when “teacher flies”
are trained to deposit eggs on one of two food options, naive
“student” flies follow the same choice as the teachers after
socially interacting. In addition, female flies arrest oviposition
upon detection of predatory threats and can transmit this
response to flies unaware of the threat (Kacsoh et al., 2015).
Furthermore, flies in smaller group sizes exhibit a higher
tendency to freeze their movement upon the detection of a
predator (Ferreira and Moita, 2020), emphasizing the fitness
benefits individuals gain from group formation. While it is
unclear whether flies transmit information to one another,
the above studies indicate that social interactions can lead
to flies becoming informed of a stimulus, and ‘information
transfer’ is a convenient term to describe this phenomenon.
Applying SNA to these behavioral studies offers the opportunity
to explore this concept of information transmission more

precisely, and how other factors such as group size, density,
and individual status contribute to the group-level output. So
far one study applied SNA methods to study the oviposition
site-choice phenomenon. The authors found that oviposition
site choice influence from teacher flies are inhibited when
student flies have stronger social ties in the group (Pasquaretta
et al., 2016a). Interactions shared between flies appears to
influence fitness-enhancing behaviors and this process can be
visualized with networks.

Across animal social network studies, it is often reported
that individuals maintain fixed positions in a social network
over time (Brent et al, 2013; Krause et al., 2017; Blaszczyk,
2018; Stanley et al., 2018a; Canteloup et al, 2020). Other
studies have reported a different view that individuals shift
roles to maintain the stability of their social group and this
flexibility maintains the group after individuals are lost due to
predation and other stresses (Naug, 2008; Goldenberg et al.,
2016; Firth et al., 2017; Formica et al., 2017). In flies there
is evidence that the network position of individuals (degree)
fluctuates, but the overall network structure of the group remains
fixed over time (Schneider et al, 2012). A similar finding
was reported in ants where an individual’s degree offered no
predictive power over their degree later in the experiment
(Blonder and Dornhaus, 2011). When studying animal groups
in a controlled laboratory environment, there is evidence
suggesting that individuals may not maintain fixed positions
within social groups. This serves as an example how studying
social networks in flies can enrich the broader animal social
network literature. Areas of debate in these fields could be
settled through social network experimentation in flies where vast
resources are available to manipulate the organism genetically
and physiologically, and large datasets can be acquired in
controlled conditions.

The broader animal social network literature would also
benefit from more studies manipulating the social environment
of animals in controlled ways. In this review we outlined studies
that examined social networks with manipulated group size and
density (Rooke et al, 2020) and social networks from mixed
groups of individuals with various social experiences (Pasquaretta
et al., 2016a; Bentzur et al., 2020; Wice and Saltz, 2021). Future
studies in Drosophila social networks should consider studying
even more complex, mixed social environments. For instance,
Jezovit et al. (2020) found that male-only social networks differ
from female-only social networks in some species. Would mixing
the sexes provide an intermediate social network phenotype,
or could some interaction effect be observed? Wice and Saltz
(2021) demonstrated females tend to occupy different social
network positions than males when both sexes are mixed into
the same social groups, but the authors did not attempt to study
social organization of the group as a whole. Future experiments
could analyze various layers of mixed-sex networks by generating
separate networks from numerous criteria. Social space criteria
can be refined to measure courtship and mating interactions or
aggressive interactions. How would the properties of courtship
and aggression networks compare to the properties of the general
social networks? Experiments on courtship networks exist in
the broader animal social network literature (Ryder et al., 2008;
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Oh and Badyaev, 2010; Formica et al., 2012; Fisher et al., 2016)
and it would be worthwhile to determine if the Drosophila
courtship networks overlap with these other studies.

Finally, Drosophila has a long history of serving as a
model organism for the genetic basis of social behavior.
Applying social network methods to screen well-studied mutants
may aid in uncovering genetic mechanisms of sociality. For
instance, a recent study found a potential role the foraging
gene plays in the collective behavior of flies that can be
measured using social networks (Alwash et al., 2021). Heritable
factors in social network measures has also been reported
in humans, rhesus macaques, and flies (Fowler et al, 2009;
Brent et al., 2013; Wice and Saltz, 2021), reinforcing the idea
that robust social network measures represent phenotypes of
collective group structures. Although there is evidence that
social network phenotypes do not map well onto phylogenetic
trees (Jezovit et al., 2020), it does not rule out that these
social behaviors have no underlying and conserved biological
mechanisms. The circadian clock is one example of a conserved
biological system that is pervasive across various organisms, yet
circadian rhythms as a behavior vary across organisms from
different habitats (Dunlap et al., 2004; Sehgal, 2015). Further
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