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Schizophrenia has a complex etiology and symptomatology that is difficult to untangle.
After decades of research, important advancements toward a central biomarker are
still lacking. One of the missing pieces is a better understanding of how non-linear
neural dynamics are altered in this patient population. In this study, the resting-
state neuromagnetic signals of schizophrenia patients and healthy controls were
analyzed in the framework of criticality. When biological systems like the brain are in
a state of criticality, they are thought to be functioning at maximum efficiency (e.g.,
optimal communication and storage of information) and with maximum adaptability
to incoming information. Here, we assessed the self-similarity and multifractality of
resting-state brain signals recorded with magnetoencephalography in patients with
schizophrenia patients and in matched controls. Schizophrenia patients had similar,
although attenuated, patterns of self-similarity and multifractality values. Statistical
tests showed that patients had higher values of self-similarity than controls in fronto-
temporal regions, indicative of more regularity and memory in the signal. In contrast,
patients had less multifractality than controls in the parietal and occipital regions,
indicative of less diverse singularities and reduced variability in the signal. In addition,
supervised machine-learning, based on logistic regression, successfully discriminated
the two groups using measures of self-similarity and multifractality as features. Our
results provide new insights into the baseline cognitive functioning of schizophrenia
patients by identifying key alterations of criticality properties in their resting-state
brain data.

Keywords: complexity, criticality, multifractal analysis, machine-learning, magnetoencephalography, resting-
state, scale-free dynamics
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INTRODUCTION

The global prevalence of schizophrenia is reported to be
close to 21 million individuals (Charlson et al., 2018). The
symptoms and poor prognosis of those affected can deeply
impact their daily functioning, and weigh on those close
to them. Unfortunately, progress in therapeutic development
is slow in the field of psychiatry due to the extreme
complexity of the brain, the heterogeneity of patients’ symptoms
and difficulties in translational research. More knowledge
is needed to better understand what alterations occur in
the neural activity of patients. Among the missing pieces,
further characterization of the resting neural dynamics of
schizophrenia, and their relationship to patients’ symptoms, is
needed. Alterations in the rhythmic (oscillatory) neural activity
of schizophrenia patients have been widely reported in the
neuroimaging literature (reviews: Uhlhaas and Singer, 2010;
Maran et al., 2016; Alamian et al., 2017). In addition, an emerging
body of research has reported changes in the arrhythmic
properties of brain dynamics in schizophrenia (Breakspear,
2006; Fernández et al., 2013). A powerful concept that has
so far remained under-exploited and poorly understood in
neuropsychiatry is criticality.

What Is Criticality?
The dynamics of many complex systems, such as the human
brain, appear to reside around the critical point of a phase
transition (Beggs and Plenz, 2003; Stam and De Bruin, 2004;
Fraiman and Chialvo, 2012; Palva and Palva, 2018). At this
point of criticality, these systems are in a wavering state, at the
cusp of a new phase, between the states of order and disorder
(Beggs and Timme, 2012; Cocchi et al., 2017; Souza França
et al., 2018). The brain requires such a balance of regularity
(i.e., structure) on the one hand, to maintain coherent behavior,
and flexibility (i.e., local variability) on the other hand, to adapt
to ongoing changes in the environment (Chialvo, 2004; Beggs
and Timme, 2012). Indeed, critical brain dynamics have been
shown to be optimal for fast switching between metastable brain
states, for maximizing information transfer and information
storage within neural networks (Socolar and Kauffman, 2003;
Haldeman and Beggs, 2005), and for optimizing phase synchrony
(Yang et al., 2012). Importantly, it is within a critical state
that neural communication can span the greatest distance and
achieve maximal correlational length (Fraiman and Chialvo,
2012). Thus, the brain’s state of criticality is thought to affect the
functional properties of oscillations, local synchronization and
signal processing (Palva and Palva, 2018). Changes to this state,
due to psychiatric illness for instance, can alter certain properties
of this balance (e.g., in terms of strength and number of synaptic
connections) (Beggs and Timme, 2012). Some of the tuning
parameters of criticality appear to be embedded in the balance
between neural excitation and inhibition (e.g., through NMDA
receptors; Mazzoni et al., 2007; Shew et al., 2009; Hobbs et al.,
2010; Poil et al., 2012), in neural network connection strengths,
and synaptic plasticity (Rubinov et al., 2011; Beggs and Timme,
2012).

Measures of Criticality
Self-Similarity and Multifractality
Within the framework of criticality, local and large-scale
fluctuations arise from excitatory post-synaptic potentials
(EPSPs) and modulate brain states by facilitating or suppressing
neuronal firing (Palva and Palva, 2018), with long-range spatial
spread (He et al., 2010; Zilber, 2014). Systems in this state are
characterized by power-law distributions, fractal geometry and
fast metastable state transitions (Plenz and Chialvo, 2009; Cocchi
et al., 2017; Chialvo, 2018; Palva and Palva, 2018). These features
of a critical state are said to be scale-free or scale invariant.
Power-law distributions of a given signal can be recognized as
a linear slope in the log-log plot of the feature distribution, and
they imply that the signal’s statistics and structural characteristics
are preserved across spatiotemporal scales—in other words,
that the signal has fractal properties (Beggs and Plenz, 2003;
Chialvo, 2018). Fractal architectures describe objects that contain
identical, or statistically equivalent, repetitive patterns at different
magnifying scales (Mandelbrot, 1983, 1985; Van Orden et al.,
2012; Fetterhoff et al., 2015).

Scale invariant dynamics of systems at criticality (i.e., power-
law distributions and fractal architecture) have often been
described using a 1/fβ power law fitted to Fourier-based spectral
estimations. On the other hand, self-similarity is a well-accepted
model for scale-free dynamics and is richer than the sole measure
of β, as it captures fractional Gaussian noise and fractional
Brownian motion. Self-similarity can be measured by the Hurst
exponent, H. In the brain, H is thought to index how well
neural activity is temporally structured (via its autocorrelation).
The smoother the signal, the higher the value of H (Zilber,
2014). However, self-similarity alone does not fully account
for scale-free dynamics or criticality, since it can only capture
additive processes (La Rocca et al., 2018). Combining self-
similarity with multifractality improves on this framework to
better capture criticality in a system. Multifractality can account
for the remaining non-additive, non-Gaussian processes. The
multifractality parameter, M, quantifies the diversity of H’s
(singularities) and the overarching geometry of spatiotemporal
fluctuations (Leonarduzzi et al., 2016; La Rocca et al., 2018).
Generally, fractals are evaluated using the topological dimension,
D, which describes the complexity and structure of an object
by measuring the change in detail based on the change in scale
(Di Ieva, 2016). In multifractal analysis, the local regularity of a
signal is quantified using the Hölder exponent, D(h) (Jaffard et al.,
2016), allowing a more realistic characterization of phenomena
that are too complex to be explained solely by Euclidian models.
In sum, the brain’s degree of criticality is defined by its scale-free
dynamics, which are best quantified by combining measures of
self-similarity and multifractality.

Common Measures of Criticality
Numerous metrics have been developed to measure the scale-
free properties that define criticality, such as Detrended
Fluctuation Analysis (DFA) applied to oscillatory envelopes
(Linkenkaer-Hansen et al., 2001; Hardstone et al., 2012)
and neuronal avalanche detection (Beggs and Plenz, 2003).
Non-linear dynamics, and specifically multifractal analysis,
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has been used to address questions of self-similarity and
multifractality. Multifractal analysis can characterize both
the amount of global self-similarity in a system and the
amount of local fluctuations (i.e., number of singularities)
(Zilber et al., 2012). This approach allows for more in-depth
interpretations of the electrophysiological data compared to more
conventional analytical approaches. A number of mathematical
frameworks have tapped into this, such as the Multifractal
Detrended Fluctuation Analysis (MFDFA; Kantelhardt et al.,
2002; Ihlen, 2012) and the Wavelet Leaders-based Multifractal
Analysis (WLMA; Wendt and Abry, 2007; Serrano and
Figliola, 2009). For reviews of scale-free and multifractal
analytical approaches (see Lopes and Betrouni, 2009; Zilber,
2014).

Application to Psychiatry
A scoping review of alterations of brain criticality changes
in clinical populations was recently discussed in Zimmern
(2020). An insightful illustration of reported changes to the
state of criticality across multiple neurological and psychiatric
disorders, from the perspective of self-similarity, are illustrated
in Figure 6 of that article (Zimmern, 2020). The application
of criticality models to psychiatry, and in particular to the
study of schizophrenia (SZ), is well in line with leading theories
for this pathology, which are centered around dysconnectivity
and altered information processing and transfer (Weinberger
et al., 1992; Friston and Frith, 1995; Fernández et al., 2013).
So far, most of the empirical evidence for dysconnectivity
theory in SZ has come from functional magnetic resonance
imaging studies, which highlight several important alterations
in anatomical and functional connectivity that exist in SZ
patients, as well as from electroencephalography (EEG) and
magnetoencephalography (MEG) connectivity studies (review:
Alamian et al., 2017). However, we still lack a complete, in-depth
understanding of the brain alterations inherent to this pathology
in the temporal domain.

In terms of scale-free analyses in psychiatry, power spectral
densities (PSD) of resting-state fMRI scans have shown SZ
patients to have reduced complexity and disrupted scale invariant
dynamics compared to controls in the precuneus, inferior frontal
gyrus and temporal gyrus, and these changes correlated with their
symptoms (Lee et al., 2021). Electrophysiological studies have
found altered dimensional complexity and increased variability
in SZ patients’ signal (Koukkou et al., 1993). A number of
studies have applied different versions of multifractal analysis
on electrophysiological (Slezin et al., 2007; Racz et al., 2020) or
white-matter MRI data in SZ (Takahashi et al., 2009). One of
these used the multifractal analysis on resting-state EEG data, and
found increased long-range autocorrelation and multifractality in
patients compared to controls (Racz et al., 2020).

In addition, two insightful reviews have examined how
non-linear methods could improve our understanding of SZ
(Breakspear, 2006; Fernández et al., 2013). They highlighted
conflicting results among studies reporting on complexity
changes in SZ, which they proposed were attributable to
participants’ symptomatic state, the method of imaging or
medication. Complexity as measured by Lempel–Ziv complexity

(LZC) or correlation dimension (D2) was typically found to
be increased in SZ in studies that recruited younger, first-
episode patients who were drug-naïve and symptomatic, while
studies reporting SZ-related reductions in complexity tended
to recruit older, chronic, patients who were on medication
and hence less symptomatic (Lee et al., 2008; Fernández et al.,
2013). Although these measures have been widely applied to
neuroscientific data, they each come with caveats that affect their
precision or generalizability. Moreover, these reviews highlight
the importance of controlling for factors such as age and
medication when studying complex pathologies, such as SZ.

Goals of the Study
The brain is functionally optimal when in a state of criticality—
in other words, when neural activity can spread equally
well at long and short distances in time and space and
information is processed and stored efficiently (Shew et al.,
2009)—and multifractality analysis is an efficient indicator of
criticality. Meanwhile, leading neural theories of SZ emphasize a
pathological connectivity among neural signals across both space
and time. It follows that multifractal analysis of brain signals
in SZ may provide important insights into the nature of the
pathological alterations that are associated with the disease and
that underlie the severity of its symptoms.

Based on previous research that used self-similarity metrics
(e.g., DFA) among the SZ population (Nikulin et al., 2012;
Alamian et al., 2020), we expected altered self-similarity and
multifractality values compared to healthy controls. Moreover,
based on the literature on altered complexity in SZ (e.g., Lee
et al., 2008, 2021; Fernández et al., 2013) we hypothesize that
our patient group would show reduced multifractality compared
to controls. We also predict significant correlations between
measures of criticality and patients’ clinical symptom scores. The
aim of the present study is to test these hypotheses by examining
how criticality is altered in the neural activity of chronic SZ
patients. More specifically, we set out to address this question by
using a multimodal neuroimaging approach, combining resting-
state MEG and structural MRI, and wavelet-based estimations of
multifractality and self-similarity.

MATERIALS AND METHODS

Participants
Participant data collection was conducted at the Cardiff
University Brain Research Imaging Centre in Wales,
United Kingdom., and the data analyses were conducted at
the University of Montreal, QC, Canada. Ethical approval was
obtained for the data collection according to the guidelines
of the United Kingdom National Health Service ethics board,
and the Cardiff University School of Psychology ethics board
(EC.12.07.03.3164). Ethical approval was also obtained for
these analyses from the research committee of the University of
Montréal (CERAS-2018-19-069-D).

Behavioral and neuroimaging data from 25 chronic SZ
patients (average age = 44.96 ± 8.55, 8 females) and 25 healthy
controls (average age = 44.04 ± 9.20, 8 females) were included
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in this study. Healthy controls had no history of psychiatric or
neurological disorders. The collected demographic information
from all participants included: age, gender, depression score
on the Beck Depression Inventory—II (BDI-II, Beck et al.,
1996), and mania score on the Altman Self-Rating Mania
Scale (ASRM, Altman et al., 1997). For the SZ patient group,
additional information was collected: scores on the Scale of
the Assessment of Positive Symptoms (SAPS) and the Scale
of the Assessment of Negative Symptoms (SANS) (Kay et al.,
1987), and information on antipsychotic doses standardized
using olanzapine equivalents (Gardner et al., 2010). All of these
data were anonymized, such that no identifiable information of
participants was associated with their data nor with data from
subsequent analyses. Patients were overall fairly asymptomatic
on the testing day. No statistically significant group differences
were observed across these demographic and clinical metrics,
except for BDI-II scores, where SZ patients had on average mild
depression (14.83 ± 9.11), compared to controls (4.50 ± 4.67).
Additional details on participant information (i.e., recruitment
procedure, exclusions, inclusions, and sample size calculation)
can be found in Alamian et al. (2020).

Magnetoencephalography Experimental
Design
The brain imaging data used for this study comes from 5-min
of resting-state MEG recorded during an eyes-closed condition,
with a 275-channel CTF machine. Reference electrodes were
placed on each participant to account for cardiac, ocular, and
other potential artifacts (Messaritaki et al., 2017). The MEG
signal was initially recorded at a sampling frequency of 1,200
Hz. A 3 Tesla General Electric Signa HDx scanner with an eight-
channel receive-only head RF coil was used to acquire MRI data.
Each participant had a 5-min weighted 3D T1 anatomical scan
(TR/TE/TI = 7.8/3.0/450 ms, flip angle = 20◦FOV = 256∗192∗172
mm, 1 mm isotropic resolution) that was later used for source-
reconstruction of the MEG data.

Data Preprocessing and
Magnetoencephalography Source
Reconstruction
Reference electrodes were placed on each participant above and
below the center of the left eye, on the left and right pre-
auricular, under the left and right temples and behind the left
ear, to account for cardiac, ocular, and other potential artifacts
(Messaritaki et al., 2017). The MEG signal was initially recorded
at a sampling frequency of 1,200 Hz. NeuroPycon (Meunier
et al., 2020), an open-source python toolbox, was used for
the preprocessing and source-reconstruction analyses. First, the
continuous raw data was down-sampled from 1,200 to 600 Hz,
and band-pass filtered between 0.1 and 150 Hz using a finite
impulse response filtering (FIR 1, order = 3) and a Hamming
window. Next, independent component analysis (ICA) was used
to remove artifacts (i.e., blinks, horizontal eye movements,
heartbeat) from the MEG signal using MNE-python (Hyvarinen,
1999; Gramfort et al., 2013). ICs related to heart and ocular
artifacts were identified based on the correlation with ECG and

EoG channels. ICs were visually inspected to check the reliability
of the automatic procedure implemented in MNE. On average we
removed 1–2 ICs related to cardiac artifacts and 1–2 ICs related
to ocular artifacts.

Since it has been reported that the values of the Hurst
exponent, H, are unusually low in sensor-space, and tend to
increase when moving from sensor to source space (based
on simulations and real data: Blythe et al., 2014), source-
reconstruction steps were taken to present cortical-level results in
multifractal analysis. To generate individual anatomical source-
spaces, the anatomical T1-MRI information of each subject was
segmented with FreeSurfer (Fischl, 2012). However, given that
this process would produce different source-space dimensions
for each participant, individual source spaces were morphed and
projected onto a standardized space from FreeSurfer (fsaverage)
(Greve et al., 2013). The resulting source-space comprised 8,196
nodes on the cortical surface, where dipoles were 5 mm apart.
The single layer model boundary element method implemented
in MNE-python was used to compute the lead field matrix
(Gramfort et al., 2013). Weighted Minimum Norm Estimate
(Dale and Sereno, 1993; Hämäläinen and Ilmoniemi, 1994;
Hincapié et al., 2016), implemented in the MNE-python package
(Hyvarinen, 1999; Gramfort et al., 2013), was used to compute
the inverse solution with a Tikhonov regularization parameter
of lambda = 1.0 (Hincapié et al., 2016). Dipoles of the source-
space were constrained to have an orientation perpendicular to
the cortical surface. Thus, for this study, 8,196 time series were
extracted at the cortical level.

Characterization of Criticality Through
Self-Similarity and Multifractality
Measuring Self-Similarity and Multifractality
The singularity spectrum is a concise way to summarize
information about scale-free dynamics. It allows the plotting of
the Hölder exponents (h) about local variability in a time series,
against the Fractional (Hausdorff) Dimensions, D(h), as can be
seen in Figure 1.

Multifractal analysis builds on measures of self-similarity
(e.g., slope of the PSD, DFA) to provide information about
local fluctuations (singularities) in time. The multifractality
spectrum and the scaling function ζ(q) (in terms of statistical
moments q) are related, and can be described using the Legendre
transformation:

D
(
h
)
≤

min
q 6=0(1 + qh− ζ

(
q
)
).

When a signal is monofractal, this becomes a linear function,
where ζ(q) = qH, as it would only have a single singularity
(one unique property, Figure 1A). Here, the self-similarity
parameter would be equal to H, the Hurst exponent (Wendt
and Abry, 2007). When a signal is multifractal, the function
ζ(q) has a curvature, as in Figure 1B, which shows the global
spectrum of singularities. The Hölder exponent (h) with the
largest Fractal dimension, D (apex of the curve), is said to be
the most common singularity in the time-series. The width of
the curve can be described with the multifractality parameter, M
(Wendt and Abry, 2007).
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FIGURE 1 | Sketch of a singularity spectrum. These sketches illustrate the multifractal scaling function, which depicts a singularity spectrum. Local variability in the
signal is represented by Hölder exponents, h, on the x-axis, while the amount of singularities is represented by the Fractal Dimension, D(h), on the y-axis. The apex of
the curve reveals the most common h exponent, while the width of the curve reveals the multifractal spectrum. Using log-cumulants from the WLBMF (described in
section “Defining Parameters of Log-Cumulants”) to describe the singularity spectrum, C1 informs on the apex, while C2 informs on the width of the function. (A)
Shows a monofractal function, where C1 = H, the Hurst exponent, and C2 = 0. (B) Shows a multifractal function, where the concavity shows the distribution of h
singularities.

In this study, to meaningfully estimate self-similarity and
multifractality, we used the Wavelet p-Leader and Bootstrap
based MultiFractal analysis (WLBMF). This approach builds on
the Wavelet leaders-based multifractal analysis (WLMA) method
that has been thoroughly described elsewhere (Wendt and Abry,
2007; Wendt et al., 2007; Serrano and Figliola, 2009; Ciuciu et al.,
2012; Fetterhoff et al., 2015). Briefly, this WLMA method of
estimating the singularity spectrum was shown to be efficient
in untangling the scaling properties of neuronal signal, and
more robust than other algorithms in addressing non-stationarity
issues (Wendt, 2008). The curved shape of the scaling function
ζ(q) can be written in its polynomial expansion around its
maximum to allow the evaluation of Cp, log-cumulants:

ζ(q) =

∞∑
p=1

Cp(
qp

p!
).

The singularity spectrum can be thus derived from the series-
expansion of Cp. The first two log-cumulants are the most
informative, with C1, the first log-cumulant, reflecting self-
similarity [and the location of the maximum of D(h), similar
to H]. Its values approximate those of the H, and typically
range between 0 and 1, although values above 1 have been
observed (Samoradnitsky and Taqqu, 1994). C1 values above 0.5
indicate positive correlation (signal has memory), values below
0.5 indicate negative correlation, and a value of 0.5 indicates lack
of correlation (random signal). Meanwhile, C2, the second log-
cumulant, reflects multifractality (and the width of the singularity
spectrum, like M) (Wendt and Abry, 2007; Wendt et al., 2009;
Zilber, 2014; Diallo and Mendy, 2019). Given the concavity of the
scaling function, C2 is always negative, and when C2 equals 0, it
is said to indicate monofractality. Typically, the few studies that
have applied this novel analytical approach have observed values
between 0 and−0.02 (Zilber, 2014) or 0 and−0.07 (Ciuciu et al.,
2012).

Hölder exponents cannot take on negative values. Thus, most
multifractal analyses are constrained to scaling functions that

have only positive local regularities, implying that there is a
continuous temporal positive correlation in the signal (i.e., locally
bound everywhere in the function). However, this is not true of
all brain signals, which can present with discontinuities in the
signal and can thus take on negative regularities. Thus, p-leaders
have been proposed as a way to circumvent this limitation
(Jaffard et al., 2016). The p-leader formalism has been proposed
as an extension of and improvement on older mathematical
frameworks of multifractal analysis (e.g., MFDFA) using wavelet-
projections, by allowing the analysis of negative local regularities
and by providing more accurate and detailed characterization
of singularities in the signal. Different p-leader values change
the regularity exponents, where p = infinity corresponds to the
original wavelet-leaders analysis, p = 2 brings about similar
exponents as observed using DFA. For a deeper understanding
of the mathematical details, we refer the reader to Jaffard et al.
(2016) and Leonarduzzi et al. (2016).

Defining Parameters of Log-Cumulants
One method to detect criticality in the brain is through the
Wavelet p-Leader and Bootstrap based MultiFractal (WLBMF)
analysis and, more specifically, through the evaluation of log-
cumulants (Wendt and Abry, 2007; Wendt et al., 2007). This
MATLAB-implemented technique uses the discrete wavelet
domain for the analysis of self-similarity and multifractality
in signals. In order to compute C1 and C2 in our study, we
first plotted the PSD of each participant group (SZ patients,
controls) in log-log space and identified the portion of the PSD
function exhibiting a log-linear relationship. In our data, the
log-linear portion of the PSD belonged to j1 = 7 and j2 = 10,
which correspond to 3.5 and 0.4 Hz, respectively, as deduced by
the following equation: Scale = 3 × Sf

4 × 2j , where Sf represents the
sampling frequency, j1 and j2 represent the start and end points
of the log-linear portion, respectively, and the scale represents
the frequency bin to which it corresponds. This frequency range
is similar to those of other researchers who have used the same
multifractal analysis (Zilber, 2014). For a step-by-step illustration
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of the method, we direct the reader to Figure 7.1 in Zilber (2014)
for an illustration of these steps. The PSD was calculated at
the overall cortical level and also at the ROI level, using the
Destrieux Atlas (Destrieux et al., 2010), to ensure that the linear
part of the spectrum was comparable across brain regions. For
the purposes of this study, we used second order statistics in the
evaluation of the log-cumulants (i.e., p-leader of p = 2), which is
comparable to long-range temporal correlations computed with
DFA (Leonarduzzi et al., 2016). For the ROI-based investigations,
the C1 and C2 log-cumulants were first computed for each node
(n = 8,196 sources) in cortical source-space, and then averaged
across ROIs (n = 148 ROIs based on the Destrieux atlas, Destrieux
et al., 2010). Although we calculate group differences across all
individual nodes, we chose to also run ROI based analysis to help
with the interpretability of the brain regions involved.

Statistics and Machine-Learning
Analyses
Conventional Statistics and Correlation Analyses
Group statistical analyses were conducted between SZ patients
and matched-controls to test for group-level differences in C1,
C2, and demographic and clinical data. This was done at the ROI
and source levels. To do so, we used non-parametric statistical
tests (two-tailed, unpaired, pseudo t-tests), corrected with
maximum statistics using permutations (n = 1000, p < 0.001)
(Nichols and Holmes, 2001; Pantazis et al., 2005).

Moreover, Pearson correlations with False Discovery Rate
(FDR) correction (Genovese et al., 2002) were used to explore
the relationship between cortex-level C1/C2 values and scores
on the SANS, SAPS and medication-dosage, in patients. FDR
correction (Benjamini-Hochberg) was applied to each p-value
(computed for each of the 8,196 nodes) to account for the
multiple comparisons in order to achieve a significance threshold
of p < 0.05, corrected.

Machine Learning Analyses
MEG signal classification was conducted using a logistic
regression model and a stratified 10-fold cross-validation scheme
to evaluate the discriminative power of the log-cumulants C1
and C2 in classifying SZ patients and controls. First, at each
of the 8,196 nodes, the feature vector (either C1 or C2 values),
computed for each participant, was split into 10-folds, while
maintaining a balance between the two classes (SZ and controls).
Next, the classifier was trained on the data from nine of the 10-
folds and tested on the remaining fold (test set). The classification
performance was assessed using the decoding accuracy (DA) on
the test set (i.e., percentage of correctly classified participants
across the total number of participants in the test set). This
operation was repeated iteratively until all the folds were used as
test sets. The mean DA was used as the classification performance
metric. In order to infer the statistical significance of the obtained
DAs, permutation tests were applied to derive a statistical
threshold as described in Combrisson and Jerbi (2015). This
method consists of generating a null-distribution of DAs obtained
by running multiple instances of the classification (n = 1,000),
and randomly shuffling class labels each time. Maximum statistics
were applied in order to control for multiple comparisons across

FIGURE 2 | Group averages of C1 and C2 values in SZ patients and controls.
Averaged C1 and C2 values were computed for each of the 8,196 nodes,
within each group. P-leader p = 2 was used. SZ, schizophrenia.

all the nodes (Nichols and Holmes, 2001; Pantazis et al., 2005).
Visbrain was used for all the ROI and cortical-level visualizations
(Combrisson et al., 2019).

RESULTS

Alterations in Self-Similarity and
Multifractality
The group averages of C1 and C2 values for SZ patients and
healthy controls can be seen in Figure 2. Across both participant
groups, a clear gradient in C1 values was observed, where self-
similarity values increase gradually from the frontal lobe to the
occipital lobe. Interestingly, a similar gradient, but in the opposite
direction, is observed in terms of C2 values in both groups, with
C2 values gradually increasing from the occipital lobe to the
frontal lobe. Moreover, the magnitude of this gradient appears
less pronounced in patients than in controls.

Conventional unpaired t-tests between the two subject groups
did not yield any statistically significant differences in terms of
C1 or C2 values (p < 0.05, two-tailed t-test). Figure 3A shows
t-values for the direction and magnitude of group differences for
C1 and C2 values, where positive (red) t-values indicate brain
areas where SZ patients have smaller C1 or C2 values compared to
controls, and negative (blue) t-values indicate brain areas where
patients have larger C1 or C2 values compared to controls.

By contrast, when using a machine-learning approach to test
for out-of-sample generalization in the same data, we found that
C1 and C2 in multiple brain regions led to statistically significant
classification of the two subject groups, with up to 77% decoding
accuracy (Figure 3D, max statistics correction, p < 0.05). More
specifically, using source-space C1 values as a decoding feature
led to statistically significant discrimination of SZ and controls
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FIGURE 3 | Group differences and machine-learning results. (A) Shows
t-values from the unpaired t-tests (non-significant), showing
(controls—patients). Positive (red) t-values illustrate brain regions where
patients show smaller C1/C2 values than controls, while negative (blue)
t-values illustrate regions where patients have larger C1/C2 values than
controls. (B) Shows unthresholded DA values based on logistic regression,
using C1/C2 as a single feature. (C) Shows the same DA values, thresholded
at p < 0.05. (D) Shows the DA values corrected for multiple comparisons
using maximum statistics (p < 0.05), thresholded at the chance level of 70%.
P-leader p = 2 was used. DA, decoding accuracy.

in the subcallosal gyrus, middle fontal gyrus and anterior part of
the cingulate gyrus, bilaterally. The left superior frontal gyrus, the
left inferior frontal gyrus and sulci, and the right orbital, straight
and frontomarginal gyri were also significant. The maximum
decoding occurred in the left superior frontal gyrus (77%,
compared to the chance level of 70%). Meanwhile, using source-
space C2 values as a decoding feature led to statistically significant
classification of SZ patients and controls in the superior parietal
lobule, precuneus and posterior-ventral part of the cingulate
gyrus in the right hemisphere. The left post-central gyrus, and
superior temporal gyrus and occipital gyrus, bilaterally, were also
significant. The maximum decoding accuracy took place in the
right temporal gyrus (76%, compared to the chance level of 70%).
Figures 3B–D show the unthresholded DA values for C1 and C2,

FIGURE 4 | ROI-based classification of SZ and controls using C1 and C2.
Machine-learning classification of SZ patients and healthy controls using
logistic regression and the features of C1 or C2 at the ROI-level. The ROI
analysis was based on the Destrieux Atlas, p < 0.05, corrected for multiple
comparisons. DA, decoding accuracy; SZ, schizophrenia.

as well as the uncorrected results at p < 0.05, and the corrected
classification results at p < 0.05, with multiple comparisons
correction using max statistics.

Figure 4 shows the classification results based on C1 and
C2 values computed at the ROI-level (p < 0.05, corrected for
multiple comparisons). The ROIs involved in the significant
discrimination of patients and controls were the left straight
gyrus, the triangular part of the inferior frontal gyrus and
the medial transverse frontopolar gyrus and sulcus for C1,
and the superior occipital gyrus, the right cuneus and the
left angular gyrus for C2. To illustrate how the classifier was
able to successfully separate SZ patients from healthy controls,
individual C1 and C2 values were computed and averaged across
all brain sites that had shown significant decoding at the source-
level. These values are presented in a scatter plot in Figure 5. The
distribution of the individual C1 and C2 values (averaged over all
sources with significant decoding accuracy) shows that C1 values
are higher in patients than in controls (i.e., a trend toward more
self-similarity) and C2 values also shift upwards in patients (i.e.,
a trend toward less multifractality).

It is noteworthy that this scatter plot reveals the presence of
positive C2 values in the dataset, primarily in patients. Although
mathematically ill-defined, the observation of positive C2 is not
unprecedented. Positive C2 values in some individuals can be
attributed to numerical instabilities (and might be statistically
undistinguishable from 0) or to the fact that the data in these
participants cannot be modeled using the multifractal formalism.
The safest interpretation for the positive C2 values observed in
Figure 5 (primarily in patients), is that data in these individuals
were neither multifractal (C2 < 0) nor monofractal (C2 = 0).
Given that this specific type of multifractal analysis has never
been conducted on clinical data before, we explored how the
results would change when using a p-leader of p = 4 (as opposed
to the p = 2 we have used up to now). This analysis found fewer
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FIGURE 5 | Scatter plot visualization of individual C1 and C2 values. This
figure shows individual C1 and C2 values, averaged across all the nodes that
showed statistically significant patient vs. controls decoding (n = 50). This
scatter plot illustrates that patients exhibit overall higher self-similarity (higher
C1) and less multifractality (higher, less negative, C2).

participants to have positive C2 values compared to p = 2, and
generally allowed for a better modeling of multifractality in the
resting neuromagnetic signal of participants. Figures of C1/C2
group averages and classification patterns based on p = 4 can be
found in Supplementary Material 1. In summary, we observed
a similar albeit stronger decoding of patients and controls based
on C2 values in p = 4 than p = 2. Interestingly, C1 values were
smaller (Supplementary Figure 1), and the strong frontal lobe
classification results based on C1 values at p = 2 diminished
at p = 4 (Supplementary Figures 2C,D). Taken together, the
results of C1 estimation (self-similarity) were more reliable in
our data when using a p-leader of p = 2, while C2 estimation
(multifractality) provided more robust results with p = 4. Most
importantly, the trends in terms of increasing C1 and C2 values
in patients compared to controls was present irrespective of
the choice of p.

Correlations With Clinical
Scores/Information
The investigation of potential correlations between C1/C2 and
clinical information resulted in a number of interesting results.
Specifically, the correlations between C1 values and patients’
SANS scores (maximum r = 0.78, p < 0.05) in the left
inferior frontal gyrus and sulcus (Figure 6A), and between
C2 values and patients’ SAPS scores (maximum r = 0.78,
p < 0.05) in the circular sulcus of the insula (Figure 6B) were
statistically significant. In addition, the relationship between C1
and medication dosage yielded a statistically significant positive

FIGURE 6 | Correlational results between C1 and C2 values and patients’
clinical information. Pearson correlation results between patients’ (A) C1
values and negative symptom scores on the SANS (p < 0.05), (B) C2 values
and positive symptom scores on the SAPS (p < 0.05), and (C) C1 values and
medication dosages (olanzapine equivalent in mg), p < 0.05.

correlation (maximum r = 0.79, p < 0.05, after correcting across
all nodes). Figures 6C, 7C illustrate that patients with higher
medication dosage exhibited higher C1 values. This was especially
significant in the superior frontal gyri, the right middle temporal
gyrus, left mid-anterior cingulate gyrus and left inferior temporal
sulcus (see Figure 6C). The positive correlations in these analyses
are shown in the scatter plots in Figures 7A–C. These plots
depict the relationship between individually averaged C1 and C2
values (based on the significant nodes), and patients’ symptom
severity and medication dosages. To further clarify the C1 ×
SANS correlational results, a Pearson correlation was conducted
between SANS scores and medication dosage, revealing a low-to-
moderate correlation coefficient. The r2 of the regression model
suggested that this relationship explained 27–40% of the data,
meaning that the correlation of C1 × SANS was only partially
mediated by medication.

Uncorrected Spearman correlations were also computed
and reasonable overlap was observed between the Pearson-
based correlations and the Spearman findings. Similar to the
Pearson correlations, the Spearman analysis revealed a positive
correlation between C1 values and patients’ SANS scores in the
left mid-anterior part of the cingulate gyrus and sulcus (r = 0.65,
p < 0.0005), in the left precentral gyrus (r = 0.67, p < 0.0005),
in the left temporal pole (r = 0.66, p < 0.0005), and in the right
middle frontal sulcus (r = 0.71, p < 0.0005). Future studies with
larger cohorts would be critical to probe the robustness of these
results and should take into account covariates such as age, sex
and illness duration.

DISCUSSION

The central goal of this study was to examine and characterize
criticality features in the baseline neural dynamics of
schizophrenia. To do so, we evaluated the first two log-cumulants
of the Wavelet p-Leader and Bootstrap based MultiFractal
(WLBMF) analysis on the resting-state neuromagnetic signals
of chronic SZ patients and healthy controls. This allowed us to
determine the values of C1 (reflective of self-similarity) and C2
(reflective of multifractality) on the linear, scale-free portion of
participants’ arrhythmic MEG signal in source-space. In brief,
our findings partially supported our initial hypotheses about
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FIGURE 7 | Scatter plots showing the positive correlations between C1/C2
values and clinical information. These scatter plots depict correlations
(p < 0.05) between individually averaged C1 and C2 values and subjects’
clinical information. The averaging of C1 and C2 values was over significant
nodes. (A) Shows the correlation between C1 values and patients’ SANS
scores, (B) shows the correlation between C2 values and SAPS scores, and
(C) shows the correlation between C1 values and patients medication dosage
(olanzapine equivalent in mg).

self-similarity and multifractality changes in SZ, whilst also
revealing unexpected alterations in criticality.

Specifically, the findings of this study show that there are
clear opposite gradients in the values of C1 and C2, along the
rostro-caudal axis. A progression from low to high values of C1
were observed from anterior to posterior poles (i.e., frontal to
occipital lobes), while C2 values showed the reverse progression.
For both of these metrics, the gradient was less clear in SZ
patients than in healthy controls. The t-values of the unpaired
t-tests showed that patients had higher C1 values in the fronto-
temporal area, and lower C1 values in the parieto-occipital
areas compared to controls. In contrast, patients appeared to
have higher C2 values in the temporal, parietal, and occipital
areas than controls. Conventional t-test statistics failed to reach
significance after multiple comparisons correction. However, a
machine-learning approach based on logistic regression yielded
statistically significant decoding (up to 77%) of patients and
controls in a number of brain regions. Indeed, SZ patients
and controls were categorized using C1 values in the anterior
part of the cingulate gyrus (ACC), the left inferior gyrus, and
the mid and superior frontal gyri, among other brain regions.
Meanwhile, using C2 as a feature, we were able to statistically
significantly classify patients and controls in the right temporal
gyrus, precuneus, and occipital gyrus, among other brain regions.

In terms of the first log-cumulant, patients had a range of C1
values of [0.07, 1.44] in significant regions. In controls, this range
was of [0.18, 1.16]. Typically, C1 (and thus H) values would be
expected to be between 0 and 1 (where 0 < C1 < 0.5 implies
negatively autocorrelated signal, C1 = 0.5 implies uncorrelated
signal, and 0.5 < C1 < 1 implies positively autocorrelated signal),
although values above 1 have been observed within the theory of
generalized processes and tempered distributions (Samoradnitsky
and Taqqu, 1994). In terms of the second log-cumulant, patients
had a range of C2 values of [−0.01, 0.015] in significant brain
regions, while controls had a range of [−0.02, 0.011]. These values
fall within the same ranges reported by previous researchers (e.g.,
Zilber, 2014). As a reminder, higher C1 values are indicative
of more self-similarity and memory in the signal, while lower
(more negative) C2 values are indicative of more complexity in
the form of multifractality. From our results, we infer that SZ
patients exhibited more self-similar neural dynamics than healthy
controls, and thus more regularity in the frontal and temporal
brain areas. In addition, patients had fewer singularities (less
diverse h) in the parietal and occipital brain regions, compared
to healthy controls whose neural signals were more multifractal.

Further investigation of this analysis revealed that a
subportion of participants (predominantly patients) had some
positive C2 values. Theoretically, only [C2 < 0] (multifractal
signals) or [C2 = 0] (monofractal signals) are expected. Observing
positive C2 values implies that the multifractal formalism could
not properly model the neuromagnetic data recorded in these
patients. So, what does this tell us about the success of the
classifier in using C2 to distinguish between patients and
controls? The simplest explanation is that individuals with more
negative C2 (stronger multifractal properties) were identified
as healthy, whereas individuals with C2 values closer to zero
(monofractal), or even higher than zero (neither multifractal no
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monfractal), were classified as patients. As a side note, we found
that using an alternate p-leader of p = 4 improved C2 values,
and the classifier reaffirmed the diminished multifractality
characteristics of patients’ resting neuromagnetic signal. Taken
together, we observe clear rostro-caudal gradients of ascending
self-similarity and multifractality across both participant groups,
albeit more clearly in controls. The reduced multifractality and
increased self-similarity might reflect a certain rigidity in the
temporal dynamics of SZ patients’ neural activity.

Our findings are consistent with recent publications that have
characterized complexity in SZ in the same regions in which
we observed alteration in the log-cumulants C1 and C2 [i.e.,
precuneus, inferior frontal gyrus and temporal gyrus, (e.g., Lee
et al., 2021)]. Interestingly, a recent resting-state MEG-based
study of SZ patients by La Rocca et al. (2018) also found a
gradient in C1 values along the longitudinal axis; however, in
contrast to our own finding of an ascending anterior-posterior
gradient, they instead found an opposite, descending anterior-
posterior gradient (La Rocca et al., 2018). In addition, La Rocca
et al. (2018) compared how criticality features changed during a
perceptual task. They reported that in healthy individuals, global
self-similarity decreased, while focal multifractality increased
when switching from rest to task. Moreover, the changes in
multifractality correlated with brain regions implicated in the
task. This finding could suggest that the metric of C2 has a
functional role in cognitive processes (La Rocca et al., 2018).
Of note, there are some methodological differences between our
studies, such as the choice of scale (j1 and j2) for the linear portion
of the PSD. Differences could also be due to age differences.
Indeed, the authors reported the mean age of their participants
to be 22 years old, while our group’s mean age was of 44 years
old. In the complexity literature, it has been often reported
that the properties of scale-free dynamics change with age (e.g.,
Fernández et al., 2011; Churchill et al., 2016), and so it is possible
that there is a reversal of the self-similarity gradient with age.
More work is needed to elucidate this.

Positive correlations were observed between the metrics
of self-similarity and multifractality and patients’ clinical
information. In particular, we observed an increase in C1 values
in patients with increasing severity of scores on the negative
symptoms scale (SANS) in the inferior frontal gyrus, as well
as with patient’s medication dosage, the latter of which was
especially strong (r = 0.79). The left frontal gyrus plays an
important role in cognitive functioning (Swick et al., 2008) and
language (Klaus and Hartwigsen, 2019). At the structural level,
cortical thinning has been observed in the inferior frontal gyrus in
SZ patients compared to healthy controls, which correlated with
cognitive dysfunction (Kuperberg et al., 2003; Oertel-Knöchel
et al., 2013). Correlation between inferior frontal gyrus volume
and negative symptoms in SZ patients have been previously
observed, but not in their non-affected siblings (Harms et al.,
2010). At the functional level, higher cluster coefficients have
been observed in the left inferior frontal compared to bipolar
patients or controls (Kim et al., 2020), as well as weaker
connectivity within the language network (Jeong et al., 2009). In
addition to the reported structural alterations in this language
processing center, the reduction in the temporal flexibility and

enhanced regularity in the signal might explain why patients’
have poorer speech understanding, such as difficulty detecting
metaphors, sarcasm or jokes (Rossetti et al., 2018). A correlational
trend was also observed between multifractality and patients’
scores on the positive symptom scale (SAPS) in the circular
sulcus of the insula. In past studies, negative correlations have
been observed between reduced gray matter volume of the
insula and SZ patients’ positive symptoms (Wylie and Tregellas,
2010; Cascella et al., 2011). It is interesting to note that self-
similarity and multifractality were oppositely (and perhaps
complementarily) correlated with symptom severity scores.

Taking into account the correlational findings, it is not
surprising that, in our dataset of chronic and medicated patients,
antipsychotic medication dosage was related to symptom
severity, which itself was related to scale-free neural properties.
Psychiatrists typically increase pharmaceutical dosage, gradually
and as needed, to help manage symptoms. Sometimes, certain
drug combinations that help manage positive symptoms
(hallucinations, delusions) can worsen negative symptoms
(Schooler, 1994; Goff et al., 1996). Evidence from other studies
(Koukkou et al., 1993; Saito et al., 1998; Raghavendra et al., 2009)
suggests that drug-naïve and first-episode patients may display
a different pattern of criticality, thus the generalizability of our
results is limited to other medicated, chronic SZ patients.

Another parallel can be drawn between this study’s results
and findings from DFA analyses. The log-cumulants (C1 and
C2) derived from WLBMF analysis using a p-leader of p = 2,
as was used in the present study, are similar to scaling
exponents obtained using DFA (Leonarduzzi et al., 2016), in
that they both reflect temporal autocorrelations. In one of our
recent publications, we computed DFA exponents on oscillatory
envelopes in this same dataset of SZ patients and healthy controls
(Alamian et al., 2020). The scale used for the computation of
the log-cumulants (j1,2: 0.4–3.5 Hz) overlaps with the delta
oscillatory band (0.5–3.5 Hz). Comparing delta DFA exponents
and C1 between the studies reveals a good agreement: DFA
exponents were reduced in patients compared to controls in the
occipital and parietal lobes and increased values in the prefrontal
and temporal lobes, similar to the C1 topology. The overlap was
remarkably good considering that DFA was computed on band-
limited rhythmic brain signal, while the log-cumulants of the
singularity spectrum were computed on the arrhythmic raw brain
signal. This comparison shows that while DFA is an adequate
measure of the self-similarity aspect of criticality, it does not,
however, provide any information on the multifractality of a
signal, as does the second log-cumulant, C2. In this respect, they
capture different properties of the neural signal, and should be
treated as such. Several studies have examined the alterations of
DFA across a number of psychiatric and neurological disorders.
They found that a drop in DFA exponents occurs in SZ as well as
in Alzheimer’s and Parkinson’s disease, whereas other conditions,
such as depression, insomnia and epilepsy are typically associated
with increases in DFA exponents (Zimmern, 2020). These
findings reveal that reduced temporal autocorrelations observed
in SZ are not disease-specific, but capture alterations that might
be common to multiple psychiatric or neurological conditions.
This again highlights the need for more elaborate measures of
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brain criticality, such as through the WLBMF analysis carried out
in the present manuscript.

Criticality in the brain likely informs on the spatiotemporal
organization and functioning of neural networks at the micro-
and macroscopic levels (Hesse and Gross, 2014; Cocchi et al.,
2017). While the origins of criticality are still debated, many agree
that scale-free neural fluctuations are the signature of a brain in
a state of criticality. A right balance of scale invariant properties
(self-similarity, multifractality) is thought to be needed to adapt
and respond to ever changing environments (Linkenkaer-Hansen
et al., 2001; Plenz and Chialvo, 2009; Beggs and Timme, 2012;
Palva et al., 2013; Shew and Plenz, 2013). Consequently, we
propose that a change in this equilibrium could disrupt optimal
brain functioning. When self-similarity is strong in a signal,
as in the brain signals of our SZ cohort, the signal’s temporal
autocorrelation decays slowly, such that signal memory lasts a
long time. While still the subject of debate, it has been proposed
that this enhanced temporal persistence (or redundancy) may
make the brain less efficient in information processing (Zilber
et al., 2013). Lower levels of self-similarity in signals, as in
those of our healthy controls, are thought to reflect enhanced
neural excitability and more efficient processing (He, 2011, 2014;
Zilber et al., 2013). Interpretations of multifractality are still
unclear, but it appears that a richer repertoire of singularities
(multifractality > monofractality) suggests more variability and
flexibility in the neural signal (Beggs and Timme, 2012), and
thus in behavior. In our dataset, patients exhibited reduced
multifractality in certain areas, thus suggesting a decrease in
complexity and flexibility in their resting neuromagnetic signal.
The observed alterations in these criticality metrics in SZ
could explain the long, sustained nature of patients’ positive
symptoms (delusions, hallucinations) and their difficulty in
breaking away from them.

CONCLUSION

The overarching scale invariance of brain activity is thought to
be a useful indicator of its organization across both temporal
and anatomical scales (Werner, 2007; Zilber, 2014). Indeed, many
have suggested that biological systems optimally process, adapt to
and communicate information over long neural distances when
in a state of criticality. This critical state involves a balance
between regularity (structure) and flexibility (variability, local
fluctuations). Disruption of this equilibrium may reduce the
efficiency with which the system responds to changes in the
environment. In this study, we applied WLBMF analysis to
resting MEG signals and observed clear deviations in both the
self-similarity and multifractality of these signals in chronic
SZ patients compared to healthy controls. These changes in
the state of criticality of patients lend further support to the
theory of dysconnectivity in SZ from the perspective of temporal
dynamics, as it characterizes a different way in which information
interruption occurs in patients. This study also demonstrated
that alterations in neural criticality can be used to accurately
differentiate between chronic SZ patients and controls. We expect
that these findings will fuel the search for strong biomarkers in
SZ, borrowing a new, largely uncharted path.
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