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Epilepsy is one of the most common neurological disorders worldwide. Recent findings

suggest that the brain is a complex system composed of a network of neurons, and

seizure is considered an emergent property resulting from its interactions. Based on this

perspective, network physiology has emerged as a promising approach to explore how

brain areas coordinate, synchronize and integrate their dynamics, both under perfect

health and critical illness conditions. Therefore, the objective of this paper is to present an

application of (Dynamic) Bayesian Networks (DBN) to model Local Field Potentials (LFP)

data on rats induced to epileptic seizures based on the number of arcs found using

threshold analytics. Results showed that DBN analysis captured the dynamic nature

of brain connectivity across ictogenesis and a significant correlation with neurobiology

derived from pioneering studies employing techniques of pharmacological manipulation,

lesion, and modern optogenetics. The arcs evaluated under the proposed approach

achieved consistent results based on previous literature, in addition to demonstrating

robustness regarding functional connectivity analysis. Moreover, it provided fascinating

and novel insights, such as discontinuity between forelimb clonus and generalized

tonic-clonic seizure (GTCS) dynamics. Thus, DBN coupled with threshold analytics may

be an excellent tool for investigating brain circuitry and their dynamical interplay, both in

homeostasis and dysfunction conditions.

Keywords: network physiology, Local Field Potentials, epilepsy, functional connectivity, Bayesian Networks

1. INTRODUCTION

According to the World Health Organization, approximately fifty million people worldwide
suffer from epilepsy, and about 70% of which can live seizure-free using low-cost and effective
antiepileptic drugs (WHO, 2019). Temporal lobe epilepsy (TLE), one of its most common forms, is
often refractory to pharmacological treatments (Borger et al., 2021; Deng et al., 2021). Furthermore,
drug-resistant epileptic patients are often poor candidates for surgical treatment due to the
difficulty in identifying the seizure focus (Rincon et al., 2021). From a system-wide standpoint,
epilepsy emerges as a hyper synchronization phenomenon based on a modern concept stating that
the brain is a complex system and that synchronization is an emergent property resulting from
a dynamical coupling of neural oscillators (Moraes et al., 2019; Stojanović et al., 2020). Thereby,
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hypersynchrony of neural tissues is an essential feature of
neurological disorders such as epilepsy and Parkinson’s disease
(Khaledi-Nasab et al., 2020; Boaretto et al., 2021).

Thus, understanding the dynamic evolution of epilepsy can
assist in further elucidating its neurobiological mechanisms
(Nelson and Bonner, 2021), which may lead to the development
of novel, safer and more efficacious treatments (Moraes et al.,
2019). For such a purpose, different analysis have been proposed
such as phase Amplitude Coupling (Damborská et al., 2021),
Granger Causality (He et al., 2019) or Partial Directed Coherence
(Ciaramidaro et al., 2018). There are some limitations in phase
Amplitude Coupling, such as a lack of a gold standard set of steps
to perform analyzes that may result in misleading interpretations
(Seymour et al., 2017). Moreover, it is considered susceptible
to sharp-edge artifacts present in some essential electrographic
signatures, such as epileptiform spikes which jeopardize its
application in epilepsy studies (Kramer et al., 2008). In turn,
Granger Causality and Partial Directed Coherence are conflicting
linear approaches with the well accepted view that real-world
time series are usually nonlinear (Wan and Xu, 2018).

In the current analysis, the relationships and structure of
data is understood using a Dynamic Bayesian Network. A
Bayesian Network (BN) is a compact representation of statistical
dependencies among variables (Neapolitan, 2004; Koller and
Friedman, 2009; Bielza and Larrañaga, 2014; Michiels et al.,
2021). BNs are probabilistic models defined by a Directed
Acyclic Graph (DAG) and conditional probabilities tables (CPT)
representing the probabilistic dependence over signals. The
Dynamic Bayesian Networks (DBNs) can model signals as BN in
successive time slices (Murphy, 2002; Robinson and Hartemink,
2010; Leão et al., 2021). One of its main advantage is that
it allows performing probabilistic rationale under uncertainty
aiming at associating findings within functional connectivity
analysis (Bielza and Larrañaga, 2014; Benjumeda et al., 2021).

In literature, the use of BNs and DBNs in neuroscience
is found for multiple purposes (Bielza and Larrañaga, 2014).
Eldawlatly et al. (2010) performed a study to find dynamic
connectivity between cortical neurons. Smith et al. (2011)
inferred a non-linear communication association along regions
of the brain; van Esch et al. (2020) used the Bayesian method
to evaluate effective connectivity of brain networks aimed
to detect the Mozart effect; Sip et al. (2021) developed a
data-driven method based on Bayesian Inference to infer
seizure propagation patterns in an epileptic brain through
intracranial electroencephalography.

Therefore, Bayesian Networks is a remarkable tool to be
applied on multidisciplinary analysis, since its graph output is
of easy interpretability for specialists of different areas (Chen
et al., 2020; Moreira et al., 2021) and it is a good and
reliable way to unify algorithmic knowledge from data on
specialist knowledge and interpret results when coupled with the
multivariate statistical dependence of the model.

The direction of associations between nodes formed in areas
of the brain during epileptic seizures is still an unresolved issue
(Colmers and Maguire, 2020; Gil et al., 2020; Chowdhury et al.,
2021). Tracy et al. (2021) showed that it could change while such
seizures occur. Foit et al. (2020) showed that these directions

are in fact associated with two critical processes: the generation
and expression of seizures and the maintenance of epileptogenic
phenomena (Lignani et al., 2020).

This study considers the evolution of brain communication
during seizure patterns (or ictogenesis) from a basal state to a
generalized tonic-clonic seizure (GTCS) by applying the DBN
method to elucidate the link among brain areas for each stage
of the process. To clarify communication among brain areas
during each time slice as well as elucidating the link between
states, such as the relationship of basal and GTCS intervals, rats
were exposed to pentylenetetrazole (PTZ) pro-convulsant drugs
to induce ictogenesis while their brain local-field activity was
recorded and later analyzed through a DBN model.

A detailed model from a set with few instances possesses many
attributes, such as time slices and measured variables, which is
unexpected. However, it does not mean that the collected dataset
lacks essential and helpful information, such as the association
trends of main variables. As reported by Koller and Friedman
(2009), a strategy to overcome the problem of scarce data and
develop a reliable structure of arcs among the nodes of a BN can
be the apprenticeship ofmany high-score structures followed by a
consolidation of results. This paper is based on this rationale and
suggests applying the threshold analytics proposed by Gross et al.
(2019) throughout the dataset of all performed experiments, in
addition to highlighting the importance of a sampling approach.
The method captures the expected associations among nodes and
also achieves better prediction performance than the BNs learned
from neighbors thresholds to computed data (Gross et al., 2019),
as the method to identify significant arcs proposed by Scutari and
Nagarajan (2013).

2. BAYESIAN NETWORKS

A Bayesian Network (BN) is a probabilistic directed acyclic graph
(DAG) (Koller and Friedman, 2009; He et al., 2021) represented
by nodes as random variables and arcs as the probabilistic
relationships. The direction of the arc between two nodes such
as � and ρ defines a "parent" and "child" node. � → ρ means
that � is the parent of ρ (De Blasi et al., 2021). Mathematically
BN is defined as Li et al. (2021):

BN = (G, θ) (1)

where G = (X,E) represents the DAG—the structure of the
BN—comprising a set of n random variables X = {X1,X2, ...,Xn}
as nodes and arcs E. θ = {θ1, θ2, ..., θn} is a set of conditional
probability distributions—parameters of the BN (Koller and
Friedman, 2009). A data-driven learning in the context of BN
involves the apprenticeship of G and θ of a given dataset
(de Campos, 2006). Each θi represents a conditional probability
distribution p(Xi|Pai) in which Pai are the parents of Xi in the
BN structure (Koller and Friedman, 2009). Using the chain rule
from statistics, θ can be used to calculate the joint probability
distribution of all specified variables as Lewis and Groth (2020):

p(X1,X2, ...,Xn) =
n

∏

i=1
p(Xi|Pai). (2)
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FIGURE 1 | Examples of DBNs. (A) A dynamic network in which all variables are represented by stationary time series. The connections between variables within a

time slice and in the in-between of time slices are preserved. (B) A dynamic network over non-stationary data. The connections between variables and in the

in-between of time slices become obsolete and changes over time.

A Dynamic Bayesian Network (DBN) simulates the impact
of changes in the BN over time (Li et al., 2021), which means
the addition of temporal information to conduct the analysis
(Ramos et al., 2021). Figure 1 shows examples of DBNs. This
paper simulates the changes during the temporal evolution of rat
brains from basal state until the generalized tonic clonic seizure
(GTCS), reflecting the changes of communication among brain
areas at different timestamps. The DBN method considers that
an LFP state (e.g., GTCS) not only depends on variables at a
given time tn (generalized tonic-clonic seizure time) but also in
previous time slices, tn−m, such as basal state or infusion times
for instance.

According to Leão et al. (2021), let B0 be a prior BN describing
the joint distribution between all variables in time slice t =
0, B0 = P(X[0]). B[0 : t] with t ∈ {1, 2, . . . ,T} represents
time slices such as B[0 : t] = P(X[t]

∣

∣X[0 : t − 1]). The first
simplifying assumption is themth-orderMarkov Property stating
that variables in a certain time slice t can only be conditionally
dependent on variables from up to m time slice before t. This
assumption is simplified into

P(X[0 :T]) = P(X[0])

T
∏

t=1
P(X[t]

∣

∣X[t −m : t − 1]) (3)

The second simplifying assumption often performed in DBNs
is the stationary assumption stating that, in a DBN following
the mth-order Markov assumption, transition networks B[t −
m : t] are the same for all time slices t ∈ {1, ...,T}. Both these
statements are exhibited in Figure 1, in which both DBNs obey
the first-order Markov Property (see Supplementary Material).

3. MATERIALS AND METHODS

This section describes the applied methodology used in
this paper. Also, the database used to perform the study,
algorithms and their simulated data as well as the computational
environment are depicted.

3.1. Experimental Protocol
The present experimental procedures with rats are described
in better detail in De Oliveira et al. (2018) and its theoretical
background is reviewed in Cota et al. (2016) and Cota et al.
(2019). Local Field Potential (LFP) originates from the database
of the Laboratory of Neuroengineering and Neuroscience
(LINNce) at the Federal University of São João Del Rei. Male
Wistar rats weighing between 250 and 350 grams kept under a
light-dark cycle of 12 h (lights on at 7 a.m.) with food and water
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FIGURE 2 | An example of the signal from one of the rats involved in the study. There are four different time slices for it. The first one is the time between the green

lines, which indicates resting state, i.e., the basal state of the animal. From the first green line until the orange line, there is an interval of PTZ infusion for epileptic

seizure induction. Infusion only ceases when the animal develops generalized tonic clonic seizure. From the orange line until the first red line, there is an interval of

myoclonic seizure and from the first red line until the second one representing the period of generalized tonic clonic seizure. After the second red line, it is the interval

after GTCS, therefore it is quite evident that this period does not represent a basal state but a refractory period.

ad libitum were selected from the University’s Central Vivarium.
All described procedures follow the ethical standards for usage
of animals in research and were previously approbated by the
institutional committee (protocol 31/2014, CEUA/UFSJ). The
signal recording used monopolar electrodes consisting of Teflon-
coated stainless-steel wires (#791600, A-M Systems, Sequim,
WA, USA). They were placed directly into the right thalamus
(TH) and right dorsal hippocampus (HP) of the animal’s brains
through stereotactic surgery (Cota et al., 2016). The assistance
of positioning the electrodes and screws followed Paxino’s
neuroanatomic atlas and were AP: 2.8 mm, ML: +1.5 mm, DV:
3.3 mm for HP, and AP: 3.0 mm, ML: +2.6 mm, DV: 6,0 mm for
TH (Paxinos andWatson, 2013). Additionally, two microsurgical
screws (length 4.7 mm, diameter 1.17 mm, Fine Science Tools,
Inc., North Vancouver, Canada) were visually implanted in their
right hemisphere parietal region for cortical (CX) recording and
used the frontal bone as reference. Leads soldered to copper
wires were crimped in an RJ-45 jack fixed onto their skull using
polymerizing dental acrylic.

Animals were filmed simultaneously in LFP recordings in
order to perform a behavioral analysis and assess occurrence and
latency to stereotypical behaviors of the chosen models, such
as facial automatisms, myoclonic jerk, head clonus, hind and
forelimb clonus, generalized tonic-clonic seizure, and others such
as rearing and falling, Straub tail. It allowed correlation with LFP
data and detection electrophysiological events periods of interest
used in this study.

Amplification of signals was performed using a 2,000 V/V
gain, filtered from 0.3 to 300 Hz using an A-M Systems (model
3500) pre-amplifier, and then digitized at 1 KSample/s using an
A/D converter board (model PCI 6023E, National Instruments)

controlled by a built-in LabView virtual instrument developed at
LINNce. Shielded twisted cables and a Faraday cage were required
to eliminate the power grid noise at 60 Hz.

All animals underwent intravenous controlled infusion of
convulsant drug pentylenetetrazole (PTZ, Sigma Aldrich, São
Paulo, SP—Brazil), an unspecific GABAergic antagonist, at a
rate of 1 ml/min and dilution of 10 mg/ml (thus 10 mg/min)
as a model of acute ictogenesis and seizure induction. This
approach results in a gradual increase of neural excitability and,
consequently, gradual recruitment of neural circuitry (Velisek
et al., 1992), both expressed behaviorally and electrographically
in a correlated manner. Initially, animals display minor seizures,
including facial automatisms, strong mastication, myoclonic
jerks, forelimb, and head clonus. These are all behaviors directly
related to aberrant recruitment of limbic circuitry, including
areas such as the amygdala, hippocampus, and thalamus (Eells
et al., 2004). It is followed by significant seizures, either with
or without a tonic phase, such as generalized myoclonus and
generalized tonic-clonic seizures. It results from the involvement
of large territories in the forebrain or structures in the
midbrain and hindbrain, respectively (Eells et al., 2004). This
gradual recruitment of areas and circuits makes the controlled
infusion of PTZ an exciting model for screening new drugs
or other non-pharmacological treatments. It also investigates
neurodynamical processes underlying ictogenesis, such as the
case herein.

The time slices used in this Bayesian Networks analysis
were established based on periods of interest of the previously
described experimental protocol. The time slices set to apply the
algorithm are basal state, infusion, myoclonic seizure (MYO),
and generalized tonic-clonic seizure (GTCS)—Figure 2.
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FIGURE 3 | Applied methodology. The initial step is the LFP data acquisition from rats involved in the pre-clinical trial. After discretizing and splitting into time slices,

the following point-in-time was depicted: basal state, PTZ infusion, myoclonic seizure (MYO) and generalized tonic clonic seizure (GTCS). The third step involved using

the DBN algorithm to observe the functional connectivity among time slices during the temporal evolution of rats, i.e., from basal state until GTCS. The arcs from

developed Dynamic Bayesian Networks are evaluated using the analytical threshold model proposed by Gross et al. (2018) described in full detail in Gross et al. (2019).

3.2. Algorithms
Figure 3 presents the applied methodology. Initially, a data
frame with three columns (thalamus, hippocampus, and cortex)
represents each rat. Afterwards, each of these columns are divided
into samples and then regrouped, which resulted in a new data
frame with 12 columns: thalamus, hippocampus, and cortex for
each time slice, i.e., basal, infusion, MYO, and GTCS (Figure 4).
Since each time slice has a different duration, there was pre-
processing of all of them using numeric interpolation so that all
would have the same size as the longest time slice, resulting in
a data frame consisting of 12 columns and size_of_longest_time-
slice rows. The dependencies among selected variables were based
on a completely graphical and non-parametric strategy. The
representation of functional connectivity networks among brain
areas used a BN structure learned from the discretized dataset.A
quantization followed the adaptive bins algorithm was exhibited
in Gencaga et al. (2015) using a maximum of 128 bins (7 bits),
since it was the maximum amount of bins supported by available
computational resources. The Hill Climbing search algorithm
from Python pgmpy package1 was used to learn the DAG from

1http://pgmpy.org/index.html

the dataset and the BDeu function (seeAppendix) was applied as
a scoringmethod, once the taskmay be complex or even humanly
impossible (Villanueva and Maciel, 2014).

During the experiment, a set of K = 21 DAGs was built by
running the Hill Climbing search algorithm twenty-one times.
Different data used in each of these runs represent a dataset
acquired from one of the rats involved in this pre-clinical study.
The underlying idea is that there is less uncertainty regarding the
arcs induced, even when collecting data from a different animal.
Such diversity of structures is due to data acquired from different
rats of the same species approximately having exact weights and
the Hill Climbing search process itself, once its initialization
is always random and local optimizations performed during
a run are also non-deterministic. As the stop criterion, for
each complete run of the Hill Climbing search algorithm, one
million iterations are performed. Afterwards, the set of DAGs
was reduced to a single consensus DAG through a process called
model-averaging approach. In this reduction, there is a count of
the number of times that each of the three possible connections
(i.e., “←,” “→,” and “absent”) occurred by considering every
pair of nodes in the obtained 21 graphs. Only directed arcs
having the minimum percentage (f) provided by equation f =
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FIGURE 4 | Dynamical Bayesian Network input generation: initial dataset contain 700 thousand observations for each of the three brain regions of each animal; from

such, a new dataset is generated with 12 columns representing each of the regions on all of four timestamps (Basal, Infusion, MYO and GTCS). Since all of them have

different duration, the resultant table has 12 columns and as many rows as the longest time slice. The remaining columns are filled with NaN to keep the table structure.

(1/3)+
√
2/K were accepted. It is the analytical threshold model

to evaluate the arcs, proposed by Gross et al. (2018) and described
in full detail in Gross et al. (2019); moreover, a specialist analysis
was taken into account in the final evaluation of the resulting
network, but only the edges resulting from analytical threshold
analysis were considered.

The entire algorithm, including the generation of BNs and
pre-processing, took about 2–3 min for compiling each rat
database, containing three local field potential time series and
totaling approximately 700 thousand samples, which was found
using a 12 GB RAM and 4-core/4-thread Intel(R) Core(TM)
i7-4500U CPU @ 1.80GHz computer. Therefore, the total time
spent on processing all databases comprising 21 rats (K =
21) was about 48 min. Among all databases, half the rats
belonged to the myoclonic group, and their evolution was
recorded from their basal state until the myoclonic seizure. The

observation of other rats included a temporal evolution from
the basal state until generalized tonic-clonic seizure, i.e., the
GTCS group.

4. RESULTS

Figures 5, 7 show the use of the LFP database to build the
Dynamic Bayesian Network. Figure 7 represents the Markov
Chain evaluation among the employed time slices, and Figure 5

represents the Dynamic Bayesian Network built from rats LFP
database. An analysis of arcs using the method suggested by
Gross et al. (2019) provided two thresholds: an initial one from
the Basal state until the MYO time slice due to further data
availability, which provided the value of 0.62 and standard
deviation of 0.10, representing the minimum value of 11 arcs.
The threshold duringGTCS timewas 0.71 and standard deviation
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FIGURE 5 | The Dynamic Bayesian Network developed from LFP data set. The black arcs represent the strongest connections provided by analytical threshold model

by Gross et al. (2019). The gray arcs represent connections that were not validated by analytical threshold model, but provided by DBN method. From Basal state until

MYO time slice, there is a common pattern, i.e., Thalamus distributed information to Hippocampus and Cortex. This behavior is reported in literature, due to fact that

knowledge about the role of Thalamus is an important communication lane to distribute information among brain areas. The novelty of the present study is that the

same structure of communication is found during the MYO time slice. It was expected a transition structure closer to GTCS, but it did not happen. During GTCS time

slice, there was a connection among HP, TH and CX change. It is possible to check that Hippocampus is the probable onset zone, once information reinforces

synchronization from Thalamus. Another important path observed and reported in literature is that information from Cortex reverberates in the Thalamus is transmitted

to the Hippocampus.

was 0.16, representing the minimum value of 5 arcs. In Figure 5,
it is possible to observe gray edges, but none of them were over
the threshold.

Table 1 reports significant arcs, i.e., those having achieved the
minimum frequency threshold for each time slice. The table also
depicts the number of Dynamic Bayesian Networks in which the
connection appeared. There is also a separation between the two
groups of rats used in this paper, presenting an overall value
used to make a comparison with the analytical threshold value
calculated. The exception was only values of GTCS connections
if compared with the "GTCS group" column, since the recording
of this time slice was performed only on this experimental
group.

Figure 6 presents the histogram of significant arcs and their
comparison with analytical threshold values. It was possible to
observe that there is a single direction from one node to another,
such as the case of Thalamus andHippocampus during the GTCS
time slice which was aimed at verifying arc TH→HP. However,
TH←HP did not cross the analytical threshold. There is only
one exception during Basal and Infusion time slices in which the
relationship between Thalamus and Cortex provided the same
probability for both directions.

It is possible to observe from Figure 7 that the GTCS time
slice does not depend on the Basal time slice. Also, it is suggested
that Infusion and MYO time slices connect them. According to

TABLE 1 | The strongest arcs identified in developed Dynamic Bayesian Network.

Arc (→) Frequency

From To MYO group GTCS group Global

Thalamus basal Cortex basal 7 4 11

Cortex basal Thalamus basal 7 4 11

Thalamus basal Hippocampus basal 8 3 11

Thalamus infusion Cortex infusion 8 3 11

Cortex infusion Thalamus infusion 7 4 11

Thalamus infusion Hippocampus infusion 6 6 12

Thalamus MYO Cortex MYO 8 4 12

Thalamus MYO Hippocampus MYO 8 7 15

Cortex GTCS Thalamus GTC 0 7 7

Thalamus GTCS Hippocampus GTCS 0 6 6

All of them have the minimum frequency calculated through the analytical threshold model

by Gross et al. (2019). Due to the fact that the GTCS time slice is only observed in the

GTCS group, the analytical threshold was compared with the frequency observed only

for this group. For Basal, Infusion and MYO time slices, the global frequency was used to

perform the comparison. Gray edges were not considered in the table, as they have not

crossed the analytical threshold (Figure 5).

Figure 5, the most robust connections patterns were: from Basal
until MYO time slice, the interconnection structure remained the
same, comprising the Thalamus as the central node connecting
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FIGURE 6 | Histograms of the frequency of main arcs from DBN presented in Figure 5. They were separated according to each time slice: Basal, Infusion, MYO and

GTCS. Table 1 shows only the arcs that were above the threshold value (black line in histogram) provided by the analytical threshold model. In this Figure, it is also

possible to observe that an opposite connection is unchecked at times, such as TH-CX during MYO time slice (TH→CX went through threshold, however, TH←CX

did not). The exception is during Basal and Infusion time slices in which it is possible to observe the same frequency for TH-CX arcs.

to Hippocampus and Cortex, which are in turn independent. The
structure changed during the GTCS time slice, andHippocampus
now became the primary node. Cortex connects with Thalamus,
which in turn appears linked with Hippocampus. The Dynamic
Bayesian Network identified other connections represented in
Figure 5, but the analytical threshold has not been validated
(gray color).

5. DISCUSSION

5.1. Temporal Evolution of DAGs Reflecting
the Neurodynamics of Ictogenesis
The DBN results found herein have clearly shown distinct
connectivity patterns during ictogenesis induced by a controlled
infusion of PTZ—Figure 5. Present findings corroborate the
dynamic nature of functional neural connectivity along the
time course of epileptic phenomena, while also providing
novel insights.

A first interesting result is that DAG remains unaltered during
the whole PTZ infusion period and it is the same as that in

the basal state—Figure 5, i.e., Basal and Infusion time slices.
This connectivity pattern observed in both preictal time slices
is perfectly understandable and supported by well-understood
information flowwithin neural circuitry in homeostasis. Notably,
there is a recognization of the thalamus as the central relay for
both incoming sensory information on crossing threshold to
multiple primary cortices and also for motor output from the
motor cortex—Figure 5, Basal, Infusion, and MYO time slices.
Thus, the observed bidirectional link between these nodes is
consistent with ongoing sensory and motor function—Figure 5,
Basal and Infusion time slices. Additionally, directed arcs from
TH to HP are probably related to the communication between
the thalamus and hippocampus underlying neural plasticity and
acquisition of novel memory traces during wakefulness (Cassel
and de Vasconcelos, 2015; Figure 5), Basal, Infusion, and MYO
time slices. Such activity is relayed by the thalamus and fed into
the hippocampus for future conversion into long-termmemories
during sleep (Klinzing et al., 2019).

Then, myoclonic seizure starts, and there is a fundamental
change in the DAG: the thalamus becomes the primary driver
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FIGURE 7 | The four time slices used to develop the (Dynamic) Bayesian

Network for each rat: Basal, Infusion, MYO and GTCS. After building the

networks, it was observed that the Basal interval do not help to explain what

happens during GTCS period. Also, it was verified that Infusion and MYO time

slices connect them. This means that the infusion of PTZ drug disconnects

time slices, which reveals that it is a different process occuring since the

beginning of drug administration.

of both the hippocampus and the cortex (notice that the TH to
CX arc is now preponderant)—Figure 5, MYO time slice. It is
strikingly consistent with the motor expression of partial seizures
originating in the limbic system, such as the observed forelimb
clonus recorded at this moment, i.e., in which the thalamus
assumes the role of a central synchronization hub for both the
cortex and the hippocampus (Bertram et al., 1998; Bertram, 2014
for reviews). For this reason, nuclei within the thalamus are in
fact the primary targets for neuromodulation strategies in the
treatment of epilepsy (Van Der Vlis et al., 2019).

Finally, two essential changes occur when crossing the
generalized seizure onset—Figure 5, i.e., GTCS time slice.
Initially, the connectivity pattern changes to include a
preponderant communication—signal transmission among
rats brain areas—from the cortex to the thalamus and thus
to the hippocampus. Once more, it is in perfect agreement
with previous literature showing the recruitment of vast
neocortical territories and communication from these areas to
the thalamus and other forebrain structures during secondary
generalization (Brodovskaya and Kapur, 2019 for a review).
Although a canonical understanding of the importance of the
thalamocortical neural circuit, which is a reverberant loop, may
imply a bi-directional connection between these two areas,
other processes are also crucial for the generation of generalized
seizures. These include a unidirectional cortex to thalamus drive
through polysynaptic connections involing the basal ganglia
(striatum, globus pallidus, and substantia nigra reticulata).

Electrode geometry used for cortical recording may also play a
unique role herein. Given the larger dimensions of electrodes
made out of surgical screws, when compared to microwires used
for deep brain recording, signals indeed represent contributions
from much larger brain areas. Thus, the aberrant recruitment
of vast neocortical territories and their powerful drive onto
thalamic nuclei may also be a primary contributor to the
preferential direction of the CX toward the TH arc observed
in our results. A second significant change after the onset of
generalized seizures in the absence of DAG arcs crossing this
temporal limit lies in epileptiform activity during partial seizures
which bear some neurodynamical correlation with base-level
tracings. Meanwhile, generalized tonic-clonic seizures have
dynamics of their own that can not correlate with those of other
time slices across ictogenesis. The clarity of reasons for this
result is yet inexplict, but such an intriguing result may probably
have important implications on neuromodulations strategies,
particularly upon those involving responsive close-loop systems
capable of detecting ongoing seizures.

5.2. Graph Evaluation and Analytical
Threshold to Identify DBNs Arcs Direction
Figure 7 shows a critical finding: after building the networks,
it was found that Basal intervals do not help to explain what
happens during the GTCS period. Also, Infusion and MYO time
slices connect them. It reveals that the infusion of PTZ drug
disconnects the time slices, which means that it is a different
ongoing process since the beginning of drug administration.
Table 1 substantiated the discussion about the Dynamic Bayesian
Network developed herein, suggesting structures in accordance
with neuroscience literature. The Dynamic Bayesian Network
method brought about many possible connections, as expected.
Threshold analytics was essential to analyze their significance,
screening the most important arcs, thus enabling a better
interpretation of results. Observing Figure 6, the direction of
significant arcs is evident, such as Cortex and Thalamus during
GTCS time in which CX→TH had a frequency above the
threshold (7 against a minimum of 5). However, CX←TH
frequency did not cross the threshold (3). According to the
methodology, the arcs that were not over threshold frequency
represent connections that do not assure their effective existence.
Nonetheless, they may be essential tracks for further studies. The
most important was an alignment between DBN with threshold
analytics and neurobiological phenomena. It is essential to
confirm the approach as feasible to investigate epilepsy dynamics.
However, according to Bertram (2013), Losi et al. (2019), and
Heysieattalab and Sadeghi (2021), there must be more extensive
knowledge about the illness dynamics, such as the causal
relationship among brain areas.

5.3. Other Approaches for Functional
Connectivity Analysis and Limitations
In literature, other papers performing Functional Connectivity
Analysis are found considering other approaches:

- Tsukahara et al. (2020a) combined Partial Directed Coherence
and Mutual Information to study connectivity and
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transmission rates between brain areas, considering the
same dataset used herein and only the Basal and Infusion
times under study. However, it only identified connections
among all brain areas, but no novel findings regarding
ictogenesis were identified.

- Tsukahara et al. (2020b) applied Delayed Mutual Information
to identify associations among brain areas considering the lag
of communication as regards the same dataset used herein
to develop the analysis. The method has not enabled an
identification of any novel finding regarding ictogenesis.

As it can be observed, the Information-Theoretic approach,
as well a linear approach in the frequency domain, are both
commonly used in neuroscience (Ciaramidaro et al., 2018;
Gribkova et al., 2018; Varotto et al., 2018), nonetheless there
was no novelty regarding ictogenesis phenomena. Some concerns
are worthy of consideration in this paper and referenced works:
the dataset used to perform analysis. A possible problem that
may interfere with results is the acquisition of Local Field
Potentials at sampling frequency of 1 kHz. Discretization using
the maximum number of bins was required to ensure a better
resolution of signals. Endo et al. (2015) performed a similar study
as observed in Tsukahara et al. (2020b), however, 32 bins were
used to discretize signals sampled at 24 kHz. There is a sharp
difference in signals resolution that resulted in different findings.
Endo et al. (2015) was able to identify the lag among neurons
communications, while Tsukahara et al. (2020b) found no initial
lag identification.

Another significant limitation worth being mentioned is the
volume of data required to apply the Theoretical Information
approach (Endo et al., 2015). The dataset used to perform
this analysis is restricted due to availability of rats to perform
the study. Within this scenario, a Bayesian approach may be
favorable given that initial information provided by a specialist
assists in handling smaller datasets, providing results as those
observed herein.

Partial Directed Coherence is a linear approach to perform
Functional Connectivity analyzes, and real-world problems
usually are nonlinear, as it is the case of Local Field
Potentials in animal physiology (Phan et al., 2019). Therefore,
in addition to the fact that PDC brought about some
insights into ictogenesis, it revealed no novelty. Another
significant limitation is the requirement of stationarity to
apply the method, which can be a problem while studying
ictogenesis phenomena.

Despite its limitations, the Dynamic Bayesian Network
approach revealed findings in accordance with neuroscience
literature and cast light upon some new pieces of
knowledge. There are some other questions to be answered
considering the subject. However, it is a suggestion for
further studies.

Finally, due to data availability to perform the analysis,
only three areas were considered in this paper: Thalamus,
Hippocampus, and Cortex. Future studies should consider more
than three areas aiming at a broad scope to study epileptic
seizures. However, only three brain areas assisted to reduce the

amount of computational resources to apply DBN analysis and
provide findings regarding epileptogenesis.

6. CONCLUSION

The Dynamic Bayesian Networkmethod represents an affordable
approach, as there were insights into epilepsy dynamics. It was
possible to observe that the infusion of PTZ drug disconnects
the timeslices, which means that it has been a different ongoing
process since the beginning of drug administration. DBN
analysis was very well capable of capturing the dynamic
nature of brain connectivity across ictogenesis with significant
correlation to neurobiology derived from pioneering studies
which employed techniques of pharmacological manipulation,
lesion, and modern optogenetics as well (Forcelli, 2017).
Additionally, it provided invaluable novel insights, such
as the discontinuity between forelimb clonus and GTCS
dynamics.

The direction of associations between nodes formed in
areas of the brain during epileptic seizures is still an
unresolved issue (Colmers and Maguire, 2020; Gil et al.,
2020; Chowdhury et al., 2021). This study aimed to address
the problem and provide information in agreement with
Tracy et al. (2021), showing that basal and infusion time
slices present a different pattern of communication than that
observed during MYO and GTCS time slices. It is essential
to observe that MYO and GTCS time slices present different
communication patterns, providing information about the
crossing from both states. Furthermore, it suggests evidence
of the work of Lignani et al. (2020) from a more focal
seizure (MYO) to a tonic-clonic seizure (generalized in GTCS).
The study stated that changes in communication direction
are associated with two critical processes: the generation
and expression of seizure and the epileptogenic phenomenon
maintenance.

It was also possible to observe the temporal evolution of
variables across time and determine other communications
according to the transition from resting-state to the generalized
tonic-clonic seizure. Epileptiform activity during partial seizures
bears some neurodynamical correlation with base-level tracings.
Meanwhile, generalized tonic-clonic seizures have a dynamic
of their own that cannot correlate with those of other time
slices across ictogenesis. The clarity of reasons for such result
is yet unclear. Nevertheless, such intriguing result might
have important implications on neuromodulation strategies,
particularly those involving responsive close-loop systems
capable of detecting ongoing seizures.

For these reasons, DBN might be an excellent tool for
investigating brain circuitry and its dynamical interplay in
both homeostasis and dysfunction. Analytical threshold results
supported all this discussion due to allowing an evaluation of
the arc’s significance and identifying the connections observed
through the developed DBN.

Computationally, the applied methodology demonstrated to
be an appropriate alternative. Each rat data frame spent about
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3 min running and provided a suggested DBN model. All
databases were run in about 50 min, which is quite fast, mainly
on account of the fact that the DBN method is an NP-hard
problem. This study was carried out using a personal computer
without any adaptations, which is also relevant as it contributes
to the results reproducibility. Thus, the algorithms presented
two features that support its availability to perform functional
connectivity analysis: good computational time of processing
and reproducibility.

Therefore, the approach demonstrated that it is feasible
to investigate epilepsy dynamics, once important insights
reported in literature were identified, in addition to new
findings. As suggestion for further studies, there is still
the need for more knowledge about the illness dynamics,
such as using more brain areas to increase the scope
of observation of the epileptogenic dynamics. Also, the
use of Local Field Potentials might be applied at more
sampling frequency to make signal representation more precise,
thus increasing the applied methodology’s quality. Finally,
using the proposed methodology to study other types of
brain disorders, like Parkinson’s disease, seems prominent as
further research.
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