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Sensory information is transduced into electrical signals in the periphery by specialized
sensory organs, which relay this information to the thalamus and subsequently to
cortical primary sensory areas. In the cortex, microcircuits constituted by interconnected
pyramidal cells and inhibitory interneurons, distributed throughout the cortical column,
form the basic processing units of sensory information underlying sensation. In the
mouse, these circuits mature shortly after birth. In the first postnatal week cortical
activity is characterized by highly synchronized spontaneous activity. While by the second
postnatal week, spontaneous activity desynchronizes and sensory influx increases
drastically upon eye opening, as well as with the onset of hearing and active whisking.
This influx of sensory stimuli is fundamental for the maturation of functional properties and
connectivity in neurons allocated to sensory cortices. In the subsequent developmental
period, spanning the first five postnatal weeks, sensory circuits are malleable in response
to sensory stimulation in the so-called critical periods. During these critical periods, which
vary in timing and duration across sensory areas, perturbations in sensory experience
can alter cortical connectivity, leading to long-lasting modifications in sensory processing.
The recent advent of intersectional genetics, in vivo calcium imaging and single cell
transcriptomics has aided the identification of circuit components in emergent networks.
Multiple studies in recent years have sought a better understanding of how genetically-
defined neuronal subtypes regulate circuit plasticity and maturation during development.
In this review, we discuss the current literature focused on postnatal development
and critical periods in the primary auditory (A1), visual (V1), and somatosensory (S1)
cortices. We compare the developmental trajectory among the three sensory areas with
a particular emphasis on interneuron function and the role of inhibitory circuits in cortical
development and function.
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INTRODUCTION

Sensory information is conveyed from sensory organs in the periphery into modality-
specific thalamic nuclei and subsequently into primary sensory cortical regions for further
processing. While this basic connectivity is already established at birth, it is subject to
extensive activity-dependent refinement during the first and second postnatal weeks in mice,
the equivalent of the period spanning from late fetal development through the first few years
of postnatal development in humans. At the neocortical level, two main types of neurons
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constitute the building blocks of cortical circuits: excitatory
pyramidal neurons (Pyr) and inhibitory GABAergic
interneurons (INs). Although they only constitute ∼15%–20%
of the neuronal cortical population (Anderson et al., 1997;
Cauli et al., 1997; Gonchar and Burkhalter, 1997; Gupta et al.,
2000; Kawaguchi, 2001; Butt et al., 2005; Miyoshi et al., 2007;
Xu et al., 2010), inhibitory INs are essential for the proper
development of cortical circuits (Babij and De Marco Garcia,
2016) and play multiple roles in sensory processing in the
mature cortex (Tremblay et al., 2016). GABAergic INs can
be classified based on their axonal morphological features
and innervation profile in multiple subtypes (DeFelipe et al.,
2013; Mihaljevic et al., 2019). While neurochemical expression
patterns allow classification of GABAergic INs into three main
cardinal classes: Parvalbumin-expressing (PV), Somatostatin-
expressing (SST), and the Serotonin 5HT3a Receptor-expressing
(5HT3aR) interneurons [which can be subdivided into two main
groups: Reelin+ and vasoactive intestinal peptide (VIP) INs
(Rudy et al., 2011)], each one with particular properties and
functions in cortical processing. In developing mice, inhibitory
interneurons originate embryonically in the telencephalon:
the Medial Ganglionic Eminence (MGE) and Preoptic Area
(POA) generate PV and SST INs; while the Caudal Ganglionic
Eminence (CGE) gives rise to 5HT3aR INs (Lim et al., 2018). By
birth, INs migrate tangentially into the cortex (Anderson et al.,
1997) and other key aspects of interneuron maturation such as
laminar distribution, wiring, apoptosis, and circuit refinement
take place mainly during postnatal development (Li et al., 2008;
Southwell et al., 2012; Lim et al., 2018).

Different sensory cortical areas share the same neuronal
composition described above and undergo parallel
developmental trajectories. At embryonic stages, thalamocortical
axons start invading the developing cortex matching thalamic
nuclei with the appropriate cortical regions, for each sensory
modality (Sur and Rubenstein, 2005). These thalamocortical
projections initially innervate the region under the cortical
plate known as the subplate, before reaching their final target
thalamo-recipient neurons of layer IV (Kanold and Luhmann,
2010). In rodent S1, thalamic axons are present in the subplate as
early as E14, making functional connections with target neurons
by E19 (Auladell et al., 2000; Higashi et al., 2002). Subsequently,
these axons invade layers V-VI by P0 and make functional
synapses onto layer IV around P4 (Agmon et al., 1993). Similar
developmental trajectories for thalamocortical innervation occur
in V1 (Kanold et al., 2003) and A1 (Viswanathan et al., 2012).
However, this process is delayed in A1 in comparison to the
other two sensory areas, resulting in a more mature pattern of
thalamocortical innervation in V1 and S1 by P5 (Chang et al.,
2018). In summary, immature thalamic projections are already
present in all three primary sensory areas by birth, undergoing
extensive maturation and rearrangement during the first two
postnatal weeks.

During the first postnatal week in mice, cortical activity is
dominated by spontaneous waves of activity (Ackman et al., 2012;
Babola et al., 2018; Che et al., 2018; Iannone and De Marco
Garcia, 2021). This early synchronized spontaneous activity
is essential for the proper maturation of cortical circuits and

thought to be the substrate for the development of mature
connectivity (Leighton and Lohmann, 2016). A characteristic
landmark of the mature cortex is the presence of cortico-
cortical connectivity, which develops postnatally. One of the
main cortico-cortical projections connects the two hemispheres
through callosal axons, in a homotypic fashion. In both S1 and
V1, callosal axons cross the midline by P3 and display extensive
arborization into the contralateral cortex during the second
postnatal week (Mizuno et al., 2007; Wang et al., 2007). This
connectivity develops in an activity dependent manner (Wang
et al., 2007), being therefore influenced by early spontaneous
activity of the maturing cortex.

By the second postnatal week, sensory input increases
upon the onset of active whisking, ear and eye opening.
Simultaneously, cortical activity in primary sensory areas
desynchronizes (Golshani et al., 2009; Rochefort et al., 2009;
Clancy et al., 2015; Che et al., 2018; Luhmann and Khazipov,
2018) allowing proper coding of sensory information. Shortly
after the second postnatal week, cortical circuits are highly plastic
and can bemodified by sensory experience during developmental
windows known as critical periods (CP; Hensch, 2005). Recent
experimental advances in genetic targeting, in vivo imaging and
transcriptomics have demonstrated the crucial role of inhibitory
INs in the proper function of developing cortical circuits.

In this review, we will summarize the developmental
trajectories of cortical activity, sensory onset and critical periods
in the primary sensory areas A1, V1, and S1. Namely, we
will compare the timing and known mechanisms during three
main epochs of cortical development: (1) the presence of
synchronized spontaneous cortical activity early in development;
(2) a period of desynchronization and the onset of sensory-
evoked responses; and (3) critical periods of experience-
dependent cortical plasticity. We emphasize the developmental
maturation of the different IN subtypes and their diverse roles
in cortical function spanning from the first postnatal week, up
until the critical period in primary cortical sensory areas. In
addition, we discuss current litterature regarding the cellular
and molecular mechanisms underlying critical period plasticity
through direct and indirect regulation of PV INs in the three
sensory areas.

DEVELOPMENT OF NEURONAL ACTIVITY
AND CORTICAL MICROCIRCUITS IN THE
AUDITORY CORTEX

The auditory system conveys acoustic information from the
ears to the brain in multiple relay areas for sensory processing.
Auditory information is initially transduced by hair cells in
the cochlea, and subsequently transmitted to brainstem and
midbrain auditory structures. Then, sensory input is relayed
into the auditory thalamus (Medial Geniculate Body, MGB)
and finally reaches the primary auditory cortex (A1) for further
processing. In the mature cortex, auditory information is
conveyed and organized in A1 in such a way that different
sound frequencies are spatially segregated in a tonotopic fashion
(Brewer and Barton, 2016).
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Early Synchronized Activity
The development of cortical auditory representations is a
protracted process, regulated by both spontaneous and sensory
evoked actvities. In mice, the ears are closed perinatally and
the auditory system is shaped by spontaneous activity in the
absence of sensory-evoked stimuli (Figure 1, top panel; Wang
and Bergles, 2015). From postnatal day (P) 0 to P10 cochlear cells
in the inner ear are spontaneously active (Tritsch and Bergles,
2010) and as early as P7 spontaneous activity has been recorded
in vivo in the inferior colliculus and A1 (Babola et al., 2018;
Meng et al., 2021). Before hearing onset, spontaneous activity
in the cortex and midbrain originates from the cochlea (Tritsch
et al., 2010) and follows a tonotopic organization reminiscent of
the mature auditory system (Babola et al., 2018). Thus, cortical
activity in A1 is purely spontaneous in nature in the first 10 days
of postnatal development.

Onset of Sensory-Evoked Responses and
Desynchronization
Hearing onset in mice occurs around P11, upon ear canal
opening (Anthwal and Thompson, 2016). However, high-
intensity, bone-conducted acoustic stimuli can evoke cortical
responses in A1 as early as P8 (Makarov et al., 2021). While the
subcortical connectivity is already present at this stage, cortical
connectivity is still undeveloped and progressively matures in
response to the acoustic sensory environment. By this time,
thalamocortical connectivity transitions from innervation of the
subplate to innervation of layer IV (Kanold and Luhmann, 2010;
Barkat et al., 2011), allowing robust sensory-evoked activation of
A1. Furthermore, in vivo 2-photon calcium imaging experiments
have shown that spontaneous pairwise correlation in layers II-III
decreases while sensory-evoked correlation increases peaking at
P15 (Meng et al., 2020), indicating sparsification of spontaneous
activity and strengthening of thalamic driven sensory responses
during the second postnatal week.

Critical Period Plasticity
Shortly after ear opening, between P12 and P15, the tonotopic
organization of the auditory cortex can be modified by the
presence or absence of auditory stimulation during the CP
(Figure 1, top panel). Presentation of a pure tone (PT),
only during the CP, expands the best frequency tonotopic
representation in A1 towards the exposed tone by changing the
topography of thalamocortical inputs onto layer IV (Barkat et al.,
2011). Similar tonotopic plasticity has been observed in rats
(Zhang et al., 2002; de Villers-Sidani et al., 2007; Keuroghlian and
Knudsen, 2007) and leads to behavioral deficits in perception of
the overrepresented frequency (Han et al., 2007). Other sound
features have different critical periods, as it is the case of the CP
for frequency modulated sweeps (FMS), in which exposure to
these complex sounds during a defined developmental window
between P31 and 38 alters frequency representations in A1
(Bhumika et al., 2020). Moreover, long-term rearing of mice in
the presence of white noise delays the CP for pure tones but
not for FMS (Nakamura et al., 2020), indicating independent
substrates for the two critical periods. These studies demonstrate
the existence of different critical windows for acoustic stimuli in

FIGURE 1 | Timeline comparison of cortical activity development in A1,
V1, and S1. Development of cortical activity in mice from P0 to P40 in A1, V1,
and S1. In the three areas, synchronized spontaneous activity is present
during the first postnatal week, but it desynchronizes through the second
postnatal week in A1 (Babola et al., 2018; Meng et al., 2020); V1 (Rochefort
et al., 2009; Ackman et al., 2012; Siegel et al., 2012), and S1 (Golshani et al.,
2009; Che et al., 2018). In A1 (top panel), the onset of evoked sensory activity
takes place by the end of the first postnatal week and it becomes more
prominent upon ear opening at P11 (Anthwal and Thompson, 2016; Makarov
et al., 2021). Two auditory critical periods for pure tones (PT CP; Barkat et al.,
2011) and Frequency modulated sweeps (FMS CP; Bhumika et al., 2020)
take place shortly after, P12–15 and P31–38 respectively. In V1 (middle
panel), evoked visual responses start by the end of the first postnatal week
and become more reliable by the second postnatal week (Colonnese et al.,
2010), around the time of eye opening (∼P14). The critical period for ocular
dominance (ODP CP) takes place between P21 and P35 (Hensch, 2005;
Espinosa and Stryker, 2012) and an orientation selectivity (OS) CP has been
shown in google-reared mice between P28 and P49 (Yoshida et al., 2012). In
S1 (bottom panel), passive whisker stimulation can trigger evoked responses
from birth (Anton-Bolanos et al., 2019), but these responses become more
reliable around P6–8 (Colonnese et al., 2010) and active whisking onset
occurs around P14 (Landers and Philip Zeigler, 2006). An early anatomical
CP is observed in S1 from P0 to P4, capable of altering barrel formation and
thalamocortical innervation (Durham and Woolsey, 1984; Lee et al., 2009).
While throughout life, different paradigms of sensory deprivation can induce
discrete forms experience-dependent plasticity in particular layers/synapses
(Nowicka et al., 2009; Wen and Barth, 2011; Gainey et al., 2018).

A1, however, the specific differences and underlyingmechanisms
remain unclear.

Cortical Circuit Maturation and the Role of
GABAergic Interneurons Across
Development
Local and long-range connectivity in A1 during the first postnatal
weeks, undergoes extensive changes, leading to the mature
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circuit configurations present in the adult. In regards of local
connectivity, laser-photostimulation experiments have shown
that local glutamatergic responses onto LIV-V INs transition
from silent (NMDAR-only) synapses at P6 to AMPAR-
containing translaminar synapses at P13 (Deng et al., 2017).
Less is known about the precise development of long-range
connectivity in A1. However, the presence of functional
thalamocortical connectivity has been observed at P7 (Babola
et al., 2018) and retrograde labeling experiments have shown the
presence of corticocollicular connections mediated by layer V
neurons by P5 (Chang et al., 2018). In subsequent development,
LII-III Pyr receive transient heightened subgranular (LV-VI)
excitatory input during the peak of the CP for pure tones,
which subsequently decreases and gets restricted to LIV/II-
III in mature A1 (Meng et al., 2020). It is unclear if this
transient cortical circuit constitutes a substrate for critical period
plasticity.

While details on the maturation of specific circuit patterns are
just emerging, some of the evidence in adult A1 highlights the
importance of inhibitory connectivity and could be indicative of
its potential role during development. In adult mice, LI Reelin+,
5HT3aR+ INs which also express Neuron Derived Neurotrophic
Factor (NDNF) receive top-down inputs from the higher order
medial geniculate nucleus as well as cholinergic innervation
from the nucleus basalis and in turn inhibit distal dendrites
of LII-III Pyr, the strength of this inhibition serves as the
substrate for acoustic memory coding in a fear conditioning
paradigm (Abs et al., 2018; Pardi et al., 2020). In contrast, SST
inhibitory output onto both LII-III Pyr and NDNF INs does
not change in response to fear conditioning, but can override
NDNF-mediated inhibition upon strong sensory stimulation
(Abs et al., 2018). Therefore, SST and NDNF inhibitory
circuits result in two different patterns of LII-III Pyr inhibition
dependent on the learning task and the strength of sensory
stimulation, respectively. On the other hand, LI IN-mediated PV
inhibition and subsequent Pyr disinhibition in LII-III, driven by
cholinergic innervation to LI, mediates fear conditioning and
learning of sound-shock association (Letzkus et al., 2011). In
contrast, PV INs in LV are engaged by callosal, contralateral
A1 projections, which in turn primarily inhibit cortico-cortical
Pyr projecting neurons and to a lesser extent cortico-colicular
Pyr (Rock and Apicella, 2015), mediating interhemispheric
connectivity and bilateral integration of acoustic stimuli. All
this evidence shows that mature cortical inhibitory circuits
in A1 act as switches regulating different paths for sensory
information flow and auditory processing in response to
learning rules, stimulus features, and the internal state of the
animal.

DEVELOPMENT OF NEURONAL ACTIVITY
AND CORTICAL MICROCIRCUITS IN THE
VISUAL CORTEX

Similar to the auditory system, the visual system develops in an
activity-dependent fashion, relying first solely on spontaneous
and subsequently light-evoked responses for its development.
Photosensitive cells in the retina transduce light, converting

it into an electrical signal that travels via the optic nerve
into the visual thalamus (Lateral Geniculate Nucleus, LGN),
which then sends projections into V1 for central processing.
Topographic representation of stimulus features is a conserved
feature across sensory systems. The visual cortex displays
retinotopic organization such that specific regions of the
retina are represented in particular regions of V1. The basic
organization and connectivity of the visual system is present
in mice shortly after birth; however, it undergoes extensive
tuning and reorganization during the first few postnatal
weeks.

Early Synchronized Activity
During the first postnatal week, spontaneous activity (Figure 1,
middle panel) regulates the emergence of subcortical and cortical
circuits. At this stage, the retina itself generates different
types of spontaneous activity, playing an instructive role in
the development and organization of the visual pathways
(Torborg and Feller, 2005). Synchronized spontaneous activity
can be recorded in vivo in V1 as early as P3 in mice
(Ackman et al., 2012; Siegel et al., 2012). Cortical activity at
this stage can be classified in: L (Low synchronicity)-events,
which compromise 20%–80% of coactive neurons and are
reduced by bilateral enucleation; and H (High synchronicity)-
events, consisting of ≥80% of coactive neurons and are
generated independently of retinal activity, instead mediated by
gap-junctions (Siegel et al., 2012). During the first postnatal
week L-type events are twice as frequent (1/min) compared
to H-events (Leighton et al., 2021). By eye opening, L-type
event frequency triples, becoming the dominant form of
activity at this stage, while H-event frequency remains the
same (Siegel et al., 2012). The highly synchronous nature
of H-events can sustain homeostatic regulation of synaptic
strength (Turrigiano and Nelson, 2004). On the other hand,
L-type activity is relatively sparse, resembles visually-evoked
responses after eye opening (Ohki et al., 2005) and has
been proposed to mediate retinal topographic organization.
This is evidenced by the activity-dependent refinement of
thalamocortical innervation during the first postnatal week,
such that desynchronization of retinal activity and L-type event
disruption, results in diffuse thalamocortical innervation and
imprecise retinotopic organization of cortical activity in V1
(Cang et al., 2005).

Onset of Sensory-Evoked Responses and
Desynchronization
The end of the first postnatal week marks the onset of sensory-
evoked responses (Figure 1, middle panel) such that illumination
of the eye, which is still closed, evokes bursting activity in V1,
but only by P12 these responses become more consistent and
reliable (Colonnese et al., 2010). By P14, with the onset of
eye opening, spontaneous activity desynchronizes and becomes
more alike the adult state. At the same time, other mature
features of V1 including retinotopic organization, eye-specific
segregation, and orientation tuning are already present (Smith
and Trachtenberg, 2007; Rochefort et al., 2009; Ko et al., 2013).
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Critical Period Plasticity
Beyond the second postnatal week, during a developmentally
defined period between P21 and P35 (Figure 1, middle panel),
cortical visual responses are sensitive to the presence/absence of
sensory input during the Critical Period for Ocular Dominance
Plasticity (ODP; Hensch, 2005; Espinosa and Stryker, 2012). In
normal conditions, cortical responses are lateralized, meaning
most neurons in V1 are responsive to stimulation of the
contralateral eye and less so to ipsilateral stimulation. However,
during the critical period for ODP, monocular deprivation can
shift this bias, increasing cortical responses to the ipsilateral
(open) eye and reducing responsiveness to the contralateral
(deprived) eye, while the samemanipulation either before or after
the critical period has no effect on eye dominance (Gordon and
Stryker, 1996). In monocular deprivation experiments, ODP is
accompanied by a reduction in the strength of thalamocortical
innervation to layer IV (Wang et al., 2013). Accompanied also
by intracortical changes, decreasing layer IV Pyr firing, through
enhanced inhibition, an effect that is only observed during
the CP (Maffei et al., 2004, 2006). These changes reconfigure
the cortical circuit to be less responsive to the deprived eye
and subsequently increase responsivity to the spared eye. ODP
is linked to the maturation of GABAergic signaling (Fagiolini
and Hensch, 2000; Fagiolini et al., 2004) and in particular
PV IN maturation (Kuhlman et al., 2013; Hooks and Chen,
2020).

In comparison to ocular dominance, classical paradigms of
sensory deprivation have little to no effect in the development
of other features of the visual response in mice, such as
orientation and direction selectivity. Both orientation (OS)
and direction (DS) selectivity in neurons are present upon
eye-opening and their responses remain unchanged in animals
dark-reared up until P30 (Rochefort et al., 2011). While a
different manipulation, rearing animals with lenses to restrict
contours to only one orientation (O’Hashi et al., 2007), results
in overrepresentation of the exposed orientation in layers II/III
neurons (Kreile et al., 2011). This critical period for orientation
selectivity plasticity (OS CP) in goggle-reared mice occurs
between 4 and 7 postnatal weeks, with a lower degree of plasticity
remaining into adulthood (Yoshida et al., 2012). These studies
prove the existence of distinct experience-dependent critical
periods for ocular dominance and orientation selectivity in mice,
whether OS plasticity shares the same mechanisms as ODP
remains unknown.

CP plasticity has also been characterized in carnivore species,
finding both similarities and differences to rodents. Alike the
mouse, a defined critical period for ODP has been identified in
both cats and ferrets using monocular deprivation (Albus and
Wolf, 1984; Issa et al., 1999). OS is also present in both species
by eye-opening (Roy et al., 2018) and remains unchanged in
dark-reared animals (Van Hooser et al., 2012) but google-rearing
paradigms can also induce OS CP plasticity in cats (Tanaka
et al., 2009). In contrast to mice, direction selectivity in ferrets
is not present at the time of eye opening and dark-rearing
prevents DS acquisition (Li et al., 2006). Thus, although similar
forms of visual plasticity are present across species, some forms
of experience-dependent plasticity, such as DS plasticity, are

species-specific. This specificity might represent differences in
the organization or development of the visual system in different
animal groups.

Cortical Circuit Maturation and the Role of
GABAergic Interneurons Across
Development
Recent studies have shown that transient developmental circuits
involving inhibitory INs are instructive for proper cortical
maturation. An example of this is the early thalamic innervation
of LI NDNF+ interneurons by the second postnatal week,
which is required for the subsequent strengthening of cortico-
cortical inputs observed in this group of mature INs (Ibrahim
et al., 2021). Similarly, by the beginning of the second
postnatal week SST INs restrict the spread and number of
cells participating in spontaneous L-events (Leighton et al.,
2021) and may act by preserving retinal topography and
circuit plasticity before PV IN maturation. Cortical activity also
influences IN maturation during this time: Chandelier cells, a
subtype of axon-targeting PV INs, undergo an active process
of apoptosis driven by retinal as well as callosal contralateral
activity in the binocular V1 (Wang et al., 2021), this activity-
dependent apoptosis is required for normal binocular vision
in mature animals. Thus, even at immature stages inhibitory
circuits play an important role on visual cortical function and
maturation.

Multiple studies have shown the important and diverse roles
of cortical INs in the mature visual system. The canonical
patterns of inhibitory connectivity have been established in
adult V1: PV INs strongly inhibit Pyr and one another;
SST INs preferentially inhibit Pyr and 5HT3aR INs; while
VIP INs play a disinhibitory role, predominantly targeting
SST cells (Pfeffer et al., 2013). The interplay of these local
circuit patterns and the selective engagement of different IN
subtypes by select afferents enrich the cortical computational
power, necessary for visual processing. PV INs are engaged
in cortico-cortical bottom-up feedforward inhibition (from
V1 to high-order visual areas) as well as feedback top-down
innervation (from high-order visual areas to V1). While LI
INs are engaged by top-down projections from secondary
visual, as well as higher order cognitive areas (Gonchar
and Burkhalter, 2003; Ibrahim et al., 2021). Along these
lines, SST cells are preferentially excited by horizontal axons
and therefore engaged by stimulation of the receptive field
surround, contributing to Pyr surround suppression (Adesnik
et al., 2012). In addition, VIP-SST circuits are necessary for
context modulation of visual stimuli (Keller et al., 2020): upon
presentation of two concentric visual stimuli with varying
degrees of similarity, if the stimuli center and surround
are similar VIP INs are inactive while SST INs actively
inhibit Pyr; however, if the center and surround are different
the VIP-SST disinhibitory loop gets engaged, resulting in
increased Pyr activity (Keller et al., 2020). On the other
hand, PV INs, given their extensive innervation of Pyr and
self-inhibition, modulate the gain of cortical circuits, without
affecting the orientation tuning properties of Pyr neurons
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(Atallah et al., 2012). These select examples, highlight the
relevance of inhibitory microcircuits in visual cortical processing
in adult V1.

DEVELOPMENT OF NEURONAL ACTIVITY
AND CORTICAL MICROCIRCUITS IN THE
SOMATOSENSORY CORTEX

The barrel cortex is a specialized part of the rodent
somatosensory cortex receiving tactile information from
the whiskers. Due to its recognizable structure and ease of
manipulation, it has been used as a model of sensory cortical
processing, therefore we will focus on this specific part of
S1 for further discussion. Following a developmental sequence,
maturation of somatosensory circuits in response to intrinsic
and sensory-evoked activity begins earlier than that of the
auditory and visual systems (Figure 1, bottom panel). In rodents,
tactile sensory information is transduced by mechanoreceptors
located at the base of the whiskers and activated by their
movement. This information travels as action potentials
through the trigeminal nerve into the brainstem, which then
sends projections to the thalamus. Two main thalamic areas
relay somatosensory information to the cortex: the ventral
posterior medial (VPM) nucleus and the posterior medial
(POm) nucleus sending thalamocortical projections to layer
IV and layers I/V, respectively. In S1, a specialized region
known as the barrel cortex receives whisker-selective thalamic
projections, forming anatomical and functional structures, in
such a way that each whisker’s receptive field is represented in a
particular region of the cortex known as a barrel. After primary
sensory processing in S1, connectivity with motor cortex
(M1), contralateral S1 (cS1), and secondary somatosensory
cortex (S2) allows further processing of sensory information.
Similar to what we described previously for A1 and V1, the
basic connectivity of S1 is present shortly after birth, however,
it undergoes extensive maturation driven by the interplay
between spontaneous and sensory-evoked activity during the
first postnatal weeks.

Early Synchronized Activity
Spontaneous activity is present throughout the somatosensory
system in early development (Figure 1, bottom panel).
Seminal studies in vitro have shown different types of
spontaneous activity in developing S1: cortical early network
oscillations (cENOs) and spontaneous plateau assemblies
(cSPAs), dependent on glutamatergic activity and gap junctions
respectively (Allene et al., 2008), are observed upon birth and for
a few days; while giant depolarizing potentials (GDPs), relying on
both GABAergic and glutamatergic activity (Allene et al., 2008),
are observed by the end of the first and into the second postnatal
week. These observations have been validated in vivo using
calcium imaging in un-anesthetized mice. Spontaneous thalamic
activity in the VPM has been recorded as early as embryonic
day (E) 17.5 (Moreno-Juan et al., 2017). These waves reach the
cortical plate and activate broad regions of the developing cortex
and is it not until birth (between P0 and P4) that cortical activity

becomes spatially restricted into a protomap of the barrel cortex
(Anton-Bolanos et al., 2019).

Onset of Sensory-Evoked Responses and
Desynchronization
While similar in many ways, the maturation profile of developing
S1 is accelerated in comparison to other sensory cortices
(Figure 1). In contrast to the later onset of sensory-evoked
responses in A1 and V1 by the end of the first postnatal week,
passive whisker stimulation can evoke responses in S1 even
before birth (Anton-Bolanos et al., 2019). However, sensory-
evoked responses do not become reliable until P6–8 in S1,
while the same process does not occur in V1 until P12
(Colonnese et al., 2010; Che et al., 2018). Therefore, neuronal
activity in S1 during the first postnatal week is characterized
by an overlap of both synchronized spontaneous activity and
sensory-evoked responses. This overlap lasts until the end of
the second postnatal week, when spontaneous neuronal activity
in S1 desynchronizes (Figure 2; Golshani et al., 2009). Using
in vivo imaging in un-anesthetized mice (Figure 2A), this
developmental desynchronization is evidenced by a reduction in
the % of Pyr pairs correlated from P6 to P15 (Figures 2B,C; Che
et al., 2018). While this occurs in a period coincident with the
onset of active whisking at ∼P14 (Landers and Philip Zeigler,
2006), the sparsification of Pyr neuron activity is independent
of sensory input (Golshani et al., 2009). These developmental
changes result in a mature state, characterized by sparse neuronal
activity and dominated by sensory-evoked responses. How
the interplay between sensory-evoked and spontaneous activity
promote cortical maturation in S1 is still poorly understood and
a matter of active research.

Critical Period Plasticity
In addition to the accelerated maturation of S1, another
particularity of this area is the difficulty in defining an
equivalent critical period to ODP or the CP for pure tones,
described above for V1 and A1 respectively. Early studies
identified a structural critical period from P0 to P4 for barrel
formation (Durham and Woolsey, 1984). Using trigeminal
nerve transection, these studies showed that the barrels in
LIV disappear and the presence of aberrant thalamocortical
innervation (Belford and Killackey, 1980; Catalano et al., 1995).
However, this approach not only causes sensory deprivation,
but a permanent nerve damage that could contribute to the
observed phenotype. In contrast, a more subtle experimental
approach, using bilateral whisker trimming from P0 to P3
and then allowing whisker regrowth and testing anatomical
and behavioral changes at P30, results in a milder phenotype,
increasing dendritic span and the number of spines of LIV stellate
cells with accompanying long-lasting behavioral defects (Lee
et al., 2009). While another study, using a similar manipulation,
trimming all but one or two whiskers from P0 to P96, showed
a similar reduction in VPM innervation independently of the
age tested and eventual reversion of this effect upon whisker
regrowth (Wimmer et al., 2010).

On top of the structural changes, whisker trimming also
causes functional neuronal changes at later developmental stages
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FIGURE 2 | Sparsification of spontaneous cortical activity in S1 by the end of the second postnatal week. Desynchronization of spontaneous cortical activity in
S1 measured using in vivo calcium imaging. (A) Top panel: diagrams of in vivo imaging of Emx1.GCaMP6 s mice at P6 and P15, with cranial windows placed over
S1. The number of spontaneously co-active Pyr neurons (green) at any given time decreases between P6 and P15. Bottom panel: representative raster plots of
neuronal calcium activity at both ages. Each row represents a single neuron imaged during 542 s. Each tick represents the onset of a single calcium event. At
P6 neuronal activity is characterized by the co-activation of most neurons imaged in the field of view, visualized in vertical arrangements in the raster plot, while at
P15 neuronal activity becomes less synchronized resulting in a “salt and pepper” pattern in the raster plot. (B) Visualization of correlated neuronal activity
corresponding to recordings in (A). Gray contours indicate detected somas in which calcium signals were analyzed. Significantly correlated cell pairs are connected
by lines. Line color indicates the magnitude of the correlation coefficient of the connecting pair. (C) Percentage of pairs that are significantly correlated decreases
from P6 to P15. Unpaired t-test, **p = 0.0027. Derived with permission from Che et al. (2018).

and throughout life. While LIV to LII-III excitatory inputs
display a discrete sensory-dependent sensitive period from
P12 to P14, intra LII-III connectivity plastic period is slightly
delayed in comparison, taking place from P13 to P16 (Wen
and Barth, 2011). And sustained single-row whisker trimming
from P7 onwards, causes two phases of inhibitory weakening
onto LIV neurons, a transient one at P15 and a second
sustained period from P22 to P30 (Gainey et al., 2016). On
the other hand, electrical stimulation in brain slices can induce
long-term potentiation of thalamocortical inputs to layer IV
during a critical period for plasticity from P3 to P7 (Crair
and Malenka, 1995). Thus, with the caveat of the differences
in the experimental manipulations, these studies indicate a
higher degree of plasticity and a less-well defined critical period
in S1 (Figure 1, bottom panel), with different timings for
specific layers/synapses. Since whiskers can naturally fall off

and regrow multiple times throughout a mouse lifetime, it is
not surprising to find life-long forms of sensory experience-
dependent plasticity in the rodent somatosensory system and a
higher degree of plasticity compared to the visual and auditory
cortices.

Cortical Circuit Maturation and the Role of
GABAergic Interneurons Across
Development
Transient developmental circuits help molding cortical activity
and the maturation of S1. From the first to the second postnatal
week, there is an increase in the strength of LIV to LII-III
glutamatergic input, as well as the emergence of LII-III to LV
inputs, which transition from silent (NMDAR only) to AMPAR-
mediated synapses (Anastasiades and Butt, 2012). Similarly,
LII-III glutamatergic input to LIV immature fast-spiking INs
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(putative PV) reduces over development, resulting in only local
LIV innervation; while LIV non fast-spiking (putative SST)
receive both LII-III and LIV excitatory inputs all along the same
developmental time (Anastasiades et al., 2016). These changes
help shape cortical activity into a mature state, necessary for
sensory processing in adult animals.

Maturing interneurons also play pivotal roles during the first
few postnatal weeks. SST INs in LVb receive direct thalamic
innervation by the end of the first postnatal week and inhibit
LIV stellate cells. Blockage of this transient inhibition delays
thalamocortical innervation of LIV, which normally occurs by
the end of the second postnatal week (Marques-Smith et al.,
2016). In addition, MGE-derived interneurons (both PV and
SST) participate and help restrict spontaneous activity by the end
of the first postnatal week (Duan et al., 2020). In LI, thalamic
innervation develops by the first postnatal week (Galazo et al.,
2008), targeting Reelin INs and regulating barrel map formation
(Che et al., 2018). Thus, INs play an active role regulating
neuronal activity in S1 during the first postnatal week. Later on,
during the second postnatal week, both SST and VIP INs respond
more to multi-whisker compared to single-whisker stimulation;
while by the third postnatal week, SST responses remain the
same but VIP INs lose this distinction, due to a developmental
reduction in direct thalamic innervation onto VIP INs (Kastli
et al., 2020). And similarly, chandelier cells (ChC) form synapses
between P12 and P18, at which stage GABA release in the
AIS is depolarizing, promoting neuronal activity (Pan-Vazquez
et al., 2020). However, in the adult ChC activation decreases
Pyr activity as GABA becomes hyperpolarizing in the AIS (Pan-
Vazquez et al., 2020). These findings illustrate the progressive
involvement and functional changes of inhibitory circuits in
stimuli representation at different stages of development.

The different GABAergic IN subtypes also play multiple roles
in adult S1. PV INs receive strong excitatory input from the
thalamus (Sermet et al., 2019), contralateral S1 and S2 (Naskar
et al., 2021), mediating feedforward Pyr inhibition and regulating
thalamic and inter-hemispheric responses. On the other hand,
M1 primarily engages VIP INs (Naskar et al., 2021), which
increase Pyr activity by means of the VIP-SST disinhibitory
circuit (Lee et al., 2013). This same circuit regulates LII-III SST
activity, silencing these neurons during active whisking (Munoz
et al., 2017). In contrast, LIV SST INs are activated by active
whisking due to scarce VIP to SST innervation in this layer
(Munoz et al., 2017), showing how the same IN subtype can
also play differential roles depending on their laminar allocation.
Lastly, LI INs contribute to precise stimulus-evoked responses
via lateral inhibition (Fan et al., 2020) and therefore participating
in single whisker discrimination. All this evidence highlights the
prominent role of inhibitory microcircuits in the regulation of
cortical network dynamics.

COMMON PRINCIPLES FOR CRITICAL
PERIOD PLASTICITY ACROSS SENSORY
CORTICES

How does sensory experience influence cortical development
and what determines the specific timing of critical period

plasticity? These questions have been extensively studied in
the visual system in the context of ODP, as this phenomenon
was initially observed in this area; however, some common
principles of sensory critical periods have emerged across
sensory cortices, involving cortical inhibition in this process
(Figure 3). Among other factors, PV interneurons are key
players determining the timing and plasticity of sensory critical
periods. In this section, we will describe some of the initial
and recent evidence linking inhibitory interneurons to sensory
critical periods and some of the known mechanisms involved.
More detailed discussions about other possible molecular and
cellular mechanisms regulating critical period plasticity have
been summarized previously (Levelt and Hubener, 2012).

In the last two decades, seminal studies in V1 implicated
the strength of the inhibitory tone to the precise timing of
the critical period for ODP. Removal of the synaptic GABA
synthetizing enzyme GAD65 delays the onset of the critical
period indefinitely, however plasticity can be restored in this
model upon infusion of the GABAR agonist diazepam (Hensch
et al., 1998). While early exposure to diazepam induces a
premature CP for PT in A1 (Nakamura et al., 2020) and ODP
in V1 (Fagiolini et al., 2004), by enhancing GABAergic activity.
But this effect in V1 is dependent on the action of α1 GABAARs
(Fagiolini et al., 2004), predominantly enriched at synapses
receiving input fromPV INs (Klausberger et al., 2002).Moreover,
in the context of the auditory system, chemogenetic silencing
of PV activity can reopen CP plasticity in adult A1 (Cisneros-
Franco and de Villers-Sidani, 2019). Subsequent studies have
delved deeper into the mechanisms by which PV INs can
control the timing of critical period plasticity. PV interneuron
maturation occurs in parallel with the timing of the critical period
for ODP in V1: PV expression does not start until the second
postnatal week and the intrinsic and synaptic properties of PV
INs mature extensively during the second and third postnatal
weeks (Lazarus and Huang, 2011; Akgul and Wollmuth, 2013;
Helm et al., 2013; Ferrer et al., 2018). Moreover, PV inhibitory
output onto Pyr strengthens upon eye opening, while SST to
Pyr connections weaken during the same period (Guan et al.,
2017). Studies using transplantation of embryonic MGE-derived
interneurons (future PV and SST) in adult animals demonstrated
that this manipulation reopens ODP in adult mice, with the
timing equivalent to what the CP would have been in the donor
(Davis et al., 2015). However, the loci of this plasticity are the
host PV INs, which interact with the donor INs increasing
NRG1/ErbB4 signaling, regaining CP plasticity (Zheng et al.,
2021). Additionally, the relative timing of the different critical
periods across sensory areas (Figure 1; first in S1, then in A1 and
last in V1), has been linked to the timing of PV INmaturation, as
it occurs in the same order along the mouse cortex (del Rio et al.,
1994; Reh et al., 2020). These studies demonstrate the importance
of PV IN maturation on establishing the timing of critical period
plasticity.

Other molecules associated to PV inhibitory function and
maturation can influence the CP timing (Figure 3). The
extracellular matrix of PV INs, forms a net of proteoglycans
around the soma and proximal dendrites and perforated by
synapses, known as perineuronal nets (PNNs). PNN formation
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FIGURE 3 | Molecular and synaptic loci of plasticity during sensory critical
periods. Cortical circuit schematic with major synaptic connections and
molecular factors regulating critical period plasticity. The circuit depicted
shows the circuit motifs and cellular components regulating CP plasticity:
basket PV INs (Brown) inhibit one another and exert strong inhibitory control
of Pyr (light blue) through perisomatic inhibition; layer I INs (dark blue) inhibit
the apical dendrites of Pyr and can also target PV cells, resulting in
simultaneous Pyr somatic disinhibition and dendritic inhibition; Martinoti SST
INs (yellow) across layers target Pyr apical dendrites and also receive input
from VIP INs (pink), such that VIP activation results in Pyr disinhibition; while a
subset layer IV SST INs target PV INs preferentially, resulting in disinhibition;
and astrocytes regulate the extracellular matrix and PNN formation onto PV
INs. PV IN maturation determines both the onset and closure of cortical
critical periods. Maturation of PV intrinsic properties, synaptic inputs (both
excitatory and inhibitory, dashed circles), and inhibitory synaptic output onto
Pyr (dashed circle) are all crucial for CP plasticity. Expression of KV3.1,
GAD65 and NRG1/ErbB4 in PV INs promote (green) normal CP plasticity
(Hensch et al., 1998; Matsuda et al., 2021; Zheng et al., 2021), while PNN
(brown shadow) maturation in PV INs prevent and close CP plasticity
(Pizzorusso et al., 2002; Nowicka et al., 2009; Sigal et al., 2019). In addition,
GABAAα1 receptor expression in Pyr (in putative PV synapses) is necessary
for CP plasticity (Fagiolini et al., 2004). Both SST and LI INs can induce CP
plasticity indirectly by means of PV IN inhibition, such that the expression of
molecular factors promoting SST (Lypd6 and nAChRα2) or LI IN (Lynx1 and
nAChRs) activity enhance plasticity (Takesian et al., 2018; Sadahiro et al.,
2020). On the other hand, VIP IN-mediated Pyr disinhibition, via SST
inhibition, also promotes cortical plasticity (Fu et al., 2015). In contrast,
connexin 30 expression in astrocytes restricts CP plasticity via PNN
maturation in PV INs (Ribot et al., 2021). Green font/arrows represent
molecules or synapses promoting CP plasticity, while red font/arrows
represent those preventing plasticity. Abbreviations: PV, Parvalbumin; Pyr,
Pyramidal cell; SST, Somatostatin; LI INs, Layer I interneurons; VIP,
Vasoactive intestinal peptide; PNN, Perineuronal net; nAChRs, Nicotinic
Acetylcholine receptors; NRG1, Neuregulin 1; KV3.1, Potassium channel 3.1;
GAD65, Glutamic acid decarboxylase 65-kilodalton.

coincides with the closure of the visual critical period (Sigal
et al., 2019) and cleavage of PNN components in adults can
partially reopen CP plasticity (Pizzorusso et al., 2002). This
process is developmentally regulated by astrocytes, as their
progressive increase in the expression of the gap junction
connexin 30 inhibits the expression of a PNN degrading enzyme,
promoting PNN formation, PV IN synaptic maturation, and
closure of the CP (Ribot et al., 2021). In S1, PNN and PV
expression increase between P10 and 20, coincident with the
closure of the critical period for LIV sensory-dependent plasticity
(Nowicka et al., 2009). Moreover, PNN expression increases in
sensory-deprived barrels when all but one of the whiskers are
trimmed. Therefore, both in V1 and S1, PNNs are considered
molecular breaks on synaptic plasticity promoting the closure of
CPs. Similarly, Kv3.1 channels, increase their expression level in
PV INs during late postnatal development and are necessary for
their characteristic fast spiking phenotype (Erisir et al., 1999).
Kv3.1 loss of function in PV INs results in a slower rate of
input loss in V1, caused by monocular deprivation, although
the timing of the critical period remains unchanged (Matsuda
et al., 2021). Consistent with this observation, rapid changes in
PV inhibitory microcircuits underlie CP plasticity, contributing
to circuit reconfiguration in response to sensory deprivation. In
S1, a single day of whisker deprivation reduces LIV feedforward
inhibition onto LII-III Pyr, by a rapid reduction in PV intrinsic
excitability (Gainey et al., 2018). In V1, one day of monocular
deprivation reduces the firing rate of LII-III PV INs in vivo, due
to a reduction in their excitatory drive from LIV-V (Kuhlman
et al., 2013). This rapid disinhibition would not only maintain
a stable neuronal firing rate in the absence of sensory input,
as a homeostatic mechanism but also, could be permissive
for Hebbian modes of plasticity to take place, resulting in a
reconfiguration of cortical circuits (Gainey and Feldman, 2017).
All this evidence shows how manipulation of different factors
involved in PV IN function have a direct impact on the properties
of the CP, underscoring the pivotal role of this IN subtype in this
process.

While the evidence for the role of other IN subtypes in CP
plasticity has been limited, a few studies have started to shed
light on how other INs can influence the CP indirectly via their
interaction with PV INs (Figure 3). Transplantation experiments
with genetically purified embryonic SST INs in V1 are able to
reopen CP plasticity in adults (Tang et al., 2014), as seen with
the mixed MGE-derived or purified PV population. Indicating a
possible role for SST INs in CP plasticity, likely by a molecular
or synaptic interaction with PV INs. Consistent with this idea,
another study showed how increased SST activity through the
nicotinic modulator Lypd6 can reopen critical period plasticity
in adult V1 by means of their inhibitory effect onto PV, resulting
in Pyr disinhibition (Sadahiro et al., 2020). In addition, cross-talk
between SST and PV INs can influence PV IN function. It
was recently shown that SST INs produce Collagen19, which
promotes the development of PV perisomatic innervation and
removal of this signal reduces anatomical PV innervation and
leads to behavioral defects (Su et al., 2020). Therefore, SST
interaction with PV, either by synaptic or chemical signaling can
influence critical period plasticity. In a similar way, silencing of
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LI INs results in the abolishment of map plasticity during the
tonotopic CP in A1; this effect is mediated by their innervation
of LIV Pyr and PV INs and the resulting modulation of thalamic
drive onto LIV (Takesian et al., 2018). Beyond the CP, adult
visual plasticity is potentiated by locomotion, this effect can
be recapitulated upon VIP IN stimulation and involves the
VIP-SST disinhibitory circuit (Fu et al., 2015). Further research
in this direction will paint a more complete picture and a better
understanding on how different elements of cortical circuits
influence critical period plasticity.

CONCLUSIONS AND FUTURE
DIRECTIONS

Accumulated evidence from studies in cortical development
highlight the crucial and diverse roles of inhibitory microcircuits
all along early development, critical period and into adulthood.
Special attention must be taken into the developmental stage,
cortical area, and layer specificity as all of these factors can dictate
the function of cortical interneurons in sculpting neuronal
activity and proper cortical maturation. Technical advances in
in vivo imaging, manipulation of neuronal activity and circuit
mapping with precise temporal and neuronal subtype resolution
will help unravel some of the transient cortical circuits in
development that constitute keystones for the normalmaturation
of sensory cortices. In addition, high throughput single-cell
sequencing, can guide the search for molecular factors that can
influence neuronal maturation and critical period plasticity with
cell-type and temporal specificity (Kalish et al., 2020). These
new tools and technological advances can be used to address
the mechanisms that regulate other forms of plasticity in S1 and
A1, beyond the well characterized ODP in V1. Along the same
lines, what constitutes the basis of life-long forms of plasticity
in S1, not fully restricted to temporally-bound critical periods
as in the other sensory areas, is another question that remains
unaddressed.

Multiple neurodevelopmental disorders such as
attention-deficit/hyperactivity disorder (ADHD), autism,
schizophrenia, among others, display abnormal GABAergic
function/connectivity (Ramamoorthi and Lin, 2011). Moreover,
PV expression is heavily downregulated in human postmortem
autism spectrum disorder (ASD) compared to control samples
(Schwede et al., 2018). Suggesting that critical period plasticity in
humans could be also be disrupted in some of these disease states
as a result of GABAergic and PV IN dysfunction. However,
our knowledge of the underlying causes of neurodevelopmental
diseases is still limited. In this context two major questions
remain: how early developmental disruption of cortical
inhibition can result in permanent changes in cortical
connectivity? and what are the specific circuits that are affected

by disruption of different inhibitory INs subtypes? A better
understanding of the basic mechanisms of cortical postnatal
development and all the players involved in this process
(microcircuits, neuronal subtypes, regulatory mechanisms)
will provide cues into neurodevelopmental diseases in which
normal cortical maturation is impaired and pave the road for
more effective diagnosis, treatment, and disease management.
Moreover, our knowledge about development in primary sensory
areas, in normal and disease states, can hint and extrapolate
to alterations in high order cognitive areas tightly linked to
behavioral deficits in neurodevelopmental disorders.

Although rodents are extremely useful experimental
models to approach mammalian systems as a first step to
understand human biology and disease, there are species-
specifc differences in the developmental roadmap, timing or
underlying mechanisms in cortical neurodevelopment across
species. An example of this is the thalamocortical innervation
in humans and other primates that occurs before cortical
neurogenesis; in contrast to rodents, in which this occurs by the
end of neurogenesis (Alzu’bi et al., 2019). How the timing of
thalamocortical innevation can influence cortical development
differentially in primates and rodents is unknown. In addition to
this, there are difficulties establishing clear equivalents between
mouse and human neurodevelopment. In this context, animal
studies and human organoid studies can mutually complement
and build from each other: on one hand having all the advantages
of the mouse tools, including in vivo and behavioral analysis;
while on the other hand having the ability to use of differentiated
human pluripotent cells to recapitulate neurodevelopment in
organoids in vitro (Birey et al., 2022). These different approaches
in concert can give us a better understanding of human normal
neurodevelopment and disease states.
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