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Functions of the brain and body are oscillatory in nature and organized according
to a logarithmic scale. Brain oscillations and bodily functions such as respiration and
heartbeat appear nested within each other and coupled together either based on
phase or based on phase and amplitude. This facilitates communication in wide-spread
neuronal networks and probably also between the body and the brain. It is a widely
accepted view, that nested electrophysiological brain oscillations involving the neocortex,
thalamus, and the hippocampus form the basis of memory consolidation. This applies
especially to declarative memories, that is, memories of life events, for example. Here, we
present our view of hippocampal contribution to the process of memory consolidation
based on the general ideas stated above and on some recent findings on the topic
by us and by other research groups. We propose that in addition to the interplay
between neocortical slow oscillations, spindles, and hippocampal sharp-wave ripples
during sleep, there are also additional mechanisms available in the hippocampus to
control memory consolidation: a rather non-oscillatory hippocampal electrophysiological
phenomenon called the dentate spike might provide a means to not only consolidate but
to also modify the neural representation of declarative memories. Further, we suggest
that memory consolidation in the hippocampus might be in part paced by breathing.
These considerations might open new possibilities for regulating memory consolidation
in rest and sleep.
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INTRODUCTION

Constant fluctuations in membrane potential of cells in the brain, especially synaptic activity
of neurons, produce voltage fluctuations in the extracellular space that can be detected
by means of local-field potential (LFP) or electrocorticogram (ECoG) recordings invasively
or electroencephalogram (EEG) and magnetoencephalogram (MEG) recordings noninvasively
(Buzsaki et al., 2012). When monitoring these measures, it is obvious that the electrophysiological
activity of the brain is rhythmic: slow oscillations tend to involve large neural networks and span
multiple brain structures whereas fast oscillations confine to smaller neural assemblies and are
limited to specific regions. The oscillations are often categorized into specific frequency bands
according to the following: <0.5 Hz (ultra-slow oscillations), 0.5–1 Hz (slow oscillations), 1–3.5 Hz
(delta), 3.5–8 Hz (theta), 8–12 Hz (alpha), 13–30 Hz (beta), 30–80 Hz (gamma), >80 Hz (fast
oscillations).
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FIGURE 1 | Rhythms of the brain and body follow a logarithmic scale. Organization of brain (left y-axis) and bodily (right y-axis) rhythms on a logarithmic scale,
modified from Penttonen and Buzsaki (2003). HR, heart rate; HRV, heart rate variability.

Some 20 years ago it was proposed that to allow efficient and
reliable communication at different temporal and spatial scales,
the center frequencies of brain oscillations follow a logarithmic
scale where the distance between neighboring bands is close to
Neper’s number e, a real and irrational number approaching
∼2.72 (Penttonen and Buzsaki, 2003; Figure 1). This ensures that
signaling at neighboring frequency bands does not interfere with
each other. It was further suggested that the electrophysiological
oscillations of distinct frequencies are produced by separate,
independent biological mechanisms in the brain and also serve
distinct physiological functions (Penttonen and Buzsaki, 2003).
The idea has since been further discussed and developed,
demonstrating for example how similar the frequency bands of
brain oscillations are in mammals from mice to humans despite
the differences in the size of the nervous system (Buzsáki and
Draguhn, 2004; Buzsáki et al., 2013) and by incorporating also
rhythms of the body into the system of interrelated oscillations
[(Klimesch, 2018), golden mean approaching ∼1.62 as the base].

As explained above, brain electrophysiological oscillations are
organized into separate frequency bands to avoid interference.
However, oscillations at different frequency bands interact by
means of phase-amplitude coupling or by phase-phase coupling,
usually so that the phase of the slower oscillation modulates
the amplitude or phase of the faster oscillation with n:m ratios

where n and m are integer numbers. Phase-phase coupling
is thought to facilitate communication by aligning the duty
cycles of two oscillating neural assemblies while suppressing
information flow between assemblies in which duty cycles do not
overlap (Fries, 2005). An example would be the phase synchrony
between distant neocortical regions in humans demonstrated
in various studies and at various frequencies (Palva and Palva,
2018). Awell-known example of phase-amplitude coupling in the
hippocampus is that between theta phase and gamma amplitude
(Lisman and Jensen, 2013; Colgin, 2015; Figure 2A). Another
is the ultra-slow (0.025 Hz, cycle duration ∼40 s) variation
in neuronal excitability and the amplitude of beta (8–22 Hz)
oscillation (Penttonen et al., 1999; see also Achermann and
Borbély, 1997). This kind of link between oscillations is generally
referred to as nesting, and it has been suggested to facilitate
communication in neural networks (Bonnefond et al., 2017)
much like the direct phase-phase coupling.

Brain oscillations emerge spontaneously but can also be
entrained (Figure 2B). In humans, entrainment can be obtained
by rhythmic sensory stimulation (Henao et al., 2020) or by
using non-invasive methods such as transcranial magnetic
stimulation (Thut et al., 2011). A straightforward means in
animal models is to electrically stimulate the brain at a
certain frequency to induce rhythmic fluctuations in neuronal
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FIGURE 2 | Rhythms of the brain nest within each other and within the rhythmic fluctuations of bodily states. Nesting facilitates entrainment of oscillatory activity
within the hippocampus. (A) Phase-amplitude coupling of theta and gamma band oscillations (respectively) in the hippocampus is a well-known example of
endogenous nesting of rhythmic brain activity. (B) The graph is modified from Mikkonen et al. (2002). Rhythmic stimulation of the fimbria fornix (FF) in urethane
anesthetized Wistar rats produced entrainment of CA1 activity at the stimulation frequency, but this effect was only evident if trains of gamma-band (30–60 Hz)
stimulations were conducted at theta (3–7.5 Hz) frequency, mimicking the naturally occurring theta-gamma nested oscillations in the hippocampus. In addition to
entrainment, a sustained rhythmic response retaining the stimulation gamma frequency, probably dependent on the resonant properties of CA1 interneurons and
pyramidal cells, is also evident. (C) Rhythms of the brain also seem to nest within the rhythms of the body. The occurrence of hippocampal sharp-wave ripples,
gamma bursts, and dentate spikes are paced by breathing (piezo). The example traces in (A,C) are from a urethane-anesthetized adult male Sprague-Dawley rat.
ECG, electrocardiogram; CA1p, CA1 pyramidal cell layer; CA1sr, CA1 stratum radiatum.

excitability. Interestingly, stimulation of the fimbria fornix
at a pattern mimicking endogenous theta/gamma-coupling
entrains persistent oscillatory responses in the hippocampal
CA1 (Mikkonen et al., 2002) while neither gamma nor theta
stimulation alone has such an outcome. Remarkably, stimulation
of just one pyramidal neuron in the CA3 is able to entrain the
firing of neurons in the CA1 taken that this stimulation is timed
to occur in synchrony with extracellular stimulation at the nested
theta and slow frequencies (Mikkonen et al., 2006). This is to
demonstrate the influence of even single neurons on the network
activity of the brain, an effect that seems to directly depend on
synchrony.

Entrainment can also take place in the brain endogenously,
that is, without external stimulation. This might be especially
prominent during non-rapid eye movement (NREM) sleep,
when the brain is at a state of low synchronization: Epileptic
seizures are most likely during this state in human Alzheimer’s
disease (AD) patients (Horváth et al., 2017) as well as in
transgenic mouse models of AD (Gureviciene et al., 2019). On

the other hand, in a healthy brain, endogenous entrainment
of nested oscillatory activity during sleep might facilitate
memory consolidation by allowing recurrent activation of neural
assemblies in wide-spread networks formed during the previous
wake period.

SLOW OSCILLATIONS, SPINDLES, AND
SHARP-WAVE RIPPLES ALIGN TO
SUPPORT MEMORY CONSOLIDATION

Hippocampal CA1 pyramidal cells fire in sequences during
awake behavior and presumably form neural representations
of the experiences. During subsequent sleep, the CA1 firing
sequences are replayed in condensed form (Buzsaki, 2015; Liu
et al., 2019). This replay of the neural representations is evident
in hippocampal LFPs as so-called sharp-wave ripples (SPW-
Rs; Buzsaki, 2015). They are set forth within the hippocampus
as a result of an interplay of inhibitory interneurons and
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excitatory pyramidal neurons of the CA2 and CA3 subregions
(Csicsvari et al., 2000; Oliva et al., 2016) as well as perhaps
the subiculum (Imbrosci et al., 2021). As a result, thousands of
CA1 hippocampal pyramidal cells fire in synchrony which is
manifested in the LFP as a burst (∼100 ms) of fast oscillations
(∼150–250 Hz, ripple). Within the hippocampus, SPW-Rs lead
to sustained synaptic facilitation between groups of CA3 and
CA1 pyramidal cells potentiated during experience (Sadowski
et al., 2016; see also Norimoto et al., 2018). Further, SPW-Rs are
associated with signaling from the hippocampus to the neocortex
via the subiculum (Böhm et al., 2015) and the reactivation of
neocortical neural assemblies also formed during the experience
(Ji and Wilson, 2007). Importantly, disrupting brain activity
associated with awake (Nokia et al., 2012) or sleep (Girardeau
et al., 2009) SPW-Rs hampers learning while facilitating it
improves learning (Maingret et al., 2016).

SPW-Rs are most common during non-rapid eye movement
sleep and occur nested to spindles (9–15 Hz) and neocortical
slow oscillations (SOs,<1Hz; Siapas andWilson, 1998; Maingret
et al., 2016; Jiang et al., 2019; Varela and Wilson, 2020).
Neocortical SOs might actually drive the occurrence of spindles
that then regulate the emergence of hippocampal SPW-Rs
(Oyanedel et al., 2020; Peyrache and Seibt, 2020; Varela and
Wilson, 2020). A study in humans recently reported directional
information flow from the neocortex to the hippocampus during
spindles and preceding the associated hippocampal SPW-Rs
(Ngo et al., 2020). Further, neocortical SOs and spindle density
correlate with memory performance (Hanert et al., 2017),
and sleep spindle-contingent targeted memory reactivation by
presenting auditory cues can enhance memory in humans
(Antony et al., 2018). To summarize, SOs, spindles, and SPW-Rs
seem to support the consolidation of memories into long-term
storage (Klinzing et al., 2019).

The interplay between SOs, spindles, and SPW-Rs seems to be
a textbook example of hierarchically ordered electrophysiological
brain oscillations that have a distinct mechanism of generation,
occur nested to each other, and that contribute to specific
physiological functions (Penttonen and Buzsaki, 2003). However,
some events within the brain are less oscillatory in nature, yet
they still seem to have a specific mechanism of generation and a
distinct physiological function. Regarding hippocampal memory
consolidation, the dentate spike makes a good example.

DENTATE SPIKES POSSIBLY ENABLE
MEMORY MODULATION WITHIN THE
HIPPOCAMPUS

Dentate spikes are fast (∼20–80 ms), high-amplitude
(∼1–2.5 mV) events evident in LFPs recorded from the
hilus of the hippocampal dentate gyrus (DG) in rodents (Bragin
et al., 1995; Penttonen et al., 1997; Headley et al., 2017). During
dentate spikes, entorhinal neocortical activation stemming from
both lateral and medial parts arrives at the DG via the perforant
path and evokes a rapid increase in the firing rate of granule cells
and interneurons (Bragin et al., 1995; Senzai and Buzsaki, 2017).
This is noteworthy because granule cells fire seldom overall

and are the cells that supposedly form the initial hippocampal
engram (Kitamura et al., 2017) supporting reliable, orthogonal
encoding of unique but similar experiences (Rolls, 2018). At
the same time, dentate spikes seem to have a feed-forward
inhibitory effect on CA3 (Bragin et al., 1995; Sanchez-Aguilera
et al., 2021) and CA1 (Penttonen et al., 1997) pyramidal cells
as they hyperpolarize and decrease firing concomitant with
dentate spikes. That is, whereas SPW-Rs reflect increased firing
of neurons projecting from the hippocampus to the neocortex,
dentate spikes have an opposite effect resulting in a pause in
hippocampal output.

Much like SPW-Rs, dentate spikes take place, especially
during quiet rest and sleep. Their likelihood is increased during
neocortical SO excitatory (UP) states and within a narrow
time-period (∼50 ms) following SPW-Rs (Headley et al., 2017)
but dentate spikes mostly emerge in the absence of SPW-Rs
(Bragin et al., 1995). As dentate spikes seem to exert a suppressive
effect on the firing of CA1 pyramidal cells (Penttonen et al.,
1997) it is not surprising that when they co-occur with SPW-
Rs, the ripples are smaller in amplitude than in the absence
of dentate spikes (Headley et al., 2017). In fact, dentate spikes
seem to suppress the occurrence of SPW-Rs at least for a
duration of 200 ms (Bragin et al., 1995). This is rather interesting
as, on the other hand, input from DG granule cells via the
mossy fibers is reported necessary for learning-related increases
in CA3 awake SPW-Rs (Sasaki et al., 2018). That is, input
from DG granule cells might in fact contribute to initiating
SPW-Rs, except during dentate spikes, when the effect would
be opposite.

Interestingly, unlike SPW-Rs, dentate spikes are not
oscillatory in themselves. However, they are sometimes
surrounded by a few gamma cycles in the DG [type 1 dentate
spikes (Bragin et al., 1995)]. It is not entirely clear how
hippocampal theta/gamma synchronization (Lisman and
Jensen, 2013) relates to dentate spikes but dentate spikes are
accompanied by interregional synchronization of neocortical
gamma (35–100 Hz; Headley et al., 2017). Gamma-band
synchronization in the hippocampo-neocortical system has long
been suggested to play a role in memory formation (Axmacher
et al., 2006) and might thus also involve the hippocampal dentate
spike. It could be that the hippocampal gamma oscillation aids
in recruiting specific granule cells to fire (de Almeida et al.,
2009; Lisman and Jensen, 2013) during a (type 1) dentate spike.
Together with the evidence suggesting that the DG controls
SPW-R generation in the CA3/CA1 (see the end of the previous
paragraph), this hints at a possible link between dentate spikes
and pattern separation/completion in the DG (Leutgeb et al.,
2007; Neunuebel and Knierim, 2014).

We suggest a specific function of dentate spikes in
memory consolidation could be to selectively reorganize neural
representations within the hippocampus, based on input from
the entorhinal neocortex. Our own findings (Nokia et al., 2017;
Lensu et al., 2019) imply dentate spikes as a likely candidate
for merging together discrete but related neural representations
during rest and sleep: Specifically, disrupting dentate spikes
after training in classical conditioning of the eyeblink response
hindered learning suggesting that normally dentate spikes are
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needed for making associations between temporally separate
events, in this case, the conditioned and the unconditioned
stimulus (Nokia et al., 2017). On the contrary, the same
dentate spike-contingent disruption conducted after a context-
object discrimination task promoted later performance, that is,
memory for the two similar context-object configurations was
more accurate (Lensu et al., 2019). This implies that, in our
latter study, disrupting dentate spikes prevented the merging of
representations of recent similar experiences. Further, promoting
DG to CA3 feed-forward inhibition (also evident during dentate
spikes, see above) can prevent spontaneous generalization of fear
inmice over time (Guo et al., 2018). In sum, dentate spikes clearly
have the potential to regulate the spontaneous reorganization of
newly acquired neural representations within the hippocampus
during rest. More studies are needed to better characterize the
significance of dentate spikes in terms of memory consolidation.

RESPIRATION MIGHT PACE MEMORY
CONSOLIDATION IN THE HIPPOCAMPUS
AND BEYOND

Another angle to the organized oscillatory activity of the brain
is the fact that the brain is a functionally inseparable part of
the body. It has been suggested that bodily functions might
organize according to a hierarchical system similar to brain
oscillations (Klimesch, 2018; Figure 1). That is, the principles
of facilitating communication within the brain as well as
across the brain and body would essentially be scale-free,
applying to oscillations differing in frequency by an order of
magnitude. An interesting question is whether, during evolution,
synchrony between oscillations first emerged within the bodily
functions (for example respiratory-sinus arrhythmia) or within
the brain or perhaps within and across the brain and body
at once.

Possibly the most studied bodily rhythms affecting the
brain is respiration (see for example Heck et al., 2019). In
humans, MEG signals at awake, eyes-open resting state are
amplitude-modulated according to the phase of breathing:
Signal amplitude at delta (∼2 Hz), gamma (∼75 Hz), and
fast (∼130 Hz) frequency bands is larger near the inspiration
peak and at beta (∼30 Hz) band the signal amplitude is
greatest during inspiration onset (Kluger and Gross, 2021).
In mice, it seems that many of the hippocampal oscillations
related to memory consolidation phase-lock to respiration:
Specifically, a recent quite extensive report suggests SPW-Rs
and dentate spikes are more likely during or right after
inspiration than during expiration (Karalis and Sirota, 2022;
but see also Liu et al., 2017). Our own preliminary results
suggest dentate spikes, as well as dentate gyrus gamma bursts,
are more abundant during inspiration than expiration also in
urethane anesthetized rats (Nokia et al. under preparation)
(Figure 2C). In addition to hippocampal oscillations, in
mice, breathing also seems to pace prefrontal cortical activity
and the interplay between the cortex and the hippocampus
during sleep (Karalis and Sirota, 2022). Further, in rats, the
greatest drive from respiration to wide-scale brain oscillations

is obtained during awake rest by long and deep inspirations
(Girin et al., 2021). To summarize, breathing might set the
stage for effective memory consolidation during rest and
sleep by synchronizing the oscillatory activity of the brain at
large.

Further studies are needed to validate the findings reviewed
above, using different species and under varying brain and bodily
states. It would be interesting to know if the brain oscillations
believed to support memory consolidation are governed by
respiration in humans. Indeed, in awake healthy humans, nasal
respiration (as opposed to oral respiration) seems to drive
limbic system activity (Zelano et al., 2016) and to support
memory consolidation (Arshamian et al., 2018). Specifically,
when adult participants rehearsed an odor recognition memory
task and then, during a 1-h delay, were forced to breathe
only through the nose or the mouth, participants breathing
through the nose recognized the memorized odors better
compared to those breathing through the mouth (Arshamian
et al., 2018). Perhaps an effective way to facilitate memory
consolidation via breathing would be to take long and deep
inspirations (Karalis and Sirota, 2022) through the nose
(Girin et al., 2021).

DISCUSSION

To summarize, we suggest that while memory consolidation
in the hippocampus is convincingly demonstrated to revolve
around SPW-Rs, also dentate spikes might play a specific
and perhaps complementary role (Nokia et al., 2017; Lensu
et al., 2019). Further, we propose that respiration might govern
memory consolidation in the hippocampus by pacing the
occurrence of oscillatory phenomena (Karalis and Sirota, 2022).
While there is ample evidence for the hippocampal neuronal
activity related to SPW-Rs, the difficulty in recording single-unit
activity from granule cells has impeded the study of dentate
spike-related processing in the DG (Senzai and Buzsaki, 2017;
Sanchez-Aguilera et al., 2021). However, some recent reports
utilizing calcium imaging of the DG granule cells during
memory tasks have yielded promising results (Pofahl et al.,
2021). In the future it would be most interesting to accompany
DG calcium imaging with both electrophysiology from the
hippocampus as well as physiological signals from the body
(respiration and heartbeat) in conjunction with a declarative
memory task and subsequent sleep in freely moving rodents, to
further probe the mechanisms of memory consolidation in the
hippocampus.
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