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The olfactory tubercle (OT) is a striatal region that receives olfactory inputs. mRNAs

of prodynorphin (Pdyn) and preproenkephalin (Penk), precursors of dynorphins and

enkephalins, respectively, are strongly expressed in the striatum. Both produce opioid

peptides with various physiological effects such as pain relief and euphoria. Recent

studies have revealed that OT has anatomical and cytoarchitectonic domains that play

different roles in odor-induced motivated behavior. Neuronal subtypes of the OT can

be distinguished by their expression of the dopamine receptors D1 (Drd1) and D2

(Drd2). Here, we addressed whether and which type of opioid peptide precursors the

D1- and D2-expressing neurons in the OT express. We used multiple fluorescence

in situ hybridization for mRNAs of the opioid precursors and dopamine receptors

to characterize mouse OT neurons. Pdyn was mainly expressed by Drd1-expressing

cells in the dense cell layer (DCL) of the OT, whereas Penk was expressed primarily

by Drd2-expressing cells in the DCL. We also confirmed the presence of a larger

population of Pdyn-Penk-Drd1 co-expressing cells in the DCL of the anteromedial OT

compared with the anterolateral OT. These observations will help understand whether

and how dynorphins and enkephalins in the OT are involved in diverse odor-induced

motivated behaviors.

Keywords: olfactory tubercle, prodynorphin, preproenkephalin, opioids, medium spiny neurons, dopamine

receptor D1, dopamine receptor D2, DARPP-32

INTRODUCTION

The olfactory tubercle (OT) plays an essential role in acquiring odor-induced motivated behavior
(Xiong and Wesson, 2016; Yamaguchi, 2017; Murata, 2020). The OT is part of the ventral striatum
along with the nucleus accumbens (NAc) and is also referred to as the tubular striatum (Wesson,
2020; Wright and Wesson, 2021). The OT receives substantial dopaminergic inputs from the
ventral tegmental area (Ikemoto, 2007; Park et al., 2017; Zhang et al., 2017a; Poulin et al., 2018)
as well as olfactory inputs directly from the olfactory bulb and indirectly from the olfactory cortex
and prefrontal cortex (Neville and Haberly, 2004; Zhang et al., 2017b).
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The principal neurons of the OT comprise three major
subtypes: the medium spiny neurons (MSNs), dwarf cells, and
granule cells (Millhouse and Heimer, 1984; Murata et al., 2015;
Xiong and Wesson, 2016). MSNs are distributed throughout the
OT, forming a dense cell layer (DCL, also referred to as layer
II). The dwarf cells are clustered in the lateral part of the OT,
forming the Cap region, which is interspersed throughout the
anteroposterior axis (Hosoya and Hirata, 1974). The granule cells
are clustered through the anteromedial surface to the deep layers
of the central OT, forming the Islands of Calleja (ICj), which
seems to be a continuous structure (Fallon et al., 1978; de Vente
et al., 2001).

MSNs, dwarf cells, and granule cells express dopamine
receptor subtypes differently: MSNs express dopamine receptor
D1 (Drd1) or D2 (Drd2), dwarf cells express Drd1, and granule
cells express D3 (Drd3) and weakly Drd1 (Yung et al., 1995;
Murata et al., 2015; Zhang et al., 2021). Recent studies have
revealed distinct roles of Drd1-, Drd2-, and Drd3-expressing
neurons in motivated behaviors. Drd1- or Drd2-expressing
MSNs in the anteromedial OT are involved in learned odor-
induced attractive or aversive behaviors, respectively (Murata
et al., 2015, 2019a; Murofushi et al., 2018). Activation of Drd1-
expressingMSNs and dwarf cells in the lateral OT is accompanied
by learned odor-induced aversive behavior (Murata et al., 2015).
Drd3-expressing granule cells in the ICj have been shown to be
involved in grooming behavior (Zhang et al., 2021). Domains
of the OT also have distinct roles in motivated behaviors. An
intracranial self-administration study, for example, revealed that
the anteromedial OT plays a critical role in mediating rewarding
action of cocaine compared to other OT regions (Ikemoto, 2003).
However, the mechanisms underlying the subtype- and domain-
specific roles of OT neurons remain to be elucidated.

Opioids provide pain relief and euphoric effects (Barbano and
Cador, 2007; Corder et al., 2018). The opioid receptors are Gi/o-
coupled types and have the threemajor subtypes of mu, delta, and
kappa receptors. Their endogenous ligands with strong affinity
are endorphins, enkephalins, and dynorphins, respectively
(Waldhoer et al., 2004). The precursor genes for dynorphins
and enkephalins are prodynorphin (Pdyn) and preproenkephalin
(Penk), respectively, both of which are strongly expressed in the
striatum (Harlan et al., 1987; Besson et al., 1990; Merchenthaler
et al., 1997; Cansler et al., 2020). Curran and Watson conducted
an in-depth analysis of the cell type of opioid and dopamine
receptor subtype-expressing neurons in the NAc using double
in situ hybridization (ISH) (Curran and Watson, 1995). They
revealed that Pdyn is mainly expressed by Drd1-expressing cells,
whereas Penk is expressed primarily by Drd2-expressing cells in
the NAc. Although neuronal subtypes of the OT express Pdyn,
Penk or both peptides (Furuta et al., 2002), the cellular profiles
for the expression of opioid and dopamine receptor subtypes in
the OT are unknown. In the present study, we performed triple-
fluorescence ISH for opioid and dopamine receptor mRNAs and
examined cellular profile of the anterior OT where Drd1- and
Drd2-expressing MSNs are differentially involved in attractive
and aversive behaviors (Murata et al., 2015). We confirmed the
subtype-specific expression of opioids and newly identified a
neuronal subtype of Pdyn-Penk-Drd1 co-expressing cells in the

DCL of the anterior OT. We also confirmed that the Pdyn-Penk-
Drd1 co-expressing cells expressed DARPP-32 (Ouimet et al.,
1984), suggesting their neurochemical features of striatal cells.

MATERIALS AND METHODS

Ethical Statements
All experiments were conducted in accordance with the
Guidelines for Animal Experimentation in Neuroscience of
the Japan Neuroscience Society and were approved by the
Experimental Animal Research Committee of the University
of Fukui.

Animals
Male wild-type C57BL/6JJmsSlc mice were obtained from
Japan SLC, Inc. The mice were individually housed under a
12/12-h light/dark cycle. Food and water were provided ad
libitum. We used 14 mice for single-probe ISH, confirming
that all the mice had similar ISH signals (Figures 1–3A,
Supplementary Figure 1). Of the 14 mice, three were further
analyzed for triple fluorescence ISH and quantification of signal
colocalization (Figures 3B–8, Supplementary Figures 2, 3).

Sample Preparation for Histochemistry
Brain samples were obtained from 8 to 12-week-old mice using
a previously described method (Murata et al., 2020). Mice
were deeply anesthetized by intraperitoneal injection of sodium
pentobarbital and transcardially perfused with phosphate-
buffered saline (PBS) followed by 4% paraformaldehyde (PFA)
in 0.1M phosphate buffer (PB). The brain was removed from the
skull, immersed in 4%PFA in 0.1MPB overnight, and transferred
to 30% sucrose in 0.1M PB. The brain was then embedded in
optimal cutting temperature compound (Sakura Finetek), frozen
at −80◦C, and sliced into coronal sections with a thickness of
20µm using a cryotome (CM 3050S, Leica). The brain sections
were rinsed in 0.1M PB, mounted on glass slides (CREST coat,
Matsunami) using a paintbrush, dried overnight, and stored in a
freezer until histochemical staining.

RNA Probe Preparation for in situ

Hybridization
Mouse Pdyn, Penk, and proopiomelanocortin (Pomc)
cDNAs were subcloned by conventional PCR using the
following primers in accordance with the Allen Brain
Atlas (http://mouse.brain-map.org/, Pdyn, Entrez ID
18610; Penk, Entrez ID 18385; Pomc, Entrez ID 18739):
Pdyn, 5’-AGGAAAAGTTCAGGGGTCTCTC−3’ – 5’-
TCTCACAGTTCCCATGCAATAC−3’; Penk, 5’-TTCCTGAG
GCTTTGCACC-3’ – 5’-TCACTGCTGGAAAAGGGC-3’;
and Pomc, 5’-CGACGGAAGAGAAAAGAGGTTA-3’ – 5’-
CTTGGAATGAGAAGACCCCTG-3’. We used a commercial
mouse brain cDNA library (MD-01, Genostaff) as amplification
templates. The PCR products were subcloned into pGEM-T
Easy plasmids (Promega) for in vitro transcription of RNA
probes. Plasmid templates for Drd1 and Drd2 probes were
provided by Dr. Kazuto Kobayashi (Sano et al., 2003). We
prepared digoxigenin (DIG)-, fluorescein (FLU)-, and biotin
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FIGURE 1 | Single Probe in situ hybridization (ISH) for Pdyn and Penk in the mouse striatum. Pictures show coronal sections of the anterior OT [approximately at

Bregma +1.70mm of Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates (Franklin and Paxinos, 2008)] except for the lower right panel showing the

hypothalamus (approximately at Bregma −1.58mm). Upper left panel; Pdyn, Upper right panel Penk, Lower panels; Pomc. OT, olfactory tubercle; NAc, nucleus

accumbens; dStr, dorsal striatum.

(BIO)-labeled RNA probes using an in vitro transcription kit
(Roche) according to the manufacturer’s protocol. We prepared
both antisense and sense probes for opioid precursors and
dopamine receptors, and confirmed that ISH using sense probes
yielded no detectable signals (data not shown). All data presented
in this report were obtained by ISH using antisense probes.

ISH Using a Single Probe
ISH using a single probe for Pdyn, Penk, Pomc, Drd1, and Drd2
(Figures 1–3A, Supplementary Figure 1) was performed using a
previously described method (Murata et al., 2020). Brain sections
were fixed in 4% PFA for 20min, digested with proteinase K
(10µg/mL) for 30min, and post-fixed in 4% PFA for 15min.
After pre-hybridization, the sections were incubated overnight at
65◦C with DIG-labeled RNA probes. After stringent washing, the
sections were blocked with 10% normal sheep serum, 1% bovine
serum albumin, and 0.1% Triton X-100 in PBS. Subsequently,
the sections were incubated overnight at 4◦C with an alkaline
phosphatase-conjugated anti-DIG antibody (1:1,000; Roche).
The sections were washed in Tris-NaCl-Tween 20 (TNT) buffer
(0.1M Tris-HCl; pH 7.5; 0.15M NaCl; 0.1% Tween 20), followed
by alkaline phosphatase buffer (100mM NaCl; 100mM Tris-
HCl; pH 9.5; 50mM MgCl2; 0.1% Tween 20; 5mM levamisole).
The sections were treated overnight with 5-bromo-4-chloro-
3-indolyl-phosphate/nitro blue tetrazolium (BCIP/NBT) color

development substrate mixture (Promega) at room temperature
in a dark room for color development. They were then rinsed in
PBS and mounted in Mount-Quick Aqueous (Daido Sangyo).

Triple Fluorescence ISH Using DIG-, FLU-,
and BIO-Labeled Probes
Triple fluorescence ISH using DIG-, FLU-, and BIO-labeled
probes (Figures 3B–8, Supplementary Figures 2, 3) was
performed using a modification of a previously described
method (Konno et al., 2014; Murata et al., 2020). Hybridization
and washing were performed as described above, except
that the DIG, FLU, and BIO probes were mixed and used
for hybridization. After blocking in 1% blocking buffer
(11096176001, Roche) for 1 h, the DIG-, FLU-, and BIO-
labeled probes were detected by fluorescence. For detection
of FLU-labeled probes, the sections were incubated with an
anti-FLU antibody conjugated with horseradish peroxidase
(1:500; Perkin-Elmer) for 1 h at room temperature. After
three 10-min washes in TNT, the sections were treated with
diluted (1:100) Tyramide Signal Amplification (TSA)-Plus FITC
reagents for 10min according to the manufacturer’s instructions
(Perkin-Elmer), and the FLU signals were converted to FITC
signals. The sections were then washed in TNT for 10min three
times, and incubated in 0.02 N HCl-TNT for 30min at room
temperature to inactivate peroxidase activity associated with the
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detection of the previous RNA probes. To detect DIG-labeled
probes, the sections were incubated with an anti-DIG antibody
conjugated with horseradish peroxidase (1:500; Perkin-Elmer)
for 1 h at room temperature. After three 10-min washes in TNT,
the sections were treated with diluted (1:100) TSA-Plus Cy3
reagents for 10min according to the manufacturer’s instructions
(Perkin-Elmer), and the DIG signals were converted to Cy3
signals. The sections were then washed in TNT for 10min three
times, and again incubated in 0.02 N HCl-TNT for 30min at
room temperature. To detect BIO-labeled probes, the sections
were incubated with an anti-BIO antibody conjugated with
horseradish peroxidase (1:500; Funakoshi) for 1 h at room
temperature. After three 10-min washes in TNT, the sections
were treated with diluted (1:100) TSA-Plus Cy5 reagents for
10min according to the manufacturer’s instructions (Perkin-
Elmer), and the BIO signals were converted to Cy5 signals. The
sections were then counterstained with DAPI diluted in PBS
(1µg/mL) for 5min. After washing with PBS, the sections were
mounted using Prolong Glass Antifade Mountant (Thermo
Fisher Scientific).

Triple Fluorescence Labeling of DARPP-32
Immunoreactivity With ISH Using DIG- and
FLU-Labeled Probes
In Figures 7, 8, DIG-labeled Drd1 and FLU-labeled Penk probes
were labeled by Cy3 and Cy5 fluorescence signals as described
above, respectively. To detect DARPP-32 immunoreactivity,
the sections were then incubated with an anti-DARPP-32
antibody (1:500, Abcam ab40801) overnight at 4◦C, followed
by TNT wash and secondary antibody incubation (Alexa 488
conjugated-donkey anti-rabbit IgG antibody. 1:500; Jackson
Immunoresearch Laboratories Inc. 711-545-152) for 1 h at
room temperature. The sections were counterstained with
DAPI, washed with PBS, and mounted using Prolong Glass
Antifade Mountant.

Image Acquisition and Analysis
The BCIP/NBT color-developed samples were examined using
a bright-field virtual slide system (NanoZoomer, Hamamatsu
Photonics) (Figures 1–3A, Supplementary Figure 1). A confocal
fluorescent laser microscope (FV2000, Olympus) was used
to obtain fluorescence images, as shown in Figures 3B–8,
Supplementary Figures 2, 3. ImageJ software was used to
perform cell counts and signal colocalization (Figures 3B–8).
We sought to avoid bleaching the fluorescent signals by
restricting the section exposure to light as much as possible.
Three to four coronal sections per mouse were used for
obtaining confocal images of Pdyn-Penk-Drd1 and Pdyn-
Penk-Drd2 fluorescence labeling. One coronal section was
then chosen for cell quantification in Figure 6. The number
of DAPI(+) cells examined for their expression and the
colocalization of Pdyn, Penk, Drd1, and Drd2 are described in
Supplementary Table 2.

Statistics
The normality of data was first tested using the Shapiro-Wilk test
in JASP ver. 0.16. The data are presented as the mean ± SD.

FIGURE 2 | Magnified view of the single probe ISH for Drd1, Drd2, Pdyn, and

Penk in the anterior OT. Pictures show coronal sections of the anterior OT

(approximately at Bregma +1.70mm). In the OT, ISH signals of Pdyn and Penk

were observed in the DCL. Regions delineated by yellow lines are the Cap

regions. Regions delineated by green lines are the ICj. Adjacent sections from

one mouse were used for the four pictures. Brain sections in this figure were

sampled from a different mouse used in Figure 1.

Statistical differences were analyzed by two-way ANOVA (cell-
types x anteromedial/anterolateral DCL) with post-hoc Tukey’s
test using GraphPad Prism 7 (n= 3 mice, Figure 6).

RESULTS

Expression of Pdyn and Penk mRNAs in
the Mouse Anterior OT
Wefirst confirmed that Pdyn and PenkmRNAswere expressed in
the anterior OT, dorsal striatum, and NAc using single-probe ISH
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FIGURE 3 | Pdyn-Penk-Drd1 co-expressing cell cluster in the anterior ventral striatum. (A) Single probe ISH for Pdyn, Penk, Drd1, and Drd2. The pictures show

coronal sections of the anterior OT and NAc (approximately at Bregma +1.94mm). Regions delineated by red lines are a cluster of Pdyn-Penk-Drd1 co-expressing

cells. Drd2 signals were not observed in the cluster. Adjacent sections from one mouse were used for the four pictures. Brain sections in this figure (A) were sampled

from the same mouse used in Figure 2. (B) Triple fluorescence ISH for Pdyn-Penk-Drd1 (Upper panels) and Pdyn-Penk-Drd2 (Lower panels). Regions delineated by

white lines are a cluster of Pdyn-Penk-Drd1 co-expressing cells which did not express Drd2.
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in mice (Figure 1). Penk mRNA signals were also observed in the
piriform cortex, with a tendency toward high expression in the
dorsal part. Pdyn mRNA was not detected in the piriform cortex.
ISH staining for Pomc mRNA, a precursor gene of β-endorphin,
showed no significant signals in the OT, whereas it successfully
labeled neurons in the arcuate nucleus of the hypothalamus (Gee
et al., 1983; Lewis et al., 1986).

The cytoarchitecture of the OT can be defined by the
expression of the Drd1 and Drd2 mRNAs. We compared
the Drd1 and Drd2 ISH signals with the Pdyn and Penk
signals in the neighboring OT coronal sections (Figure 2,
Supplementary Table 1). The OT is a three-layered structure
with several cell clusters. The DCL (layer II) contains the MSNs,
where Drd1- and Drd2-expressing neurons are intermingled.
Both Pdyn- and Penk-expressing neurons were observed in the
DCL, suggesting that MSNs express Pdyn and/or Penk mRNA.
The Cap regions are cell-clustered regions in the lateral part
of the OT that contain dwarf cells (Figure 2, yellow lines),
which express Drd1 but not Drd2. A weak Pdyn signal was
detected in the Cap region, but Penk signals were not detected
in the Cap region. The ICj is another cell-clustered region
distributed in the medial part of the OT (Figure 2, green lines).
The ICj contains granule cells that weakly express Drd1 with no
detectable Drd2mRNA. Pdyn and Penk signals were not detected
in the ICj.

Curran and Watson reported Pdyn-, Penk-, and Drd1-
coexpressing cell clusters in the rat ventral striatum (Curran
and Watson, 1995). We confirmed that the similar cell clusters
expressing the three genes in the mouse ventral striatum
(Figure 3A, Supplementary Figure 1). Drd2 mRNA signals
were not detected in the cell clusters. They were distributed
between the anterior NAc and OT, and separated into the
medial and lateral parts in the posterior sections (Figure 3A,
Supplementary Figure 1, red lines).

Examination of the Co-expression of Pdyn,
Penk, Drd1, and Drd2 mRNAs in the DCL of
the Anteromedial and Anterolateral OT by
Triple Fluorescence ISH
Here, we employed triple fluorescence ISH for Pdyn-Penk-Drd1
and Pdyn-Penk-Drd2 to perform cell typing of Pdyn and Penk
expression by Drd1- and Drd2-expressing cells as well as to
address whether Pdyn-Penk-Drd1 cells are distributed in the
DCL of the OT. Triple fluorescence ISH demonstrated that the
cell cluster between the NAc and OT co-expressed Pdyn-Penk-
Drd1 but not Drd2 (Figure 3B). This observation also confirmed
successful multiple labeling and separation of the mRNAs
by fluorescence ISH (Figures 4, 5, Supplementary Figures 2,
3).

The DCL of the OT comprises Drd1-, Drd2-, Pdyn-,
and Penk-expressing cells (Figures 2, 3). Previous studies in
the NAc revealed that Pdyn is mainly expressed by Drd1-
expressing cells, whereas Penk is primarily expressed by Drd2-
expressing cells (Curran and Watson, 1995). We analyzed
triple fluorescence ISH for Pdyn-Penk-Drd1 and Pdyn-Penk-
Drd2 to determine whether the DCL of the OT showed a

similar co-expression to the NAc and whether Pdyn-Penk-
Drd1 co-expressing neurons were also distributed in the
DCL (Figures 4–6, Supplementary Figures 2, 3). We hereafter
separated the DCL into anteromedial and anterolateral domains.
We used the Cap region and ICj as the physical boundary of
the anteromedial and anterolateral OT. The DCL surrounded
by the Cap regions in the anterior OT was referred to as
anterolateral. The DCL surrounded by the ICj that protrudes to
the ventromedial brain surface was referred to as anteromedial.
We used the coronal sections that include superficially located ICj
(approximately bregma +1.18-1.98mm, Franklin and Paxinos,
2008) as the anterior OT.

We observed expressions of the Drd1, Drd2, Pdyn, and Penk
mRNAs in the DCL of the anteromedial and anterolateral OT
(Figures 4, 5, Supplementary Figures 2, 3). The percentages of
single mRNA expression for Pdyn, Penk, Drd1, and Drd2 among
DAPI(+) cells in the anteromedial and anterolateral DCL were
Pdyn: 35.1% and 29.3%, Penk: 38.7% and 37.2%, Drd1: 44.1%
and 43.0%, and Drd2: 32.0% and 37.7%, respectively (Figure 6A,
Supplementary Table 2).

We then examined the co-expression of Pdyn-Penk,
Pdyn-Drd1, Penk-Drd1, Pdyn-Drd2, and Penk-Drd2 mRNAs
and compared the percentages of each combination of the
anteromedial and anterolateral DCL (Figures 6B–D). To
summarize, most MSNs in the OT DCL showed colocalization
of Pdyn-Drd1 or Penk-Drd2 mRNAs, which is consistent with
the MSNs in the NAc. Colocalization of Pdyn and Penk mRNAs
occurred as follows: in the anteromedial DCL, Pdyn/Penk, 25.7%;
and Penk/Pdyn, 28.3%. In the anterolateral DCL, 12.9% were
Pdyn/Penk and 15.5% were Penk/Pdyn. Although the differences
between the two regions were not statistically significant, the
percentages of the Pdyn and Penk co-expression were higher
in the anteromedial DCL than in the anterolateral DCL (p =

0.054 for both Pdyn/Penk and Penk/Pdyn) (Figure 6B). Most
Pdyn(+) cells expressed Drd1 (anteromedial DCL, 91.9%;
anterolateral DCL, 76.7%), and more than half of the Drd1(+)
cells expressed Pdyn (anteromedial DCL, 73.0%; anterolateral
DCL, 52.3%). The percentages of Drd1/Pdyn and Pdyn/Drd1
in the anteromedial DCL were significantly higher than those
in the anterolateral DCL (Figure 6C). Compared to the Pdyn,
Drd1-expressing neurons showed smaller percentages of
colocalization with Penk in both anteromedial DCL (Drd1/Penk;
29.1%, and Penk/Drd1; 25.7%) and anterolateral DCL
(Drd1/Penk; 12.6%, and Penk/Drd1; 10.6%) (Figure 6C).
The percentages of Drd1-Penk colocalization was also higher
in the anteromedial DCL than in the anterolateral DCL
(Figure 6C). A majority of Penk(+) cells expressed Drd2
(anteromedial DCL, 77.6%; anterolateral DCL, 93.1%), and
most Drd2(+) cells expressed Penk (anteromedial DCL, 87.5%;
anterolateral DCL, 93.9%) (Figure 6D). In contrast, a smaller
population of Pdyn-Drd2 colocalization was observed in both the
anteromedial DCL (Drd2/Pdyn: 9.8%, and Pdyn/Drd2: 9.5%) and
anterolateral DCL (Drd2/Pdyn, 12.0%; and Pdyn/Drd2, 8.5%)
(Figure 6D).

We then examined the existence of Pdyn-Penk-Drd1 triple-
positive cells in the anteromedial and anterolateral DCL. We
observed that 22.4% of Drd1-expressing cells in the anteromedial

Frontiers in Neural Circuits | www.frontiersin.org 6 July 2022 | Volume 16 | Article 908964

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Maegawa et al. Opioids in Anterior Olfactory Tubercle

FIGURE 4 | Triple fluorescence ISH for Pdyn-Penk-Drd1 mRNAs in the anteromedial and anterolateral OT DCL. Fluorescence images of Pdyn (red), Penk (blue), and

Drd1 (green) mRNA signals in the same region. White arrowheads show the colocalization of Pdyn-Penk-Drd1 mRNAs. Right panels, anteromedial DCL; left panels,

anterolateral DCL.
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FIGURE 5 | Triple fluorescence ISH for and Pdyn-Penk-Drd2 mRNAs in the anteromedial and anterolateral OT DCL. Fluorescence images of Pdyn (red), Penk (blue),

and Drd2 (green) mRNA signals in the same region. A white arrowhead shows the colocalization of the Pdyn-Penk-Drd2 mRNAs. White-outlined arrowheads indicate

the colocalization of Pdyn-Penk signals, which did not colocalize with Drd2 signals. Right panels, anteromedial DCL; left panels, anterolateral DCL.
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FIGURE 6 | Quantification of Pdyn, Penk, Drd1, and Drd2-expressing cells and their colocalization in the anteromedial and anterolateral OT DCL. (A) The percentages

were calculated by dividing the number of Pdyn. Penk, Drd1, and Drd2-expressing cells by the number of the DAPI(+) cells in the region of interest. The data of Pdyn

and Penk were obtained from Pdyn-Penk-Drd1 co-staining images as shown in Figure 4. (B–D), The percentages of double-positive cells (e.g., Pdyn/Penk shows the

percentage of Pdyn-Penk double-positive cells among Penk positive cells in the region of interest). The data in B were obtained from Pdyn-Penk-Drd1 co-staining

images as shown in Figure 4. (E) The percentage of triple-positive cells (e.g., Pdyn(+)-Penk(-)/Drd1 shows the percentage of the number of Pdyn(+) and Penk(-)

Drd1-expressing cells by the number of total Drd1 positive cells in the region of interest). Bars in the graphs represent mean ± SD. p-Values were calculated by

post-hoc Tukey’s test after two-way ANOVA. n = 3 mice.
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DCL co-expressed both Pdyn and Penk, which was significantly
higher than the percentage in the anterolateral DCL (8.5%)
(Figure 4, white arrowheads, and Figure 6E). We also found
that 9.6% and 7.6% of the Drd2-expressing cells co-expressed
both Pdyn and Penk in the anteromedial and anterolateral DCL,
respectively (Figure 5, white arrowhead, and Figure 6E).

Expression of DARPP-32 by the
Pdyn-Penk-Drd1 Co-expressing Cells in
the Anterior OT
The ventral pallidum anteriorly protrudes into the OT deep layer
(multiform layer), where pallidal cells are distributed (Heimer
et al., 1987; Root et al., 2015). This raises the possibility of
the Pdyn-Penk-Drd1 co-expressing cells are pallidal cells in the
anterior OT (Figures 3, 4, Supplementary Figure 1). Here, we
examined the DARPP-32 expression of the Pdyn-Penk-Drd1 cells
in the cell cluster between anterior OT and NAc (Figure 7)
and anteromedial DCL (Figure 8). DARPP-32 immunoreactivity
is present in somata and dendrites of striatal cells but not in
somata of pallidal cells (Ouimet et al., 1984). Because most Penk-
Drd1 co-expressing cells in the DCL expressed Pdyn (85.6 ±

6.9%, Supplementary Table 2), we regarded Penk-Drd1 cells as
putative Pdyn-Penk-Drd1 cells.

The majority of the putative Pdyn-Penk-Drd1 neurons
expressed DARPP-32 in the cell cluster between anterior OT and
NAc (93.7 ± 4.5%, n = 3 mice) and anteromedial DCL (83.7
± 2.1%, n = 3 mice). None of the DARPP-32 immunonegative
cells in the multiform layer of the anteromedial OT showed Penk
or Drd1 mRNA signal (Figure 8 white-outlined arrowheads, 33,
40, and 69 cells from three mice). This neurochemical feature of
DARPP-32 immunopositivity supports the idea that the Pdyn-
Penk-Drd1 cells in the anterior OT are striatal cells and can be
distinguished fromDARPP-32 negative putative pallidal cells.We
note that the DARPP-32 immunonegative small region dorsally
adjacent to the OT (Figure 7) is the ventral olfactory nucleus,
where GABAergic neurons project their axons to the lateral
hypothalamus (Murata et al., 2019b).

DISCUSSION

In the current study, we performed multiple ISH to reveal the
cellular profile of Pdyn and Penk mRNA expression in Drd1-
and Drd2-expressing cells in the anterior OT of mice. MSNs
in the DCL express Pdyn, Penk, or both. Dwarf cells in the
Cap region showed weak Pdyn and no Penk signals. In the
granule cells of the ICj, the Pdyn and Penk signal intensities
were below detection sensitivity. In the MSNs of the DCL, Pdyn
wasmainly expressed by Drd1-expressing neurons, whereas Penk
was expressed primarily by Drd2-expressing neurons, which is
consistent with previous reports in the NAc (Curran andWatson,
1995). We confirmed a cell cluster of Pdyn-Penk-Drd1 triple-
positive cells in the ventral striatum of mice, as previously
reported in rats (Curran and Watson, 1995). We found that the
Pdyn-Penk-Drd1 triple-positive cells in the DCL of the anterior
OT and the percentage of Pdyn-Penk co-expressing cells among
Drd1-expressing cells was higher in the anteromedial DCL than

in the anterolateral DCL. The Pdyn-Penk-Drd1 cells in the
anteromedial DCL expressed DARPP-32, which suggests their
striatal feature in terms of molecular expression. We also found a
small population of Drd2-expressing cells that co-expressed Pdyn
and Penk in the DCL of the anterior OT.

In this study, we used an exploratory approach to address the
mechanisms of the distinct roles of Drd1- and Drd2-expressing
cells in anteromedial and anterolateral OT by examining Pdyn
and Penk expression. A significant difference between Drd1- and
Drd2-expressing cells in the DCL is their expression of Pdyn
and Penk, respectively. A remarkable difference between the
anteromedial and anterolateral DCL was the larger percentage
of Pdyn-Penk co-expressing Drd1 cells in the anteromedial DCL
(Figure 4, white arrowheads, and Figure 6E). This observation
raises a possible new subtype of Pdyn-Penk-Drd1 co-expressing
cells in anteromedial DCL. The Pdyn-Penk co-expressing Drd1
cells in the ventral striatum were initially reported by Curran
and Watson using rats (Curran and Watson, 1995), which
showed a similar distribution to the Pdyn-Penk-Drd1 co-
expressing cell cluster in the current mouse study (Figure 3A,
Supplementary Figure 1). Distribution of the Pdyn-Penk-Drd1
co-expressing cell clusters was coincided with the lateral stripe of
the striatum (LSS) and LSS-associated cell clusters in rats (Zhou
et al., 2004). Zhou, Furuta, and Kaneko revealed that neurons
in the LSS and LSS-associated cell clusters express neurokinin B
and project their axons to the interstitial nucleus of the posterior
limb of the anterior commissure and the substantia innominata.
Currently, the neural connectivity of the Pdyn-Penk-Drd1 co-
expressing cells in the OT DCL is unknown. Axonal projection
of the Pdyn-Penk-Drd1 cells in the DCL will distinguish whether
they are similar to LSS and LSS-associated neurons or MSNs in
the DCL which project to the ventral pallidum (VP) (Heimer
et al., 1987; Zhang et al., 2017b). Input pathways to the Pdyn-
Penk-Drd1 cells in the DCL will also be essential to characterize
their neuronal profiles. Although DARPP-32 expression supports
their striatal features, it remains to be examined whether they
receive dopaminergic innervation from the ventral tegmental
area (Ikemoto, 2007). It also remains to be confirmed whether
the Pdyn-Penk-Drd1 cells in the DCL receive synaptic inputs
from the olfactory bulb and other olfactory cortical areas
(Zhang et al., 2017b).

Our histochemical examination revealed the molecular
profiles of dopamine receptors and opioid precursor peptides
of MSNs in the anteromedial and anterolateral OT. Drd1-
expressing MSNs in the anteromedial and anterolateral OT
express Pdyn, which are involved in odor-induced attractive and
aversive behaviors, respectively. Drd2-expressing MSNs in the
anteromedial OT express Penk, which are involved in odor-
induced aversive behavior (Murata et al., 2015). These data
will help further experiments of optogenetics and behavioral
pharmacology examining whether and how dynorphins and
enkephalins released by the OT MSNs influence odor-induced
attractive and aversive behaviors. The Pdyn-Penk co-expressing
Drd1 cells can transmit to both kappa (KOR) and delta
(DOR) opioid receptor-expressing neurons (Mansour et al.,
1988, 1994). Co-transmission to KOR and DOR neurons from
the anteromedial DCL of the OT might also underlie the
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FIGURE 7 | DARPP-32 expression by the putative Pdyn-Penk-Drd1 co-expressing cells in the cell cluster between OT and NAc. Fluorescence images of DARPP-32

immunoreactivity (upper left, green), Penk (upper right, blue), Drd1 (middle left, red) mRNA signals, DAPI (lower left, magenta), and color merged view (middle right;

DARPP-32-Drd1-Penk, lower right; DARPP-32-DAPI) in the same region. Regions delineated by white lines are a cluster of putative Pdyn-Penk-Drd1 co-expressing

cells. OT, olfactory tubercle; NAc, nucleus accumbens; ICj, Islands of Calleja; VON, ventral olfactory nucleus.

odor-induced attractive behavior (Murata et al., 2015). Zhou
et al. showed that both preprodynorphin- and preproenkephalin
peptide-expressing cells in the OT project their axons to the
ventrolateral part of the VP (Zhou et al., 2003). Al-Hasani
et al. have demonstrated in vivo detection of optically-evoked
endogenous opioid peptide release by neurons in the NAc

(Al-Hasani et al., 2018), which supports the idea that neural
activation of the OT MSNs will lead to release of dynorphins
and enkephalins in their target regions. Microinjection of a mu-
opioid receptor agonist into the posterior part of the VP elicited
enhanced hedonic reactions to the oral infusion of sucrose
solution, whereas the same microinjection into the anterior and
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FIGURE 8 | DARPP-32 expression by the putative Pdyn-Penk-Drd1 co-expressing cells in the anteromedial DCL. Fluorescence images of DARPP-32

immunoreactivity (upper left, green), Penk (upper right, blue), Drd1 (middle left, red) mRNA signals, DAPI (lower left, magenta), and color merged view (middle right;

DARPP-32-Drd1-Penk, lower right; DARPP-32-DAPI) in the same region. White arrowhead shows the colocalization of the DARPP-32 immunoreactivity and

Penk-Drd1 mRNAs. White-outlined arrowheads indicate the colocalization of Penk-Drd1 signals, which did not colocalize with DARPP-32 immunoreactivity.
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central parts of the VP suppressed the hedonic reaction (Smith
and Berridge, 2007). A recent study revealed that the neural
pathway of the posterior olfactory bulb to the OT is related
to the attraction to pleasant odorants (Midroit et al., 2021).
Future studies should address whether and how Pdyn- and Penk-
expressing cells in the OT and their axonal projections to the VP
are related to the pleasantness of olfaction.
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