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Hearing, touching, and
multisensory integration during
mate choice
Constanze Lenschow*, Ana Rita P. Mendes and
Susana Q. Lima

Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal

Mate choice is a potent generator of diversity and a fundamental pillar for

sexual selection and evolution. Mate choice is a multistage affair, where

complex sensory information and elaborate actions are used to identify,

scrutinize, and evaluate potential mating partners. While widely accepted that

communication during mate assessment relies on multimodal cues, most

studies investigating the mechanisms controlling this fundamental behavior

have restricted their focus to the dominant sensory modality used by the

species under examination, such as vision in humans and smell in rodents.

However, despite their undeniable importance for the initial recognition,

attraction, and approach towards a potential mate, other modalities gain

relevance as the interaction progresses, amongst which are touch and

audition. In this review, we will: (1) focus on recent findings of how touch and

audition can contribute to the evaluation and choice of mating partners, and

(2) outline our current knowledge regarding the neuronal circuits processing

touch and audition (amongst others) in the context of mate choice and ask

(3) how these neural circuits are connected to areas that have been studied in

the light of multisensory integration.
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Introduction

Evolutionary fitness is not only determined by an organism’s ability to survive the
world’s vagaries and dangers but also to successfully produce offspring. Finding and
attracting an appropriate mating partner is of particular importance for the latter, as it
determines whose genes are passed onto the next generation. Males and females have
evolved different strategies to successfully select a mate, which are dependent on the
expression and recognition of multiple cues belonging to diverse sensory modalities.
The simultaneous diversity and species-specific nature of socio-sexual sensory cues pose
a serious obstacle to the study of mate choice, possibly one of the main reasons why
progress in unraveling the neural mechanisms underlying this complex behavior has
been so limited.

Although communication during mate choice commonly relies on multimodal cues,
there seems to be dominant, species-specific, sensory modalities. Rodents, and mice in
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particular, rely on pheromonal cues in order to identify their
conspecifics (Luo et al., 2003), and hence a crucial role for
pheromones has been postulated during mate choice in rats
(Beach, 1942; Heimer and Larsson, 1967; Bermant and Taylor,
1969) and mice (Rowe and Edwards, 1972; Rowe and Smith,
1972). However, recent studies have shown that touch (Wolfe
et al., 2011) and ultrasonic calls (Asaba et al., 2017) seem to
be equally important during the initial social investigation and
hence may be crucial for mate choice as well.

Human mate choice, on the contrary, is mostly driven by
visual input (Roth et al., 2021), as gender and attractiveness can
be usually identified in the split of a second. Nonetheless, other
sensory modalities gain relevance as the interaction progresses,
amongst which are touch and audition, similar to what has been
described in rodents (Herz and Cahill, 1997; Todd et al., 2007).

In this review, we focus on the understudied impact of
touch and audition in rodent and human mate choice. We
begin by defining mate choice and briefly describe the main
common factors that influence female and male mate choice in
mice, rats, and humans. We then feature literature investigating
how ultrasonic calls or voices and touch can carry relevant
information during rodent and human mate choice. Finally, we
elaborate on neural circuits that specifically underlie sensory
processing of touch and audition in the context of rodent and
human mate choice and how these neural circuits are connected
to areas that have been studied in the light of multisensory
integration and sexual behavior in general.

What is mate choice?

According to Halliday (1983, p. 4) “mate choice can be
operationally defined as any pattern of behavior, shown by
members of one sex, that leads to their being more likely
to mate with certain members of the opposite sex than with
others” (Halliday, 1983). Even though same-sex mate choice is
beyond the scope of this review, it is important to note that
same-sex sexual behavior is omnipresent (Rosenthal, 2017, p.
11) across rodents (Coria-Avila, 2012) and humans (Gobrogge
et al., 2007), hence the definition proposed by Rosenthal seems
contemporarily more correct: “mate choice can be defined as any
aspect of an animal’s phenotype that leads to it being more likely
to engage in sexual activity with certain individuals than with
others.”

Moreover, it is noteworthy to mention that mate choice is
actually the outcome of two distinct components, the preference
function (the order with which an individual ranks prospective
mates) and choosiness (the effort to invest in mate assessment;
Neelon et al., 2019). This is, an individual might not get what
she/he wants if not enough effort is spent assessing conspecifics,
for example. Most of the studies that we will mention in this
review were performed in laboratory conditions, where very
little effort is spent on mate assessment, and, therefore, we

should keep in mind that some of the results and conclusions
might differ in nature.

As a final note, unfortunately, many studies interrogating
the influence of auditory and somatosensory cues in socio-
sexual behavior are carried out in “no-choice conditions,” where
a certain trait is evaluated, for example, for its influence on the
detection of conspecifics, sexual motivation, and sexual arousal.
Even though mate choice is not really being evaluated in these
circumstances, it is reasonable to suggest that if a particular trait
decreases the latency to detect a conspecific or to start having
sex, it also might increase the chance that an individual will be
chosen, for example, as the chooser might require less effort in
assessment. Therefore, in this review we discuss some studies
where the influence of a particular trait was investigated in a
“no-choice condition,” keeping in mind that they are examined
within this context.

Rosenthal (2017) has divided mate choice into three stages:
(I) premating, which includes the detection and evaluation of
all courter signals, (II) perimating, that includes behavioral
patterns soon before, during, and after mating when partners
are in close physical contact and (III) postmating, during
which choosers can make decisions after copulation (Rosenthal,
2017, pp. 25–26). Since our review is focused on rats, mice,
and humans, we will slightly deviate from this staging by
substituting his term of perimating with simply mating or sex,
which includes all behavioral patterns that start with the first
successful mount (for rats and mice) or sexual intercourse in
the case of humans. Likewise, all actions of both sexes before
the first successful mount are considered as premating. The
postmating stage includes all actions that are undertaken by
both sexes after sperm transfer has occurred. All these three
stages include the phases of: (1) receiving signals expressed
by the potential mate, (2) recognizing and evaluating these
signals, and (3) deciding whether to accept or reject the
prospective mate.

Female mate choice

The study of female mate selection has a long-standing
history starting with Darwin in the 19th century (1871).
His overall opinion, though, was that females succumb to
their “taste for the beautiful” (Ryan, 2018) and that the
male species was forced to evolve to please the female’s eye
(Darwin, 1871). Fortunately, this simplistic and misogynistic
view has been reformulated as a large body of literature
investigating female mate choice exists not only in the context
of the Darwinian sexual selection with male’s appearance and
sensory cues having evolved due to female’s attractiveness
(Rosenthal and Ryan, 2022) but also with a pure interest on
how sensory cues (Hoier et al., 2016) and social structures
(Lee and Beery, 2021) shape the behavioral pattern of female
mate choice.
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Mice

Female mate choice in mice has been heavily investigated
in the past decades, using well-controlled mating paradigms in
the lab (Tomihara, 2005; Ganem et al., 2008; Zinck and Lima,
2013; Asaba et al., 2015; Moreira et al., 2020). These paradigms,
together with initial field studies, identified a series of desired
male attributes, as female mice preferred unfamiliar (Yamazaki
et al., 1979; Egid and Brown, 1989; Potts et al., 1991; Penn
and Potts, 1998a,b; Tregenza and Wedell, 2002; Linnenbrink
and von Merten, 2017), dominant (Oakeshott, 1974; Bronson,
1979; Hurst, 1989, 1990; Mossman and Drickamer, 1996; Rich
and Hurst, 1998; Rolland et al., 2003; Montero et al., 2013),
healthy (Kavaliers and Colwell, 1995; Meikle et al., 1995; Zala
et al., 2004; Kavaliers et al., 2006) males with significant
effects for their own reproductive and sire’s fitness (Yasui,
1998, 2001; Zala et al., 2008). In accordance, female mice
seem to prefer males with longer anogenital distances, a feature
correlated with aggressiveness, fitness, and increased paternity
(Drickamer et al., 2001). Social factors also seem to significantly
impact preferences, such as the early life familial environment
(Moreira et al., 2020). In the very few instances where the
consequences of such mate preferences were examined, it was
observed that mating with non-preferred mates had a negative
impact on the progeny, as the litters from such matings had
fewer pups of lower adult fitness (Drickamer et al., 2000).
If possible, results obtained in laboratory settings should be
confirmed in the wild, as in some cases the results can be
contradictory. For example, mating with multiple males seems to
be common in the wild, but rare in captivity (Hurst, 1986; Dean
et al., 2006; Firman and Simmons, 2008), whose evolutionary
advantages have been discussed in detail (Jennions and Petrie,
2000; Hosken and Stockley, 2003; Simmons, 2005). In contrast,
mating between some closely related species only occurs
in captivity (Delaney and Hoekstra, 2018). Understanding
the particularities of the laboratory setting that cause such
artificial preferences can however offer important insights into
the underlying mechanisms. For example, inadvertent mating
between closely related species was shown to be dependent
on diet-based assortative mate choice (Delaney and Hoekstra,
2019), suggesting that social information is relevant, and can
even override natural preferences. Hence, we encourage more
field studies to confirm and/or resolve inconsistencies regarding
conclusions drawn from artificial settings and as a way to explore
the underlying mechanisms.

Some attempts have been made to investigate female mate
choice in semi-natural environments or larger testing arenas
(Hurst, 1987; Potts et al., 1991, 1994; Becker and Hurst, 2009;
Montero et al., 2013; Thonhauser et al., 2013; Ruff et al., 2017)
revealing female behaviors that are common in the wild, such as
the so-called soliciting behavior (Bronson, 1979; Hurst, 1986).
Once receptive and willing to mate, female mice express darting
(the female quickly orienting towards the male and then running

away) and ear-wiggling behavior (Lenschow and Lima, 2020),
which seems to attract mates and increase male sexual arousal
(Lee and Monks, 2013). Because of its cycles of poking and
running away, female solicitation behavior leads to a paced
copulation pattern whose function is yet to be investigated
(Johansen et al., 2008). Old (McGill, 1962; Land and McGill,
1967; McGill et al., 1968) and recent (da Costa Araújo, 2021)
studies however seem to favor the hypothesis of the existence
of “a vaginal code” (Diamond, 1970), an optimal number of
penile insertions performed spaced in time which might favor
pregnancy. Moreover, it has been shown that female receptivity
during mating is increased if the female actively initiates mating
compared to when the male took the initiative, a phenomenon
that is more common in larger testing arenas (Tomihara and
Makino, 1991; Tomihara, 2005).

Rats

Using comparable well-controlled laboratory settings (Lovell
et al., 2007; Spiteri et al., 2012; Chu and Ågmo, 2016), a
large body of literature also described female’s preference for
unfamiliar (Zhang and Zhang, 2011), dominant (Taylor et al.,
1982; McCormick et al., 2017; Zhang et al., 2021), and healthy
male rats, whose urine contained a higher concentration of
major urinary proteins (Ferreira-Nuño et al., 2005; Kumar
et al., 2014). Interestingly, females seem to prefer male rats that
had recently mated (Bakker et al., 1996; Galef et al., 2008), a
preference that was probably mediated by odors. Newer studies,
however, seem to challenge the aforementioned factors of female
rat choice and deliver data suggesting that it might be random
(Le Moëne and Snoeren, 2018).

Regarding choice processes during mating it has been
described early on that, when possible, female rats also control
or pace the rate of copulation, by performing solicitation
behavior (Beach, 1976; McClintock, 1984; Erskine, 1989; Erskine
et al., 1989; Pfaus et al., 2000, 2001), in the wild (McClintock
and Adler, 1978; McClintock et al., 1982; McClintock, 1984)
and laboratory settings (Coria-Avila et al., 2005; Guarraci and
Frohardt, 2019); in fact, paced mating seems to be rewarding
and can induce conditioned place preference (Paredes and
Alonso, 1997), in contrast to non-paced conditions (Martínez
and Paredes, 2001; Coria-Avila et al., 2005). Similar to mice,
many studies also suggest the existence of a “vaginal code”
(Adler, 1969; Chester and Zucker, 1970; Terkel and Sawyer, 1978;
Lehmann and Erskine, 2004; Cibrian-Llanderal et al., 2010),
arguing that female-paced mating has co-evolved in order to
increase reproductive fitness. Female rat solicitation behavior
in laboratory settings has been observed mostly during mating
periods, suggesting that it enhances male sexual motivation and
male arousal (Chu and Ågmo, 2016) and may signal female
sexual motivation towards the male (Ellingsen and Ågmo, 2004;
Sánchez Montoya et al., 2010; Santoru et al., 2014).
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Humans

Humans have adopted multiple mating strategies, and
long and short-term relationships are commonly observed,
even within the same individual (Schmitt, 2010). Long-term
mating in humans demands extended courtship behavior, the
forming of an emotional bond/love, and the investment of
emotional and financial resources (Symons, 1979; Schmitt,
2010; Buss, 2013; Trivers, 2017). Numerous factors influence
individual preferences in the search for long-term mating
partners, such as cultural (Wellings et al., 2006; Chang et al.,
2011; Kamble et al., 2014; Souza et al., 2016; Zhang et al.,
2019; Walter et al., 2020), religious (Newcomb and Svehla,
1937), ethical, emotional (i.e., sense of humor, Miller, 2001),
materialistic (i.e., financial resources, Daly and Wilson, 1983)
factors, but also constraints (family/friends expectations) and
subjective aesthetic parameters (Rusch, 2013; Huang et al.,
2018). Long-term relationships, moreover, are crucial for human
mate choice (both for men and women) in regard to paternity,
as human offspring is born helpless, similar to rats and mice
(Konig and Markl, 1987), and hence demands a time-consuming
investment of parental care (Conroy-Beam and Buss, 2016).
Short-term mating strategies on the contrary may rely on
more immediate sensory signals, which attract and arouse the
chooser (Jonason et al., 2012). Hence, factors that drive human
mate choice of men and women may differ tremendously
depending on whether a long or short-term relationship is
sought or/and established. Long or short-term relationships
might be favored at different times and also can co-exist (Buss
and Schmitt, 1993; Gangestad and Simpson, 2000; Schmitt
et al., 2001; Schmitt, 2005). For a detailed review of factors
influencing female long-term and short-term mating strategies
and their possible evolutionary implications and benefits please
see Buss and Schmitt (2019).

Male mate choice

Even though females have been originally thought to be
choosier (Darwin, 1871; Andersson, 1994; Rosenthal, 2017),
male mate choice is observed across taxa (Dewsbury, 1982;
Parker, 1983; Wedell et al., 2002; Edward and Chapman, 2011;
South and Lewis, 2012), including mice (Dewsbury, 1983;
François Gourbal and Gabrion, 2004; Montero et al., 2013), rats
(Wilson et al., 1963; Jackson and Dewsbury, 1979) and humans
(Schmitt, 2010; Easton et al., 2015). Male mate choice can be
based upon the specific display of female traits such as sound
production in mice (Ronald et al., 2020; Sasaki et al., 2020) and
the ear wiggling and hopping behavior of rats (McClintock, 1984;
Martínez and Paredes, 2001) or voice pitch in humans (Moore
et al., 1985; Pisanski et al., 2018). More frequent, however, is
the choice of females with higher fecundity (Fitzpatrick and
Servedio, 2018), which in turn can be determined by certain

physical and physiological traits (Drickamer et al., 2001), such
as the weight of a female mouse (Costello et al., 2009).

Mice

Male mice are less likely to select recently mated females
(Ramm and Stockley, 2014), choose non-infected partners
(François Gourbal and Gabrion, 2004), that are different from
their father (Beauchamp et al., 1988) and unfamiliar (Ryan
and Lacy, 2003; Ramm and Stockley, 2014). Moreover, they
seem to favor sequential mating under sperm competition
(Dean et al., 2006; Ramm and Stockley, 2014). Interestingly,
just like for females, male mate choice has been proposed to
have an influence on litter size, viability, and social hierarchy
(Moore et al., 2001), and the mating sequence is adapted when
copulating with an unfamiliar mate (Ramm and Stockley, 2014).
Regarding anogenital distance, just like females, male mice show
a preference for shorter anogenital distance in females, which has
been correlated with higher reproductive success and increased
maternity skills (Drickamer et al., 2001).

Rats

Very little is known regarding male mate choice in rats,
even though it is well established that male rats consistently
exhibit a preference for sexually receptive females (Hetta and
Meyerson, 1978; Bakker et al., 1996; Bressler and Baum, 1996;
Moore and Moore, 1999). Regardless of the fact that the
anogenital distance in female rats seems to be correlated with
lower reproductive fitness (Hotchkiss et al., 2007), this trait
does not seem to affect male preference, even though the
anogenital distance in male giant pouched rats is positively
correlated with choosing a sexually available female (closed
vs. open vagina), possibly mediated by odors (Freeman
et al., 2019). Nevertheless, when comparing experiments in
the lab with semi-natural conditions, copulatory patterns
and preferences may change. While in standard small test
cages male rats achieve 7–9 ejaculations before reaching
sexual exhaustion (Beach and Jordan, 1956; Tiefer, 1969;
Rodríguez-Manzo and Fernández-Guasti, 1994), much fewer
(3–4) ejaculations are reported when tested in semi-natural
conditions (Chu and Ågmo, 2014, 2015a,b). Moreover, male rats
barely copulate with females that are not fully receptive in a
semi-natural environment (Chu and Ågmo, 2015a,b), but do so
in a small testing arena (Madlafousek and Hlinak, 1977; Spiteri
and Ågmo, 2006; Oliveira et al., 2021).

Humans

Similar to women, male mate choice can vary depending
on the desire to establish a short or long-term relationship (for
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an in-depth opinion on men long-term and short-term mating
please refer to Easton et al., 2015; Buss and Schmitt, 2019).

Contribution of ultrasonic
vocalizations to the evaluation and
choice of mating partners
(premating)

Mice

As for any other behavior, animals can gather information
from all sensory modalities in order to choose a potential mate.
Without doubt (Beach, 1942), olfactory information is crucial
for rodent mate choice (Coombes et al., 2018; Ferkin, 2018)
and odors carry important information about sex (Johnston,
2003; Choleris et al., 2009; Hurst, 2009; Kondo and Hayashi,
2021), strain (Krackow and Matuschak, 1991; Laukaitis et al.,
1997; Bímová et al., 2009; Zinck and Lima, 2013), social
rank (Jemiolo et al., 1985, 1991; Zhang et al., 2021), sexual
receptivity (Novotny et al., 1990; Dulac and Torello, 2003),
fitness (DeFries and McClearn, 1970; Oakeshott, 1974; Gill
and Rissman, 1997; Temple et al., 2002), and health status
(Kavaliers and Colwell, 1993; Zala et al., 2004; Kavaliers and
Choleris, 2017) of conspecifics. Indeed, several studies describe
a prominent role for pheromones during the initial sexual
approach in rats (Carr, 1974; Kumar et al., 2014; Zhang
et al., 2021) and mice (Roberts et al., 2010, 2014; Haga-
Yamanaka et al., 2014; Demir et al., 2020). For a detailed
recent review about the impact of pheromonal information
and the underlying neural circuitry during mate choice in
rodents, please refer to Stowers and Liberles (2016) and
Deangelis and Hofmann (2020).

Pheromones may be the most important modality for
the initial approach, but they are most certainly not acting
in isolation (Asaba et al., 2014, 2017; Ågmo and Snoeren,
2017; Haskal de la Zerda et al., 2020; Ronald et al., 2020;
Zala et al., 2020; Contestabile et al., 2021). However, it
has been hard to unravel the role of other cues in mate
choice; controversy surrounds the role of calls for example,
in part due to the difficulty of identifying who says what,
an obstacle that was overcome by recent technical advances
(Binder et al., 2020) in the capacity to locate sound sources
(Neunuebel et al., 2015; Heckman et al., 2017; Warren et al.,
2018; Coffey et al., 2019; Sangiamo et al., 2020; Oliveira-
Stahl et al., 2021). Hence, recent studies in mice (Asaba
et al., 2017; Ronald et al., 2020; Warren et al., 2020)
made important progress towards investigating the role of
sound communication during various socio-sexual behaviors
(Sangiamo et al., 2020) and found that specific calls in
the ultrasound range (named ultrasonic vocalizations, USVs)
are expressed by males and females during mating (Holy

and Guo, 2005; Potfors and Perkel, 2014; Heckman et al.,
2016; Seagraves et al., 2016; Asaba et al., 2017; Matsumoto
and Okanoya, 2018; Niemczura et al., 2020; Ronald et al.,
2020; Warren et al., 2020). Wild (Musolf et al., 2010) and
laboratory (Chabout et al., 2015, 2017) male mice produce a
courtship song, specific to their genetic background (Sugimoto
et al., 2011; Melotti et al., 2021) and adapt their USVs to
the reproductive state of the female (Hanson and Hurley,
2012) indicating that odors may affect USVs production
by directing courtship behavior to females that are likely
to mate. Interestingly, female mice also express a complex
courtship song that may signal her hormonal receptivity
(Neunuebel et al., 2015) when animals initially explore and
chase each other (Lenschow and Lima, 2020). Female mice
show a preference for calling males (Pomerantz et al., 1983;
Nomoto et al., 2018; Tschida et al., 2019), especially those
that emit high complex calls over simpler ones (Chabout
et al., 2015; Matsumoto and Okanoya, 2018), and male USVs
enhance female approach behavior (Hammerschmidt et al.,
2009; Asaba et al., 2017; Figures 1A,B). Male and female
seem to increase the rate of call production when they are
further away from each other, indicating that both sexes
use USV to attract mates (Warren et al., 2020). Moreover,
they postulate that “it may be evolutionarily advantageous for
male mice to alter their vocal emissions to (travel/overcome)
greater distances, as this adaptation may enhance the likelihood
to sire offspring”. Regarding female approach behavior, a
recent study showed that males produce complex songs in
response to female urine, further hinting that pheromonal
cues may act as triggers for USV production, intensifying
female attraction towards the male (Ronald et al., 2020).
Interestingly, female USVs are not exclusively triggered by
male urine (Maggio and Whitney, 1985), suggesting that in
the wild it might be the male that is chosen by the female
once he starts calling due to the encounter with female urine
(Nunez et al., 1985).

While USVs may serve to advertise sexual receptivity
(Neunuebel et al., 2015), the interactive nature of these cues
was demonstrated by the observation that male and female
mice simultaneously decrease the rate of USV production
during chasing behavior and that males increase the production
rate when females run away (Finton et al., 2017; Warren
et al., 2020). Warren et al. (2020) complement this study
by showing that male mice clearly adapt their courting
behavior to the calling female by accelerating when the female
calls from further away. Similar to other cues, it has been
shown that USVs can be used for inbreeding avoidance,
in BL6 (Musolf et al., 2010, 2015; Asaba et al., 2014;
Nomoto et al., 2020) and wild type mice (Hoffmann et al.,
2012; Nicolakis et al., 2020), thereby impacting the progeny’s
fitness.

Likewise, male USVs contain information about their social
rank (Nyby et al., 1976; D’amato, 1991; Pasch et al., 2011) as
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dominant males exhibit higher frequency calls in the presence
of a female compared to lower rank individuals, most likely via a
testosterone dependent mechanism (Nunez et al., 1978; Kikusui
et al., 2021).

The impact of pheromonal cues on female sexual receptivity
has been described early on, with the identification of
pheromones capable of triggering endocrine responses in
females, i.e., increased sexual receptivity (Whitten effect;
Whitten, 1958), earlier onset of puberty (Vandenbergh, 1969)
and pregnancy block (Bruce effect; Bruce, 1959). Whether
male mice USVs influence female receptivity, as described
for songbirds (Leboucher et al., 1998; Bentley et al., 2000),
has been scarcely examined, but a recent study indicates
that male calls can indeed trigger female fertility, most
likely through the activation of central kisspeptin neurons
(Asaba et al., 2017).

Female mice also emit audible cues, known as squeaks
(Wang et al., 2008), when interacting with males. Squeaks have
been shown to be emitted during rejection behavior (Sugimoto
et al., 2011; Finton et al., 2017), but also when a female accepts
the male’s attempt at copulation (White et al., 1998; Finton
et al., 2017), complicating efforts to understand their meaning.
Male USVs, however, are dependent on the particular context
the female squeak is emitted: while they stop calling when
females squeak during rejection behaviors, they increase their
courtship song when the female squeaks and allows them to
mount (Grimsley et al., 2013).

Rats

USVs in rats have been classified into pleasure or reward
calls that occur in the 50 kHz range (Wöhr, 2018; Berz et al.,
2022) and alarm or fear calls that are emitted in the 20 kHz
range (Lenell et al., 2021). Similar to mice, rat calls contain
information about dominance status (Xiao et al., 2004; Portfors,
2007) and genetic background (Sales, 1979), results that have
been recently confirmed (Bogacki-Rychlik et al., 2021; Berz et al.,
2022). Interestingly vocalizations may signal sickness in rats as
well (Kirsten et al., 2015).

Like in mice, female rats emit more 50 kHz calls when
sexually receptive (Thomas and Barfield, 1985; Matochik and
Barfield, 1994; Bernanke et al., 2021; Lenell and Johnson,
2021) and males increase their calling rate in the presence of
a receptive female (McGinnis and Vakulenko, 2003; Portfors,
2007) indicating the potential of USVs to modulate female
mate choice. However, there has been controversy regarding the
importance of male calls in female mate choice; while some
studies support the importance of male calls (Thomas and
Barfield, 1985; Gerson et al., 2019) eliciting female approach
behavior (Seffer et al., 2014; Willadsen et al., 2014; Berg
et al., 2018, 2021; Kisko et al., 2018, 2020), others found that
females choose vocalizing vs. non-vocalizing males equally often

(Snoeren et al., 2014). Despite the contradictory results, it is
well accepted that female rats emit more calls when interacting
with male vs. female conspecifics (White et al., 1993; Armas
et al., 2021), probably signaling sexual motivation towards the
male (Börner et al., 2016) and that male USVs can trigger
female solicitation behavior (McIntosh et al., 1978), including
ear wiggling and darting behavior. Solicitation behaviors seem
to be rewarding for both sexes (Martínez and Paredes, 2001) and
increase male sexual arousal, hence activating male mounting
behavior with a shorter latency (Chu and Ågmo, 2015b; Ågmo
and Laan, 2022) and pointing to a certain choice from the male
towards the female.

Unlike female mice, female rats increase their calling rates
when presented with male odors (White et al., 1993), but no
impact of these calls on approach behavior (Seffer et al., 2014;
Willuhn et al., 2014; Brenes et al., 2016) or other copulatory
parameters has been observed (Snoeren and Ågmo, 2013;
Snoeren et al., 2014; Ågmo and Snoeren, 2015) questioning the
role of female calls. Nevertheless, male rats increase the rate of
USVs when they expect to interact and copulate with a female,
and their number of calls was positively correlated with the
number of ejaculation (Bogacki-Rychlik et al., 2021) supporting
a communicative value of male calls during premating and
mating contexts. Another recent study showed that rats of both
sexes are attracted by 50 Hz calls in general and will approach the
sound source (Davidson and Hurst, 2019). However, it must be
noted that most rat sexual behavioral studies were performed in
a laboratory setting and the social structure differs substantially
from what is observed in natural conditions (McClintock,
1984). Wild rats usually live in a complex burrow system with
multiple female and male rats, forming groups ranging from 7
to 100 individuals and most likely sexual behavior is different
(Steiniger, 1950; Calhoun, 1962; Telle, 1966). Some researchers
favor mate choice in the wild (McClintock and Adler, 1978),
while others do not (Schweinfurth, 2020).

Automated behavioral tracking systems and state-of-the-art
sound localization tools to monitor rat sexual behavior in a
large group of individuals in the natural environment (Ventura-
Aquino and Paredes, 2020) are needed in order to disentangle
whether USVs serve as a crucial modality during the initial
phases of mate choice.

Contribution of ultrasonic
vocalizations during mating and
postmating choice

Mice

Besides an impact on precopulatory mate choice, USVs
also seem to affect on-going copulatory mate choice as
females express a less drastic lordosis posture when mating
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FIGURE 1

Male mouse ultrasonic vocalizations and its impact on female mate choice during premating, mating, and postmating. (A) Male USV calls emitted
during premating elicit female approach behavior. (B) Number of female approaches is significantly higher when the male sings compared to
devocalized males. (C) Male USVs emission during mating leads to an increase in lordosis behavior. (D) Ratio of lordosis is higher in females
than received mounts and intromission from males that emitted USVs compared to males that were devocalized. (E) The duration of mounts
in devocalized or intact males is not different. (F) Female mice deliver more pups when mated with males that emitted USVs. (G) A significant
correlation between the number of male USVs and female deliveries has been found. Panels (B,D,E,G) adapted and reprinted with permission
from Asaba et al. (2017). *indicates significant differences (p < 0.05) between devocalized male and sham-operated (Student’s t-test).

with a silent male (Asaba et al., 2017, Figures 1C–E). One
of the most striking results regarding the role of USVs
during mating originates from the same study where it
was reported that female mice who have copulated with
males that constantly sang their harmonic songs during sex
(Matsumoto and Okanoya, 2016) produced more numerous
litters than females that mated with males that emitted
less or no calls during copulation (Asaba et al., 2017,
Figures 1F,G). This phenomenon definitely deserves more
attention as it would be interesting to test if a female aborts
ongoing copulation with a silent male when other options are
available, for example. If a similar effect exists in rats is to
date unknown.

Also, during post-copulatory mate choice, USVs could
act in favor of mate choice since there is evidence for a
more frequent emission of a 40 kHz call in the last mount
immediately prior to ejaculation (pre-ejacultory call; White et al.,
1998) while USV production seems to cease immediately after
ejaculation (Sales and Pye, 1974; Nyby, 1983; Wang et al., 2008)
in mice.

Rats

Male rats (Barfield and Geyer, 1972) emit high-frequency
20 kHz calls (Burgdorf et al., 2008) once they enter the phase of
sexual satiety. These 20 kHz calls have been classically described
as fear calls since they most certainly signal alarm or danger
to conspecifics (Wöhr, 2018). Why they are also emitted by a
sexually sated male rat remains unclear, but the most obvious
reason might be that the 20 kHz calls reflect a withdrawn state
that is similar to a dangerous/fearful or sexual satiated context
(Anisko et al., 1978; Adler and Anisko, 1979). Nevertheless,
it has been proposed that they could also serve to maintain
female contact and probably discourage other males to copulate
with the “chosen” female (Barfield and Geyer, 1972, 1975;
Anisko et al., 1978; Adler and Anisko, 1979; Thomas et al.,
1982; Wöhr, 2018). Another hypothesis suggests that these calls
may transmit dominance information, which could be used
by the female to orient her willingness to mate towards more
dominant males vs. subordinate, as it has been shown that
females who have received an ejaculation from a subordinate
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male resume mating quicker when compared to an ejaculation
from a dominant one (McClintock et al., 1982). It remains to be
investigated whether the post-ejaculatory song differs between
subordinate vs. dominant males, although early studies suggest
that these calls when originating from subordinate males are
longer (McClintock et al., 1982).

Similar to mice, a pre-ejaculatory call also seems to
exist in male rats (White and Barfield, 1990). Whether these
pre-ejaculatory calls are crucial either to signal mate-choice
to surrounding male competitors or serve as a signal to
inform the female of an approaching ejaculation remains
to be determined. Still, considering that female rats and
mice need a minimum amount of vaginal stimulation in
order to trigger the necessary neuroendocrine mechanisms for
pregnancy establishment (Adler, 1969; Diamond, 1970), we can
hypothesize that these pre-ejaculatory calls may be used by the
female to abort the approaching ejaculation in situations where
she did not receive sufficient vaginal stimulation. Supporting this
idea, it has been shown that female rats usually increase their
calling rates when male mating calls are presented via playback,
but do not do so when pre-ejaculatory calls are played back
(White et al., 1993).

Finally, recent studies in rats and mice have shown that
USVs of the opposite sex increase the sexual motivation of
both male and female rats (Bialy et al., 2019; Lenell et al.,
2021) and mice (Pomerantz et al., 1983; Finton et al., 2017;
Fernández-Vargas, 2018; Kuwaki and Kanno, 2021; Zhao et al.,
2021). Sexual motivation in turn has been shown to be a
strong reinforcer for mate choice (Matthews et al., 2005;
Bialy et al., 2019).

The impact of somatosensation for
rat and mouse mate choice
(premating)

Species with low visual acuity, including rats and mice
(Jennings et al., 1998; Minini and Jeffery, 2006) are often
nocturnal (Barnett and Bathard, 1953; Ahl, 1986; Schweinfurth,
2020), relying on smell and other modalities, such as touch (Ahl,
1986; Lenschow et al., 2016) to navigate the world. Large facial
whiskers, capable of moving in specialized and complex ways
(referred to as whisking), gather most of the touch information
needed to parse textures and avoid obstacles (Brecht et al., 1997),
and evaluate conspecifics (Barnett and Bathard, 1953; Wolfe
et al., 2011; Bobrov et al., 2014; Lenschow and Brecht, 2015).
Other smaller, touch-sensitive body hairs transmit information
when moving along walls or other obstacles (Latham and
Mason, 2004), and might be substantially activated when
animals groom each other. Touch is omnipresent when rodents
socially interact in close proximity, playing a role in all sorts of
behaviors, from aggression to parental care and play behavior

(Barnett and Bathard, 1953). Maybe not that surprising, social
and non-social touch are accompanied by distinct whisker
movements and neuronal responses (Bobrov et al., 2014; Rao
et al., 2014; Lenschow and Brecht, 2015), with social touch
leading to small-amplitude, irregular patterns that evoke much
stronger responses, when compared with other non-social
objects (Bobrov et al., 2014). Thus, even though understudied,
it seems reasonable that social touching, independently of which
body part is scanned, may carry important information during
sexual behavior and mate choice. In fact, several observations
support a role for whisker touch and its integration with
other sensory modalities in the context of mate choice in
rodents, as anogenital investigation, a key source of smells for
mate assessment, is oftentimes accompanied by intense whisker
movements (Wolfe et al., 2011).

Mice

Whisking during social interactions in male mice is scarcely
studied, even though the so-called barbering behavior is known
for a long time: male and female mice trim the whiskers of their
cage mates, a sign of dominance (Long, 1972) and hence could
also signal a certain fitness during mate selection. Interestingly,
whisker trimming was also observed among mated pairs with
the male trimming the female until she became pregnant (Long,
1972). To what extent this whisker trimming could indeed signal
fitness or even be a post-copulatory mate choice mechanism
(“this female is mine”) deserves further attention in multiple
partner-choice paradigms. Interesting questions arise from all
these studies and it would be particularly crucial to investigate
whether whisker-clipped males or females are less attractive.

Rats

Social whisking in Long Evans rats exhibits several instances
of sexual dimorphism, with male rats holding their whiskers
more protracted but whisking similarly when interacting with
both sexes, while females whisk with smaller amplitudes when
interacting with males compared to females (Wolfe et al., 2011).
In this same study (Wolfe et al., 2011) the exact position of
the vibrissae was shown to signal aggressiveness. An earlier
study with rats that employed burrows, to mimic natural
conditions, reported that some individuals retract their whiskers
immediately after having made contact with the facial hairs of a
defender and that females may use that signal to protect other
non-receptive females from being mounted by males (Blanchard
et al., 2001). Hence we hypothesize that females or even males
may transmit their non-readiness to mate via a specific position
of their vibrissae. To what extent these tactile cues are indeed
actively involved in mate choice needs further research in a more
naturalistic setting.
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A potential function of vibrissae in the dispersion of
pheromones has been suggested early on (Marler and Hamilton,
1966; Ahl, 1986) but never investigated in fine detail. The fact
that whisking and sniffing are strongly correlated and operate
at the same frequency (4–12 Hz; Welker, 1964; Ranade et al.,
2013) supports a synergistic action of touch and smell together
with audition, as USVs have been shown to be emitted during
active sniffing periods (Roberts, 1972; Riede et al., 2011; Sirotin
et al., 2014), locked to exhalation (Riede, 2014; Boulanger-
Bertolus and Mouly, 2021). As already mentioned, a possible
synergistic interaction between touch and smell becomes even
more apparent after the initial approach takes place: male and
female mice, and rats, not only closely investigate each other’s
faces but also sniff and whisk all over their bodies and most
importantly their anogenital region (Lenschow and Lima, 2020).
To what extent facial hairs are needed to transmit or amplify the
odor information is not known.

Contribution of somatosensation
during mating and postmating
choice

Genital tactile stimulation (Paredes and Alonso, 1997;
Paredes and Vazquez, 1999; Meerts and Clark, 2009; Parada
et al., 2010, 2011) and paced mating (Guterl et al., 2015) are
able to trigger conditioned place preferences (CPP) in female
rats (reviewed in Pfaus et al., 2016) and, therefore, might be an
important cue during mate choice, especially during the phases
of on-going and post-copulatory mate choice. Indeed, artificial
and experimentally controlled vaginocervical (Meerts and Clark,
2009) and clitoral stimulation are able to induce CPP (Cibrian-
Llanderal et al., 2010; Parada et al., 2010) which was blocked
by pharmacological (Meerts et al., 2015) or nerve ablation
experiments (Clark et al., 2011). Interestingly they also suggest
that only clitoral stimulation is crucial for the development of
paced mating (Meerts et al., 2010, 2015; Parada et al., 2010). In
addition, clitoral stimulation was shown to trigger 50 kHz calls in
hormonally primed female rats (Gerson et al., 2019) indicating
the positive valence of this type of genital touch. In male rats,
vaginal thrusting, and presumably penile stimulation alone, are
able to trigger conditioned place preference but only if they have
not experienced ejaculation before (Tenk et al., 2009).

Mice studies investigating the valence of genital stimulation
are so far absent.

The female’s solicitation behavior is activated by male
tactile stimulation (chasing, touching the flanks, and anogenital
sniffing) and this has been particularly well described for rats
(Ågmo et al., 2004; Ågmo, 2008; Chu and Ågmo, 2016). To
what extent a display of solicitation behavior has an impact
on ongoing copulatory mate choice or even its impact on
reproductive fitness is not known so far.

Genital stimulation during copulation is an interactive
and rewarding process that ensures that sperm is transferred,
and pregnancy initiated. As previously mentioned, spaced
sensory vaginal stimulation, seems to be crucial for pregnancy
success and outcome in rats and mice (de Catanzaro, 1991;
Ventura-Aquino et al., 2018), suggesting that genital sensory
stimulation could be a potential mechanism for female mating
and postmating choice (Brennan and Prum, 2015). It would be
particularly interesting to investigate whether female rats resume
mating quicker if they have not received sufficient vaginal
stimulation or whether they prefer long-ejaculating males over
fast-ejaculators (Pattij et al., 2005).

Male mice and rat genitalia consist of a baculum (penis
bone) whose morphology is associated with higher male fitness
(Ramm, 2007; Ramm et al., 2010; Stockley et al., 2013; Simmons
and Firman, 2014; André et al., 2018; Winkler et al., 2021)
and males underlying higher sexual selection pressure have
a thicker baculum (Stockley, 2012; Stockley et al., 2013). A
thickened baculum enabling greater mechanical stimulation of
the female tract could serve an increase in female fertilization
in two ways (Simmons and Firman, 2014): first, it may
promote greater neuroendocrine responses in order to prepare
embryo implantation and subsequent offspring development
(Eberhard, 1996; Stockley et al., 2013); second, it could stimulate
greater oviductal secretion enhancing sperm rheotaxis (Miki and
Clapham, 2013) towards the uterus. Interestingly, male mouse
genital stimulation, on the other hand, seems to contribute
differently to reaching the ejaculatory threshold, as when mating
with a non-preferred female mouse the copulatory sequences are
altered, with males performing more mounts with intromissions
(Ramm and Stockley, 2014) indicating that more sensory
stimulation is needed in order to reach ejaculation.

The baculum serves as well to form the copulatory plug
in rats and mice (Winkler et al., 2021), a thick mass that the
male deposits at the end of ejaculation, which basically prevents
remating of the female with other male competitors (Voss, 1979;
Ramm et al., 2005; Schneider et al., 2016; Sutter and Lindholm,
2016; Sutter et al., 2016) or in situations when the female
remates, it prevents sperm transfer of the competitor (Stockley
et al., 2020). The capacity to remove the plug is thought to
depend on the baculum morphology as well (Simmons and
Firman, 2014; André et al., 2018; Winkler et al., 2021).

Synergistic action of multisensory
cues in mate choice of mice and rats

Multi-sensory dependent perception and communication
is ubiquitous during socio-sexual encounters and may direct
the initiation, maintenance and finalization of any particular
behavior in many different ways (Chen and Hong, 2018). In fact,
mate choice during all three stages may be based on decoding
of multimodal cues whereas it is often unclear to what extent
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these cues carry non-redundant or redundant meanings, thereby
either complimenting a decision to mate or compete for a given
outcome (Johnstone, 1995; Johnstone et al., 1996; Ronald et al.,
2012; Halfwerk et al., 2019). While the large body of literature
investigating the role of single sensory modalities during mate
selection delivered important insights into which sense might
be the main driver for different mate choice phases, i.e., initial
approach, it has blunted our understanding of how differential
processing contributes to female and male mate choice.

Rats

Stone (1922) and Beach (1942) postulated early on that more
than one modality is necessary to trigger male sexual arousal and
approach behavior thereby resulting in copulation (Stone, 1922;
Beach, 1942). These early studies have been complemented by
Ågmo and Snoeren (2017) who suggest that the initial approach
behavior of a male rat towards a female is induced by the
combination of at least two sensory modalities (olfaction, vision,
and others with the latter testing an anosmic male in the dark)
whereby olfaction seemed to be crucial. They concluded the
existence of a cooperative function and a resultant summation of
sensory modalities. While the latter rat study supports the notion
that USVs indeed seem to play a minor role during rat approach
behavior (Heinla et al., 2021), it cannot be ruled out that they
may carry incentive or decisive value once two rats facially touch
each other (Rao et al., 2014), giving rise to the possibility of either
redundant or non-redundant multi-modal signaling.

Mice

Female USVs seem to be crucial for male mice approach
behavior, prompting males to start singing their courtship song.
Interestingly the latter only occurs when males are presented
with female USVs and urine together suggesting an underlying
multi-sensory integration process giving rise to non-redundant
signals that lead to distinct behavioral outcomes (Ronald et al.,
2020). Likewise, it was shown that male mice USVs and urine act
synergistically to attract female mice (Wang et al., 2008; Asaba
et al., 2014, 2017) and that close tactile contact is needed for male
mice to modulate their USV song towards the female (Wang
et al., 2008) and that they continue vocalizing to female urine
when a realistic female encounter was given a forehead (Zala
et al., 2020).

The process of familial and sexual recognition is in particular
essential for premating choice processes and a comparative
study between mice and rats shows that while olfaction
indeed seems to be the main sensory modality needed for
recognizing the opposite sex, the ability to recognize a familiar
individual is greatly impaired when clipping the whiskers
or impairing the hearing sense (Haskal de la Zerda et al.,

2020). Even though it was not studied if the male rats and
mice would have equally copulated with an unfamiliar vs. a
familiar conspecific, it shows that social recognition by rats and
mice relies on the integration of several sensory modalities.
In line with this study is the finding that multiple sensory
modalities indeed seem to represent a more salient stimulus
in comparison to when only an odor stimulus is presented
(Contestabile et al., 2021).

All aforementioned studies exclusively investigated multi-
modal processing during male towards female approach,
which is somewhat surprising given the fact that the
longstanding notion is that females are the choosing sex
(Rosenthal, 2017).

The importance of audition and
somatosensation during human
mate selection

Audition during pre-mate choice

The sense of vision can be seen as the human counterpart to
the rodent pheromone’s decisive cue during mate choice. In fact,
visual attractiveness has been widely studied for human sexual
selection and this in particular is the case for short-term mating
(Buss and Schmitt, 2019). Tactile and auditory modalities have
been largely neglected, even though the latter is a sex-defining
sensory cue (Puts et al., 2006, 2012). The human voice transmits
various and differential social cues just as for mice and rats
(Figure 2) and hence age (Ptacek and Sander, 1966; Linville and
Fisher, 1985), sexual orientation (Munson et al., 2006), sexual
receptivity (Bryant and Haselton, 2009; Fischer et al., 2011;
Klatt et al., 2020), and fertility in women (Feinberg et al., 2006;
Pisanski et al., 2018), dominance in men (Puts et al., 2007, 2012;
Cheng et al., 2016; Schild et al., 2020), physical strength in men
(Sell et al., 2010; Schild et al., 2020), and body configuration
in men and women (Hughes et al., 2004; Rendall et al., 2007;
Pisanski and Rendall, 2011) can all be decoded from human
voice. Since human mate choice can be based on all of these
signals, the voice might be, just like vision, a crucial modality
to choose a potential mate.

The voice is most certainly a sex-defining sensory modality
as a broad body of literature exists reporting that men speak
at a lower vocal pitch than women (Fitch and Holbrook, 1970;
Childers, 1991; Puts et al., 2012; Titze, 2017). Most men prefer
women with higher pitch voices (Collins and Missing, 2003;
Feinberg et al., 2008; Jones et al., 2008; Apicella and Feinberg,
2009; Puts et al., 2011; Abend et al., 2015) particularly for
short-term mating (Puts et al., 2011) while women prefer men
with lower pitch voice (Collins, 2000; Feinberg et al., 2005, 2006,
2008; Puts et al., 2006, 2007; Jones et al., 2010), although this
might also only occur when looking for short-term partners
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FIGURE 2

Potential roles of touch and audition during human and mice/rat mate choice. (A) The parameters that are transmitted via differential voice
features in humans (left panel, human ears) are written in yellow (right panel) whereas those that can transmit differential valence of socio-sexual
touch (right panel, hands, and genitals) are highlighted in turquoise. (B) Same as (A) but for mice (upper panel). The different social cues or
internal states that can be transmitted via ultrasonic vocalizations in mice are highlighted in yellow (lower left panel) whereas those that may be
communicated via socio-sexual are written in turquoise (lower right panel).

(Puts, 2005; Jones et al., 2010). Furthermore, certain voice
features, such as volume or speech duration, are correlated
with a higher number of sexual encounters and mating success
for both men and women (Hughes et al., 2004; Puts, 2005;
Puts et al., 2006; Apicella et al., 2007; Hodges-Simeon et al.,
2011; Atkinson et al., 2012; Suire et al., 2018). Impressively,
the women’s voice pitch is also modulated by their menstrual
cycle (Bryant and Haselton, 2009; Fischer et al., 2011; Klatt
et al., 2020) and the latter impacted their preference for men’s
voices (Puts, 2005). Klatt et al. (2020) recorded naturally
cycling women, during the high and low fertility phases
of the cycle, saying neutral content or sentences associated
with social events, namely mate choice. After hearing the
recordings, men showed a clear preference for the social content
recordings, especially if this came from women in the high
fertility phase, who also had a slightly higher pitch (Klatt et al.,
2020) confirming findings of an earlier study (Pipitone and
Gallup, 2008). During menstruation on the contrary men find
women’s voices least attractive (Nathan Pipitone and Gallup,
2012).

Most of these studies were based on questionnaires after
having presented recorded files. Pisanski et al. (2018) described
voice modulation changes in a natural setting in which subjects
underwent real speed-dating events and found similar results:
men lowered their pitch when interacting with highly desirable
women, especially if they considered the women as a potential
mate and the choice was reciprocated. Interestingly, women had

the opposite behavior: when in the presence of their chosen
potential mates, women showed a higher and more variable pitch
(Pisanski et al., 2018).

Audition during mating and post-mating
choice

Whether men’s and women’s voices during mating, especially
orgasm, and post-mating are different and whether these
modulations can impact reproductive fitness comparable to
rodents is not known.

Somatosensation during pre-mate
choice

As for mice and rats, touch can have differential valence
for humans (Figure 2). Discriminative touch is used to detect
shapes and textures of objects or surrounding nature, whereas
affective touch or social touch is crucial to assess interactions
with other humans. Social touch perception can range from
“orgasmically pleasant to excruciatingly unpleasant” (Cascio
et al., 2019) depending on context (Saarinen et al., 2021),
culture (Hall, 1996; Field, 2010), sexuality, and gender (Morrison
et al., 2010; Ellingsen et al., 2016). Early studies strongly
suggest that affective touch can transmit many emotions
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(Hertenstein et al., 2006), amongst which are friendship and
warmth (Mehrabian and Epstein, 1972) but also sexuality and
intimacy (Jourard and Rubin, 1968; Heslin, 1974; Heslin et al.,
1983). In fact, in intimate relationships, social touch plays a
crucial role, and simple actions, like holding hands, can result
in a sensation of relief during painful situations (Goldstein
et al., 2018). As humans reach sexual maturity, social touch
gains a sexual and romantic valence, and becomes relevant in
the process of choosing a partner (Major et al., 1990) such as
hand-holding during flirting (Moore, 1985; Eibl-Eibesfeld, 1989;
Lee and Guerrero, 2001). Even though men seem to value tactile
cues more than women in the context of premate choice (Herz
and Cahill, 1997) another study on men and women showed
that various emotions, including love, can be detected by being
touched by an unknown person (Hertenstein et al., 2009) and
affective touch is important for both genders to form stable
and secure relationships (Suvilehto et al., 2015; Krahé et al.,
2018). Early studies hint that women were more likely to receive
touch from men while men tended to initiate touch towards
the opposite sex (Henley, 1973; Stier and Hall, 1984; Moore,
1985; Major et al., 1990; Hall, 1996). Women were more prone
to same-sex touch (Stier and Hall, 1984) and not proactive
in touching men; a finding that may be explained with men
overinterpreting women signals in a mating context, and this
has been in particular clear for touch (Struckman-Johnson and
Struckman-Johnson, 1993). These sex differences in affective
touch have been confirmed by recent studies (Schirmer et al.,
2021, 2022). Moreover, it is noteworthy that the touch of
different body parts signals various context and relationship-
dependent meanings (Jones and Yarbrough, 1985; Routasalo and
Isola, 1996). Whereas touching the arms and hands is considered
mostly neutral, touching other parts of the body can mean
and be perceived in several different ways, that are context-
dependent and can range from positive (Willis and Briggs, 1992;
Suvilehto et al., 2015) to highly unpleasant and intrusive (Lee
and Guerrero, 2001). While a causal role of social touch for
short-term partner choice might be questionable (Herz and
Cahill, 1997), it gets clear that the quality of affective touch
is tightly linked to relationship satisfaction in adult romantic
couples (Gulledge et al., 2003; Hertenstein et al., 2006; Wagner
et al., 2020) and, therefore, might be an important factor for
long-term mate choice.

Somatosensation during mating and
postmating

Somatosensation is evaluated during or after sexual
intercourse (mating and postmating) and is a great modulator
of sexual arousal (Georgiadis et al., 2012). Pleasurable penile
stimulation during intercourse most likely favors female
orgasm (Schultz et al., 1999), which in turn has been proposed
to be important to produce an “upsuck” response, thereby

transporting sperm through the cervix into the uterus (Fox
et al., 1970; Baker and Bellis, 1993a,b; Baker et al., 1996; Faix
et al., 2001; Meston et al., 2004). Hence, penile morphology
leading to adapted sensory stimulation of the vagina and clitoris
during intercourse might be a criterion for post-copulatory mate
choice in women and by rendering it rewarding or satisfying,
reproduction may be enforced. In fact, women value the
thickness and length of a partner’s penis as significant impact in
their sexual satisfaction (Štulhofer, 2006). Despite penile sensory
stimulation, it must be mentioned, however, that other objects
or practices of clitoral stimulation during human sex may affect
arousal and orgasm outcome (Pfaus et al., 2016).

Synergistic action of multisensory
cues in human mate choice

One of the first descriptions of different valences associated
with various sensory modalities during human mate preferences
was reported by Herz and Cahill (1997), who developed a
questionnaire entitled “Sensory Stimuli and Sexuality Survey”.
The questions were focused on the subjects’ preference for
auditory, visual, olfactory, and tactile stimuli when choosing a
lover, engaging in sexual activities, or in a neutral task. During
the initial evaluation of attractiveness, men valued smell and
visual stimuli equally, whereas women had a strong preference
for olfactory cues over any other stimuli. Moreover, women
showed no preference for touch or the partner’s voice, while
men rated touch over voice. However, when asked for their
preference during sexual intercourse, men still preferred visual
stimuli, but gave equal importance to touch, followed by sexual
sounds, with olfaction last in the line of preferences. Females,
on the other hand, rated touch during sex as the most preferred
stimuli, followed by visual, sexual sounds, and olfaction (Herz
and Cahill, 1997). Sorokowska et al. (2018) examined the
differences in preferred sensory modality between blind and
sighted subjects. Interestingly, blind people showed a strong
preference for audition, whereas, in the sighted group, smell
was the most valued, similarly to Herz and Cahill (1997). Even
more striking was that all subjects, but blind subjects specifically,
found touch significantly less meaningful when compared to
smell or audition. Furthemore, women tended to give more
importance to smell and audition, whilst men rated smell
over all other modalities (except for blind men that valued
audition more; Sorokowska et al., 2018). Another study asking
blind subjects to rate sensory modalities, found contradicting
results with voices being the most preferred modality (Scheller
et al., 2021) in men and women. Nevertheless, all these studies
show that there is an integration of various sensory modalities
when performing mate choice and that when one modality is
unexpectedly eliminated, others will become more salient.

Moreover, it seems that vision and audition are particularly
redundantly integrated, as high pitch voices of women were
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correlated with how visually attractive men also considered the
women (Collins and Missing, 2003; Jones et al., 2008; Abend
et al., 2015).

We must stress that there are very few studies examining the
multimodal effect of human mate choice and those that exist did
not manipulate the weight of one modality vs. the other. More
research should be inspired by a recent study by Roth et al. (2021)
during which they examined the predictive power of vision,
scent, and voice-sound to lead to further dating in a natural
setting (Roth et al., 2021). It would be interesting to see if their
finding of vision being the strongest predictor of attractiveness
(auditory and olfactory showed small to no effects) can change
when participants were treated with an unpleasant smell or if the
pitch of their voices were artificially manipulated.

Neural circuits for auditory and
somatosensation in the context of
mouse and rat mate choice

Neural circuits for USV detection and
production and their implications for
mate choice

While a large body of literature exists describing the neural
circuitry involved in USV production (Hernandez-Miranda
and Birchmeier, 2018), processing, and detection (Jürgens,
2002; Pickles, 2015), our knowledge of whether auditory
signals are differentially processed in the context of social
behavior or in particular mate choice is rather limited. Briefly,
auditory information is transmitted from the cochlea via the
auditory nerve to the brainstem. Within the brainstem auditory
information is transmitted from the cochlear nucleus (CN) to the
superior olivary nucleus (SO) and from there to the midbrain,
namely to the inferior colliculus (IC; Figure 3A). The IC
sends information further to the thalamic relay station (medial
geniculate body) from where information reaches the primary
auditory cortex (A1; Asaba et al., 2014) and the amygdala
(LeDoux et al., 1985; Ledoux et al., 1987; Doron and Ledoux,
2000; Ferrara et al., 2017) and this has recently been confirmed
for mice (Keifer et al., 2015; Lohse et al., 2021). While it is
clear that mice USVs with their broad frequency range are
differentially processed in IC (Portfors et al., 2009; Wooley and
Portfors, 2013; Garcia-Lazaro et al., 2015) and even already in
CN (Roberts and Portfors, 2015), few studies have investigated
socio-sexual modulation of USV responses in these brain stem
nuclei of male and female (Hanson and Hurley, 2014; Keesom
and Hurley, 2016). Female mice premate choice behavior is
reflected in the IC serotonergic levels of male mice (Keesom
and Hurley, 2016) with IC serotonin measures increasing upon
female acceptance and decreasing when the female rejects the
male. Whether the reflection of female acceptance or rejection is

encoded by the ensemble of auditory, visual and somatosensory
stimuli, since multimodal processing has been described in the
IC (Gruters and Groh, 2012; Yang et al., 2020) and CN (Young
et al., 1995; Kanold and Young, 2001; Shore, 2005), remains
unclear but might be shaped by modulatory input (Hurley
et al., 2002; Nevue et al., 2016; Beebe et al., 2021) or reciprocal
connection to A1 (Blackwell et al., 2020). Audible female sounds
(squeaks) seem to be reflected in the activity of male IC neurons
as shown by anesthetized single cell recordings in mice (Gentile
Polese et al., 2021).

Regarding sound production (Figure 3A), a recent rat study
unraveled distinct nuclei in the brain stem acting as a vocal
pattern generator, segregated by the USVs emotional meaning.
While 50 kHz pleasurable calls are generated by the parvocellular
reticular formation, 20 kHz alarm calls seem to be produced
by a posterior region, mapping to the nucleus retroambiguus
(Hartmann and Brecht, 2020). Whether these centers receive
differential inputs from the mesolimbic dopaminergic system
(shown to initiate 50 kHz calls; Burgdorf et al., 2007; Ciucci
et al., 2009; Willuhn et al., 2014) and cholinergic systems
(responsible for 22 kHz; Brudzynski, 2021) thereby driving
different USVs during mate choice, such as 50 kHz during
premating/mating and 20 kHz during sexual satiety remains to
be investigated. In fact, a recent mouse study found that the
nucleus retroambiguus receives its main input from upstream
neurons in the periaqueductal gray (PAG) that were strongly
involved in USV production in the presence of a female (Tschida
et al., 2019). Even though the latter study carefully disentangles
a PAG to hindbrain vocal circuit in the context of mate
choice, showing that female affiliative behaviors towards the
male are clearly reduced when male calling is prevented, it is
still unknown how male USVs shape female preference at the
neural circuit level. In general, studies in female rats (Sakuma
and Pfaff, 1979; Yamada and Kawata, 2014) and mice (Ishii
et al., 2017) point to a lordosis modulating role of the PAG
supported by anatomical studies that have uncovered various
PAG-brainstem projections that are activated during mating
(Yamada and Kawata, 2014; Subramanian et al., 2018; Lo et al.,
2019).

Auditory cortical responses to natural USVs have been
studied in mice (Chong et al., 2020; Maor et al., 2020; Royer et al.,
2021) and rats (Carruthers et al., 2013; Kim and Bao, 2013; Rao
et al., 2014; Bao, 2015), but not in a mating context. Potential
multimodal processing in A1 has been best described in the
context of maternal behavior by testing the synergistic action of
pup odors and USVs (Cohen et al., 2011; Cohen and Mizrahi,
2015; Tasaka et al., 2018, 2020; Nowlan et al., 2022). Regarding
mate choice or sex-representation, rat A1 activity seems to be
differentially modulated by the opposite sex (Ebbesen et al.,
2019).

Auditory information reaches the amygdala, belonging
to the social brain network, via the thalamus. The social
brain network (Figure 3B) is composed of six reciprocally
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FIGURE 3

Neural circuits for audition and somatosensation in the context of rodent mate choice. (A) Sound detection pathway is depicted in light yellow:
auditory information from the cochlea is transmitted via the cochlear nerve to the cochlear nucleus (CN) which sends information to the superior
olive from where it reaches the inferior colliculus. From the inferior colliculus, auditory information reaches the auditory cortex (A1) or amygdala
(Amy) via the medial geniculate nucleus in the thalamus (MGN). IC and MGN are reciprocally connected with A1. Reciprocal connection between
MGN and Amy has been observed as well. Sound production pathway is highlighted in orange: the periaqueductal gray (PAG) has been involved
in mate choice produced USVs and receives auditory related feedback from the preoptic area (POA) and Amy. From the PAG information is sent
to vocal pattern generators in the brain stem (nucleus solitarius, NS and nucleus retroambiguus, NRA) and from there is further processed in the

(Continued )
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FIGURE 3 (Continued)

spinal cord. (B) The social behavior network as postulated by
Newman (1999) consists of reciprocal connections between
the ventromedial hypothalamus (VMH), the later septum (LS),
the amygdala (Amy), the midbrain, the anterior hypothalamus,
and the preoptic area (POA). (C) Touch vibrissae information
travels from the periphery through the trigeminal nucleus
(TN) in the brainstem to the thalamus. In the thalamus,
information is relayed via the ventral posteromedial (VPM)
and the medial posterior complex (POm) nuclei to the
vibrissae portion of the primary somatosensory cortex (S1):
the barrel cortex. (D) Genitosensory information has been
shown to activate various subcortical structures, including
brain areas of the social behavior network, as revealed by
cfos studies in male and female rats. Ascending genitosensory
encoding information from the penis and vagina in line
with unraveling cfos activitiy during sexual behavior revealed
the nucleus paragigantocellularis (nPGi), the subparafascicular
nucleus (SPF), PAG, periventricular nucleus of the hypothalamus
(PVN), and Amygdala (Amy). BNST, bed nucleus of stria
terminals; MPOA, medial preoptic area. (E) Potential pathways
leading to multisensory processing in primary cortical areas
(M1, primary motor cortex; S1, primary somatosensory cortex;
A1, primary auditory cortex; V1, primary visual cortex; PCx,
piriform cortex): cortico-cortical connections are depicted in
dark green. Thalamocortical connections carrying multimodal
information are drawn in turquoise (VPM, ventral posteromedial
thalamus; MGN, medial geniculate nucleus) and connections
from multisensory integration centers are shown in light yellow
(ZI, zona incerta; IC, inferior colliculus; SC, superior colliculus).
(F) Postulated major brain nodes implicated during mate choice.
Prefrontal cortex (PFC) may account for the active decision to
mate. The lateral septum (LS) and hippocampus (HC) might
be responsible for individual and (non)familiar recognition of
potential mates. The Insula and amygdala (Amy) are proposed
to be the main integrators for multimodal information. The
hypothalamus (Hypo) is most likely an active output player during
mate choice as it has been described during other socio-sexual
behaviors. The reward pathway of the ventral tegmental area
(VTA) and nucleus accumbens (NAc) encodes the valence of
sensory stimuli during mate choice.

connected brain areas, the amygdala, the lateral septum, the
preoptic area (POA), the anterior hypothalamus, the ventral
hypothalamus, and the midbrain (Newman, 1999), and is
involved in various socio-sexual behaviors. The amygdala has
been described in the context of fear conditioning during
sound perception (McCue et al., 2014; Cragg et al., 2016) and
processing (Sadananda et al., 2008; Ouda et al., 2016; for a
detailed overview see Furtak and Brown, 2018). Moreover,
single basolateral amygdala neurons in the male rat are not
only activated by female USVs (Grimsley et al., 2013) but also
seem to distinguish between different contexts and the type
of call (Parsana et al., 2012; Schönfeld et al., 2020). In male
mice, the amygdala has been recently attributed to the sound-
producing pathway, as medial-central amygdalar GABAergic
neurons directly inhibit USV-producing neurons in the PAG,
while other aspects of socio-sexual behaviors were not affected
(Michael et al., 2020). Inhibitory neurons from the POA on
the contrary disinhibit PAG USV-producing neurons, suggesting
that the amygdalar PAG pathway suppresses USV production
in male mice, whereas the POA-PAG pathway favors USV

production (Michael et al., 2020) and modulates the mate
contextual male calls (Chen et al., 2021) which could be gated
by different incoming female sensory cues probably relayed
from interconnectivity with the amygdala (Newman, 1999). The
amygdala is not only included in the auditory pathway but
has been probably best described within the olfactory pathway
(Mucignat-Caretta, 2021), which is the main player in sexual
approach behavior (Bergan et al., 2014; Li et al., 2017; Lenschow
and Lima, 2020). Moreover, it has access to general tactile
information (Shi and Cassell, 1999) and genital somatosensory
cues (Erskine, 1993; Oberlander and Erskine, 2008). Altogether
this points to the amygdala as a multimodal computational brain
node (Figure 3E).

The primary somatosensory cortex and
socio-sexual touch

Peripheral tactile information sensed by the whiskers,
genitals, and other body parts (Huzard et al., 2022) is relayed
via ventral medial and posterior medial thalamic nuclei before
reaching and being processed in the primary somatosensory
cortex (S1, Figure 3C) that contains a somatotopy of the outer
body (reviewed in Adibi, 2019). The impact of vibrissae S1
(barrel cortex) activity during socio-sexual behavior has been
described during play behavior (Gordon et al., 2002; Charles
Lawrence et al., 2008) and social facial touch (Bobrov et al., 2014;
Lenschow and Brecht, 2015; Clemens et al., 2019). At least 40%
of barrel cortex neurons are differentially modulated by social
facial touch compared to object touch. Moreover, the female’s
barrel cortex activity is modulated with the estrous cycle as single
unit recordings increase their firing when estrous females touch
a male but are inhibited when a female conspecific is touched
whereas out of estrus this phenomenon was absent (Bobrov et al.,
2014).

Sensory genital stimulation leads to stronger activity in the
male genital portion of S1 than in the female genital cortex of
S1 and this has been shown for rats (Lenschow et al., 2016) and
mice (Sigl-Glöckner et al., 2019). Interestingly an early study
on the rat shows an increase in the cortical genital sensory
receptive field during estrous (Adler et al., 1977). To what extent
rat and mice S1 genital cortex of males and females differentially
respond to anogenital sniffing in a mate choice paradigm or the
mating context remains open.

Multisensory integration in primary
cortical areas

All these studies point to a certain degree of multisensory
integration in S1 as the neuronal activity does not reflect the
mere tactile input but also the interaction partner’s sex as
S1 barrel cortex activity of female rats is differentially modulated
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by female vs. male interaction partners (Bobrov et al., 2014).
Indeed, multisensory integration of social facial touch and USVs
has been described in rat A1 (Rao et al., 2014). While the authors
report a striking inhibition when aligning single A1 units to
facial touch, a strong modulation of auditory cortex neurons to
USVs by facial touch could be seen (Rao et al., 2014) indicating
a multimodal processing occurring during a social context. In a
follow-up study the authors could show that A1 seems to process
sex-touch responses as well leaving it unclear if the mechanism
behind this phenomenon might be of neuromodulatory origin.
The same was observed in the primary vibrissae motor cortex,
cingulate cortex, and prelimbic cortex (Ebbesen et al., 2019).

Touch and odor processing has been recently described
in S1; although not in the context of mate choice
(Renard et al., 2021).

The multisensory effect on the cortical level could be
inherited from subcortical inputs (Figure 3E): indeed major
thalamic auditory (the medial and dorsal regions of the medial
geniculate body respond to visual, somatosensory, and vestibular
inputs; Wepsic, 1966; Calford and Aitkin, 1983; Komura et al.,
2005) and somatosensory relays (ventromedial posterior nucleus
combines tactile and visual cues; Bieler et al., 2018; Lohse
et al., 2021) have been shown to be involved in multisensory
integration and to act as a context-dependent gate favoring one
modality vs. the other (Lohse et al., 2021). Another pathway
that could give rise to multimodal signals in early cortical areas
is through cortico-cortical reciprocal connections like as shown
between S1, A1, and primary visual cortex (Budinger et al., 2006;
Stehberg et al., 2014; Meijer et al., 2019). The perirhinal cortex
has been of long-standing interest to transmit odor information
to primary sensory cortical areas (Winters and Reid, 2010;
Albasser et al., 2011; Renard et al., 2021). Lastly, cortical-multi-
sensory processing might stem from indirect afferent inputs
of classical multisensory computational cores, like the superior
colliculus (Ahmadlou et al., 2018; Gharaei et al., 2020; Benavidez
et al., 2021). In fact, the genital cortex of S1 receives scarce but
substantial input from the zona incerta (Lenschow and Brecht,
2018; Massé et al., 2019), a so far neglected brain area, recently
described as a potential relay for multisensory integration (Wang
et al., 2020).

Neural processing of audition and touch
in the social behavior network

While impressive progress has been made in disentangling
specific cell activity during sexual behavior in the social behavior
network structures (Lenschow and Lima, 2020) our knowledge
of how these brain areas encode audition and touch information
is scarce and this is, in particular, true in the context of
mate choice. Using the immediate early gene cfos as a readout
of neural activity, various studies in female rats (Erskine,
1993; Erskine and Hanrahan, 2003; Oberlander and Erskine,

2008) found an activation of the nucleus paragigantocellularis
(nPGi), medial preoptic area (MPOA), bed nucleus of the stria
terminalis (BNST), PAG, ventromedial hypothalamus (VMH),
and Amygdala (Amy) during artificial or natural (through
male mounts with intromissions) clitoral and vaginocervical
stimulation. Likewise cfos induction upon copulation has been
found in the nPGi, MPOA, BNST, Amy and subparafascicular
nucleus of the thalamus (SPF) in male rats (Paredes and Baum,
1995; Coolen et al., 1998). Anatomical mapping of ascending
genitosensory information in male (Gréco et al., 1996, 1998;
Normandin and Murphy, 2011) and female rats (Marson and
Murphy, 2006; Gelez et al., 2010) revealed targets consistent
with the aforementioned cfos studies. The study by Normandin
and Murphy (2011), however, unraveled that only the nPGi,
PAG, SPF, and PVN were labeled with a penis/vagina injected
anterograde traveling herpes virus in parallel with cfos induction
upon sexual behavior (Figure 3D).

Even though the aforementioned literature suggests that
genitosensory information may reach the social behavior
network, we are still lacking a fine description of the pathways
carrying somatosensory and auditory information to the social
behavior nodes and how sensory information coding during
mate choice may differ from other social contexts, such as
parenting or aggression.

Mate choice decision

Even though multimodal processing seems to be a common
feature in early auditory and somatosensory cortical areas and
these signals may be inherited from thalamic or multisensory
centers (Figure 3D), there must be brain structures that have
access to multi-modal cue processing and actively guide the mate
choice decision during premating, mating and even postmating
and these areas should be connected to the social behavior
network (Figure 3C); more specifically to the amygdala that
has been proposed to be the main integrator for multisensory
cues (Raam and Hong, 2021) and to the hypothalamus, shown
to be the main output player during various socio-sexual
behaviors (Wei et al., 2021). Both areas consist of multiple
substructures or nuclei highly inter- and reciprocally connected
to other social behavior network nodes, thereby able to actively
contribute to social cognition (Chen and Hong, 2018), the
mechanism of “acquiring, processing, keeping and reacting on
social information” (Seyfarth and Cheney, 2015; Kavaliers and
Choleris, 2017).

Thinking of cognition, and in particular, decision making,
the prefrontal cortex (PFC) might be the most obvious
player coming into the equation. Various recent studies
investigated PFC activity during active decision making in the
mouse (Bicks et al., 2015; Vertechi et al., 2020; Posner et al.,
2022) and rat (Kurikawa et al., 2018; Verharen et al., 2020)
describing multi-modal processing capacities (Bizley et al., 2016;
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Shadi et al., 2020; Coen et al., 2021; Zheng et al., 2021) and
implications during social cognition (Yizhar et al., 2011; Kumar
et al., 2014; Felix-Ortiz et al., 2016; Murugan et al., 2017; Levy
et al., 2019; Mague et al., 2020). More particular, multiple studies
point to a prominent role of PFC during opposite-sex choice and
social approach behavior (Nakajima et al., 2014; Kim et al., 2015;
Lee et al., 2016; Jennings et al., 2019; Levy et al., 2019; Kingsbury
et al., 2020). Female PFC oxytocin receptor expressing neurons
in particular seem to be crucial for male preference during
sexual receptivity as their ablation abolishes male approach
behavior (Nakajima et al., 2014). Microendoscopic imaging
revealed that dorsomedial PFC neurons predict the opposite
partner preference as their activity reflected female-preferring
choices but not when a male mouse was the preferred partner
(Kingsbury et al., 2020). Moreover, a direct connection from
the PFC to the lateral septum (LS) has been described in the
same study. By specifically activating a genetically defined
LS projecting cell population in the PFC the authors showed
that mice preferred to interact with non-familiar mice. This
connection could be a potential top down control on how the
cortex impinges on the social behavior network thereby driving
a preference. A similar circuit has been described during social
dominance behavior (Padilla-Coreano et al., 2022). Whether
this is mediated by the integration of multisensory cues has been
left open.

Sensory information in the mPFC encoding the sex and
social valence of a conspecific might stem from the hippocampus
(Murugan et al., 2017). The dorsal CA2 and ventral part of
the hippocampus have been tremendously studied in the light
of social recognition and memory (for review see Okuyama,
2018; Wang and Zhan, 2022). As mentioned earlier the latter
is of utmost importance during premating choice in order to
prevent inbreeding or to mate with the same partner. In fact,
through immediate early gene-based connectivity in mice, it
was shown that protein synthesis in the hippocampus, but also
mPFC and amygdala mediates conspecific memory (Ferretti
et al., 2019). Interestingly, ventral CA1 neurons are strongly
modulated by touch and USV calls during rat social interactions.
In male rats, ventral CA1 cells showed stronger responses
toward females than to males and more interestingly seem to
distinguish between individual females independent of their
estrous phase. Which sensory modality drove this individual
female recognition was however not pinned down (Rao et al.,
2019). Septal-hippocampal connections has been described in
rats (Risold and Swanson, 1996, 1997; Arszovszki et al., 2014)
and mice (Parfitt et al., 2017; Leroy et al., 2018; Horiai et al.,
2020) and the recent description of encoding kinship behavior in
the LS (Clemens et al., 2020) suggests that these two areas might
be key to identify the partners individuality and prevent repeated
sex within the same partner (Figure 3F). Both structures have
not been investigated in the context of mate choice but the
hippocampus has been described in USV production (Sprouse
and Aghajanian, 1988; Antoniadis and McDonald, 2000; Wöhr

et al., 2009; Hamed et al., 2016; Huang et al., 2020) and detection
(Ouda et al., 2016), although it is unclear whether hippocampal
neurons differentiate sex, familiarity, or individuality based on
USVs. It is however noteworthy that ventral CA1 neurons
distinguish between the calls from others and their own call (Rao
et al., 2019). Neurons in the LS are modulated by USVs even
though no discrimination is made between kins or non-kins
(Clemens et al., 2020) and cholinergic stimulation triggers
calls in the lateral septum of anesthetized rats (Brudzynski,
2021). Studies inspired by Clemens et al. (2020) and Rao et al.
(2019) should be conducted in the mating context in order
to unravel the hippocampal-septal interconnectivity and their
implementation towards the prevention of inbreeding (in mice)
or remating with the same animal by using multi-modal cues.

Prefrontal-amygdala connections have been shown to be
involved in social-decision making (Gangopadhyay et al.,
2021) and more specifically to drive social approach/preference
behavior (Huang et al., 2020; Kuga et al., 2021) through positive
vs. negative valence-encoding (Felix-Ortiz et al., 2016; Huang
et al., 2020). There are also recent studies pointing to the PFC
(Zhou et al., 2017; Padilla-Coreano et al., 2022) and amygdala
(Hong et al., 2014; Lee et al., 2016, 2021; Dwortz et al., 2022)
as neural correlates for social hierarchy as the dominance level,
for instance, was reflected in the gene expression of corticotropin
releasing factor (So et al., 2015) in the medial amygdala. Whether
neuronal activity in the PFC and amygdala predicting social
hierarchy and rank are also reflecting differential processing for
USVs or vibrissae is currently unknown.

The insula as a bridge between primary
sensory cortices and the social behavior
network

While the amygdala seems to be the central multisensory
node in the social behavior network, early cortical areas, the
main drivers for early sensory processing barely connect to the
amygdala or the social behavior network in general. Therefore,
the insula has been proposed to be a prominent bridge (Rogers-
Carter and Christianson, 2019) between the social behavior
network and sensory cortical and thalamic nodes (Figure 3F).
A recent study examined the inhibitory and excitatory afferents
and efferents of the mouse insula (Gehrlach et al., 2020) thereby
supporting awareness of a unique position to receive and process
multimodal cues (Rodgers et al., 2008; Gogolla et al., 2014) and
driving emotional and socio-cognitive decisions (Gehrlach et al.,
2020). A recent mice study described that 24% of agranular
insular neurons encode social exploration and distinguish
between anogenital, nose-to-nose, or body exploration (Miura
et al., 2020). Insula-amygdala interconnectivity (Shi and Cassell,
1999; Gehrlach et al., 2020) for instance has to be shown to be
crucially involved in positive and negative valence coding during
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social interactions (Ferretti et al., 2019; Nicolas et al., 2021)
such as pathogen avoidance (Kavaliers et al., 2022). Intriguingly
insula function may be decisive to discriminate between sick and
healthy rats (Rieger et al., 2022) whereas the amygdala seems to
have a preventive but not a causal role (Kwon et al., 2021) in
signaling sickness and overall sociability. Affective touch during
social encounters has been shown to modulate insula activity in
rats (Rogers-Carter et al., 2018; Miura et al., 2020) and mice
(Miura et al., 2020; Matsumoto et al., 2021) while there are
no studies evaluating insular modulation by social vocalizations
or USV in general. Even though multimodal processing in the
insula has been described in the rat and mouse (Rodgers et al.,
2008; Gogolla et al., 2014) and causal insular impact during
social cognition (Rogers-Carter et al., 2018; Rogers-Carter and
Christianson, 2019), such as novelty recognition (Kim et al.,
2021) has been demonstrated, mate choice studies measuring
insula activity during the different phases are missing.

Neural pathways underlying socio-sexual
valence of mate choice

The reward pathway, consistent with the ventral tegmental
area (VTA) and the nucleus accumbens (NAc; Russo and Nestler,
2013), play an important role in evaluating the valence of sensory
stimuli during mate choice (Figure 3F; Beny-Shefer et al., 2017;
Hu et al., 2021; Sun et al., 2021) and social interactions in general
(Bariselli et al., 2018; Solié et al., 2022) mostly through reciprocal
connectivity with the amygdala, hypothalamus, and prefrontal as
direct inhibition of dopamine (DA) VTA neurons do not alter
the facilitation of sexual behavior (Beloate et al., 2016). Many
studies emphasized that a paced mating is needed in order to
induce a reward state ensuring the maintenance and repetition of
the behavior (reviewed in Camacho et al., 2009). In line with this
it could be shown that DA levels rise in the nucleus accumbens
and VTA during paced mating in female rats (Mermelstein and
Becker, 1995; Pfaus et al., 1995; Becker et al., 2001) whereas in
two studies (Mermelstein and Becker, 1995; Pfaus et al., 1995)
that DA rise was already observed before the actual paced mating
took place, leaving it unclear if the latter was due to smell,
vision, or USVs or an ensemble of all. The extent to which DA
is indeed a reward signal resulting from sexual stimulation has
been challenged by pharmacological studies in rats which failed
to induce a conditioned partner preference after the application
of a DA antagonist (for an in-depth opinion see Paredes, 2009).
Recent mice studies making use of DA sensors (Dai et al.,
2021) in combination with cellular specificity and high temporal
resolution tools (Beny-Shefer et al., 2017), however, rather favor
an anticipatory role of DA during sexual stimulation and a clear
necessity of DA transmission in the mesolimbic pathway during
male mate choice (Beny-Shefer et al., 2017).

Microdialysis in the basolateral amygdala (a projection target
of the VTA) while presenting male and female mice with USVs

from the opposite sex showed an increase in DA levels in
both males and females (Ghasemahmad, 2020), indicating the
overall incentive rewarding nature of USVs. There are also
a few studies investigating the rewarding neural correlate of
social touch (Sun et al., 2018; Elias and Abdus-Saboor, 2022).
Intriguingly, by artificially activating a specific sensory cell
population encoding the transmission of gentle stroking they
could trigger the lordosis state in female mice independent of
their reproductive cycle (when the back was targeted). Moreover,
the authors could show that DA is released in the NAc when
optogenetically activating these sensory cells in the back of the
female (Elias and Abdus-Saboor, 2022). Another study making
use of dopamine sensors in the NAc observed DA transients
during male mice sexual behavior and even though the authors
do not disentangle different sensory modalities, body contact
during mounts with penile thrusting led to DA increase in the
NAc (Sun et al., 2018). Whether the rewarding valence of social
touch reaches the reward pathway through primary cortical to
subcortical circuits (Lenschow and Brecht, 2018) or rather by
a bottom-up pathway (from the spinal cord through the PAG
and hypothalamus; Figure 3D; Elias and Abdus-Saboor, 2022)
demands further investigation. Lesion studies of the MPOA in
male (Paredes et al., 1998) and female rats (Meerts and Clark,
2009) are in favor of the latter as conditioned partner/place
preference upon vaginocervical stimulation and paced mating
are disrupted indicating that the MPOA is an important site
for mating associated processing of somatosensory signals and
the reinforcing effect of vaginocervical stimulation (Meerts and
Clark, 2009).

Taking into consideration all above-mentioned studies
examining neural activity during socio-sexual behaviors, it gets
clear that we have a great gasp on the main brain nodes
being involved during social evaluation and approach behavior,
even though with no or very little conclusions to draw in the
context of USV and touch processing. Whether the neuronal
activity in the amygdala, hypothalamus, hippocampus, lateral
septum, prefrontal cortex, or reward pathway during mating and
postmating might predict the reproductive outcome or could
even predict an on-going or postmating choice demands further
experiments taking advantage of natural settings (Krakauer et al.,
2017) and state-of-the-art neural recording and manipulation
techniques.

Neural circuits for audition and
somatosensation in the context of
human mate choice

Somatosensation

Mechanoreceptive afferents in the skin, such as fast
myelinated A-beta or slow conducting C-tactile (CT) fibers, are
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activated upon touch and CT-fibers have been predominantly
found in hairy skin (Figure 4A) whereas A-beta is prevalently
present in glabrous skin like the hand (Figure 4B; McGlone
et al., 2014). While the latter are involved in many tactile
attributes (Mountcastle, 2005; Kandel, 2013), CT-fibers are
mainly activated by slow stroking of the skin, as is observed
during caresses. Due to the differential activation by velocities
(Essick et al., 1999; Vallbo et al., 1999, 2016; Löken et al., 2009)
and supposedly different integrative neural pathways (McGlone
et al., 2014; Morrison, 2016; Case et al., 2016; Marshall and
McGlone, 2020), a functional dissociation has been suggested
(McGlone et al., 2014): A-beta fast conducting afferents
are rather involved in discriminative touch (Figure 4A),
while the CT-fibers may signal affective or social touch
(Figure 4B).

Various human fMRI studies examining discriminative
touch mainly delivered to the hand reported activity in the
posterior column medial lemniscal pathway (Hansson and
Brismar, 1999; Blatow et al., 2007; Govers et al., 2007;
Agosta et al., 2009; Ghazni et al., 2010) which is preserved
across mammals. Briefly tactile information from the skin is
transmitted to the dorsal region of the spinal cord from where
it reaches the gracilis (GN) and cutaneous nucleus (CN) in the
medulla. Afferents then cross the midline and travel through
the medial lemniscus in the brainstem to the ventral-posterior
lateral (VPL) and medial nuclei (VPM) in the thalamus from
where they reach S1 containing a topography of the body
also known as homunculus (Penfield and Rasmussen, 1950;
Figure 4B). For a recent review on somatosensory processing
please refer to de Haan and Dijkerman (2020).

The social touch pathway, recently debated (Marshall
et al., 2019), supposedly travels through the spinothalamic
tract (Foerster and Breslau, 1932; Lahuerta et al., 1994) and
ventromedial posterior nucleus (VMPo) before entering the
insula (reviewed in: Marshall and McGlone, 2020). Even
though neurophysiological and neuroimaging studies support
separated neuronal processing of discriminative (somatosensory
cortices activation) vs. affective touch (insula and orbitofrontal
cortices activation; Francis et al., 1999; Olausson et al.,
2002; Ebisch, 2011; McGlone et al., 2012; Gordon et al.,
2013; Case et al., 2016; Morrison, 2016; Kirsch et al., 2020),
there is a broad body of contradicting studies reporting
pleasurable touch by both hairy and glabrous skin (Luong
et al., 2017; Pawling et al., 2017; Schirmer and Gunter, 2017)
and primary sensory areas also being activated by affective
touch (Gazzola et al., 2012; Ellingsen et al., 2013; Ebisch
et al., 2014a; Shirato et al., 2018; Schirmer et al., 2022). A
recent fMRI study adds to this contradiction as partner vs.
stranger touch led to stronger activation of the orbitofrontal
cortex, posterior cingulate cortex, and somatosensory cortices
but not the insula (Kreuder et al., 2017) which however
showed an increased activity upon touch when oxytocin
was nasally applied. Oxytocin, in general, was suggested

to play a role in pair bonding in humans and is indeed
released during sexual intercourse (Winslow et al., 1993;
Uvnäs-Moberg et al., 2005) but also non-sexual contact in
long-term couples (Shermer, 2004; Light et al., 2005). Strikingly,
a recent study, although not investigating the role of oxytocin,
found that holding hands with the love partner induced higher
interpersonal neural synchronization than vocal communication
and was absent during interpersonal friend touch
(Long et al., 2021).

Insula activity modulations during social touch by romantic
partners were related to sexual desire and the expected outcome
(Ebisch et al., 2014a,b). Integration of social touch with other
sensory modalities has been described to alter insula activity,
as unpleasant odors (Croy et al., 2016) or fearful context (Koole
et al., 2014) hampers its responses.

Despite cortical and insula activation upon partner’s touch,
prominent amygdala activation has been reported when being
or thought to be touched by the partner (Suvilehto et al., 2021).
Interestingly, the amygdala shows also strong fMRI responses
during visual guided short-term mate choice (Turk et al., 2004;
Funayama et al., 2012; Cartmell et al., 2014) and in particular
in humans that have seen pictures of their love partners (Bartels
and Zeki, 2000, 2004; Aron et al., 2005; Fisher et al., 2005).

As human courtship progresses, tactile cues gain sexual
weight and more erogenous zones, such as the genitals,
are touched. Genital sexual stimulation by partners leads
to strong activation of S1 but also the insula (Georgiadis
et al., 2009; Chivers et al., 2010) whereas the amygdala was
more strongly activated in women than in men (Georgiadis
et al., 2009). Insula genital touch activation is intriguing
in the light of discriminative vs. affective touch as it is
to date unknown whether CT fibers can be found in the
genitals (Georgiadis and Kringelbach, 2012). Interestingly a
recent human fMRI study described that the somatosensory
region representing the clitoris is larger in women who
reported to have higher frequencies of sexual intercourse in
the past year and during the onset of their sexual activity
(Knop et al., 2022).

For a detailed review regarding brain activation during
sexual intercourse, please refer to Ruesink and Georgiadis (2017)
and Calabrò et al. (2019).

Audition

Just like the touch perception pathway, the auditory
detection pathway is preserved across rodents and humans
(Figure 4C), with specific auditory areas being sensitive to
voices (Belin et al., 2000, 2002; Lattner et al., 2005; Zaehle
et al., 2008; Allen et al., 2017). Human fMRI activity in A1 of
men can decode the sex from voice (Sokhi et al., 2005) and
even distinguish between individuals (Andics et al., 2010).
Moreover, A1 seems to encode vocal emotions as shown by
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FIGURE 4

Neural circuits for audition and somatosensation in the context of human mate choice. (A) Discriminative touch is thought to be relayed to the
dorsal spinal cord via A-beta fibers primarily found in glabrous skin. Touch information is then sent to the cutaneous nucleus (CN) and gracilis
nucleus (GN) and travels further through the medulla and mediolateral brainstem before being relayed by the thalamus (ventral posterolateral,
VPL, and ventral posteromedial, VPM nuclei) towards the primary somatosensory cortex (S1) which contains a topography of the outer body,
known as the homunculus. (B) Social touch is predominantly transmitted via C-tactile (CT) fibers to the dorsal spinal cord. The ascending route
through the medulla and brainstem is not unraveled. Social touch is thought to be primarily relayed via the ventromedial part of the posterior
thalamus (VMPo) towards the insular cortex. (C) The sound perception pathway. Auditory information is perceived by the cochlear which transmits
the information via the cochlear nerve to the cochlear nucleus (CN) from where is sent to the superior olive (SO) and further through the nucleus
of the lateral lemniscus (LM) to the inferior colliculus (IC) in the brainstem. The medial geniculate nucleus (MGN) is the thalamic relay station from
which information is sent to the primary auditory cortex (A1). (D) Potential neural substrates of human mate choice. Brain, spinal cord, hand, skin,
and cochlea icons were created with biorender.
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various fMRi studies (Kotz et al., 2003; Grandjean et al., 2005;
Ethofer et al., 2006, 2007, 2009; Wiethoff et al., 2008). Other areas
involved in encoding vocal emotions and gender information
are the prefrontal cortex, amygdale, and insula (Ross, 1981;
Heilman et al., 1984; George et al., 1996; Morris et al., 1999;
Buchanan et al., 2000; Sander and Scheich, 2001; Wildgruber
et al., 2002; Mitchell et al., 2003; Junger et al., 2013; Kotz et al.,
2013), all areas that have been shown to be activated by tactile
mating stimuli.

Mate choice prediction

The human prefrontal cortex has been implicated in
executive functions and decision-making (Domenech and
Koechlin, 2015). Thus, not surprisingly it has been revealed as
another prominent decisive and consistent activated area during
short-term and long-term mate choice (Bartels and Zeki, 2000,
2004; Turk et al., 2004; Fisher et al., 2005, 2006; Cooper et al.,
2012; Cartmell et al., 2014; Ueda et al., 2017, 2018).

Interestingly, a recent study using functional near-infrared
spectroscopy in a speed dating paradigm revealed that
interpersonal synchronization activity of the dorsolateral
prefrontal cortex predicted mate preference (Yuan et al., 2022)
just as it could be described for mice (Kingsbury et al., 2019,
2020). On what sensory stimuli this prediction was based
is unclear, but the preference was mainly formed by social
rather than physical attractiveness indicating a multimodal
action of cues, like facial expression, pleasant voice, and smell.
However, interpersonal synchronization has been also described
to be correlated with partner-oriented kissing satisfaction
during which tactile stimuli play the main role (Müller and
Lindenberger, 2014). In line with the latter, encoding of socio-
sexual touch by prefrontal areas has been shown as well (Rolls
et al., 2003; Mccabe et al., 2008).

Neural pathways for sexual
preference/wanting sex

Intriguingly none of the above studies examining human
brain activation by affective touch or voice in the mate
choice context pinpointed hypothalamic, septal, or hippocampal
activity, even though these areas have been shown to be
differentially modulated by the opposite sex in rats and mice.
This might be in part because most of the reviewed literature
only used simple pictures or cues delivered by their love
partners or to neutral body parts that do not trigger a
sexual preference. A recent meta analytic review reported that
when sexual preference was the center of interest, such as
that participants needed to value whether they would want
sex or could imagine reaching an orgasm with a stranger,
a preserved neural circuit consisting of hypothalamic, septal,

and hippocampal region was activated (Poeppl et al., 2016).
What we conclude from this is that hypothalamic, septal, and
hippocampal regions could be considered as the key player
when sex is the desired outcome and that prefrontal, cortical,
insula, and amygdala regions are mainly involved as soon as
mate choice happens in a socio-emotional context (Figure 4D).
Various fMRI and PET studies undermine this hypothesis as
hypothalamic, hippocampus, and septal activation has been
shown to be activated during sexual preference, sexual arousal,
and intercourse (reviewed in Ruesink and Georgiadis, 2017;
Calabrò et al., 2019).

All of the above-mentioned literature is based on human
fMRI, PET, lesion, or EEG studies (Poeppl et al., 2016, reviewed
in Ruesink and Georgiadis, 2017; Calabrò et al., 2019) and
despite the obvious caveats in comparison to high-resolution
recording methods in rodents, the biggest drawback might be
the lack of conclusion about interconnectivity and direction
of information processing. Nevertheless, it is noteworthy that
the interplay of the prefrontal cortex, septum, hippocampus,
amygdale, and hypothalamus just as in rodents underlies human
socio-sexual processing (Figure 4D) and that some of these
nodes have been observed to be directly modulated in a mate
choice context.

Conclusions and outlook

Mate choice as a potent generator of diversity and a
fundamental pillar for sexual selection and evolution has been
the focus of intensive study since Darwin. Mate choice requires
numerous stages of behavioral and neural processing, initiated
by the identification of a conspecific, which will be further
scrutinized to evaluate his/her potential to sire progeny. The
evaluation can occur at any stage during premating, mating,
and postmating behavior, and decisions can be reversed at
almost any point. Although the weight that each sensory
modality contributes to mate assessment is species-dependent,
it is long acknowledged that the information provided by a
mate is multimodal in nature: while the initial detection is often
dominated by a single modality, other senses can offer various
information that must be equally evaluated once the interaction
develops. Interestingly, the processing of multimodal cues can
work in distinct ways, as in some situations different cues are
redundant and synergize, while in others they take divergent
meanings and compete.

Our understanding of the neural mechanisms underlying
mate choice has been driven in part by rodent and human studies
during which smell and vision have received considerable
attention. This is not only due to these modalities being
the most dominant for these species but also because of
existing immense knowledge regarding the neural pathways
underlying their information processing and their guidance
of non-social behaviors. In stark contrast, very little is
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known about how information from various senses, in
particular audition and touch, is processed and interacts
with olfactory and visual cues. Multisensory integration
has gained substantial attention in the past decade and
the number of brain regions processing multimodal cues
during social and non-social behavior has grown. Given the
sensory complexity of mate choice at all stages, multi-sensory
integration will most certainly also be unraveled during that
behavior. Moreover, how the internal state, e.g., sexual arousal,
affects such processing has received no investigatory attention
so far.

The fact of no existent well delineated “circuit for mate
choice” makes the research of outlined questions even more
challenging. Nevertheless, strides have been made to fill the
gap in knowledge and, given the social nature of mate choice,
it is not surprising that some of the regions involved in
processing mate choice cues overlap with the so-called social
brain network, known to impact other social behavior such as
parenting and aggression. Simultaneous multi-area recordings
and activity manipulations of specific cell populations will be
key to understand: (i) whether the circuits underlying mate
choice will overlap with social behavior networks; (ii) how the
latter are connected to higher cognitive brain regions involved
in decision making; and (iii) whether brain nodes described as
classical multisensory integrators are at the interface between
those two.
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