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Objective: The objective of this study was to determine the reliability of

corticomotor excitability measurements using the conventional hand-hold

transcranial magnetic stimulation (TMS) method for the tibialis anterior (TA)

muscle in healthy adults and the number of stimuli required for reliable

assessment.

Methods: Forty healthy adults participated in three repeated sessions of

corticomotor excitability assessment in terms of resting motor threshold

(rMT), slope of recruitment curve (RC), peak motor evoked potential amplitude

(pMEP), and MEP latency using conventional TMS method. The first two

sessions were conducted with a rest interval of 1 h, and the last session was

conducted 7–10 days afterward. With the exception of rMT, the other three

outcomes measure elicited with the block of first 3–10 stimuli were analyzed

respectively. The within-day (session 1 vs. 2) and between-day (session 1 vs.

3) reliability for all four outcome measures were assessed using intraclass

correlation coefficient (ICC), standard error of measurement, and minimum

detectable difference at 95% confidence interval.

Results: Good to excellent within-day and between-day reliability was found

for TMS-induced outcome measures examined using 10 stimuli (ICC ≥

0.823), except in pMEP, which showed between-day reliability at moderate

level (ICC = 0.730). The number of three stimuli was adequate to achieve

minimum acceptable within-day reliability for all TMS-induced parameters

and between-day reliability for MEP latency. With regard to between-day

reliability of RC slope and pMEP, at least seven and nine stimuli were

recommended respectively.
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Conclusion: Our findings indicated the high reliability of corticomotor

excitability measurement by TMS with adequate number of stimuli for the TA

muscle in healthy adults. This result should be interpreted with caveats for the

specific methodological choices, equipment setting, and the characteristics

of the sample in the current study.

Clinical Trial Registration: http://www.chictr.org.cn, identifier

ChiCTR2100045141.

KEYWORDS
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Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive
technique (Barker et al., 1985) and has been widely used
in evaluating brain plasticity (Hallett, 1996; Rothwell, 2011).
According to the principle of electromagnetic induction,
magnetic stimulation acts on the primary motor cortex of the
brain (M1) and induces neural axon depolarization, which can
be recorded in corresponding peripheral muscle with surface
electromyography; the detected signal is called motor-evoked
potential (MEP; Rotenberg et al., 2014; Rossini et al., 2015).
Hence, MEP and its related parameters induced by TMS can
certainly reflect the excitability of cortico-spinal pathway and are
commonly used in neurophysiological examination and research
(Moscatelli et al., 2021).

Changes in measurements should reflect actual changes in
patients’ conditions rather than those caused by measurement
errors. Therefore, testing the reliability of an assessment
tool should be the primary consideration in clinical and
research; unreliable measurements are prone to large
systematic and random errors (Atkinson and Nevill, 1998).
TMS-related outcome measures are variable, and thus their
reliability has attracted considerable interest, that is, TMS
can provide accurate and consistent measurements for
individuals without physiological changes. Although some
new techniques such as neuronavigation, robot TMS coil
holding arm, and EEG-TMS closed-loop triggering strategy
which could improve the accuracy of hotspot localization
and reduce the variability of TMS-induced MEP (Goetz
et al., 2019), these advanced techniques are more widely
applied in some high-level lab for research studies. For clinical
evaluation, the conventional methods of TMS using hand-hold
assessment are still used by most medical institutions. On
the other hand, different shapes of coil can be used for
TMS assessment. Although the double-cone coils have been
around for decades, there is as yet few evidence of the
reliability of lower limb assessment with double-cone coils
compared to upper limb studies and numerous coil brands
(Beaulieu et al., 2017a).

MEP-related parameters considerably vary with the number
of stimuli delivered per site during TMS assessment (Kiers
et al., 1993; Wassermann, 2002). Increasing the number of
stimuli may reduce the influence of inherent variations in
an individual (Bastani and Jaberzadeh, 2012). However, this
approach brings another problem, that is, more testing time
is needed. Prolonged TMS tests would make participants feel
uncomfortable. Therefore, the minimum number of stimuli
to obtain reliable MEP parameters must be investigated. For
reliable MEP, a minimum of five stimuli are recommended for
within-session comparisons, and 10 stimuli are recommended
for between-session comparisons (Cavaleri et al., 2017). Lewis
et al. (2014) demonstrated that at least six magnetic stimuli
are required for the reliable MEP of the soleus muscle in the
same session of stroke assessment, whereas the intersession
reliability was poor even with ten stimuli applied for average
MEP assessment. However, studies on the assessment of lower
limbs subjected to different numbers of stimuli have mainly
focused on MEP amplitude, and reports on the slope of
recruitment curve (RC) and MEP latency are few (Lewis et al.,
2014).

With respect to the foregoing, the purpose of this study
was to investigate the reliability of TMS-induced parameters
in measuring the cortico-spinal excitability of the lower limb
using a double-cone coil and conventional hand-hold method,
and determine the number of TMS stimuli required to achieve
acceptable reliable measurement. The results of the present study
would provide an evidence-based knowledge about TMS as a
tool for evaluating the cortico-spinal excitability of the lower
limb in clinical practice and research.

Materials and methods

Participants

Forty healthy volunteers aged 19–36 years
(23.05 ± 3.83 years; 21 males) were recruited using an
advertising poster from January 1, 2021 to August 31, 2021.
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According to the safety guidelines of TMS (Rossi et al., 2021),
all participants were screened for the contraindications of
TMS. The inclusion criteria were as follows: (i) age ≥ 18 years;
(ii) no central nervous system lesion; (iii) no serious mental
or physical disease; and (iv) no drug or alcohol dependence
history; and (v) no contraindications to TMS examinations.
The exclusion criteria were as follows: (i) any neurological
disease; (ii) history of seizures; (iii) previous adverse effects with
TMS; (iv) taking medications that affect cortical excitability; (v)
pregnancy; (vi) history of lower limb surgery; and (vii) poor
compliance or failure to cooperate during testing. Participants
were asked to have a good sleep the night before the test,
avoid taking recreational drugs or alcohol on the day before
the test and avoid drinking caffeinated drinks 2 h before
the test.

Experimental design and measurement
procedures

This study adopted a repeated-measures design and
was approved by the Research Ethics Committee of
the JORU Rehabilitation Hospital (No. 20210325B02,
ChiCTR2100045141). After signing informed consent, all
participants underwent three sessions of assessment on
corticomotor excitability with TMS for the tibialis anterior (TA)
muscles of the non-dominant leg. The dominant legs of the
participants were defined as the legs they would use to kick a ball
(van Melick et al., 2017). The first two sessions were conducted
on the first day, with a rest interval of 1 h. The last session was
conducted 7–10 days afterward at the same time of the day
as the first session. For each participant, all three assessment
sessions were performed from 15:00 to 18:00 of the testing day
by the same rater, who was a physical therapist with extensive
experience on corticomotor excitability measurement using
TMS.

The strength of a magnetic field induced by TMS is
attenuated as the distance from the scalp surface increases
(Rothwell et al., 1991; Deng et al., 2013). However, the M1 areas
of the lower limb are located at the paracentral lobules, which
are deeper than those of the upper limb (Rothwell et al., 1991;
Rossini et al., 2015). Therefore, an electric field induced by
TMS using figure-of-eight or round coil may be inadequate
to activate motor neurons that control the muscles of the
lower limbs (Dharmadasa et al., 2019). The double-cone coil,
a figure-of-eight-shaped coil with two components at each
angle, increases the strength of a magnetic field (Hallett, 2007).
The magnetic field penetration depth of a double-cone coil is
significantly greater than that of a figure-of-eight coil (Deng
et al., 2013, 2014; Lu and Ueno, 2017). Thus, a double-cone coil
stimulates the M1 region of the lower limbs more easily and
is the recommended tool for examining the neurophysiological
status involving lower limbs. Hence, in the present study, the

corticomotor excitability measurement for the TA muscle of the
non-dominant leg was measured with a Magneuro100 stimulator
and a matching double-cone coil (VCZ001; VISHEE Company
Limited, Nanjing, China).

During the assessment, each participant sat comfortably
upright in a high back chair, and the arms, back, and legs
supported. After skin preparation, a pair of silica gel electrodes
was placed over the belly of the TA muscle at the upper third
of the lower leg. The distance between the electrodes was
2 cm. A ground electrode was applied ipsilaterally on the lateral
malleolus. Electromyography (EMG) signals were amplified
(gain 1,000×), filtered (bandpass: 20–500 Hz), and sampled
at 2,000 Hz with a wireless portable motor evoked potential
detection module. During the measurement, participants were
instructed to stay relaxed, and the relaxed state was monitored
through the visual inspection of the EMG recordings in real time.
When obvious muscle activities were detected, the participants
were reminded, and the procedure was suspended until the
muscle relaxes again.

During the measurements, a positioning cap designed
according to the international 10–20 EEG system was fixed
on a participant’s head. Biphasic single magnetic pulses were
generated at least every 5 s to stimulate the M1 area contralateral
to the recorded TA muscle around the Cz point, and the
coil handle was perpendicular to the scalp (Farzan, 2014;
Figure 1). The current direction in the long axis of the two-wing
intersection of the coil was produced at AP orientation which
would induce a PA oriented current in the cortex of the lower
limb (Groppa et al., 2012). The optimal stimulation site, which
was called the “hotspot”, for TA muscle was identified by moving
the double-cone coil in 1 cm steps at the initial stimulation
intensity and a supposed suprathreshold level and marked using
a pen as the easiest excitable site that can consistently elicit large
MEP amplitudes at a relatively low TMS output intensity. For
each session, the same procedure used for hotspot identification
was conducted prior to the corticomotor excitability outcome
measurement. After the hotspot for TA muscle was identified,
the resting motor threshold (rMT) was determined with the
TMS coil fixed on the hotspot, and the suprathreshold stimulator
output intensity was reduced by 2% stepwise, and then by
1% when the intensity was near the threshold intensity. The
rMT is the lowest TMS output intensity that can induce MEP
amplitudes above 0.05 mV in at least five of 10 consecutive
TMS stimuli when a TMS coil is fixed on the hotspot of the
TA muscle (Liu and Au-Yeung, 2014). The MEPs were measured
using TMS output intensities ranging from 90% rMT to 160%
rMT, and the intensity was increased by 10% for every 10 stimuli.
RCs were plotted in Microsoft Excel with the MEP amplitude
averaged using different numbers of consecutive MEPs from
the first three to ten evoked at the same intensity against a
corresponding TMS output intensity level. The RC slope was
obtained by adding the linear regression line to the curve (Liu
and Au-Yeung, 2014). The MEP latency was defined as the time
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FIGURE 1

Coil handle is perpendicular to the scalp.

from the delivery of TMS stimuli to MEP onset which was
identified by the cursor of the self-contained system of motor
evoked potential detection module and inspected visually by
an investigator.

The rMT, linear slope for RC, maximum mean MEP
amplitudes that were reached during RC measurement (pMEP),
and mean MEP latency evoked at 130% rMT were adopted as the
outcome measures for the reliability test.

Data analysis and statistics

Data analyses were performed by using the software package
of SPSS23.0. Demographic data were statistically described with
means ± standard deviations to represent the characteristics
of the participants. Within-day reliability (session 1 vs. 2)
and between-day reliability (session 1 vs. 3) were evaluated
using intraclass correlation coefficients (ICCs), and their 95%
confidence interval limit was based on a two-way mix model
(Model 3). The level of significance was set at 0.05. In
the reliability analysis, the MEP latencies evoked by 130%
rMT were averaged for 3–10 stimuli, whereas the RC slopes
plotted from 90% rMT to 160% rMT were calculated for
3–10 stimuli delivered at each of the series of intensities.
The pMEPs were the maximum MEP amplitudes during

the RC procedure at different numbers of stimuli. The
reliability of the measurements was assessed as follows: >0.90,
excellent; 0.75–0.90, good; 0.50–0.75, moderate; and <0.50, poor
(Portney and Watkins, 2009).

According to the reliability coefficient, the standard error
of measurement [SEM = (pooled SD) ×

√
(1− ICCs)]

and the minimum detectable measurement difference
(MDD95 = 1.96 × SEM ×

√
2) were calculated for the

analysis of response stability and test responsiveness of
TMS-induced corticomotor excitability. The SEM showed
variation around a “true” score of excitability parameters
for an individual when repeated measures were taken. The
reliability of the measurement results increased with decreasing
SEM value. The MDD95 represents the smallest difference
value, which can be confirmed as the “true change” in
cortical motor excitability measurement values within the 95%
confidence interval.

Results

All the participants completed the whole procedure of the
study. The demographic characteristics of all participants are
presented in Table 1. Table 2 lists the reliability analysis in
terms of the ICC, SEM, and MDD95 of the four TMS-induced
outcome measures related to cortical excitability. The within-day
comparison showed excellent reliability for rMT (ICC = 0.946,
p < 0.001) and MEP latency (ICC ≥ 0.941; 3–10 MEPs;
p < 0.001), good reliability for RC slope (ICC = 0.776–0.880;
3–10 MEPs; p < 0.001), and good to excellent reliability for
pMEP (ICC = 0.867–0.901; 3–10 MEPs; p < 0.001). With regard
to between-day reliability, the rMT (ICC = 0.936, p < 0.001)
and latency (ICC ≥ 0.923; 3–10 MEPs; p < 0.001) displayed
excellent reliability. However, the ICCs revealed moderate
to good reliability for the RC slope (ICC = 0.541–0.823;
3–10 MEPs; p < 0.01) and poor to moderate reliability for
pMEP (ICC = 0.454–0.730; 3–10 MEPs; p < 0.05). When the
number of stimuli was greater than 7 and 9 for the repeated
assessment on different days, the ICC values of the RC slope
(ICC = 0.735) and pMEP (ICC = 0.720) achieved values
higher than 0.7 respectively, which is defined as the minimum
acceptable reliability for outcome measures (Matheson, 2019;
Figures 2–4).

TABLE 1 Characteristics of participants.

General characteristics (n = 40)

Gender (n) 21/19
Age (years) 23.05± 3.83–36
Height (cm) 167.70± 7.75
Weight (kg) 60.96± 9.64
foot dominance (n) 35/5

n = number.
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TABLE 2 Within-day and between-day reliability measures for the participants.

Outcomes
(n = 40)

S1
(mean± SD)

S2
(mean± SD)

S3
(mean± SD)

Within-day (S1 vs S2) Between-day (S1 vs S3)

ICC 95%CI p SEM MDD95 ICC 95%CI p SEM MDD95

rMT (% MSO) 39.875± 11.209 38.825± 10.135 39.325± 10.545 0.946 0.898–0.971 <0.001 2.483 6.883 0.936 0.879–0.966 <0.001 2.753 7.631
RC slope 3MEPs 0.029± 0.026 0.027± 0.021 0.022± 0.019 0.865 0.745–0.929 <0.001 0.009 0.024 0.614 0.270–0.796 0.002 0.014 0.039

4MEPs 0.029± 0.025 0.026± 0.021 0.022± 0.019 0.852 0.720–0.922 <0.001 0.009 0.025 0.671 0.377–0.826 <0.001 0.013 0.035
5MEPs 0.029± 0.026 0.026± 0.020 0.022± 0.019 0.851 0.718–0.921 <0.001 0.009 0.025 0.648 0.334–0.814 0.001 0.014 0.037
6MEPs 0.031± 0.028 0.026± 0.020 0.021± 0.018 0.776 0.577–0.882 <0.001 0.012 0.032 0.541 0.132–0.757 0.008 0.016 0.044
7MEPs 0.028± 0.023 0.027± 0.020 0.021± 0.018 0.880 0.774–0.937 <0.001 0.007 0.021 0.735 0.499–0.860 <0.001 0.011 0.029
8MEPs 0.028± 0.022 0.028± 0.020 0.021± 0.018 0.859 0.732–0.925 <0.001 0.008 0.022 0.775 0.575–0.881 <0.001 0.010 0.026
9MEPs 0.027± 0.022 0.029± 0.025 0.022± 0.017 0.828 0.675–0.909 <0.001 0.010 0.027 0.791 0.606–0.890 <0.001 0.009 0.025
10MEPs 0.027± 0.021 0.029± 0.026 0.022± 0.017 0.849 0.714–0.920 <0.001 0.009 0.025 0.823 0.665–0.906 <0.001 0.008 0.022

(pMEPµv) 3MEPs 275.073± 218.254 233.633± 154.162 240.688± 146.837 0.876 0.765–0.934 <0.001 66.534 184.424 0.454 −0.032–0.711 0.031 137.443 380.972
4MEPs 266.243± 203.872 229.370± 146.878 231.015± 138.796 0.885 0.783–0.939 <0.001 60.253 167.012 0.572 0.191–0.774 0.005 114.093 316.250
5MEPs 262.218± 214.974 230.090± 146.874 229.950± 141.036 0.867 0.748–0.930 <0.001 67.140 186.102 0.525 0.101–0.749 0.011 125.299 347.312
6MEPs 257.068± 206.168 231.523± 147.218 223.093± 137.575 0.875 0.763–0.934 <0.001 63.334 175.552 0.591 0.226–0.783 0.003 112.084 310.682
7MEPs 252.838± 196.868 231.533± 146.661 218.600± 130.454 0.873 0.759–0.933 <0.001 61.862 171.473 0.622 0.286–0.800 0.002 102.672 284.592
8MEPs 250.515± 189.464 233.983± 150.439 214.718± 129.882 0.881 0.775–0.937 <0.001 59.012 163.574 0.689 0.412–0.836 <0.001 90.582 251.081
9MEPs 246.570± 180.875 232.560± 151.272 212.250± 127.076 0.894 0.800–0.944 <0.001 54.284 150.467 0.720 0.470–0.852 <0.001 82.710 229.261
10MEPs 242.203± 174.372 232.610± 151.329 208.748± 126.233 0.901 0.813–0.948 <0.001 51.368 142.384 0.730 0.490–0.857 <0.001 79.095 219.239

Latency 3MEPs 28.373± 1.701 28.393± 1.852 28.493± 1.569 0.941 0.888–0.969 <0.001 0.432 1.197 0.932 0.872–0.964 <0.001 0.427 1.183
4MEPs 28.415± 1.660 28.395± 1.854 28.513± 1.572 0.951 0.907–0.974 <0.001 0.390 1.080 0.923 0.855–0.959 <0.001 0.449 1.243
5MEPs 28.435± 1.662 28.425± 1.825 28.490± 1.587 0.957 0.919–0.977 <0.001 0.362 1.003 0.925 0.859–0.960 <0.001 0.445 1.233
6MEPs 28.460± 1.685 28.423± 1.829 28.495± 1.581 0.965 0.934–0.982 <0.001 0.329 0.912 0.924 0.857–0.960 <0.001 0.450 1.248
7MEPs 28.448± 1.681 28.415± 1.865 28.463± 1.592 0.964 0.933–0.981 <0.001 0.337 0.934 0.927 0.861–0.961 <0.001 0.442 1.226
8MEPs 28.445± 1.657 28.395± 1.845 28.455± 1.603 0.967 0.938–0.983 <0.001 0.319 0.883 0.932 0.872–0.964 <0.001 0.425 1.178
9MEPs 28.425± 1.662 28.385± 1.859 28.453± 1.605 0.967 0.938–0.983 <0.001 0.320 0.888 0.935 0.877–0.966 <0.001 0.417 1.155
10MEPs 28.440± 1.644 28.400± 1.871 28.483± 1.587 0.965 0.933–0.981 <0.001 0.329 0.913 0.935 0.878–0.966 <0.001 0.412 1.142

rMT, resting motor threshold; % MSO, percentage maximum stimulator output; RC, recruitment curve; MEP, motor evoked potential; pMEP, peak MEP amplitudes; S1, session 1; S2, session 2; S3, session 3; SD, standard deviation; ICC,
intraclass correlation coefficient; CI, confidence interval; SEM, standard error of measurement; MDD95 , minimum detectable difference based on a 95% confidence interval.
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FIGURE 2

Within-day and between-day reliability of RC slope.
ICC, intraclass correlation coefficient.

FIGURE 3

Within-day and between-day reliability of pMEP. ICC, intraclass
correlation coefficient.

FIGURE 4

Within-day and between-day reliability of MEP latency.
ICC, intraclass correlation.

Discussion

In this study, we assessed the within-day and between-day
reliability of TMS-related outcome measures induced by
various numbers of stimuli. A double-cone coil was used
for the TA muscle of the non-dominant lower limb of
healthy young participants. The results demonstrated good
to excellent within-day and between-day repeatability
for all measurements examined by 10 stimuli except
pMEP which showed moderate between-day reliability.
Three stimuli were sufficient to achieve minimum

acceptable within-day reliability for all TMS-induced
parameters and between-day reliability for MEP latency.
Regarding between-day reliability of the RC slope and
pMEP, a minimum of seven and nine stimuli were
recommended, respectively.

Early reports suggested that ICC, SEM, and MDD95

are the most accurate indexes in reliability studies (Weir,
2005; Beaulieu et al., 2017a; Lewis et al., 2020). ICC was
recommended as the most suitable statistical test method
for reliability parameter as it reflects the correlation and
consistency of the results among repeated measurements
(Portney and Watkins, 2000). SEM determines the degree of
variation of measurements in a sample of individuals (Atkinson
and Nevill, 1998). The accuracy of measurement and the
sensitivity to changes increases with decreasing measurement
error. Understanding the measurement error associated with
TMS-induced outcome measures provides the profile of TMS
as a tool for assessing corticomotor excitability. Notably, the
MDD95 value for TMS-related parameters achieved in the
present study can be used in determining the true change in
the corticomotor excitability of the lower limb in a population
of individuals with similar characteristics.

The ICC values for the repeatability of all TMS-related
parameters in the between-day tests were lower than those of
the within-day in the present study. This finding was coherent
with the previous findings of studies, which have demonstrated
that the MDD values of TMS-induced outcome measures when a
test was repeated on the same day were lower than those in tests
performed several days apart regardless of whether the test was
conducted in the upper limb muscles or the lower limb muscles
(Cacchio et al., 2009; Bastani and Jaberzadeh, 2012; Fisher et al.,
2013). This result may be attributed to the larger time-variant
neurophysiological fluctuations in the cortex on different days
as compared with those on the same day (Wassermann, 2002).
In addition, although hotspot measurements were repeated for
each session, the EEG cap was not removed between session
1 vs. 2. Re-wearing the EEG cap in session 3 may have led
to slight differences in the positioning of the hotspot and
placement of the double-cone coil between measurements even
when the international EEG 10–20 system was used in the
alignment. Similarly, the difference in the placement of EMG
electrodes between 2 days might have produced a bias in the
results on MEP amplitudes. These methodological factors might
also cause the lower reliability of between-day tests than the
within-day tests.

The TMS-related parameters in the present study were
recommended to reflect the different aspects of corticomotor
excitability. rMT was defined as the lowest output intensity of
TMS to induce the depolarization of neural axons and can
reflect the excitability of the membrane of motor neurons.
The RC slope was suggested to illustrate the degree of
recruitment of the corticospinal pathway during stimulation
with graded intensities (Devanne et al., 1997), whereas the
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pMEP amplitude reflects the maximum descending responses
from the corticomotor neurons during the RC procedure (Liu
and Au-Yeung, 2014). In addition, MEP latency is defined as
the time from the delivery of TMS stimuli to MEP onset and
reflects the conduction velocity of a motor efferent pathway.
Compared with MEP amplitude, MEP latency has a lower
level of variation (Kiers et al., 1993). Other studies on the
lower limbs have demonstrated that MT and MEP latency
for the TA muscles of healthy participants (Cacchio et al.,
2009) or TA (Cacchio et al., 2011; Beaulieu et al., 2017b)
and quadriceps muscles (Wheaton et al., 2009) of patients
with stroke provide more reliable measurements than MEP
amplitude. The present study showed that the ICCs for rMT
and MEP latency exceeded 0.90, revealing excellent repeatability
in the within-day or between-day comparison. Compared with
rMT and MEP latency, the relatively lower ICCs of RC slope
and pMEP indicated large variations in these two parameters,
especially between-day reliability. This result was coherent with
Cacchio’s study, which indicated excellent reliability for rMT
(ICC = 0.98 and 0.97 for within-day and between-day reliability,
respectively) and MEP latency (ICC = 0.93 and 0.92 for
within-day and between-day, respectively) and good reliability
for RC slope (ICC = 0.79 and 0.78 for within-day and between-
day, respectively; Cacchio et al., 2009).

Variability in an MEP-related parameter can be attributed
to intrinsic factors, such as physiological fluctuations in the
excitability of cortical pyramidal neurons and spinal alpha motor
neurons (Kiers et al., 1993; Darling et al., 2006). It is also related
to other external factors, such as age, physiological status of
participants, attention level, coil positioning, and assessment
methodology (Ridding and Ziemann, 2010; Bhandari et al.,
2016). In healthy participants, Cacchio et al. presented higher
rMT (62.25% and 63.02% maximum stimulator output for two
test-retest sessions respectively) and longer latency (32.20 and
32.44 ms for two test-retest sessions respectively) for TA
muscle than those obtained in the present study (Cacchio
et al., 2009). This inconsistency may be due to differences
in equipment used between the two studies in terms of
coil types, pulse waveform, current direction, and absolute
magnetic output intensity of the stimulator. Cacchio’s group
conducted the measurement with a circular coil, whereas the
present study used a double-cone coil. Another reason may
be the different characteristics of participants, such as age and
height, in the two studies. Notably, the participants (mean age:
23.05 years) recruited in the present study were younger than
those recruited in Cacchio’s study (mean age: 44.8 years), and
whether the heights of the participants in the two studies varied
is unknown.

The excitability of the motor cortex fluctuates with the
level of awakening and attention of participants and may be
observed by long-term studies (Classen et al., 1998). The fatigue
and discomfort of participants are significantly related to the
increment of the duration of assessment using TMS (van de Ruit

et al., 2015). Thus, long-term testing will reduce participants’
compliance (Mead et al., 2012), and determining the minimum
number of stimuli for TMS-induced outcome measures is
reasonable. On the premise of ensuring accuracy, our study
reduced the time cost and addressed these unfavorable factors
during the assessment of the corticomotor excitability of the
lower limb with TMS.

As predicted, when more TMS stimuli were provided,
high ICCs and low SEM and MDD95 values for the RC
slope and pMEP amplitude were found. In an assessment
tool in clinical practice, the minimum acceptable value of
ICC is 0.7 (Nunnally and Bernstein, 1994; Shieh, 2016;
Matheson, 2019). Our results showed no obvious fluctuation
in ICCs for the RC slope, pMEP amplitude, and MEP latency
induced by different quantities of stimuli (3–10) when the
assessments were conducted on the same day. Thus, three TMS
pulses were suitable for the three TMS-related parameters,
and adequate repeatability of different assessment sessions on
the same day was observed. However, this inference should
be treated conservatively in research and clinical practice,
especially the inference about pMEP amplitude. The pMEP
measured in the present study was not the simple MEP
induced by a fixed TMS intensity. Rather, it was the maximum
averaged MEP that appears on the RC curve. Second, the
three stimuli only achieved the minimum acceptable degree
of reliability for these three outcomes measured on the same
day. Thus, a larger number of stimuli is recommended if time
consumption and participants’ conditions are considered. On
the between-day comparison, MEP latency showed excellent
ICC even when three stimuli were used in the measurement
protocol. TMS is a reliable measurement tool only if at least
seven or nine stimuli are used in the assessment of the
RC slope and pMEP amplitude, respectively. This result was
similar to those of previous studies. Lewis et al. examined
the reliability of the amplitude and area of MEP on the
soleus muscle in healthy participants (Lewis et al., 2014).
The results demonstrated that the between-day reliability was
acceptable for healthy participants with an ICC value at a
mean MEP amplitude of 0.71 and area of 0.85 when six
pulses were used as stimuli (Lewis et al., 2014). By contrast,
Cuypers’s study revealed that MEP amplitude averaged on
eight consecutive stimuli is sufficient to enter the confidence
interval for the first dorsal interosseous muscle in healthy
individuals (Cuypers et al., 2014). The recent systematic review
and meta-analysis of Cavaleri showed that the reliability of MEP
amplitude on healthy participants is influenced by participants’
characteristics, target muscle, interval time, and coil type
(Cavaleri et al., 2017). Their results have explained why the
number of stimuli for obtaining a reliable MEP-related outcome
measure in different studies are inconsistent. Therefore, our
findings are only applicable to the corticomotor excitability
measurement with double-cone coil for TA muscle in young
healthy adults.
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Our results should be interpreted with caution because of
some limitations. Although the sample size of this study was
within the range of other TMS reliability studies (Beaulieu
et al., 2017a), the number of participants was relatively small
with referring to previous studies which reported that more
than 50 participants are suitable for reliability examination
(Hopkins, 2000; Terwee et al., 2007). Moreover, the TMS-related
parameters assessed in the present study were only using
single-pulse TMS. Thus, whether the parameters examined
with paired-pulse TMS are reliable is unclear. Although the
conventional hand-held system of TMS remains the most
widely used in clinical assessment, it cannot constantly
localize hotspots in a longitudinal measurement and enable
coil position tracking during a measurement session in
contrast to the automatic devices such as navigated TMS and
robot TMS coil holding arm (Sparing et al., 2008; Fleming
et al., 2012). In addition, implementation of the closed-loop
trigger strategy of phase-locked EEG-TMS can reduce the
variability of MEP size caused by the brain oscillating rhythms
(Zrenner et al., 2018). Hence, the reliability of TMS-induced
corticomotor excitability measurements using new devices
like navigated systems, robot coil arm and TMS-EEG for
heterogeneous patient populations in large samples should be
investigated further.

Conclusion

Although our research is not entirely innovative in
methods, it has provided novel insights into the reliability
of TMS-related measurements for the lower limb in healthy
participants. Determining the minimum number of stimuli
provides an evidence-based meliorative protocol for assessing
the corticomotor excitability of the lower limb. In addition,
the reported SEM and MDD95 values of the four TMS
measurements should be used as references for evaluating the
effects of clinical trials involving people without neurological
pathology.
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