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Acetylcholine facilitates localized 
synaptic potentiation and location 
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Forebrain acetylcholine (ACh) signaling has been shown to drive attention and 
learning. Recent experimental evidence of spatially and temporally constrained 
cholinergic signaling has sparked interest to investigate how it facilitates stimulus-
induced learning. We  use biophysical excitatory-inhibitory (E-I) multi-module 
neural network models to show that external stimuli and ACh signaling can 
mediate spatially constrained synaptic potentiation patterns. The effects of ACh 
on neural excitability are simulated by varying the conductance of a muscarinic 
receptor-regulated hyperpolarizing slow K+ current (m-current). Each network 
module consists of an E-I network with local excitatory connectivity and global 
inhibitory connectivity. The modules are interconnected with plastic excitatory 
synaptic connections, that change via a spike-timing-dependent plasticity 
(STDP) rule. Our results indicate that spatially constrained ACh release influences 
the information flow represented by network dynamics resulting in selective 
reorganization of inter-module interactions. Moreover the information flow 
depends on the level of synchrony in the network. For highly synchronous 
networks, the more excitable module leads firing in the less excitable one resulting 
in strengthening of the outgoing connections from the former and weakening of 
its incoming synapses. For networks with more noisy firing patterns, activity in 
high ACh regions is prone to induce feedback firing of synchronous volleys and 
thus strengthening of the incoming synapses to the more excitable region and 
weakening of outgoing synapses. Overall, these results suggest that spatially and 
directionally specific plasticity patterns, as are presumed necessary for feature 
binding, can be mediated by spatially constrained ACh release.
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1. Introduction

ACh is a neuromodulator that plays an important role in regulating neural excitability and 
can greatly impact various brain and cognitive functions such as memory consolidation during 
sleep and attentional control (Marrosu et al., 1995; Parikh and Sarter, 2008; Delorme et al., 2021). 
Among its varied effects (Picciotto et  al., 2012), ACh regulates the excitability of neurons 
through its action on a muscarine-sensitive M-current (Gu, 2002). This slow, low-threshold K +  
current can be blocked when ACh is high and results in important modulation of neural 
response properties such as increasing membrane excitability, altering spike-frequency 
adaptation, and changing effects on spike timing in response to synaptic inputs (Stiefel et al., 
2009; Fink et al., 2013; Roach et al., 2019).
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ACh signaling in the neocortex is mediated by projections from 
the basal forebrain (BF), which, traditionally, has been described as 
“volume” transmission, namely characterized by relatively low 
temporal resolution and low spatial heterogeneity (Hasselmo, 1999; 
Dayan and Yu, 2002; Hasselmo and Giocomo, 2006; Sarter and Lustig, 
2019). However, recent anatomical studies indicate that these 
projections are highly topographically organized (Zaborszky et al., 
2005, 2015; Gielow and Zaborszky, 2017; Yuan et  al., 2018). In 
addition, recent amperometric measurements of ACh in the 
pre-frontal cortex identified spatially localized, transient cholinergic 
release (Parikh and Sarter, 2006; Sarter et  al., 2016) that affected 
behavioral outcomes in an attentional signal detection task (Howe 
et al., 2013; Gritton et al., 2016). Thus, in contrast to the traditional 
view of ACh modulation being a diffusely organized system, this 
recent experimental evidence demonstrates that ACh signaling can 
be asynchronous and spatially heterogeneous (Sarter and Lustig, 2019; 
Disney and Higley, 2020; Yang et  al., 2021). Additionally, recent 
research on imaging of functional gradients of cortical activity during 
REM sleep in the mouse brain has shown that the spatial distribution 
of slow waves is determined by regional variation in cholinergic 
activity (Nazari et  al., 2023). Moreover, functional studies have 
indicated that ACh signaling can be event- or task trial-specific in 
some neocortical regions as well (Parikh et  al., 2007; Sarter and 
Lustig, 2019).

At the same time, it is known that ACh modulation is critical in 
cognitive functions like learning and memory storage at both cellular 
and circuit levels (Hasselmo and Bower, 1993). There is growing 
evidence that ACh plays a critical role in mediating synaptic plasticity 
(Seol et  al., 2007; Brzosko et  al., 2019). Specifically, ACh is an 
important regulator modulating synaptic plasticity in the 
hippocampus, the cerebral cortex, and the striatum (Rasmusson, 2000; 
Partridge et al., 2002). Moreover, an experimental study (Ovsepian 
et al., 2004) demonstrated that muscarinic receptor activation lowered 
the threshold for LTP induction.

There is also growing evidence that acetylcholine can mediate 
feature binding, i.e., the capacity of the brain to selectively link 
different features of a processed input into one neuronal representation 
(Botly and De Rosa, 2007, 2008, 2012). Motivated by these results 
indicating spatial heterogeneity of ACh release and ACh’s role in brain 
plasticity, here we investigate how spatially constrained ACh signaling 
affects synaptic reorganization mediated by spike timing dependent 
plasticity (STDP). We  specifically explore the role of spatially 
heterogeneous cholinergic modulation in facilitating preferential 
plasticity patterns between distinct network regions, leading to overall 
network reorganization and a substrate for feature binding. We show 
that localized regions with high ACh levels relative to synaptically 
connected network areas can be preferentially potentiated (i.e., the 
synapses targeting these regions are strengthened) and thus linked 
together. In this way, the spatial variation in cholinergic activity allows 
networks to selectively generate potentiation patterns with accuracy 
and consistency, potentially leading to more efficient learning and 
memory formation. When ACh levels are uniformly high in connected 
network regions, reciprocal potentiation of synaptic weights can occur 
which may correspond to precise, one-to-one information binding 
between distinct cognitive representations. This effect has the potential 
to explain the prevalence of topographic maps (Thivierge and Marcus, 
2007). Furthermore, we identified the influence of randomized firing 
activity (here modeled as external Poisson noise inputs to neurons) in 

this process. With moderate ACh modulation, noisy firing activity was 
able to disrupt and/or reverse potentiation patterns between network 
regions. In all, our results highlight the possible importance of 
localized spatio-temporal dynamics of ACh signaling in network 
reorganization and hence in memory formation.

2. Materials and methods

2.1. Cortical neuron model

We used a Hodgkin-Huxley based model of cholinergic 
modulation in pyramidal cells to simulate neuron membrane potential 
dynamics (Stiefel et al., 2009; Fink et al., 2013). It’s been shown that 
ACh signaling through M1 muscarinic ACh receptors can be well 
modeled by parameterizing the maximal conductance gKs  of a slow, 
low-threshold K+ mediated adaptation current. The model included a 
fast, inward Na+ current, a delayed rectifier K+ current and a leakage 
current as well. With C =1µF / cm2, units of Vi being millivolts and 
units of t being milliseconds, the current balance equation for the ith

cell was:
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where a constant current Idrive
i  was externally applied. Idrive

i  is an 
nonspecific depolarizing or hyperpolarizing current that a cell receives 
and it provides constant offset to the resting membrane potential (if 
Idrive
i  is subthreshold). It can also generate a constant spiking regime 

(at different frequencies), independent of the synaptic input (if Idrive
i  

is super-threshold). Finally, it also changes the response of the cell to 
incoming synaptic input due to the reduced voltage difference between 
achieved membrane potential and the threshold. Isyni  represented the 
synaptic current received by the ith neuron and Inoisei  was external 
noisy input current pulses dictated by a Poisson process (Poisson Rate 
at 2.5, 5, and 10 Hz) with amplitude of 6 2∝A cm/ and duration 1 ms.

For Na+ channel, activation is instantaneous with steady state 
function m V Vi i i, exp . / .∞
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. The inactivation 
gating variable hi was described by:

 

dh
dt

h V h
V

i i i

h i
=

( ) −
( )

∞

τ

where h V V∞
−( ) = + +( ) { }1 53 0 7 0
1

exp . / .  and  
τh V V( ) = + + +( ) { }−0 37 2 78 1 40 5 6 0

1

. . exp . / . .

The kinetics of delayed rectifier K +  current was gated by ni, the 
dynamics of which was governed by:
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 and  
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. . exp . / . .
The gating variable zi of the slow, low threshold K+ current was 

governed by:
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where z V V∞
−( ) = + − −( ) { }1 39 0 5 0
1

exp . / . . Values of other 
parameters were: g mS cmNa = 24 0

2
. / , g mS cmKdr

= 3 0 2
. / , 

g mS cmL = 0 02
2

. / , V mVNa = 55 0. , V mVK = −90 0.  and 
V mVL = −60 0. . We varied the maximum conductance of the slow, 
low-threshold K +  current in the ith cell, gKs

i between 1.5 mS/cm2 for 
no ACh modulation and 0 mS/cm2 for strong ACh modulation. In this 
model neuron, decreasing values of gKs increase membrane 
excitability as reflected in the frequency-current relation (Figure 1), as 
well as affect spike-frequency adaptation and the neural phase 
response curve (Fink et al., 2013; Roach et al., 2019).

2.2. Spike timing dependent potentiation 
(STDP) rule

We used an asymmetric STDP rule: the potentiation profile 
decayed with a time constant τ+  of 14 ms as a function of spike 
timing difference and the depression profile decayed with a time 
constant τ−  of 34 ms. For a positive spike timing difference (post-
synaptic  - pre-synaptic spike time), the maximal amplitude for 
modification A+ was 0.0025. For a given negative spike timing 
difference, the maximal amplitude for depression A− was 0.00125 
(Song et al., 2000). The STDP rule was implemented by adjusting the 
synaptic weight wi j,  in time between presynaptic neuron i  and 
postsynaptic neuron j by the following equation where ti j,  is the 
spike time difference between two cells (Figure 1C).
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Synaptic conductance values were constrained to remain in the 
interval between 0 and 0.01 mS/cm2.

2.3. Multi-module network model

Model networks consisted of two modules synaptically coupled 
by excitatory synapses (Figure  2). Each module consisted of a 
two-dimensional (i.e., the neurons within the module are positioned 
on a plane, with connections distances calculated accordingly, see 
below) E-I network with the same network topology but varying gKs 
values and DC input. We applied the STDP rule to only the inter-
module connections between the E cells. The inter-module 
connectivity was one of two types: random or topographical. For 
randomly connected modules, each E-cell received 40 randomly 
selected incoming synapses from the other module. While when 
topographical connectivity was applied, each E-cell was connected to 
40 nearest E-cells from the other module as if the two networks were 
placed on top of each other. The synaptic strength was set initially to 
0.005 mS/cm2. The in-degree number was reduced to 5  in some 
simulations as noted in figure captions to better illustrate the 
potentiation patterns, as high local connectivity obliterated 
topological specificity (i.e., many neurons were receiving input from 
their firing neighbors and from the other module).

FIGURE 1

Frequency-current relationship, SFA and STDP rule. (A) Frequency-current curve of the neuron model with different gKs values simulating different 
levels of ACh signaling (gKs  =  0 mS/cm2 for high ACh signaling and gKs  =  1.5 mS/cm2 for no ACh signaling). (B,D) Spike-Frequency-Adaptation (SFA) 
showed by the voltage traces (B) of different gKs values with current of 1.5  μA/cm2 being applied (Same color code with A and other gKs maps). SFA is 
caused by the slow build-up of the M-type K+ current during initial spiking as shown by its increasing conductance values gKs* z (D). (C) The 
asymmetric STDP rule. The potentiation decays with a time constant of 14  ms and depression decays with a time constant of 34  ms. For a given 
positive spike pair, the maximal amplitude for modification is 0.0025. For a given negative spike pair, the maximal amplitude for depression is 0.00125.
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Within each module, we used 400 excitatory (E) neurons and 100 
inhibitory (I) neurons evenly distributed over separate square lattices 
(20 20×  E cell lattice and 10 10×  I cell lattice, Figure 2). The inhibitory 
cells accounted for 20% of cells similar to what has been reported 
experimentally in the cortex (Sahara et al., 2012). A local excitation-
global inhibition network topology (like center-surround or lateral 
inhibition topologies) was used in which E cells sent outgoing 
connections to their 40 nearest neighbors on the E cell lattice and to 
their 10 nearest neighbors on the I cell lattice, (i.e., cells having the 
smallest distance, r i j= +2 2 , where i, j are neuron’s location indices; 
when needed, for the subset of cells that had the same distance r, 
we selected the adequate number of cells at random). Inhibitory cells 
sent outgoing connections to all E cells and all I  cells. Periodic 
boundary conditions were imposed on cells near the lattice edges.

Local excitation and longer range inhibition, often referred to as 
“Mexican hat” organization, has been used in network models of 
orientation selectivity (Ben-Yishai et al., 1995; Douglas et al., 1995; Somers 
et al., 1995; Koch and Segev, 1998; Ernst et al., 2001), working memory in 
frontal cortex (Wang, 2001), and multiplicative neural responses in 
parietal cortex (Salinas and Abbott, 1996). Moreover, it was found that, in 
visual cortex, the long axons of GABAergic basket cells may provide the 
substrate for long-range inhibition (Buzás et al., 2001; Kang et al., 2003).

To illustrate network dynamics on a raster plot, we indexed neurons 
by lattice column such that a neuron’s index, IDi, was set to the sum of its 
lattice y-coordinate and the product of its lattice x-coordinate with the 
length of the lattice network, ID y x Li i i= + ×  (L = 20 for E-cells and 
L =10  for I-cells). The first 400 indices were assigned to E-cells in the 
module 2 while the module 2 I-cells’ indices ranged from 401 to 500; the 
module 1 cells were similarly indexed as 501–1,000.

The synaptic current Isyn
i

 represented the total synaptic current 

received by neuron i and was given by I Isyn
i

j
syn
ij=∑  where 

I w
t t

V Esyn
ij

ij
k

jk
i syn

j= −
−







 −( )∑exp τ

 at times t t jk>  (spike time of 

jth neuron’s kth spike). The synaptic strength wij is the ijth element in 
the adjacency matrix for the weighted directed graph for synaptic 
connections in our network model. For within module connections, 

we used 0.01 mS/cm2, 0.05 mS/cm2, 0.04 mS/cm2 and 0.04 mS/cm2 for 
E–E, E-I, I-I and I-E synaptic strengths, respectively. For all synaptic 
currents we  used the same decay time constant τ = 3 0. ms . The 
reversal potential of the synaptic current (Esynj ) was set to 0 mV for 
excitatory synapses and −75 mV for inhibitory synapses.

2.4. Generation of heterogenous ACh 
spatial maps

To simulate spatially heterogeneous distribution of ACh levels, 
we constructed a mapping of maximal conductance values gKs across 
the E cell and I cell lattices (Figure 2). The gKs

i j, values for E cells, based 
on their i j,  position in the 20 20×  lattice (for E-cells) or 20 20×  lattice 
(for I-cells) were given by

 
g g S d rKs
i j

Ks i j
,

,min= ( ) + −( )

where S(x) = 1/(1 + exp(−x)) is the standard sigmoid function, di j,  
is the Euclidian distance to the nearest center of an ACh signaling 
hotspot, and r is the radius of the ACh signaling hotspot.

2.5. Measurements of network dynamics 
and potentiation patterns

All results presented here are averages over four trials, with each 
trial simulation having duration 5,000 ms and starting from random 
initial conditions. Network bursting frequency was calculated with 
summed voltage traces of E-cells in each module. To compute 
network level activation patterns, the discrete spiking times of every 
neuron were convolved with a Gaussian function (σ = 1 ms) centered 
at spike times. The convolved activation times of all neurons were 
then summed to form cumulative network traces. By finding peaks 
of these network activity traces, the bursting times can be identified 

FIGURE 2

Schematic showing multi-module E-I network connectivity and spatial heterogeneous gKs distribution. Two network modules are interconnected with 
plastic excitatory synaptic connections, that change via a STDP rule (see above) and connect randomly or topographically. Each module consists of 
two-dimensional networks with 400 excitatory (E) neurons and 100 inhibitory (I) neurons with local excitatory connectivity and global inhibitory 
connectivity. Within each module, the external input current to all neurons is homogeneous. Each module has its own spatially heterogenous gKs 
mapping. Poisson noise is at the same frequency for both modules.
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for computation of mean phase coherence (MPC) (Mormann et al., 
2000) between two modules:

 
MPC

e

Ntop bottom
k
N i k

, = =∑ 1

φ

where φk
bottom k top k

top k top k

t t
t t

=
−
−+

2

1

π , ,

, ,
 in which ttop k,  is kth bursting time 

of module 1 and tbottom k,  is kth bursting time of module 2. Similarly, 
we can compute MPCbottom top,  and take the average of two MPC 
values for the final MPC records.

The potentiation pattern was visualized based on a synaptic 
weight change matrix ∆W W W Wf i i= × −( )100% / , where Wi is the 
adjacency matrix for intermodule connections representing initial 
synaptic weights and Wf  corresponds to the final adjacency matrix 
after 5-s simulations. We averaged W∆  across rows to compute the 
average maximal conductance change of incoming intermodule 
synaptic weights for each E-cell to visualize the pattern of potentiation. 
To compute the average change of weights across all incoming 
synapses to a given module, we averaged W∆  across all E-cells’ of that 
module. In addition, to better visualize synaptic weight changes, 
we used a linear-logarithmic scale in both the positive and negative 
directions from 0. Specifically, between −2 and 2% we used a linear 
scale while between −100% to −2 and 2 to 100% we used a logarithmic 
scale. This allows us to compare small and large changes in weight.

3. Results

In this study, we use biophysical excitatory-inhibitory (E-I) multi-
module neural network models to elucidate how spatially heterogenous 
ACh signaling coupled with external stimuli can mediate spatially 
constrained potentiation patterns. While ACh acts through multifaceted 
mechanisms on neuronal and network level functions, we concentrate 
here on its influence on the K+ M-current (modulated through M1 
receptors) and its consequences for network reorganization. With 
network connectivity within each module fixed in a local excitation/global 
inhibition topology, we  focus on analyzing synaptic reorganization 
patterns, driven by STDP, of excitatory-to-excitatory synapses between 
the two network modules. We  consider two types of inter-module 
network connectivity: random (the plastic synapses between E-cells are 
randomly organized with a fixed in-degree) and topographical (with the 
two modules aligned one on top of the other, E-cells in one module are 
connected to the nearest E-cells in the other module).

3.1. Muscarinic-mediated cholinergic 
modulation of neural response properties 
affect network dynamics

ACh modulation of the M-current exerts continuous control of 
neuronal excitability properties, leading to changes in network firing 
dynamics (Stiefel et al., 2009; Fink et al., 2013; Roach et al., 2019; Yang 
et al., 2021). We first review these cholinergic-induced changes that 
can impact network potentiation patterns under STDP. The K+ ion 
channels influenced by muscarinic receptor activation, and their 
corresponding ionic current, are blocked when ACh is high (Stiefel 
et al., 2009). We simulate these specific effects of ACh by decreasing 

the value of the maximal conductance of the K+ M-current, gKs, such 
that low values of gKs correspond to high ACh tone and high values 
of gKs correspond to low ACh tone (Figures 1A,B,D).

Through this regulation of the M-current, ACh changes neural 
response to input such that for high and low levels of ACh modulation 
the neuron excitability changes between two archetypes: Type 1 and 
Type 2, respectively. These two excitability types differ in the dynamical 
mechanism of spike generation (Stiefel et al., 2008) which leads to 
several differences in input response characteristics between the two 
types, including a change in frequency and spike timings response to 
different current inputs. In terms of spike frequency, response to an 
injected current (f/I or gain function) (Tsuno et  al., 2013), both 
excitability types (Type 1 and Type 2) have a critical current, Ic, below 
which no spiking occurs, but are quite different in terms of spiking 
response around this point. Type 1 (high ACh) neurons will fire at 
arbitrarily small frequencies as the critical value of Ic is reached leading 
to a continuous frequency-current curve, whereas Type 2 (low ACh) 
neurons have a discontinuous frequency increase from quiescence and 
initiate firing at a higher frequency (Figure 1A). Another critical feature 
difference between Type 1 and Type 2 excitability is that Type 2 
neurons vary much less their firing rate in response to changes in 
injected current [i.e., have reduced gain (Tsuno et  al., 2013)]. The 
difference in gain between these neuron types leads to increased firing 
responses to input for networks of Type 1 (high ACh) cells and larger 
differences in firing rates between cells receiving different inputs in 
Type 1 networks compared to Type 2 (low ACh) networks.

A concurrent change in response characteristics that occurs with 
ACh modulation of the M-current is differential response to brief, 
weak stimuli in terms of spike timing perturbation (i.e., advance or 
delay). This cellular property is quantified by the phase response curve 
(PRC) and can affect network synchronization propensity (Gutkin 
and Ermentrout, 1998; Gutkin et al., 2003; Izhikevich, 2005; Stiefel 
et al., 2008; Börgers, 2017). However, in our networks its effects may 
be reduced due to being in a strong coupling regime.

The cellular-level differences between high and low ACh modulation 
influence network firing dynamics and consequently plasticity patterns 
by STDP. Specifically, robust potentiation (and depotentiation) by STDP 
relies on consistent relative spike times between pairs of cells. Low ACh 
modulation may support such consistent firing as the majority of cells 
will fire within a network synchronous volley (also referred to it as a 
burst) whose duration is within the STDP time window. On the other 
hand, increased gain under high ACh modulation can cause feedback 
reverberatory firing between reciprocally connected cells whereby higher 
gain network regions may fire both before and after low gain network 
regions within the STDP time window. This can lead to different 
plasticity patterns between connected network regions. We thus show 
that a seemingly simple STDP rule can lead to diametrically different 
results that are modulated in part by ACh levels.

3.2. Differential neural excitability and 
external noise control patterns of synaptic 
rewiring in multi-module networks with 
random inter-module connectivity

In our networks, neural excitability is modulated by both gKs level 
(ACh modulation) and direct current (DC) input. To understand the 
interplay between these two parameters in controlling network 
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excitability and mediating differential synaptic reorganization patterns 
in our two-module networks, we varied both parameters gKs and DC 
in module 1, while the parameters in network module 2 were held 
fixed. Additionally, both modules received external noisy input 
current pulses at different frequency levels.

We first consider spatially homogeneous ACh modulation in both 
modules with module 2 parameters set to gKs = 0.6 mS/cm2 and 
DC = 2.0 μA/cm2, and these parameters varied in module 1. Within 
each module, the network exhibits synchronous volleys, with neurons 
within the modules being tightly synchronized, regardless of ACh 
level. This is due to the pyramidal-interneuron gamma (PING) 
mechanism (Börgers et al., 2005) produced by the local excitation – 
global inhibition connectivity, which we have previously linked to 
ACh modulated M-currents (Lu et al., 2020; Yang et al., 2021) and was 
shown in experimental studies (Howe et al., 2017). Given the small 
size of our model networks, we generally consider them to be subsets 
of synaptically coupled cells that are embedded within a larger brain-
size network. As such, we do not consider that the synchronous firing 
observed in our results represents the firing activity observed from all 
neurons in a brain region. Instead our results represent firing of a 
subset of directly connected cells within a brain region.

With the STDP rule implemented on the excitatory synapses 
between modules, we  observed that, depending on the relative 
excitability of the two modules, synaptic weights between modules are 
potentiated or depressed (Figure 3). Specifically, in the absence of 
noise input (Figure 3A), synaptic weights from the more excitable 
module to the less excitable module are potentiated ( W∆  positive). 
This can be  expected since the more excitable module typically 
releases a highly synchronized spike volley first with the volley 
recruiting all cells in the module, and driving a similarly global volley 
in the less excitable module. In this regime, the modules may 
be  viewed as acting like a coupled oscillator system in which the 
oscillator with higher natural frequency leads the oscillator with lower 
natural frequency.

As the gKs value and DC input are varied in module 1, its excitability 
relative to module 2 changes as does the spike volley order between 
modules. This creates a diagonal boundary in the W∆  color maps of 
Figure 3A between parameter regions of potentiation and depotentiation 
of inter-module synaptic connections. On the left side of the diagonal 
boundary, module 2 is more excitable and thus, spike volleys in module 
2 lead those in module 1 and this results in potentiation of synapses 
from module 2 to module 1 and depression of connections from module 
1 to module 2. Detailed examples of these plasticity patterns are marked 
as E and G in Figure 3A. Conversely, on the right side of the diagonal 
boundary, module 1 is more excitable and hence spike volleys in module 
2 follow those of module 1 and the plasticity pattern is reversed 
(examples on Figure 3A are marked as F and H).

However, when noise is applied to cells in both modules, these 
plasticity patterns are disrupted or even reversed as a function of noise 
frequency (Figures 3B–D). Specifically, as the frequency of applied noise 
increases (2.5, 5, and 10 Hz – Figures 3B–D, respectively), the change of 
the synaptic weights scales down significantly, and, critically, the synaptic 
reorganization pattern gradually switches in terms of which connections 
are potentiated or depressed. In particular, now synaptic weights from the 
less excitable module to the more excitable module are on average 
potentiated. As will be shown more clearly below, this is due to the fact 
that the synchronized spike volleys become more complex. Specifically, as 
the noise initiates the volley first in the more excitable module, that in 

turns triggers the volley in the less excitable module, that subsequently 
recruits cells in the more excitable module for a secondary volley. These 
volleys resemble more typically observed bursts of activity where an 
individual cell may fire multiple spikes over a longer time period. Here 
ACh plays a key role. Lack of ACh results in more hyperpolarization after 
a spike, due to activation of the m-current, thus effectively depressing the 
possibility of a secondary volley for the cells with reduced ACh levels. 
Conversely, high ACh concentration blocks the m-current, leading to 
higher sensitivity of the cell to the synaptic input and consequently 
promotion of a secondary volley.

We more closely analyzed a few examples of such changes in the 
plasticity pattern (marked on the color maps in Figures 3B–D as E, F, 
G and H, and further analyzed in Figure 4) to investigate how the 
reversal depends on the relative excitability of the two modules (see 
Supplementary Figure 1 for a comparison of network activity when 
STDP is absent). In Example E excitability of module 1 is significantly 
lower than for module 2 (in this case gKs is lower in module 1, but it 
remains less excitable than module 2 because its DC input is lower; 
gKs = 0.3; DC = 0.5). When there is no noise present (Figure  3E 
leftmost panels, 0 Hz noise frequency), bursting in the more excitable 
module (i.e., module 2) leads bursting in module 1 causing 
potentiation of synapses from module 2 to module 1 (red in module 
1 incoming synaptic change plot) while synapses from module 1 to 
module 2 were depressed (Figure 4D left panel). Presence of noise of 
increasing frequency progressively disrupts this firing order with no 
clear potentiation pattern forming at any noise frequency (Figure 3E 
left to right panels and Figure 4D middle to right panels).

On the other hand, Example F (Figures  3F, 4A–C,E) shows a 
reversal of the plasticity pattern with increasing noise frequency. In 
this case, with no noise added, module 1 is more excitable due to 
higher DC (gKs values are the same in both modules) and its 
synchronous volleys systematically lead those of module 2. This causes 
strong synaptic potentiation from module 1 to module 2 (leftmost 
panel, 0 Hz, Figure 3F and Figure 4E left panel). With progressively 
higher noise frequency, the plasticity pattern switches as the spike 
volleys in module 1 become fragmented due to noise (i.e., only a 
limited subpopulation of neurons spike on the burst initiation) and, 
subsequently, synaptic feedback from module 2 spike volleys drive 
secondary spike volleys in module 1 reversing the order of the synaptic 
events. Specifically, as neurons in the more excitable module (module 
1 on Figure 4C) are released from inhibition (earlier than those in 
module 2) and their voltage approaches threshold, the random noise 
triggers a small avalanche of activity within that module (Figure 4C). 
This burst in turn drives a synchronous volley in module 2, which 
finally triggers a secondary volley in module 1 (Figure  4C). The 
interaction between the spike volley of the less excitable module and 
the secondary spike volley in the more excitatory module causes 
reversal of the potentiation direction as compared to the no noise case. 
At a noise frequency of 2.5 Hz, bidirectional mean synaptic 
potentiation between the modules occurs, and the potentiation 
pattern is completely reversed at 5 Hz noise frequency and above 
(Figure 4E right panel). This is again mediated in part by varying ACh 
levels – a lack of ACh, causes hyperpolarization, via the m-current, 
after the spike thus effectively depressing the possibility of a secondary 
burst for the cells positioned in the regions with reduced ACh levels.

Similarly, in Example G (Figures  3G, 4F), module 2 is again 
somewhat more excitable than module 1, but now due to its higher gKs 
value (the DC level is the same for both modules). Here, even at low 
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noise frequency, there is a full reversal of the plasticity pattern obtained, 
as compared to no noise case. The potentiation reversal for lower noise 
frequencies is due to the closer match of excitability levels of both 
modules, together with higher gKs of module 1 promoting more robust 
synchronization in module 1 and emergence of feedback secondary 
bursts in module 2, and reversal of synaptic events (Figure 4F).

Finally, example H (Figures 3H, 4G) illustrates the scenario when 
the switch of the plasticity pattern only happens at high frequency 

noise. Even though module 1 has high gKs, it is more excitable because 
of its high DC level. Low noise has little effect on synchronization with 
high gKs in module 1 thus the firing pattern is preserved. When there 
is no noise (leftmost panels, 0 Hz), module 1 leads module 2 in all 
rounds of bursts. Synapses from module 1 to module 2 are potentiated 
(red in module 2, Figures 3H, 4G) while synapses from module 2 to 
module 1 were depressed. Only for highest noise frequency (10 Hz) is 
this firing dynamic disrupted and the plasticity pattern reverses.

FIGURE 3

Noise disrupts and/or reverses the plasticity pattern between two randomly connected network modules with spatially homogenous gKs distribution. 
The gKs level and DC input for the module 2 are fixed at gKs  =  0.6 mS/cm2 and DC  =  2.0  μA/cm2, respectively, while the corresponding parameters for 
the module 1 are varied as shown in the colormaps (A–D). The noisy current inputs (modeled with a Poisson process) are applied at different frequency 
levels (0, 2.5, 5, 10 Hz – from left to right columns corresponding to (A–D). The average change of synaptic weights ∆w is color coded with a linear-
logarithmic scale shown on the rightmost colorbar (red: potentiation; blue: depression). (A–D) Average change in maximum synaptic conductance of 
connections: incoming to module 2 (top subplots); incoming to module 1 (bottom subplots). (E–H) correspond to example parameter values marked 
as E,F,G,H in (A–D). In panel (E–H) rows, the leftmost plot shows the gKs values for each network module (top: module 1; bottom: module 2; lighting 
symbol: Idrive). The subsequent subplots (left to right) correspond to results with different frequencies of noise applied to both modules. Each example 
consists of 300  ms raster plot (left subplot) and a visualization of the change in weight for incoming synapses to each cell in the module (right subplot, 
red  =  potentiation, blue  =  depression). (E) The gKs level and DC input for module 1 are 0.3 mS/cm2 and 0.5  μA/cm2. (F) The gKs level and DC input for 
module 1 are 0.6 mS/cm2 and 3.0  μA/cm2, respectively. (G) The gKs level and DC input for module 1 are 1.2 mS/cm2 and 2.0  μA/cm2, respectively. 
(H) The gKs level and DC input for module 1 are 1.2 mS/cm2 and 3.5  μA/cm2, respectively.

https://doi.org/10.3389/fncir.2023.1239096
https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org


Yang et al. 10.3389/fncir.2023.1239096

Frontiers in Neural Circuits 08 frontiersin.org

3.3. ACh alone may mediate reversal of 
synaptic potentiation

While the above results summarize the effects of combined 
changes in neural excitability due to varying gKs and DC input, the 
excitability changes due to only varying gKs can generate the reversal 
in synaptic plasticity pattern in the presence of noisy inputs. To show 

this, we investigated rewiring patterns between the modules having 
spatially homogenous but different gKs values, the same value of DC 
current input, and random inter-module connectivity.

We observed that away from the balanced excitability state, 
synapses from the more excitable module to the less excitable module 
are potentiated when noise is absent (Figures  5A,B; compare to 
Figure 3A). Similarly to what we showed earlier, the presence of noise 

FIGURE 4

Network module bursting dynamics and synaptic potentiation in two randomly connected network modules with spatially homogenous gKs 
distribution. (A,B) 300  ms raster plots with module network bursting traces (blue: module 1; orange: module 2). The gKs level and DC input for module 1 
are 0.6 mS/cm2 and 3.0  μA/cm2, respectively, (Example F in Figure 3). The gKs level and DC input for module 2 are fixed at gKs  =  0.6 mS/cm2 and 
DC  =  2.0  μA/cm2, respectively. The noisy current inputs are applied at different frequency levels (A: 0  Hz; B: 5  Hz). (C) Magnification of the module 
network bursting traces in the presence of noise (B): the noise on the more excitable module (module 1) drives a small activity burst that in turn triggers 
a full spike volley in module 2; the module 2 volley triggers a secondary volley in module 1. (D–G) Correspond to example parameter values marked as 
E,F,G,H in Figure 3. The subplots (left to right) correspond to two (left: 0  Hz; middle: 5  Hz) histogram plots of spike pair time differences (between 
module 2 and module 1; positive spike pair difference means the E-cell in module 1 spikes first) during 4–5  s (left axes; blue) combined with overall 
synaptic potentiation curve weighted by STDP function (right axes; orange); And a summary bar plot of the overall synaptic potentiation under different 
noisy frequency levels.
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not only disrupts but also reverses this synaptic potentiation direction 
(Figures 5A,B; compare to Figures 3B–D). Specifically, when the ACh 
concentration in module 1 is high (low gKs levels), incoming synapses 
to module 1 are potentiated when noise is present and depressed when 
the noise is absent. On the other hand, when the concentration of ACh 
in module 1 is lower (higher gKs levels), incoming synapses to module 
1 are depressed in presence of noise and potentiated in the absence of 
noise. The magnitude of synaptic changes is inversely proportional to 
the noise frequency.

In terms of burst dynamics, tight phase locking of bursts in the 
two modules is only observed in the networks without noise 
(Figure  5C). In this case, burst locking is observed when the 
excitability of the two modules is matched (gKs = 0.6 in both modules) 
and remains tight as module 1 becomes more excitable with higher 
values of gKs (Figure 5C). When noise is present, on the other hand, 
phase locking between the modules was significantly lower, with peak 
locking when the modules have matched excitability (gKs = 0.6), but 
lower locking when excitability is mismatched.

When no noise is present and when excitability of the two 
modules is similar (gKs = 0.5 ~ 0.8 in the module 1), large variance in 
the plasticity pattern is observed across multiple runs because of 
varying initial conditions and simulated network connectivity that 
may additionally change relative module excitability (Figures 5A,B). 
This is due to the network bursting dynamics remaining unchanged 
during the simulation, which is further promoted by unidirectional 
strengthening of inter-module synapses, resulting in a potentiation 
pattern that is biased toward one direction based on initial conditions 
(example from one run shown in Figure 5F).

The reversal effect is driven by two characteristics of the ACh 
blocked m-current. Blockage of the m-current (high ACh, low gKs) 
increases module excitability causing the noise to trigger a small, 

partial volley on that module, that consequently triggers the cascade 
as described above. At the same time, the module having low ACh 
(high gKs) experiences the brunt of the slow hyperpolarizing 
m-current just after firing its volley, effectively stopping it from firing 
a secondary volley later, after the secondary volley of the more 
excitable module.

3.4. Spatial localization of synaptic 
reorganization due to ACh spatial 
heterogeneity of a single hotspot in 
multi-module networks with random 
inter-module connectivity

To further investigate how spatially heterogeneous ACh 
distributions mediate network reorganization patterns between 
randomly interconnected modules, we analyze directionality of 
synaptic potentiation when module 2 has a spatially heterogenous 
gKs distribution in the shape of a single hotspot or bump. 
Specifically, within the hotspot gKs and DC values are set to 
gKs = 0.6 mS/cm2 and DC = 2.0 μA/cm2, respectively, while the 
surrounding portions of the network have lower excitability 
(gKs = 1.5 mS/cm2 and DC = 3.0 μA/cm2). In module 1, the gKs 
distribution is spatially uniform and we again vary gKs values and 
DC input levels. Here the m-current, via gKs, is the major factor 
driving high excitability within the hotspot even though the DC 
outside the hotspot is higher.

Results for this scenario basically mirror those discussed 
above where the excitability of module 1 compared to the 
excitability within the gKs hotspot in module 2 dictates the 
plasticity pattern and that pattern may be  reversed with the 

FIGURE 5

Noise reverses direction of synaptic potentiation when ACh levels are mismatched in the coupled modules. The DC input for both modules is fixed at 
DC  =  2.0  μA/cm2. The gKs value of the module 2 was set to be  gKs  =  0.6 mS/cm2 (vertical dashed lines in A–D) while the gKs value of the module 1 were 
uniformly varied to simulate different levels of ACh signaling. The noise (modeled as Poisson process) was simulated to be at different frequency (0, 2.5, 
5, 10  Hz in legend). The average change of synaptic weights ∆w is color coded with a linear-logarithmic scale shown on the rightmost colorbar (red: 
potentiation; blue: depression). (A) Average change in maximum synaptic conductance of connections incoming to module 2 as a function of gKs levels 
of module 1. (B) Average change in maximum synaptic conductance of connections incoming to module 1 as a function of gKs levels of module 1. 
(C) Mean phase coherence between two modules’ synchronous volleys as a function of gKs of the module 1. (D) Difference in bursting frequency 
between module 2 and module 1 as a function of gKs of the module 1. (E–G) Examples marked as E,F,G in (A–D). In panel (E–G) rows, the leftmost plot 
shows the gKs values for each E-I network module (top: module 1; bottom: module 2). The next subplots correspond to different frequencies of noise 
applied to both modules. Each example consists of raster plot from 4,700  ms to 5,000  ms (left subplot) and a visualization of the change in weight for 
incoming synapses to each cell in the module (right subplot, red  =  potentiation, blue  =  depression). (E) The gKs level and DC input for module 1 are 0.2 
mS/cm2 and 2.0  μA/cm2. (F) The gKs level and DC input for module 1 are 0.6 mS/cm2 and 2.0  μA/cm2. (G) The gKs level and DC input for module 1 are 1.1 
mS/cm2 and 2.0  μA/cm2.
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addition of noise (Figures 5A–D). Importantly, however, even 
though the modules have randomly assigned interconnections 
the plasticity pattern can exhibit spatial localization. For example, 
when the hotspot in module 2 is more excitable than module 1 
and noise is absent, bursts in the hotspot, with sporadic 
recruitment of all neurons in module 2, lead the network 
synchronous spike volley in module 1 (Figure 6E). This dynamical 
pattern results in strong depression of the synapses incoming to 
the hotspot, and weaker depression of incoming synapses to 
neurons outside the hot spot. Incoming synapses to module 1, on 
the other hand, are uniformly potentiated. When noise is added, 

the synaptic reorganization pattern reverses while retaining 
spatial localization, with incoming synapses to neurons in the 
hotspot potentiating to a higher degree than in the 
surrounding neurons.

When the excitability of module 1 is significantly higher than 
the excitability within the ACh hotspot in module 2 (Figure 6F), 
for the no noise case, incoming synapses to module 2 are 
uniformly strengthened, due to bursting in module 1 leading 
module 2 volleys. Interestingly, for low noise frequency, the 
plasticity pattern is only partially reversed. As expected, incoming 
connections to module 1 become uniformly potentiated, but in 

FIGURE 6

Spatial localization of plasticity induced by spatially heterogenous ACh modulation in two randomly connected network modules (module 2 has a gKs 
hotspot and module 1 has homogenous gKs distribution). The gKs level and DC input for module 2 are fixed at gKs  =  0.6 mS/cm2 and DC  =  2.0  μA/cm2, 
respectively, for the hotspot and gKs  =  1.5 mS/cm2 and DC  =  3.0  μA/cm2, respectively, for the surroundings while the corresponding parameters for 
module 1 are varied as shown in the colormap. The noise (modeled with poisson process) was simulated to be at different frequency (0, 2.5, 5, 10  Hz 
from left to right columns corresponding to A–D). The change of synaptic weights is all color coded with logarithmic scale shown on the rightmost 
colorbar (red: potentiation; blue: depression). (A–D) Average change in maximum synaptic conductance of connections incoming to module 2 from 
module 1 (top subplot); to module 1 from module 2 (bottom subplot). (E–G) Examples marked as E,F,G in (A–D). gKs level and DC input for module 2 
are fixed at 0.6 mS/cm2 and 2.0  μA/cm2, respectively, while the corresponding parameters for module 1 are varied as shown in the colormap. The noise 
(modeled with poisson process) was simulated to be at different frequency (0, 2.5, 5, 10  Hz from left to right columns). In panel (E–G) rows, the 
leftmost plot shows the gKs values for each E-I network module (top: module 1; bottom: module 2; lighting symbol: Idrive). The next subplots correspond 
to different frequencies of noise applied to both modules. Each example consists of raster plot from 4,700  ms to 5,000  ms (left subplot) and a 
visualization of the change in weight for incoming synapses to each cell in the module (right subplot, red  =  potentiation, blue  =  depression). (E) The gKs 
level and DC input for module 1 are 0.9 mS/cm2 and 1.5  μA/cm2. (F) The gKs level and DC input for module 1 are 0.3 mS/cm2 and 3.5  μA/cm2, 
respectively. (G) The gKs level and DC input for module 1 are 0.9 mS/cm2 and 3.5  μA/cm2, respectively.
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module 2, only connections incoming to the hotspot are 
depotentiated. Connections targeting the neurons surrounding 
the hotspot remain potentiated. This is due to the fact that module 
1 fires secondary volleys in response to synchronous volleys in 
module 2 due to its high excitability and these volleys occur after 
the cells in the hotspot fire but before the sparse activation of the 
cells surrounding the hotspot. For larger noise frequencies, this 
nonuniform plasticity pattern disappears and complete reversal of 
the plasticity pattern occurs with all synapses incoming to module 
1 getting potentiated and the ones targeting module 2 being 
depotentiated irrespective of whether the targeted neurons are in 
the ACh hotspot or not.

As a final example, when lower gKs and high DC in module 1 
promotes volley synchronization, reversal of the plasticity patterns 
occurs only for larger noise frequencies (Figure 6G). There is not 
pronounced spatial localization of the plasticity in module 2 since the 
leading synchronous spike volleys in module 1 drive firing across the 
whole network of module 2.

In contrast, when neurons in the ACh hotspot in module 2 
are highly excitable (high DC = 3 μA/cm2 and low gKs = 0.2 mS/
cm2), a more consistent plasticity pattern occurs regardless of the 
excitability of module 1 or the noise frequency (Figure  6). 
Specifically, synapses incoming to module 2 are generally 
potentiated while synapses incoming to module 1 are mostly 
weakened (Figures 7A,B). This is due to the fact that the high 
excitability within the hotspot results in secondary volleys in 
module 2 that are driven by synchronous volleys in module 1, 

readily observed when the noise is absent (Figures 7C–E, left 
panels). The time difference of volleys between the modules is 
conducive to potentiating synapses incoming to the neurons 
within the hotspot in module 2. The neurons outside the hot 
spot fire more sparsely, because of the high hotspot firing and 
global inhibition within the module, leading to non-significant 
synaptic changes at these cells, and high spatial localization 
of plasticity.

Only when the excitability of module 1 is greater than that of the 
gKs hotspot in module 2 is there a weak reversal of potentiation 
pattern in the presence of noise (Figure 7D). In this case, the synapses 
incoming to module 1 are generally potentiated when noise is present. 
This is again due to the timing of secondary volleys in module 1 driven 
by the activity generated in module 2.

3.5. Strong spatial localization of plasticity 
patterns is induced by spatially 
heterogeneous ACh modulation when 
network modules are topologically 
connected

We also investigated how the structural network reorganization 
proceeds when the inter-module connectivity was topographically 
arranged at the start of the simulation. We consider a single, highly 
excitable ACh hotspot in module 2 and spatially uniform gKs in 
module 1 with varying values and DC levels. Because of the local 

FIGURE 7

Consistent and spatially localized plasticity patterns for high and spatially heterogeneous gKs (ACh) modulation between two randomly connected 
network modules. The gKs level and DC input for module 2 are fixed at gKs  =  0.2 mS/cm2 and DC  =  3.0  μA/cm2, respectively, for the hotspot and gKs  =  1.5 
mS/cm2 and DC  =  3.0  μA/cm2, respectively, for the surroundings while the corresponding parameters for module 1 are varied as shown in the 
colormap. The noise (modeled with Poisson process) was simulated to be at different frequency (0, 5  Hz from left to right columns corresponding to 
A,B). The change of synaptic weights is all color coded with logarithmic scale shown on the rightmost colorbar (red: potentiation; blue: depression). 
(A,B) Average change in maximum synaptic conductance of connections incoming to module 2 from module 1 (top subplot); to module 1 from 
module 2 (bottom subplot). (C–E) Examples marked as C,D,E in (A,B). In panel (C–E) rows, the leftmost plot shows the gKs values for each E-I network 
module (top: module 1; bottom: module 2; lighting symbol: Idrive). The next subplots correspond to different frequencies of noise applied to both 
modules. Each example consists of raster plot from 4,700  ms to 5,000  ms (left subplot) and a visualization of the change in weight for incoming 
synapses to each cell in the module (right subplot, red  =  potentiation, blue  =  depression). (C) The gKs level and DC input for module 1 are 0.6 mS/cm2 
and 1.5  μA/cm2. (D) The gKs level and DC input for module 1 are 0.0 mS/cm2 and 3.5  μA/cm2. (E) The gKs level and DC input for module 1 are 1.2  mS/cm2 
and 3.0  μA/cm2.
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excitation-global inhibition connectivity within the modules, high 
hotspot firing suppresses activity of the surrounding neurons in 
module 2, and the topographical inter-module connectivity drives 
similar activity patterns in module 1. Therefore, little synaptic 
reorganization is detected outside the hotspot region in module 2, or 
the region directly connected to the hotspot in module 1, and plasticity 
is strongly spatially localized.

In these networks, synapses targeting the hotspot region in 
module 2 are potentiated regardless of the excitability of module 1 
or noise frequency (Figure 8). When module 1 is significantly less 
excitable than the gKs hotspot, incoming synapses to module 1 are 
depressed regardless of the presence of noise (Figures 8C,E), but 
when module 1 has similar or higher excitability than the hotspot 
these synapses are potentiated (Figure 8D). This is due to the fact 
that the spatial locations of activity within the hotspot (module 2) 
and its corresponding region in module 1 are synchronized. When 
both regions are highly excitable (as in Figure  8D) the activity 
consists of prolonged, multispike, synchronized high frequency 
spike volleys. This, due to the higher firing rates and asymmetric 
nature of the STDP rule, leads to preferential reciprocal potentiation 
of the inter-module connections.

The lack of noise dependence is due to the fact that local 
connectivity provided via topological inter-module connectivity leads 
to highly heterogenous inputs to individual cells in the modules, with 
cells inside the hotspot and those connected to it firing at high 
frequency and all other cells remaining quiescent. This leads to 
temporally asynchronous cell activation within the volleys 
independent of noise presence.

3.6. Topographical connectivity between 
spatially constrained regions of ACh 
modulation promotes reciprocal localized 
synaptic potentiation

Finally, we investigate the interaction of colocalized hotspots in 
both modules in networks having topological inter-module 
connectivity (Figure  9). As before module activation is 
predominantly limited to the hotspot locations. This leads to 
reorganization of only the synapses emanating from and/or 
targeting the two hotspots (Figure  9A). Here, we  vary only gKs 
values of the hotspots, keeping these values the same across the 
modules. We  observe that when gKs values are low, reciprocal 
connections targeting both hotspots are robustly potentiated 
(Figures 9A,B), forming strong, spatially localized intermodular 
connectivity between the hotspots (Figure  9C). This is due to 
synchronized multi-spike bursting in both hotspots (Figure 9C) and 
the asymmetric STDP rule. Interestingly, for intermediate values of 
gKs the hotspots compete to drive synaptic potentiation (Figure 9D). 
Depending on the (random) initial conditions, the bursting pattern 
evolves randomly so that volleys generated by one of the hot spots 
lead those generated by the other one. As a result, synapses targeting 
one spot are potentiated whereas the reciprocal connections are 
weakened. This random direction of the plasticity pattern is evident 
in the high values of the standard deviation of synaptic changes 
(Figure  9B) for this range of gKs values. Since the change can 
be positive (potentiation) or negative (depotentiation) the standard 
deviation of this randomized effect is large.

FIGURE 8

Strong spatial localization of plasticity with spatially heterogeneous ACh modulation between two topographically (nearest neighbor) connected 
network modules (module 2 has a strong gKs hotspot and module 1 has homogenous gKs distribution). The gKs level and DC input for module 2 are fixed 
at 0.2 mS/cm2 and 3.0  μA/cm2, respectively, for the hotspot and 1.5 mS/cm2 and 3.0  μA/cm2, respectively, for the surroundings while the corresponding 
parameters for module 1 are varied as shown in the colormap. The synaptic connectivity in-degree is reduced to 5 in these networks (see Materials and 
methods). The noise (modeled with poisson process) was simulated to be at different frequency (0, 5  Hz from left to right columns corresponding to 
A,B). The change of synaptic weights is all color coded with logarithmic scale shown on the rightmost colorbar (red: potentiation; blue: depression). 
(A,B) Average change in maximum synaptic conductance of connections incoming to module 2 from module 1 (top subplot); to module 1 from 
module 2 (bottom subplot). (C–E) Examples marked as C,D,E in (A,B). In panel (C–E) rows, the leftmost plot shows the gKs values for each E-I network 
module (top: module 1; bottom: module 2; lighting symbol: Idrive). The next subplots correspond to different frequencies of noise applied to both 
modules. Each example consists of raster plot from 4,700  ms to 5,000  ms (left subplot) and a visualization of the change in weight for incoming 
synapses to each cell in the module (right subplot, red  =  potentiation, blue  =  depression). (C) The gKs level and DC input for module 1 are 0.9 mS/cm2 
and 1.0  μA/cm2. (D) The gKs level and DC input for module 1 are 0.3 mS/cm2 and 3.0  μA/cm2. (E) The gKs level and DC input for module 1 are 1.5 mS/cm2 
and 2.5  μA/cm2.

https://doi.org/10.3389/fncir.2023.1239096
https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org


Yang et al. 10.3389/fncir.2023.1239096

Frontiers in Neural Circuits 13 frontiersin.org

For higher values of gKs within the hotspots, sparse synchronous 
spike volleys occur in the two modules that are not robustly 
synchronized (Figure 9E). This leads to an overall decrease in synaptic 
plasticity making it also less specific to the hotspots.

3.7. Spatially heterogeneous ACh 
modulation generates spatially constrained 
plasticity patterns that are influenced by 
the relative excitability of synaptically 
connected cells in topographically 
connected network modules

Finally, we investigate patterns of network reorganization when 
both modules have multiple (up to two) strongly modulated 
(gKs = 0.2 mS/cm2) cholinergic hotspots, in networks with 
topological inter-module connectivity. Cells outside the hotspots 
have low ACh modulation (gKs = 1.5 mS/cm2) and, although DC 
input is high (3.0 μA/cm2 in both modules), the majority of firing 
activity occurs within the hotspots, even in the presence of noise. 
As observed in previous results (Yang et  al., 2021), if a module 
contains two hotspots then firing activity switches over time 
between them generating theta band modulation of the gamma 
rhythm firing (Figures 10C,D).

Here the results are consistent with those obtained in previous 
sections. In general, (1) if the hotspots in the two modules share 
connections, these connections are strengthened reciprocally 
(Figures 10B–D); and (2) if the hotspots in the two modules do not 
have reciprocal connections, the connections incoming to the hotspot 
are potentiated, whereas connections outgoing from a hotspot to a 
non-modulated network region are weakened (Figures 10A,C). The 
presence of noisy inputs did not disrupt these plasticity patterns.

4. Discussion

Traditionally, cholinergic signaling has been assumed to be slow in 
terms of its concentration changes and with general spatial 
homogeneity. Recent evidence has shown, however, that ACh signaling 
is more spatially localized and asynchronous within activated brain 
modalities (Hasselmo, 1999; Dayan and Yu, 2002; Hasselmo and 
Giocomo, 2006; Sarter and Lustig, 2019). In our previous study of E-I 
networks with local excitatory connectivity and global inhibitory 
connectivity (Yang et  al., 2021), we  demonstrated that spatially 
heterogenous distributed ACh signaling can generate spatially localized 
gamma rhythms within high ACh modulated areas and, additionally, 
theta-gamma rhythmicity across spatially distinct ACh modulated 
areas. The coupled theta-gamma rhythmicity is regarded as a hallmark 

FIGURE 9

Spatially localized potentiation with spatially constrained gKs modulation in both topographically connected network modules. (A) Incoming synaptic 
weight change percentage inside the hotspot (blue) and outside the hotspot (orange) as a function of the hotspot gKs values. (B) Standard error across 
multiple trials of incoming synaptic weight change percentage inside the hotspot (blue) and outside the hotspot (orange) as a function of the hotspot 
gKs values. (C–E) gKs mapping of both modules visualization (left subplot; top: module 1; bottom: module 2), raster plot of 4.7  s to 5  s (middle) and a 
visualization of the change in weight for incoming synapses to each cell in the module (right subplot, red  =  potentiation, blue  =  depression). The 
average change of synaptic weights ∆w is color coded with a linear-logarithmic scale shown on the rightmost colorbar (red: potentiation; blue: 
depression). Parameters corresponding to C,D,E in (A,B) subplots.
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of attentive cognitive information processing (Colgin, 2015) in cortical 
and hippocampal areas, with experimental results showing that ACh 
modulation plays an important role in promoting this firing pattern 
(Newman et al., 2013; Howe et al., 2017). In this study, we built upon 
the previous modeling work and implemented ACh modulation in 
conjunction with spike timing dependent plasticity (STDP) on 
excitatory synapses between differentially modulated network regions 
in order to investigate the combined interactions of ACh-induced 
gamma rhythmicity and synaptic plasticity under the effects of spatially 
selective ACh modulation.

Using a multi-module network structure, we show that spatially 
heterogenous effects of cholinergic modulation via muscarinic M1 
receptors can lead, when coupled with STDP, to reorganization of 
network structure, with noise (i.e., stochastic inputs) playing an 
important part in the process. Specifically, we  show that synapses 
targeting localized regions with higher concentration of ACh (leading 
to lower activation of the K+ M-current) are selectively potentiated. This 
effect is primarily driven by increased cellular excitability which can also 
be induced by higher direct current (DC) input. Noise-induced firing 
affects the direction of synaptic potentiation between network regions 
leading to a preferred potentiation of synapses incoming to regions with 
higher excitability. When connected network regions are in similar 
excitability states, synaptic potentiation can be reciprocal if excitability 
is sufficiently high but otherwise potentiation is competitive with 
directional potentiation determined by specifics of firing activity. Our 
results suggest that ACh modulation can locally coordinate and govern 
directionality of synaptic potentiation between connected network areas 
and highlight the possible importance of spatial localization of ACh 
signaling in network reorganization and, hence, in feature binding and 
memory formation.

While STDP alters synaptic weights on the timescale of 
milliseconds, network reorganization, and subsequently learning, 
extends to a much slower timescale (Brzosko et  al., 2019). The 
process of neuromodulation can be  crucial in closing this gap. 
Cholinergic signaling has been shown to play an essential role in 
varied memory and learning processes. In particular, ACh 

modulation has been shown to have diverse and significant effects 
on synaptic plasticity and STDP (Seol et al., 2007; Picciotto et al., 
2012; Brzosko et al., 2019; Fuenzalida et al., 2021). ACh has been 
shown to have priming effects on plasticity induction when it is 
present before the plasticity-inducing spiking activity, as well as 
affecting bias for potentiation or depotentiation when concurrently 
present (see Brzosko et al., 2019 for review). Results suggest these 
effects are mediated by multiple mechanisms, acting through both 
muscarinic (mAChR) and nicotinic (nAChR) receptor pathways. It 
has been shown that both mAChRs and nAChRs, localized pre- and 
post-synaptically, are crucial for synaptic plasticity in the 
hippocampus (Drever et al., 2011). However, cholinergic modulation 
of STDP has very complex effects. For example, muscarinic M1 
receptor activation has been shown to enable induction of 
depotentiation (Seol et al., 2007; Brzosko et al., 2017) regardless of 
the timing sequence of pre- and post-synaptic spikes while, when 
both receptor subtypes are activated, it has been shown that 
potentiation has been facilitated regardless of the spike timing 
sequence (Sugisaki et al., 2016). Another study (Ovsepian et al., 
2004) demonstrated that muscarinic receptor activation lowered the 
threshold for LTP induction and further results identified the 
postsynaptic M1 mAChR activation being crucial in the modulation 
of hippocampal synaptic plasticity (Shinoe et al., 2005). The diversity 
of reported effects of ACh on STDP indicate a highly complex 
dependence on the ACh concentration present, the cholinergic 
receptor subtypes that are activated, the cell types and brain region 
affected as well as the specific spike firing patterns that 
induce plasticity.

These complex cholinergic mechanisms may work in tandem to 
contribute to behavioral learning. It was shown that cholinergic 
regulation of learning-induced synaptic plasticity can be mediated 
through the activation mAChRs and imparts the contextual fear 
learning-driven strengthening of hippocampal excitatory pyramidal 
synapses through the synaptic incorporation of AMPA-type glutamate 
receptors (AMPARs) (Mitsushima et al., 2013). At the same time, 
contextual fear learning also enhances the strength of inhibitory 

FIGURE 10

Spatially heterogeneous ACh modulation generates spatially constrained plasticity patterns in topographically connected network modules. For all 
subplots, the DC inpu ist 3.0  μA/ cm2 in both modules and gKs values are 0.2 mS/cm2 at hotspots and 1.5 mS/cm2 in the background. (A–D) From left to 
right, panels show: gKs mapping of both modules visualization (leftmost subplot; top: module 1; bottom: module 2), raster plot of 4.7  s to 5  s with no 
noisy inputs (2nd from left) illustrating a portion of E cell (cells 1–400 for module 2; cells 501–900 for module 1) and I cell (cells 401–500 for module 
2; cells 901–1000 for module 1) firing patterns. The pixel color indicates cell type in each module (black: E-cells; green: I-cells). and a visualization of 
the change in weight for incoming synapses to each cell in the module with no noisy inputs (3rd subplot, red  =  potentiation, blue  =  depression). The 
average change of synaptic weights ∆w is color coded with a linear-logarithmic scale shown on the rightmost colorbar (red: potentiation; blue: 
depression); and spike raster plot (4th subplot) and incoming synaptic weight changes (5th subplot) with noisy inputs at 5  Hz.
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synapses on hippocampal pyramidal CA1 neurons, in a manner 
mediated by the activation of nAChRs (Mitsushima et al., 2013).

Moreover, localized ACh release and subsequent localized 
network reorganization can critically underlie feature binding, with 
synapses targeting regions with high ACh being potentiated while 
those targeting other regions remaining weak or being actively 
depotentiated. Recent research suggests that ACh, and specifically the 
muscarinic receptor pathway, may be critical to feature binding. A 
recent study found that the muscarinic cholinergic antagonist 
scopolamine selectively impaired the ability of rats to learn a cross-
modal odor-texture feature-conjunction (FC) task, but not their ability 
to learn a future-singleton task. In addition, scopolamine left the 
retrieval of previously learned FC stimuli intact (Botly and De Rosa, 
2007). Similar results were observed in humans when their attention 
was disrupted (Botly and De Rosa, 2008).

Here we focus on a different mechanism for the influence of ACh 
on synaptic potentiation. Namely, that instead of directly modulating 
the cellular mechanisms underlying STDP, ACh affects synaptic 
potentiation by its local modulation of neuronal excitability and thus 
firing activity. Our modeling results show that modulation of M1 
receptor activation can change neuronal excitability that, in turn, leads 
to synaptic potentiation of synapses targeting neurons in regions of 
upregulated ACh levels. This mechanism is specifically driven by 
increased firing response of the neurons that are located in high ACh 
regions, leading to reverberatory firing activity within the time 
window of STDP action. It possibly explains experimental results 
(Shinoe et al., 2005) showing that a low concentration (50 nm) of 
carbachol enhanced long-term potentiation (LTP) of excitatory 
synaptic transmission in mouse hippocampal slices. Significantly for 
our results, this enhancing effect was abolished in M1 mAChR 
knock-out mice but not in M3 mAChR knock-out mice, although LTP 
itself was intact in both mutant strains.

While robust potentiation (or depotentiation) through STDP 
requires consistent firing patterns between neurons, neural activity in 
the brain is highly variable with the variability possibly playing a 
critical role in brain function (Uddin, 2020). Our modeling results 
demonstrate that noise (i.e., stochastic inputs) can play an important 
role in the reorganization of network structure. Neuronal activity 
exhibits substantial irregularity, and STDP with complex timing 
within spike patterns has been well discussed (Caporale and Dan, 
2008 and see below). We  show that the presence of noise inputs 
generating more variable firing patterns significantly scales down the 
change in synaptic weights between two network modules. In 
addition, the synaptic reorganization pattern progressively switches 
the direction of potentiation between network regions as the 
variability of firing increases (Figures 3, 5, 6). On the other hand, 
strong ACh modulation can constrain the direction of potentiation 
regardless of DC input and noisy inputs (Figure 7).

In this study, STDP was implemented with a history-independent, 
spike pair-based, canonical Hebbian plasticity rule (Song et al., 2000). 
Since its discovery by Bi and Poo in hippocampal cultures (Bi and 
Poo, 1998), STDP has been observed in numerous types of synapses 
and highly complex effects have been identified on synaptic 
modification depending on the specific firing patterns of pre- and 
post-synaptic cells as well as the state of the post-synaptic neuron 
(Markram et al., 1997; Sjöström et al., 2001; Froemke et al., 2010; 
Feldman, 2012). For example, at hippocampal CA3-CA1 synapses, 
variations in the frequency and duration of pre- and post-synaptic 

firing patterns can alter plasticity from a canonical STDP rule to rules 
that favor only potentiation or depotentiation (Wittenberg and Wang, 
2006). Similarly, at cortical synapses, higher frequency firing rates 
have been associated with the promotion of synaptic potentiation and 
lower firing rates with depotentiation, regardless of spike timing 
(Markram et  al., 1997; Sjöström et  al., 2001; Nelson et  al., 2002; 
Zilberter et al., 2009). Additionally, in the visual cortex, synaptic 
modification has been shown to depend not just on the time interval 
between a pair of spikes but also on the timing of preceding spikes 
(Froemke and Dan, 2002; Froemke et al., 2006). Specifically, synaptic 
modification can be attenuated if the post-synaptic cell fires within a 
short time window before the occurrence of the plasticity-inducing 
pre-post spike pair, and when both pre- and post-synaptic cells fire 
multiple times within a short time window, other processes such as 
short-term depression, further affect synaptic modification. Taken 
together, the diversity of synaptic modifications observed under 
different conditions of firing rates, synaptic cooperativity and 
postsynaptic voltage suggest that spike timing on the millisecond 
time scale is only one component of the synaptic plasticity process 
and this component may play a major role in determining synaptic 
modification in some circumstances, and may be negligible in others 
(Feldman, 2012).

Different computational models for synaptic plasticity have been 
developed to try to account for these complex dependencies of spiking 
timing on synaptic modification. For example, models have been 
implemented that take into account the effect of multiple pre- and 
post-synaptic spike combinations [for example pre – post spike triplets 
or quadruplets, reviewed in Morrison and Gettelman (2008)]. Taking 
a more biophysical approach, models have been introduced in which 
synaptic modification depends on the dynamics of post-synaptic 
intracellular calcium concentration driven by cell spiking (Shouval 
et al., 2002; Scherz-Shouval et al., 2010). The study by Graupner et al. 
(2016) directly compared the synaptic plasticity patterns predicted by 
models of these different types to both artificial and in vivo recorded 
spiking activity. They found that all three types of rules (canonical 
STDP, multi-spike STDP and calcium-based) predicted similar 
responses at low firing rates but the multi-spike STDP and calcium-
based plasticity rules better predicted the promotion of synaptic 
potentiation at high firing rates, as has been observed experimentally 
at some synapses.

Despite our use of a canonical, pair-based STDP plasticity rule, our 
results suggest that variation of cellular excitability (and thus firing rates), 
induced by ACh blockade of the K+ m-current, can generate variations 
in plasticity patterns and a promotion of symmetric synaptic potentiation 
at high excitability and firing rates. This effect is most pronounced in the 
results shown in Figures 7, 8, 9C, 10 where the ACh modulation is high 
in the gKs hotspot in module 2 (Figures 7, 8) or in the gKs hotspots in both 
modules (Figures 9A, 10). In these results, incoming synapses to firing 
cells in both modules potentiate when the firing cells are under high ACh 
modulation. For the results in Figures 3–6, the cellular excitability level in 
at least one of the modules is at a moderate level and asymmetric, 
bidirectional plasticity patterns more generally occur, consistent with 
previously cited findings at lower firing rates. Thus, our results suggest 
that cellular excitability can additionally contribute to the myriad ways 
that STDP may be modulated.

Overall, this in-silico study draws inspirations from recent 
advancements in understanding ACh signaling and proposes mechanisms 
for the effects of M1 mAChR activation on synaptic plasticity. 
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Experimental evidence has overwhelmingly demonstrated the crucial role 
of ACh signaling in synaptic plasticity. Here, we show that cholinergic 
modulation can regulate network firing dynamics, interacting with 
external input as well as network topology, to impact synaptic 
reorganization via STDP. As it has been challenging to untangle specific 
effects of ACh signaling on synaptic plasticity, our modeling approach can 
provide a comprehensive understanding of certain mechanisms 
contributing to the effects of ACh signaling on synaptic plasticity. At the 
same time, understanding the mechanisms underlying cholinergic 
regulation of learning-induced synaptic plasticity may help inform 
experimental studies of learning and memory.
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