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The sub-regions of the hippocampal formation are essential for episodic learning

and memory formation, yet the spike dynamics of each region contributing to this

function are poorly understood, in part because of a lack of access to the inter-

regional communicating axons. Here, we reconstructed hippocampal networks

confined to four subcompartments in 2D cultures on a multi-electrode array that

monitors individual communicating axons. In our novel device, somal, and axonal

activity was measured simultaneously with the ability to ascertain the direction

and speed of information transmission. Each sub-region and inter-regional axons

had unique power-law spiking dynamics, indicating di�erences in computational

functions, with abundant axonal feedback. After stimulation, spiking, and burst

rates decreased in all sub-regions, spikes per burst generally decreased, intraburst

spike rates increased, and burst duration decreased, which were specific for

each sub-region. These changes in spiking dynamics post-stimulation were found

to occupy a narrow range, consistent with the maintenance of the network

at a critical state. Functional connections between the sub-region neurons

and communicating axons in our device revealed homeostatic network routing

strategies post-stimulation in which spontaneous feedback activity was selectively

decreased and balanced by decreased feed-forward activity. Post-stimulation, the

number of functional connections per array decreased, but the reliability of those

connections increased. The networksmaintained a balance in spiking and bursting

dynamics in response to stimulation and sharpened network routing. These plastic

characteristics of the network revealed the dynamic architecture of hippocampal

computations in response to stimulation by selective routing on a spatiotemporal

scale in single axons.
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Introduction

The function of the trisynaptic loop in the mammalian

hippocampus is widely understood to govern the processes of

learning and episodic memory. However, the spike dynamics that

support the specific functions of each sub-region of this network

have not been compared in a unitary system. The trisynaptic

loop is composed of distinct sub-regions that each have a unique

computational role in integrating and processing information

transmitted from the neocortex to the hippocampus. Current

computational models of hippocampal architecture suggest that

the trisynaptic loop allows episodes to be completed from only

partial cues, enables spatial learning through arbitrary associations,

and is able to complete and associate learned and novel patterns

(Kesner and Rolls, 2015). From a systems-level perspective,

the hippocampus integrates sensory information, higher level

computations from the prefrontal cortex, amygdala, orbitofrontal

cortex, and the entorhinal cortex (EC), allowing for further

computation of object and spatial representations and reward-

related information (Kesner and Rolls, 2015). Information from

the EC is routed to the dentate gyrus (DG) along the perforant

pathway where pattern separation is proposed to occur. Sparse but

powerful mossy fiber connections project unique representations

to the CA3 for learning features. The CA3 associates information

types, rapidly encodes new information, and facilitates recall.

Information from the CA3 is sequenced and ordered in the

CA1 for a coherent experience, which then routes information

back to the EC for back projection into the neocortex. While

these general functions of hippocampal sub-regions are known,

the spiking dynamics that encode these functions within the

sub-region and how that information is communicated to other

sub-regions through axons are not well understood. Specifically,

how the spiking dynamics of the sub-regions of the trisynaptic

loop represent information computation at a system level is

poorly understood as many studies focus on one or at most

two sub-regions.

Excitatory and inhibitory balance of
hippocampal activity

Neural networks maintain a delicate balance between

excitatory (E) and inhibitory (I) balance where spontaneous

firing frequency is maintained within a tight range (Maffei and

Fontanini, 2009). Dysregulation of this balance for extended

periods of time is associated with neurological pathologies,

including autism, schizophrenia, and Alzheimer’s disease (He

and Cline, 2019; Sohal and Rubenstein, 2019; Markicevic

et al., 2020; Molina et al., 2020). Definitions of E/I balance

range from the global balance of a relatively constant ratio of

contributions of excitation and inhibition over a long-time

scale to a short-time scale where E/I magnitudes are relatively

well matched. Whether this E/I balance of spiking dynamics

in response to stimulation is maintained within each sub-

region or only over the whole hippocampal network is not

well studied.

Stimulation of neural cells

Behavioral studies of memory in animal models rely on

complex inputs from environmental factors that usually build

on anthropomorphic psychologies. These undefined input signals

in combination with differing psychologies between humans and

animals have led to a failure of behavioral studies to predict

human responses (Lynch and Gall, 2013). Stimulation of cells is

necessary in order to understand functional relationships. Electrical

stimulation provides a known signal input for to study global

cell dynamics at the expense of knowing the behavioral meaning

behind the cellular outputs. Theta burst stimulation is a common

electrical stimulation applied to neuronal tissue comprising 20 to

40 pulses at high frequency (100Hz), repeated at theta frequencies

of 4–9Hz that mimics activities during learning. This stimulation

paradigm evokes long-term potentiation in many elements of the

network, a process that strengthens synapses between neurons

lasting for months (Lynch and Gall, 2013). Characterization of

network dynamics under different theta burst stimulation protocols

activates different molecular mechanisms of LTP underpinning

learning (Zhu et al., 2015).

Novelty

With our microelectromechanical systems (MEMS) device, we

simultaneously recorded spiking activity in the four sub-regions of

the hippocampus and the axons connecting the sub-regions. With

two electrodes under axons between sub-regions, the directionality

of information flow could be measured, and the balance of sub-

regional information could be contextualized with axonal control

mechanisms. This enabled the measurement of local and global

balance between feed-forward and feedback activity. Additionally,

functional connectivity analysis was ascertained between the axons

and soma to determine the directional effects axons have on sub-

regional spiking activity and vice versa. As the brain functions

probabilistically, the reliability of functional connectivity could

inform routing strategies the network uses in order to balance E/I

activity, which underpins the dynamics of information processing.

Culturing and stimulating a live network on an MEA provide

knowledge of the input stimulus, which is unknown in whole

animal models. Shortly after our networks were stimulated,

spontaneous activity was recorded for 5min so that homeostatic

and information-processing states could be compared.

Hypothesis

Cultured cortical neural networks reach homeostatic

conditions of balanced excitatory and inhibitory activity when

left to grow for weeks unperturbed (Beggs, 2022). After electrical

stimulation, the network is pushed away from these homeostatic

conditions and must respond by rebalancing excitatory and

inhibitory activity. This requires changing the spiking dynamics

and routing strategies that function as a control system for

computing new information. As a control, in a two-compartment

system, Brewer et al. (2013) found specific spike dynamics in

DG-CA3 compared to DG-DG and CA3-CA3 suggesting that
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appropriate anatomy produced distinct coding. Figure 1 illustrates

three model possibilities for the network to balance excitatory

and inhibitory activity after stimulation. Figure 1A proposes the

starting, before stimulation, functional balance of connections

between a network sub-region and its axonal tunnels under

balanced homeostatic excitatory feed-forward and inhibitory

feedback activity. Figures 1B–D proposes different strategies

the network might use to route information to restore network

balance after stimulation. Figure 1B proposes more excitatory

routes are recruited while the same feedback routes remain after

stimulation for overall increased activity. This suggests the network

at homeostasis is not maximally computing information and has

the capacity to carry more computational load. Figure 1C suggests

that feedback activity quickly dampens the feed-forward activity

after stimulation as a control mechanism for an overall decrease

in activity. This could select specific routing to process new

information. Figure 1D suggests that feed-forward routing remains

but feedback routing decreased for an increased dominance

of feed-forward activity. This would be similar to Figure 1B in

suggesting that the hippocampus takes on more load in response

to stimulation but by decreased inhibition. The null hypothesis

is that feed-forward and feedback responses remain at the same

levels and balance. We do not expect the responses to increase

proportionally as that would require increased spike rates that

we and others have already shown to decrease after electrical

stimulation (Wagenaar et al., 2006; Chen et al., 2023). Using

data from a reverse-engineered hippocampus, our goal was to

discriminate between these possible models to better understand

the strategies of computation in the hippocampus and associated

spiking dynamics in response to stimulation. This will help

contextualize the relative computational contributions of each

sub-region by accessing interregional axonal communication.

Methods

Prior e�orts

Here, we gained access to communicating axons between

sub-regions, as in Vakilna et al. (2021) by employing a

novel four-chamber device with microfluidic tunnels for axonal

communication between each chamber where micro dissections

of the EC, DG, CA3, and CA1 were cultured (Figure 2A). This

4-chamber device was integrated into a microelectrode array

(MEA) in such a way that 5 of the 25 tunnels under each of

the 4 partitions separating the chambers were directly aligned

over 2 electrodes. The rest of the 120 electrodes were evenly

distributed among the 4 chambers. The two electrodes that spanned

each of the tunnels allowed the detection of the direction of

axonal information propagation, which was used to determine

the feed-forward and feedback direction of activity between

sub-regions. This successfully enabled the reconstruction of the

trisynaptic loop through self-wiring circuits. The first analysis of

our four-chamber cultured hippocampal neural networks showed

spontaneous directional spatiotemporal dynamics in soma and

axons within and between the sub-regions of the trisynaptic loop

that aided in uncovering the architecture and information transfer

strategies of the hippocampus. The underlying distributions of

interspike intervals (ISIs), interburst intervals (IBIs), spikes per

burst (SPB), burst duration (BD), and intraburst spike rate (IBSR)

were determined and were shown to be significantly different

between sub-regions. Spontaneous ISIs, IBIs, and SPBs were found

to be log–log-distributed, while BDs and IBSRs were log-normally

distributed. In the present study, these distributions were used as

models for comparison of networks under different stimulation

conditions. We also analyzed the functional connections between

well electrodes and tunnel electrodes using directional graphs of

spike rates that could measure connection strength (Vakilna et al.,

2021). Here, we expanded on this study by applying electrical

stimulation to probe the plasticity of the circuit and further

developed graph analytic metrics for insight into sub-region-

specific precise routing strategies.

Four-chamber in vitro hippocampal
neuronal network culture

Details were provided previously in Vakilna et al. (2021).

Briefly, MEA120 glass multielectrode arrays (MEA) with 120

30-µm-diameter electrodes spaced 0.2mm apart were used as

substrates for the culture of neuronal networks (Multichannel

Systems, Reutlingen, Germany; ALA Scientific, Farmingdale, NY,

USA). The MEA was divided by a custom polydimethylsiloxane

(PDMS) device into four sub-regions each of 9.7 mm2 by 1-mm-

high wells and 51 microfluidic tunnels 3µm high × 10µm wide

× 400µm long spaced 50µm apart (Figure 2). In total, 5 of the

51 interregional tunnels were monitored with pairs of electrodes to

determine the direction of action potentials in single axons. This

dedicated 19 electrodes into each sub-regional well. After oxygen

plasma treatment of the substrate, the wells were coated with poly-

D-lysine for cell adhesion. Hippocampal sub-regions were micro-

dissected from postnatal day 4 Sprague Dawley rat pups under

anesthesia as approved by the UC Irvine Institutional Animal Care

and Use Committee. Brain cells were dissociated and plated at

1,000 cells/mm2 for DG (including the hilus), 330 for CA3, 410

for CA1 (including subiculum), and 330 for EC, mimicking the

ratio of neural densities in vivo: EC-DG 1:3, DG-CA3 3:1, CA3-CA

11:1.25, and CA1-EC 1.25:1 (Braitenberg, 1981). The cells in 10 µL

of NbActiv4medium (Transnetyx BrainBits, Springfield, IL; Brewer

et al., 2009b) were plated into the wells sequentially to allow for

adhesion before the dish was filled with medium after 30min in the

incubator. The cultures were capped with Teflon membrane covers

(ALA Scientific, Farmingdale NY) and incubated for 21–26 days in

humidified 5% CO2 and 9% O2 (Brewer and Cotman, 1989). Half

of the mediumwas changed every 7 days. Activity was recorded 2–5

days after a medium change when the networks reached maturity.

Multielectrode array recording and
patterned stimulation

Spontaneous 5-min recordings and stimulations were produced

from the 120-electrode microarray with a Multichannel Systems

MEA 120 1100x amplifier (Multichannel Systems, Reutlingen,

Germany) at a sampling rate of 25 kHz at 37◦C in humidified 5%

CO2 and 9% O2 (custom Airgas USA, Santa Ana, CA). Recordings

were initiated several minutes after the removal of networks from
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FIGURE 1

Possible models for excitatory and inhibitory routing balance after stimulation of a source somal layer, through communicating axons into target

somata in hippocampal networks. Weighting of example connections are indicated by the thickness of arrows, feed-forward (red), and feedback

(blue). The sum of their activity in each case is indicated. (A) Modeled homeostatic conditions before any stimulation input. (B) Predicted routing

model after stimulation shows an increase in feed-forward routing and maintenance of feedback routing for overall increased activity. (C) Second

predicted model of routing with fewer feedback routes in excess of decreased feed-forward routes for a net decreased modulation of activity. (D)

Selectively decreased feed-forward in excess of decreased feedback routing for overall decreased activity.

the culture incubator, shortly after stable activity was seen in 80%

of the tunnels. Arrays with <80% active tunnels or that had poor

growth in one of the sub-compartments were rejected for analysis.

The Multichannel Systems software MC_Rack was used to capture

and initially analyze the recordings and stimulate the culture.

Stimuli were biphasic at 200 µs, each with current amplitudes first

at−10 µA and then at+10 µA. Motivated by stimulation patterns

for induction of LTP in hippocampal slices (Zhu et al., 2015), two

kinds of stimuli were delivered at three sites of spontaneous activity.

They were patterned within a train containing high-frequency

pulses spaced at 10ms, repeated 5 times (100Hz), and trains spaced

50ms apart with four train repeats (termed 5 HFS) (Figure 2).

The second pattern was also 100Hz pulses spaced at 10ms, but

repeated 40 times, and trains spaced 200ms apart with 5 train

repeats (termed 40 HFS). Stimuli were applied at three sites in each

sub-region in the array with the next train starting as the previous

train ended. Stimulation sites were chosen by observing electrodes

with sufficient spontaneous activity before stimulation at least two

electrodes apart. Spontaneous recordings 67 ± 20min (SD) after

stimulation are reported from 9 separate cultures (9 arrays) listed

in Supplementary Table 1; we collected the effects of stimulation for

6 of these. Clockwise direction of plating: (CW) was EC-DG-CA3-

CA1. Counterclockwise (CCW) was CA1-CA3-DG-EC to control

for plating order bias. None was detected.

Spike detection, sorting, and axonal
propagation direction pipeline

We made automation improvements to our axonal spike

directionality algorithm (Vakilna et al., 2021). Raw tunnel

data sampled at 25 kHz were filtered through Wave_Clus

(Chaure et al., 2018), which uses a second-order elliptic bandpass

filter at 300Hz to 10,000Hz for spike detection and a fourth-

order elliptic bandpass filter at 300Hz to 3,000Hz for clustering.

Spike detection and clustering were computed above two different

thresholds: 5 to 50 S.D. noise and 50.1 to 500 S.D. to ensure that

large spikes in the axons were accurately counted and clustered.

ThroughWave_Clus, the negative peak of spikes was detected with

a minimum of 1ms before the peak and 2ms after the peak. A

refractory period of 1.5ms was specified. Spike shapes differing

by at most three standard deviations from the mean spike shape

were included in a single cluster. Clustering was primarily used to

discard complex spikes from two or more axons in a microtunnel

causing overlapping spike waveforms. All spikes collected from

a single electrode in high and low clustering were consolidated

into a single cluster. As previous analyses of these tunnel devices

showed that ∼63% of tunnels only had one axon (Narula et al.,

2017), we could identify single axons by their uniform conduction

velocities, that is, by spike timing delays, which distinguished

multiple axons per tunnel. We empirically checked waveforms after

“clustering” through timing delays to ensure singular waveforms.

Axonal conduction time delay was used to generate a normalized

matching indexing (NMI). With two electrodes spanning the same

distance in each tunnel, a timing comparison was made, and an

NMI algorithm was computed for every tunnel.

NMI =
# paired spikes

max(total #spikes per spike train)

Tunnels were considered valid for NMI > 0.2 (20% of spikes

matched between two clusters), which was sufficient for eliminating

spurious spike pair correlations during high spike rates. Paired

spikes were identified as spikes with a delay between 0.2 and

1ms over the 0.2mm distance, corresponding to the physiological

Frontiers inNeural Circuits 04 frontiersin.org

https://doi.org/10.3389/fncir.2023.1272925
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Lassers et al. 10.3389/fncir.2023.1272925

FIGURE 2

In vitro neuronal culture and spontaneous activity recordings under patterned stimulation conditions. (A) Neurons after 3 weeks in culture on a

multi-electrode array (MEA). Black circles are 30-µm-diameter electrodes, spaced at 200µm. Large cross is 1-mm-high PDMS device with

microfluidic tunnels 3 × 5 × 400µm for inter-regional axonal communication. Red arrows indicate the feed-forward direction in this loop, and blue

arrows are feedback. EC-CA1 is denoted with a dashed blue line and marked as feedback for internal consistency, but it is more likely an excitatory

pathway from EC to CA1. (B) MC_Rack programming of the 5-repeat high-frequency stimulation (HFS) stimulation series and 40 HFS stimulation

series. Array ECDGCA3CA1 19908 150729 150823 d25 (FID 6). (C) Spontaneous recording raster plot generated in MC_Rack of a neuronal culture

without stimulation. Each green dot represents a spike. Salmon cross-shading are axon tunnel regions. (D) Raster plot of spontaneous spikes after

four trains of five biphasic high-frequency pulses spaced at 10Hz (5 HFS). Yellow boxes were sites of stimulation. (E) Spontaneous recording after 5

trains of 40 biphasic high-frequency pulses spaced at 5Hz (40 HFS).
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bounds of axonal propagation velocities of hippocampal action

potentials (0.4–2 mm/s) (Colombe and Ulinski, 1999). A histogram

of conduction times was created with empirically determined

thresholding and peak prominence values using the MATLAB

findpeaks function. The threshold used was 1.9 standard deviations,

and the peak prominence parameter was at least 12% of the

highest bin. Peaks in the histograms were identified as belonging to

different axons ±0.16ms, validated with spike shapes. Delay times

up to 0.12ms were considered if there was a peak at sufficiently

fast conduction times. Positive delay times indicate feed-forward

axons while negative conduction times indicate feedback axons.

Example histograms of four types of measured spike timing

delays for a given tunnel, and the associated waveforms are

provided in Supplementary Figure 1. This is the basis for our

determination of the feed-forward and feedback directionality of

axonal communication. In contrast to the tunnels, in the wells, raw

data were filtered through Wave_Clus and spikes were detected at

±5 S.D. noise. In the wells, neuronal somata density and electrode

placement were sparse enough to detect a single neuron in >90%

of cases, so spike clustering was not needed.

Measured spike dynamics and probability
distributions

As in Vakilna et al. (2021), the distribution of inter-spike

intervals (ISI), inter-burst intervals (IBI), and spikes per burst (SPB)

follow log–log distributions and were visualized as normalized

complementary cumulative probability distributions (CCDs) with

logarithmically spaced bins (Newman, 2005). A log-transformed

linear model was used to fit the CCD after log transformation.

log10 (P) = α × log10 (t) + c

where P is the cumulative probability, α the slope, t is the interspike

interval in ms, and c is the intercept. The best fits were found

by performing a grid search to find the local maximum (highest

R2) with time limits varied up to 50% with a step size of 5%. For

ISI, a single fit was found for all CCDs considering probabilities

from 1 to 0.1 and intervals from 0.01 to 1.0 s except EC-DG feed-

forward axons which were fitted for intervals between 0.1 to 0.2 s

to account for non-linearities in the distribution. For inter-burst

intervals, two linear fits were calculated for all CCDs piecewise

to account for the “up states” and “down states,” which refer to

fast and slow bursting, respectively (Vakilna et al., 2021). The

minimum time for the up states was used as the maximum time

for the down states. The distributions of intra-burst spike rates

and burst durations better followed a log-normal distribution and

were visualized with a probability distribution (Vakilna et al., 2021).

The median was calculated by fitting a normal distribution to the

probability distribution in natural log space. The mean in natural

log space (m) was extracted from the fit. A one-way ANOVA was

calculated from the fits.

Median of lognormal distribution = em

Edge plot graph analysis

In graph analysis, edges are the connections between nodes

(neurons and tunnel axons). Edge detection was used to correlate

firing rates between well and tunnel electrodes. NMI was designed

to be very exact and discriminatory for spike identification and

required robust signals from both electrodes in a tunnel. However,

examining raster plots, some channels exhibited signs of lower

axonal coupling to the electrode. Therefore, the more active

electrode was used as the basis for edge detection. The average

firing rate for each 100ms bin was calculated from all combinations

of each axon in a tunnel and each adjacent well electrode with

a 10-s-wide sliding window using 100-ms steps. If the window

contained at least four bins with a non-zero firing rate in a

combination of well and tunnel, a linear regression correlating

the wells and tunnels was calculated. This was repeated for all

possible connections. For plotting, all linear regressions with a

positive slope>0.1 and an R2 >0.2 were used. A slope<1 indicated

a decreased firing rate through that connection and a slope >1

indicated an increase in firing rate. The reliability of this connection

was described through the R2 values (Pearson linear regression).

These values were averaged over all the time windows for each array

to derive weights and graphically depicted to generalize the active

connections in the network. MATLAB graph analysis functions

were employed to calculate the number of edges (connections

from a well node to a tunnel axon node), degrees (number of

edges per node), and centrality (degrees weighted for slope or

R2) of each node for feed-forward and feedback connections for

well-to-tunnel edges.

Statistics

Data were analyzed with custom MATLAB 2020a scripts.

Slopes were compared for a statistically significant difference (α

< 0.05) using analysis of covariance (ANCOVA) and Tukey’s

honest significant difference (HSD) test. The significance within

a stimulation set between sub-regions and between stimulation

sets of the same sub-region was analyzed by analysis of variance

(ANOVA) and Tukey’s HSD test with the null hypothesis rejected

for p < 0.05. Data were analyzed for nine separately plated

networks, six of which were subjected to patterned stimulation.

Details are summarized in Supplementary Table 1.

Results

Di�erent sub-regional and axonal spiking
and bursting dynamics in response to
patterned electrical stimulation in the
self-wired hippocampus

In order to reveal the architecture and the dynamics that

govern hippocampal information processing, we designed a

four-compartment device with microfluidic tunnels that promoted

axonal self-wiring between sub-regions and prevented dendritic

infiltration (Figure 2A). As discussed in the introduction,

traditional methods of studying the encoding and decoding
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of hippocampal information rely on interpreting behavior in

conjunction with electrical recording. However, these studies

often pay asymmetric attention to one part of the hippocampus

over another and do not study the differences in dynamics of

information encoding in each sub-region of the hippocampus or

in control of the axonal information that gets transmitted from

one region to the next. This is due to the difficulty of accessing all

regions of the hippocampus simultaneously and the impossibility

of isolation of recordings from single axons during in vivo

recordings. The four-compartment design allows for direct access

to the computations both within each sub-region and the axons

between them, which makes high-resolution decoding of dynamics

easier to interpret. Each compartment contains a sub-region of the

tri-synaptic loop (EC, DG, CA3, and CA1) and tunnels between

each sub-region for their communication. Alignment over a

multi-electrode array allowed for recording of spontaneous activity

and two electrodes spanning tunnels allowed for monitoring

of axonal activity in 5 of the 51 tunnels between sub-regions

with a majority containing only 1 or 2 axons. Nine arrays were

included for spontaneous unstimulated activity. In total, 6 of those

arrays were electrically stimulated with 5 pulses at 100Hz at theta

frequency repeats (5 HFS), followed by measures of spontaneous

activity, then 40 pulses at the same 100Hz at theta frequency (40

HFS), which comprise short and long high-frequency stimulation

(Figure 2B). The 40 HFS was again followed by a 5-min recording

of spontaneous activity for a total of three spontaneous recordings

(pre-stimulation, post 5 HFS, and post 40 HFS).

We expected these reconstructed networks to operate around

a critical point between an ordered and a random system, which

optimizes information processing functions (Beggs and Timme,

2012). Critical networks produce avalanches of activity that follow

power law distributions. In order to maintain this balance around

the critical point, a closed loop network could balance each

sub-region or exhibit sub-regionally specific network dynamics

responses to optimize information transmission of the whole. The

patterned stimulation was designed to probe short-term plasticity

to determine whether the network dynamics shifted in unison

or specific sub-regions exhibited unique responses. Figures 2C–E

shows raster plots from before and after stimulation. Decreased

network spiking was seen in EC and DG, CA3 and CA1 sub-regions

as well as in the EC-DG, CA3-CA1, and CA1-EC axons. Detailed

dynamics analysis of multiple array networks was needed to be

confident of significant differences in interspike intervals (ISI),

interburst intervals (IBI), spikes per burst (SPB), burst duration

(BD), intraburst spike rate (IBSR), and connectivity graphs for

critical network balancing across sub-regions. At this subjective

level for one array, network spiking appeared to decrease as a

result of stimulation (models in Figure 1C or Figure 1D, but not

Figure 1B).

Spike dynamics revealed that stimulation
lengthens interspike intervals in
sub-regions and communicating axons
with greater net feedback signaling

Neuronal spiking in communicating axons relays information

from one sub-region of the hippocampus to another, with

feed-forward likely being excitatory and feedback likely

being inhibitory. Some axons in CA3-DG tunnels stained for

the enzyme for the GABA synthesis enzyme, glutamic acid

decarboxylase (GAD), indicating precedent for inhibitory axon

transmission (Brewer et al., 2013). We define feed-forward as

EC>DG>CA3>CA1, back to EC in the trisynaptic loop. EC-CA1

is evaluated as feedback for internal consistency, but it is more

likely an excitatory pathway from EC to CA1 (Steward, 1976).

How spikes are spatiotemporally organized and respond to stimuli

may provide insights into the function and behavior of the

network. As previously found in Vakilna et al. (2021), spontaneous

interspike intervals (ISI) followed a log-log distribution and varied

sub-regionally and interregionally. Both before and after applied

patterned stimulation, complementary cumulative distributions

of ISIs followed a log–log relationship in individual arrays and

for the cumulation of spikes from nine unstimulated and six

stimulated arrays (Figure 3). The probability (P) of a spike firing at

time (t) after a previous spike followed a linear model with slope

m and can be described by the formula P = tm. Shorter times

correspond to faster firing rates so that more spikes with short ISIs

will produce a graph with a steeper slope. Longer ISIs have a slower

firing rate with shallower slopes. With stimulation, subsequent

spontaneous activity 5min later will either (a) be unchanged

because the network forgot the stimulus and reverts to a resting

state or (b) the overall spike rate of the network will adjust to the

additional information and increase the overall spike rate (steeper

ISI slope) or (c) decrease spike rates because the stimulus-induced

selective routing in the network (shallower ISI slope). Selective

routing forces a reduction in possible routes for information to

pass through and “sharpens” the routing of the network.

Our unique device architecture (Figure 2) allows monitoring

of network activity in isolated axons that communicate through

the 51 microfluidic tunnels between each sub-region. Five of

these tunnels are monitored as their resident axons pass over

two microelectrodes in each of these tunnels. The dual electrodes

enable the determination of the direction of spike propagation by

spike timing differences (Vakilna et al., 2021). Thus, Figures 3E,

F shows the spike timing in axons carrying information in the

feed-forward direction from EC to DG (Figure 3E, EC-DG) and

feedback direction from DG to EC (Figure 3F, DG-EC). These

and all other axons (Figures 3E–L) showed decreased slopes with

stimulation. Further comparison of Figures 3E, F indicates a greater

decline in feed-forward EC-DG slope with stimulation than the

smaller change with feedback in DG-EC. To gain insight into the

relative directional changes in network communication between

sub-regions with stimulation, this relative excitation–inhibition

balance is more readily seen in Figure 3M. The excess feed-

forward activity from EC-DG and DG-CA3 in the unstimulated

network (blue bars) was balanced by excess feedback activity in

the CA3-CA1 and CA1-EC axons. After stimulation, this balance

was shifted to excess feedback in DG-CA3 and increased CA1-EC

feedback (which we will show later is more likely EC-CA1 feed-

forward). By sub-region, distinct slopes were observed in most of

the sub-regions in response to each of the stimulation conditions

and feed-forward activity proportionally followed well sub-region

activity (Supplementary Figure 2). Overall, the network retained

balanced control by adjusting feed-forward (FF) and feedback (FB)

axonal directionality after stimulation accomplished by decreased
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FIGURE 3

Stimulation decreased slopes of log-log interspike interval (ISI) distributions (slowed spike rates) in all sub-regions and communicating axons (n = 9

unstimulated arrays, 6 arrays stimulated at each of 5 HFS, and 40 HFS). Insets show linear fits over nearly two orders of magnitude. (A–D) ISI slopes

decreased after stimulation (decrease in spike rate) in each sub-regional well. Embedded numbers are spikes per array. Delta percent change in slope

and ANOVA indicated. (E–L) Adjacent displays of feed-forward and feedback axons in tunnels to compare net di�erences. Most but not all axon ISI

slopes declined with stimulation. (M) Di�erences in feed-forward and feedback directional slope changes in each set of communicating axons. The

number of ISIs detected, n, is shown as well as the Delta percent change in slope and ANOVA. (Right) Percent di�erences between feed-forward and

feedback axons in the same tunnels show an overall increase toward feedback spiking.

Frontiers inNeural Circuits 08 frontiersin.org

https://doi.org/10.3389/fncir.2023.1272925
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Lassers et al. 10.3389/fncir.2023.1272925

spiking (lower n) and decreased slopes of the log-log ISIs (longer

times between spikes). These results are consistent with Figure 1C,

a decrease in spike rates because the stimulus-induced excess

feedback over feed-forward activity. We next determined how the

grouping of spikes into bursts might contribute to the specificity of

the network communication.

Burst rates decrease after stimulation and
uniquely balance dynamics sub-regionally
and interregionally

Spikes are organized into bursts or packets of information

for both local and global computation and routing (Graham and

Rockmore, 2011; Graham, 2014; Luczak et al., 2015). Bursts of

spikes are needed to raise the somal calcium (Jimbo et al., 1993)

that is readily recorded in localized regions in vivo. Hippocampal

architecture is organized so that each sub-region is responsible

for a different set of computations that give rise to learning and

memory (Kesner and Rolls, 2015). Knowing the spatiotemporal

bursting dynamics in sub-regions and axons allows for insight

into how each sub-region routes these information packets to

be processed downstream. Previously, we found spontaneous

interburst intervals (IBI) followed a two-part log–log distribution

suggesting faster up and slower down states that vary sub-regionally

and interregionally (Vakilna et al., 2021). Like ISI, when there is

a decrease in slope the frequency of bursting decreases. After we

applied 5 HFS and 40 HFS stimulation, fast bursting generally

decreased and slow bursting increased (Figure 4). The bursts were

plotted over a timescale of two orders of magnitude encapsulating

two orders of probability vs. times that a bursting event will occur.

In the sub-regions, Figures 4A–D shows slopes in the fast-bursting

domain of 0.1–1s decreased 31–68% in EC, DG, and CA1, while

CA3 remained unchanged with stimulation. In the slower bursting

domain of approximately 2–20 s, early network burst slopes in

EC and DG decreased 18–32%, while late network burst slopes

in CA3 and CA1 increased 12–47% with stimulation. Stimulation

also affected the burst timing of communicating axons between

sub-regions in ways specific to the direction of axon propagation

(Figures 4E–N).

We next focused on the fast bursts as they represent

the majority of events and present the slow fit changes for

completeness. The changes in slopes with direction were most

easily viewed in Figures 4M, N. Before stimulation (blue bars),

the network balanced excess feed-forward fast bursting in EC-DG,

EC-CA3, and EC-CA1 with feedback bursting in CA3-CA1. The

difference between the slopes for the fast and slow bursts shows

in which direction the speed of bursting was dominant. Before

stimulation, comparison of feed-forward to feedback for EC-DG,

feed-forward slopes of the fast and slow distributions exceeded

the feedback slopes by 3.0 and 15%. After stimulation, feed-

forward fast slopes declined by 48 to 58% while feedback slopes

declined by 67–70%. Thus, the feedforward–feedback balance in

EC-DG axons shifted with stimulation to greater feed-forward

transmission. In contrast, DG-CA3 axons shifted from 7.4% excess

feed-forward over feedback before stimulation to a much greater

effect of stimulation on feed-forward axons (77–87% shallower

slope) than feedback axons (21–20% shallower slope) for a change

in the net balance toward 50 and 67% excess feedback transmission

of bursts in DG-CA3 after stimulation, respectively. For the next

set of axons between CA3 and CA1, feedback burst signaling

exceeded feed-forward by 59%. Stimulation caused an increase in

slopes of the feed-forward axons of 55 and 130%, while feedback

slopes decreased by 19 and 24% toward a more balanced feed-

forward and feedback bursting. For fast CA1 to EC bursts, feed-

forward exceeded feedback bursts by 11% before stimulation. With

stimulation, the 37 and 39% lesser feed-forward slopes and 14–

15% lesser feedback slopes brought CA1-EC axons into closer feed-

forward–feedback balance. Fractional differences between fast and

slow bursting (Supplementary Figure 3) show that feed-forward

axons and wells tend to shift from fast bursting before stimulation

to slow bursting after stimulation except for the feed-forward

CA3-CA1. Taken together, these log–log relationships of interburst

intervals indicate a parceled form to balance bursting among the

inter-regional axons of the network with a shift from unstimulated

control of fast feed-forward bursting by CA3-CA1 feedback, to

stimulation-induced decreases in this CA3-CA1 feedback, and

increases in DG-CA3 feedback in response to net increases in EC-

DG bursting. For the slower burst type, the frequency of feedback

bursting greatly exceeded feed-forward bursting. The emphasis

on feedback bursts for incoming and outgoing CA3 axons may

be to provide brakes on the recurrent collateral excitation in the

CA3 (Bains et al., 1999). In the context of the packet metaphor,

a decrease in faster bursting rates could be an indication that

the network is now more selective for what information it sends

into the next sub-region for computation consistent with option C

(Figure 1), and stimulus-induced selective routing in the network,

a route sharpening.

Spikes per burst decreased in EC-DG axons
and soma after stimulation for smaller
packet sizes for routing information

If a burst of spikes is analogous to a packet of information, then

the number of spikes within a burst is analogous to the amount

of information contained within the packet. We expected brain

networks would balance their dynamics to optimize cost (energy)

and efficacy. As shown in Figure 5, the number of spikes within a

burst was log–log distributed and ranged between 4 and 50 spikes

for 90% of the bursts. With stimulation, the 15–124% increase in

slopes in sub-regions (Figures 5A–D) indicated a decrease in the

number of spikes per burst. After stimulation, 90% of sub-region

bursts contained 12–25 spikes, which was half to a quarter of spikes

before stimulation.

Before stimulation, feed-forward axons in the EC-DG ranged

from 4 to over 50 spikes per burst (Figure 5E). Other feed-forward

axon bursts contained fewer than 20 spikes (Figures 5G, I, K).

After stimulation, EC-DG spikes per burst decreased greatly in

EC-DG and slightly increased in all other axons between sub-

regions (Figures 5E–L). The net balance in the network (Figure 5M)

showed large increases in slopes of 95–167% for both feed-forward

and feedback in EC-DG greatly exceeding the small variations

in the other axons between sub-regions. Overall, stimulation
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FIGURE 4

Burst rates in wells and tunnels decrease after stimulation. Interburst intervals (IBI) follow log–log distributions with two linear fits for all stimulations

that vary by sub-region with stimulation (n arrays = 9 unstimulated, 6 at 5 HFS, and 6 at 40 HFS). A decrease in slope is a decrease in burst rate. In

general, networks shift toward slower bursting after stimulation, except CA3. (A–D) Sub-regional fast IBI slopes decrease >40% after stimulation in all

regions except no change in CA3. For slow IBI, EC and DG slopes decreased; CA3 slope increased, and CA1 remained similar. In EC, DG, and CA1, the

50%-line increased after stimulation indicating slower bursts detected. CA3 50% remains similar. The point of intersection between fast and slow

(Continued)
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FIGURE 4 (Continued)

slopes decreased from 5s to 1s after stimulation in EC and DG, while CA3 was not changed. (E–L) Feedforward and feedback slopes are placed

adjacent to each other to compare the net changes in the distribution before and after stimulation. Generally, the slopes decreased and the point of

intersection between the fast and slow regimes moved toward faster spike rates. This means the slow bursting regime included faster bursting

intervals. (M) Comparisons of feed-forward to feedback slopes for fast bursts favored feedback, but CA3-CA1 feed-forward increased with

stimulation. Fractional changes between feed-forward and feedback trended toward excess feedback. (N) Comparisons of feed-forward to feedback

slopes for slow bursts. Again, fractional changes between feed-forward and feedback trended toward excess feedback.

increased the spikes per burst most dramatically in EC-DG

feedback axons and their target DG neurons, which may promote

greater downstream signaling into the network, a refinement to the

idea of route sharpening (Figure 1C).

Bursts as packets of information deliver
information faster in a shorter period in
response to stimulation

The brain has been compared to the internet network

architecture because of its capacity to route information

from one node to another across robust distributed networks.

Communication protocols that facilitate information exchange

on the internet use packet-switched networks (PSNs), which

chop up a message into smaller chunks that are recombined

at the destination. As described by Graham and Rockmore

(2011), collections of neurons can act analogously to nodes in

internet network architectures in that there is a neural hierarchy

with specific cells performing certain functions, a multitude of

encoding mechanisms allow for simultaneous applications to run

on the same network and that its distributed architecture allows

high-bandwidth computations to occur without large, dedicated

memory allocations. Neural data packets could then be thought of

as spikes or bursts. We have studied how the distribution of these

packets is modulated with stimulation, but how these packets are

structured may give insight into how the network modulates its

routing capabilities in response to stimulation.

Figures 6A–C shows the raw data in well electrodes for

how the same channel’s median spike rate ±10% is modulated

with stimulation. With each stimulation progression from no

stimulation, the bursts got shorter, and the spike rate increased.

There are not necessarily more spikes in a burst that increase

the intraburst spike rate, as shown in Figure 4, but they

are condensed into a tighter time window. This gives the

impression that the network balanced new stimulus information

with smaller packets of less information, but the information

was transmitted at a faster rate when a packet arrived. This

suggests synapse strength was potentiated by increased synaptic

calcium concentrations (Emptage et al., 1999), as bursts raise

intracellular calcium (Jimbo et al., 1993). Figures 6E–J supports

this assessment across almost all tunnel and well electrodes.

Compared to before stimulation, burst duration after stimulation

decreased in all feed-forward axons (Figure 6E) and feedback axons

(Figure 6F). Full semi-log histograms supporting these averages are

shown in Supplementary Figure 4. For the sub-regional channels

(Figure 6G), all burst durations decreased essentially equally

from the no-stimulation condition. For intraburst spike rates

(Figures 6H–J) feed-forward rates all increased from no stimulation

(Figure 6H). These increases were partly balanced by increased

feedback intraburst spike rates (Figure 6I) from no stimulation

for both stimulations in DG-EC, CA1-CA3 HFS 40, and EC-

CA1 HFS 40. Feedback intraburst spike rates decreased for CA3-

DG HFS 5. In the well sub-regions (Figure 6J), all intraburst

spike rates increased from no stimulation essentially equally,

following the same trend as in the burst duration. The semi-

log histograms of intraburst spike rates supporting these medians

are provided in Supplementary Figure 5. Overall, we saw shorter

packets of information being delivered at a faster spike rate, a newly

revealed way to sharpen the routing of information, consistent with

Figure 1C.

Graphic analysis of functional connectivity:
small decreases after stimulation with a
balanced ratio of feed-forward vs. feedback
connections

In our hippocampal cultures, we have the ability to sample

19 out of thousands of neurons in each sub-region and monitor

approximately 10% of the axonal tunnels. Therefore, it is highly

unlikely that a neuron we are recording from has a direct axonal

connection through one of these tunnels, though a connection

through a single synapse would be more likely. To search for

functional connections of activity between the well neurons and

the tunnel axons, we looked for repeated incidents of coordinated

spiking activity over short time scales.We created linear regressions

of spike rates between the sub-region well and tunnel axons.

Supplementary Figure 6 provides examples of high- and low-

windowed correlations. When computed for all combinations

between sub-region neurons and tunnel axons, we graphed

functional connectivity on a fixed electrode topology for each MEA

network with each spike rate correlation represented as an averaged

weighted directional edge, essentially an input–output relationship.

From these correlations, we derived slopes that indicated one of

three conditions. (1) Slope = 1 when a neuron directly connected

to the measured axon with matched spike rates; (2) slope >1 when

the excitatory source neuron contributed to higher target axonal

spiking; or slope <1 when the inhibitory source neuron decreased

the spiking of the measured target axon.

These relationships enabled measures of reliability and

connection strength or weight. The reliability was obtained from

the reproducibility of the data over multiple time windows fit

a linear model with a derived Pearson’s R2 measure of fit. In

our graph analysis, each electrode represents a node. The degree

of a node is the number of edges feeding into the node or out

of the node. Figure 7A shows slope, connection weights, and
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FIGURE 5

Spikes per burst (SPB) followed log–log distributions for all stimulations and vary sub-regionally and interregionally with stimulation (n = 9,6,6 arrays).

In general, there was an increase in slope with stimulations. An increase in slope is a decrease in the number of spikes per burst. (A–D) Sub-region

well spikes per burst slopes increased with stimulation in all cases, indicating a decrease in the number of spikes per burst. (E–L) Feed-forward and

feedback spikes per burst slopes are adjacent for comparison of net di�erences. (M) Feed-forward and feedback axonal spikes per burst increased in

EC-DG axons after stimulation. Fractional di�erences in slope trend toward excess feed-forward in the DG-CA3 and CA1-EC tunnels while the

EC-DG and CA3-CA1 tunnels have excess feedback. Excess refers to the magnitude of slope in one direction. In the case of spikes per burst, an

excess in slope magnitude would mean fewer spikes per burst in that direction.
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FIGURE 6

Stimulation evoked decreased burst duration and increased intraburst spike rate. (A–C) Raw CA1 well data at 10 s, 2 s, and 300ms timescales at a

point of average spiking activity for no stimulation, 5 HFS and 40 HFS, respectively. Inset semi-log histograms show decreased burst duration. Bursts

close to the average length are shown in salmon highlights, others in yellow. (D–I) Burst duration decreased from no stimulation in seven of eight

feed-forward axons, seven of eight feedback axons, and all well channels for no stimulation. Intraburst spike rates increased in six of eight

feed-forward axons, five of eight feedback axons, and all sub-region well channels from no stimulation. Statistics were calculated from Gaussian fits.

reliability for directionally separated feed-forward or feedback

edges. Clearly, the network segregated feed-forward and feedback

connections differently in different sub-regions and the reliability

(reproducibility, R2) of the connections varied by sub-region

as well.

To compare the sub-regional feed-forward and feedback

activity before and after stimulation, average edges per node per

array for each sub-region were computed from nine unstimulated

and six stimulated arrays (Figure 7B). We separated the incoming

from outgoing edges at each node based on the directionality

of the tunnel axons to arrive at a well degree metric. From the

prevalence of red (or blue) asterisks signaling a significant increase

(or decrease) in well degrees after stimulation, the average number

of degrees decreased for feed-forward connections in 6 of 8 groups
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FIGURE 7

Functional connectivity routing from directional spike rate correlations decreases after the application of patterned stimulation. (A) Directional graph

exemplifies a decrease in edges with each stimulation from one array (FID 3). The scale indicates the slopes as line widths for each given direction.

(Ba) The average edges per node in each sub-region decreased after stimulation in 9 of 16 sub-region directions. n = 9 unstimulated and 6

stimulated arrays. ANOVA indicates increase (red *p < 0.05; **p < 0.001; ***p < 0.0001) or decrease (blue *). (Bb) A mean e�ect size and 95%

confidence intervals were calculated for each sub-regional direction. All sub-regional directions showed excess feedback degrees, suggesting more

active functional connections between well->tunnel and tunnel->well channels, in all cases except EC-In and CA1-Out. After stimulation, these

sub-regional directions changed from excess feed-forward degrees in the EC-In to balanced feed-forward/feedback degrees in the HFS 40

stimulation. The change in the CA1-Out was from balanced feed-forward/feedback degrees to excess feedback after the HFS 40 stimulation. This

suggests di�erent routing strategies for balancing the network activity under di�erent stimulation conditions.
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(DG in 5 HFS, DG in 40 HFS, DG out 5 HFS, DG out 40 HFS, CA3

in 40 HFS, and CA1 out 40 HFS) and feedback decreased in 5 of 8

groups (DG in 40 HFS, DG out 5 HFS, DG out 40 HFS, CA3 out 5

HFS, and CA3 out 40 HFS) while only EC-out feedback showed an

increase (Figure 7Ba).

The p-values are insufficient for quantifying the magnitude

of the effect on network dynamics (Sullivan and Feinn, 2012).

Significant changes in the ratio of feed-forward and feedback

connections are more meaningful if Cohen’s d of mean effect sizes

are calculated for the number of degrees in Figure 7B. For example,

for the first sub-region, EC Inward edges without stimulation

showed a medium–strong (0.5–0.8) Cohen’s d of 0.58 for excess

feed-forward over feedback that remained unchanged for HFS

5 but was lost with HFS 40. With the exception of CA1 in

Figure 7Ba, seven of the other sub-region directions produced

an excess of feedback over feed-forward with medium to large

(>0.8) effect sizes comparison of feed-forward/feedback balance

(likely excitation–inhibition). This shows stimulation to cause a

shift to more feedback than feed-forward routes. In 11 of 13

significant differences between feed-forward and feedback well

degrees, feedback had more degrees than feed-forward. Overall,

these changes suggest that the network directed the routing of

activity after stimulation, limiting the number of feed-forward

routes over feedback.

Network graphic response to stimulation:
more reliable excitatory and inhibitory
pathways with stronger feedback spike
rates, a network sharpening

In vivo, feed-forward activity is commonly excitatory, and

feedback inhibitory. In our networks, the same control system

may be at work to direct the general routing of network activity.

Without these braking systems, the network would run away to

metabolic exhaustion with continuous feed-forward activity. The

values of average functional connectivity strength (number of

connected edges) and reliability of a source electrode influencing

the spike rate of a target electrode are represented as edge weights

in the directional graph (Figure 8Aa). DG out feed-forward and

feedback slope weights both increased from no stimulation to

HFS 40. CA3 out feed-forward slope weights decreased after

both stimulations, and CA1 in feed-forward increased from no

stimulation for HFS 5. Otherwise, the other 27 sub-regional

directions remained unchanged after stimulation. This indicated

that the functional connections maintain a proportional feed-

forward-to-feedback balance between the source and target before

and after stimulation. The direction of the network remained

balanced based on mean effect size analysis between feed-forward

and feedback slope weights shows in which direction the network

is balanced (Figure 8Ab). EC in, DG out, CA3 out, and CA1

out directions all maintain stronger feedback activity across all

stimulation series. EC out and DG in directions maintain stronger

feed-forward activity across all stimulation series. CA3 in and CA1

in slope weights produced no consistent feed-forward strength

over feedback.

Figure 8B shows the reliability of the functional connectivity.

The average increase for feed-forward reliability was 16 ± 2%

(mean ± SE) and for feedback reliability 13± 2% after stimulation

(significance above no change, one-tailed t-test, p = 10−8, p

= 10−5, respectively). An increase in reliability may indicate a

preferred pathway, or routing strategy, that the network takes

to communicate a consistent input and maintain balance. Feed-

forward activity had twelve increases in reliability from no

stimulation and feedback had eight increases in reliability from

no stimulation (red ∗, Figure 8Ba). A mean effect size calculation

between feed-forward and feedback reliability (Figure 8Bb) showed

the network largely maintained its ratios of reliability between feed-

forward and feedback save for a few notable differences. Effect size

analyses were considered valid in the positive or negative directions

when the confidence intervals did not cross zero. Thus, we note

that the CA3-in switches from more reliable feedback activity to

more reliable feed-forward activity after stimulation with a small

effect. CA3 out for HFS 40 was more balanced as opposed to no

stimulation and HFS 5, which have feedback reliability dominating.

Moreover, CA1-in had balanced reliability before stimulation and

became feed-forward dominant with a medium effect size. CA1-

out reliability also increased feed-forward dominance from a small

effect size to a medium effect size. Overall, the network became

more reliably feed-forward after stimulation. We interpret this as

a route sharpening.

The network assigned more importance to
feedback activity than feed-forward activity

Centrality in graph analysis is an important measurement

of the nodes that make up the network. Higher importance is

assigned to nodes that have more degrees of larger weight. In our

hippocampal networks, we measured the importance of slope and

R2 in order to gain insight on how the network assigned importance

on routing and controlling the magnitude of excitatory-inhibitory

activity and to investigate whether some routes were more

important than others. The modulation of slope centrality

for maintaining balance while routing information was largely

unchanged between stimulations (Supplementary Figure 7Aa).

Only 4 of 16 feed-forward significant centrality changed from

no stimulation and 2 out of 16 significant changes in feedback

centrality, and all decreased from the no stimulation condition.

In Supplementary Figure 7Ab the mean effect sizes of centrality,

only the EC showed more importance of feed-forward activity over

feedback in all three stimulation conditions. This means that the

network placed more importance on the EC incoming activity’s

effect on the network to operate. This is despite in Figure 8A feed-

forward and feedback EC in activity are weighted <1, which has

an overall dampening effect. EC out showed more feedback slope

importance after stimulation, which means the feedback axons

from EC to the CA1 were more abundantly active and fired faster

with respect to the sub-regional EC activity to EC-DG axons. The

rest of the sub-regional directions had a preference for feedback of

slope centrality inhibition.

The importance of reliability to induce proportional spike

rates in a target node may indicate selectivity of the network in
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FIGURE 8

Centrality graph analysis shows increasing feedback specificity and importance, suggesting that stimulation has a “sharpening e�ect” on network

activity where information routing is directed and amplified over feed-forward activity. Mean e�ect size analyses show in which direction the

measured parameter is dominant. Error bars on mean e�ect size are 95% confidence intervals. (A) All significant changes (6) across stimulation

conditions decreased except for DG out which increased. Cohen’s d showed an increasing e�ect size toward feedback activity with successive

stimulation in nine cases. (B) Reliability of feedback stimulation increases in five out of eight cases. Cohen’s d e�ect size measurements increased

from no stimulation in 3 cases and favored feedback in 11 out of 13 cases. (C, D) Summary cartoon diagrams of directional graphs were created to

exemplify decreased edges with increased reliability. (C) Before stimulation, feedback is slightly in excess of feed-forward degrees and reliability as in

Figure 1A. (D) After stimulation, the number of edges decreases but reliability in both directions increases as in Figure 1C. Line weight increases

according to the scale of reliability (R2).
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one direction or another and which pathways get more reliably

activated for network control. Supplementary Figure 7B depicts

mixed effects of stimulation on centrality R2 (reliability). Feedback

EC-in showed an increase in feedback reliability importance

after stimulation at 40 HFS (Supplementary Figure 7Ba). The

excess Cohen’s d for EC-in 40 HFS reversed the feedforward

excess to feedback of unstimulated and 5 HFS conditions

(Supplementary Figure 7Bb). EC out feedback reliability of

centrality changed to negative with 5 or 40 HFS. While DG

in and out both decreased feedback R2 centrality for 40

HFS, there was little change in Cohen’s d directionality effect

(Supplementary Figure 7Bb). DG out feedback and feed-forward

reliability decreased for 40 HFS but remained in the negative excess

of feedback over feed-forward (Supplementary Figure 7Bb). CA3-

in and CA3-out maintained their excess negative R2 centrality.

CA1-in increased in reliability importance for feedback 5 HFS

and flipped to excess negative R2 centrality. CA1-out remained

unchanged by stimulation and effect size excess of feedback over

feed-forward. In general, after stimulation, mean effect sizes

favored feedback over feed-forward reliability of centrality for 12

out of 16 post-stimulation sub-region directions even though in

Supplementary Figure 7B feed-forward reliability increased more

than feedback reliability.

Together, these results indicated a routing strategy after

stimulation that decreased the number of edges, number of degrees,

increased reliability, and shifted importance toward feedback

activity. This suggested that stimulation caused inhibitory feedback

activity to be redirected from the routing of feed-forward activity

and “sharpened” its activity for more selectivity and reliability.

Feedback had more degrees than feed-forward activity coupled

with increased feedback slopes over feed-forward activity made the

feedback activity more central and important to the entire network.

Feed-forward activity was routed through fewer routes and more

reliably than the feedback activity. An increase in generalized

feedback activity appeared to create more directed feed-forward

activity in order to focus or sharpen the routing of information.

Discussion

Features summary

Communicating axons were successfully isolated in

microfluidic tunnels and their response dynamics to two forms

of patterned stimulus were analyzed in a full-loop hippocampal

model system. The direction of communication in individual

axons was discerned by spike lags between two electrodes that

span the tunnels. This novel advancement of self-wiring through

tunnels uniquely allowed differences in axonal spike dynamics

to be measured by sub-region in the context of the overall

network activity. Previously, connectivity could only be inferred

by the changes in the somal activity of other sub-regions. Our

reconstruction of the hippocampus allowed for the recording of

the EC, DG, CA3, and CA1 sub-regions of the trisynaptic loop

while simultaneously measuring the information flow between

sub-regions in the axons in context with all sub-regional activity.

Spiking dynamics in our system displayed canonical non-

Gaussian distributions inherent in the computations of neural

systems (Beggs and Timme, 2012). All sub-regions and axonal

tunnels showed linear log–log distributions of spike intervals, burst

intervals, and spikes per burst. Intraburst interval distributions

suggested an up-and-down state of network computation

previously reported by Vakilna et al. (2021). Burst durations

and intraburst spike rates were log-normally distributed. With

stimulation, all interspike intervals and the number of spikes

decreased from no stimulation in both soma and axons in

the feed-forward and feedback directions, consistent with the

Figure 1C hypothesis of decreased activity while maintaining

network balance. In sub-regions, EC and CA1 had similar ISI

slopes in response to the same stimulus and DG and CA3 slopes

were also similar. After stimulation, EC-DG and CA3-CA1 axon

directional activity remained at their previous feed-forward to

feedback balance, while DG-CA3 and CA1-EC increased feedback

activity in proportion to feed-forward activity. IBI fast bursting

excitatory inputs dramatically decreased after stimulation by up

to 87% for EC-DG, DG-CA3, and EC-CA1, until processing in

CA3-CA1 which had an increase in feed-forward fast bursting. All

burst durations in soma and axons decreased after stimulation,

and all intraburst spike rates increased. It is important to note

that after stimulation, not all changes were monotonic with

increased stimulation. Instead, dynamics are balanced within a

small range after stimulation, which suggests different E/I balance

and computation with different stimuli.

Functional connectivity analysis between sub-region neurons

and axons in tunnels revealed a refinement in routing and a

sharpening of network computation with stimulation. By graph

analysis, there was a decrease in the average number of degrees

(functional connections) per electrode in the feed-forward and

feedback DG, feed-forward and feedback CA3, and feed-forward

CA1. This was coupled with an increase in the reliability of spike

rate correlations between soma and axon in both directions in

the EC, feed-forward DG, both directions in the CA3, and both

directions in the CA1. Effect size calculations indicated that node

degrees were weighted toward the feedback direction with only

the EC-in no stim and 5 HFS effect sizes showed a preference for

the feed-forward and EC-in 40 HFS showed no significant effect

size in either direction. These connections revealed few changes

in well-tunnel and tunnel-well spike rate correlations comparing

before and after stimulation. These factors combined suggest that

the network responded to stimulation by balanced excitatory and

inhibitory activity, not with increases in directional stimulation,

but with directed inhibitory behavior that modulated the routing

of feed-forward computations as in model Figure 1C.

More inter-regional feedback activity than
expected for the feedforward trisynaptic
network

Our graphic analysis based on the directionality of inter-

regional communicating axons indicated substantial feedback

routing that likely protects the network from runaway excitatory

exhaustion. Inhibitory interneurons have extensive branching

locally in each sub-region for local control despite comprising

only 10–15% of the cells in each sub-region (Pelkey et al.,
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2017). GABAergic control is activated through either feed-forward

(Lawrence et al., 2003) or feedback directions (Pelkey et al., 2017)

to limit burst durations. For example, feedback from the CA3 to

the DG hilar neurons disynaptically controls the “detonation” of

DG neurons (Lawrence et al., 2003; Scharfman, 2007). The extent

of inhibitory axonal sub-regions is not clear (Penttonen et al., 1997)

and the only knowledge we have of comparing feedback between

sub-regions comes from our last publication (Vakilna et al., 2021).

Reciprocal connections have been reported between the EC and

CA1 (Rockland and Van Hoesen, 1999) and CA3-DG (Penttonen

et al., 1997; Lisman, 1999). CA1–CA3 inhibitory connections are

believed not to exist (Schultz and Engelhardt, 2014), but they have

been reported in slice stimulation experiments (Andersen et al.,

2000). Our analysis shows inhibition of varying degrees from all

sub-regions, which indicates that inhibition between sub-regions is

possible and important for modulating information flow.

Evidence for the inhibitory nature of feedback routing was not

directly available from our measures of spike dynamics. However,

bicuculline can be used as a GABAA antagonist to decrease the

amount of inhibitory activity that is present. If the network has

feedback connections that truly are inhibitory, then we should see

an almost immediate increase in feedforward axonal activity after

the addition of bicuculline as we have seen in single-compartment

cultures (Khatami et al., 2004; Boehler et al., 2007).

Perhaps because Lorente de No originally described the

hippocampus in terms of largely feed-forward architecture, reports

of inter-regional feedback axons are few. Our networks show a

large amount of feedback activity between all sub-regions, which

differs from the canonical representations of the trisynaptic loop.

For example, our networks show feedback activity from the

DG to the EC, which has not been described in the literature.

However, the Allen Brain Atlas shows experiments with a marker

placed in the DG resulting in labeled axonal projections back

to the first, second, and third layers of the EC (Experiment

112745787–DG). These connections are few, but from a control

systems perspective, are necessary to modulate the flow of

excitatory information.

Overall E/I balance dynamics

A synthesis of this information supports hypothesis C in

Figure 1. Figures 8C, D shows a sub-regional summary of the

change in degrees and reliability. Stimulation caused the network

to route functional connections through fewer paths, except for EC

feed-forward (summarized in Figure 7B). The remaining functional

connections were more reliable in 12 of the 16 centrality measures

(R2, Figure 8B), particularly in CA3 neurons that feed forward

through axons into CA1. This routing strategy in response to

electrical stimulation is influenced by the overall E/I balance of

the spiking dynamics and routing. Unlike computer circuitry, the

circuits of the brain do not evoke the same response to the same

input every time. This is a feature of the spatial dynamics of the

system that reflect the probabilities of network plasticity.

The coding for information transmitted between hippocampal

sub-regions likely comes in bursts of action potentials. Bursts

in neural networks may be analogous to packets in Internet

communication: The information is not sent all at once but

is instead chopped up and recombined or interpreted at a

specified address, which improves the reliability of message

transmission (Graham and Rockmore, 2011). In cortical circuits,

these bursting packets are proposed to comprise the building

blocks of information transmission. Based on the number and

exact timing of spikes within bursts and the timing of the bursts,

they convey information about the type of stimulus, a form

of pattern recognition, as we have identified between the DG

and CA3 (Bhattacharya et al., 2016). As a control in a two-

compartment system, Brewer et al. (2013) found specific aspects of

spike dynamics in DG-CA3 compared with DG-DG and CA3-CA3,

suggesting that appropriate anatomy produced distinct coding.

Structured spontaneous activity has a similar firing pattern to the

evoked stimulus and may be a replay of the stimulated signal.

Hence, current activity is most similar to the response to recent

stimuli up to several minutes after exposure (Luczak et al., 2015).

The hippocampus organizes spikes into 50–200ms packets (Luczak

et al., 2015), similar to the 40–100ms median burst lengths we

observed. Our graphical analysis combined with slow burst rates

indicated rerouting with stimulation that would be the basis

for predictive learning while minimizing energy expenditure for

maximum computational efficiency (Luczak et al., 2022).

The balance and modulation of E/I activity in spontaneous

and stimulated conditions allow for efficient neural encoding

of memories (Zhou and Yu, 2018). How spontaneously firing

neurons establish their irregular firing patterns could be key to

understanding network states and the representation of stimulus

inputs. To achieve global E/I balance, the neurons must be

sparsely connected at random, and the strength of the inhibitory

connections should be high enough to control runaway excitation

(Zhou and Yu, 2018). The live networks we have cultured

meet these criteria through a lack of one-to-one connections in

functional connectivity analysis and an abundance of feedback

activity causing lowered spike rates after stimulation.

Pyramidal neurons typically maintain a tight range of firing

rates for optimal information processing, but inhibitory inter-

neurons respond over a wider dynamic range (Maffei and

Fontanini, 2009). There is also evidence for inhibitory interneurons

not only controlling local homeostasis but also coordination

across sub-regions to maintain higher order stability (Maffei

and Fontanini, 2009). These feedback connections provide a

control mechanism for keeping networks from runaway metabolic

exhaustion. Hippocampal inhibitory interneurons only account

for 10–15% of the total cell population, so their ability to keep

the network balanced with such a low percentage of the total

input is based on their highly branched topology and the types

of interactions they form for overall global balance (Pelkey et al.,

2017; Kajiwara et al., 2021). An additional, largely underexplored

possibility that we investigated here was the ability of inter-

regional axons to impose feedback inhibition onto the prior sub-

region in the network. How these mechanics balance globally and

locally in the hippocampus can provide information on network

computational functions.

In previous reconstructions of the hippocampal DG to CA3

sub-regions through axonal tunnels, we found activity dynamics

were composed of spontaneous repeating spatio-temporal motifs

and that differences in first-to-fire probabilities depended on

tunnel routes (Bhattacharya et al., 2016; Poli et al., 2018). With
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paired-pulse stimulation in engineered pairs of hippocampal

sub-regions, we found the strongest evidence for sparse coding

and pattern separation in the DG and for pattern completion in

the CA3. In the current report of reconstruction of the entire

trisynaptic loop, stimulation evoked functional pruning of the

tunnel connections and prioritized selected routes in the network,

which can be considered a plastic event. This is important because

this changes which cell is first to fire also known as the leader

neurons (Ham et al., 2008) and the downstream firing patterns of

spikes and bursts (Eckmann et al., 2008).

We have already described in detail the changes to firing

patterns of spikes and bursts, but we have yet to study the effects of

stimulation on probabilities of first-to-fire neurons. We previously

exposed cultured networks to high-frequency stimulation over

hour-long intervals while the cells were still developing which

generally led to higher spike rates and larger functional networks

(Brewer et al., 2009a; Leondopulos et al., 2012). Exposing the

network to high-frequency stimulation at theta frequency repeats

over only a few minutes when the network was fully grown

conversely lowered the spiking and burst rates. In the graph analysis

we conducted, the DG and CA3 axons were the most plastic sub-

regions as the number of functional connections changed more

than other sub-regions. The DG particularly had the most plasticity

as stimulation decreased the number of functional connections

and therefore sharpened routing in both directions of its outgoing

axons. As a result, the CA3 feed-forward outgoing axons greatly

decreased the number of degrees. Considering the CA3 has the

smallest overall axonal and sub-regional change in spike rates and

burst rates yet the largest variation in a number of functional

connections, this may be a balancing mechanism to maintain a

narrow range of functional operations. DG mossy fiber inputs to

the CA3 are responsible for the plasticity of networks and encoding

of memory (Kesner and Rolls, 2015), so seeing the most plasticity

in these regions is consistent with studies in vivo (Kesner and

Rolls, 2015). In a reconstructed hippocampus, this could mean that

the network is encoding “memory-like” information in the CA3

along a narrower range of circuits from homeostatic conditions.

However, more in-depth temporal analyses are necessary to make a

stronger conclusion.

Narrow window of spiking dynamics
post-stimulation

After stimulation, the network dynamics stayed within a

narrow range. ISI slopes decreased after stimulation in both

the sub-regions and the axons. Only EC-DG feed-forward and

feedback, CA3-CA1 feed-forward, and EC-CA1 feedback axons

showed a significant change in ISI between the two stimulation

cases at less than a 20% difference between them. Similarly, bursting

intervals, burst duration, and intraburst spike rate remained similar

in a majority of sub-regions after stimulation. In the wells, only

the fast-bursting CA1 cells had a significant difference of 31%

between HSF 5 and HFS 40 stimulations. Half the tunnels, feed-

forward EC-DG, DG-CA3, and CA3-CA1, and feedback CA3-CA1

showed significant changes by ANOVA. The magnitude of these

percentages is between 7 and 49%. However, these percentage

differences in burst rate are so large because the slopes of some

of these bursts are so shallow. These narrow ranges may relate

to optimality in neural networks. At rest, a network can still be

active and not be computing any information for the sake of inertia,

like an idling automobile. When the same network responds to

a stimulus for computing information, it operates over a narrow

dynamic range around an optimal point and is highly sensitive

to changes within that range (Beggs, 2022). As our measurements

were taken 30–60min after the stimulation, our reported network

dynamics reflect enduring plasticity in response to the stimulus.

Investigations into the classical criticality of these networks after

stimulation are ongoing.

Limitations

Our in vitro model network may not reflect in vivo spike

dynamics for several reasons. Our network was cultured in two

dimensions which greatly simplifies the complexity of the network

in comparison with the 3D axonal organization in vivo, which

would enable multilevel signal integration (Jensen and Teng, 2020).

However, much of the functional connectivity of the hippocampus

occurs in a narrow 200–400µm thickness. The principal cells in

sub-regions of the in vivo hippocampus are laminated, while our

model neurons are dispersed. This likely interferes with the layered

axonal innervation of proximal vs. distal dendrites. In vitro 3D

cultures overall respond more robustly to stimuli and are more

relevant to in vivo systems (Frega et al., 2014; Antoni et al., 2015;

Tedesco et al., 2018). Yet these 3D cultures have not yet isolated

axons as we have.

Our laboratory is currently working on solutions to culturing

hippocampal cells in 3D with electrophysiological monitoring.

Additionally, there are thousands of neurons per sub-regional

chamber, yet in each recording only approximately 19 could be

recorded from in each sub-region. Similarly, 51 axon tunnels

connect each sub-region and electrodes only span 5 of those

interregional axon tunnels. These factors combine to limit our

graph analysis to functional connections between some axons in

tunnels and some soma in wells.

There are anatomical factors in our reconstructed hippocampi

that do not appear in vivo. Firstly, this is an isolated system with

no inputs from upstream brain regions such as the neocortex,

parahippocampal gyrus, medial septum, or perirhinal cortex. Our

reconstructed networks are missing the perforant pathway from

the EC to the CA3; however, we have constructed MEMS systems

that will allow for this pathway to self-wire (Chen et al., 2023).

Additionally, the subiculum and the EC dissections were not

separated, and the multiple layers of the EC were included in one

EC sub-region. In our networks, we have feedback activity from the

EC to the CA1 and feedback activity from the DG to the EC. We

cannot tell whether these connections are inhibitory or excitatory

without bicuculline studies.

Only the spontaneous activity of the networks was recorded

after stimulation trains were delivered. Stimulation artifacts

precluded reading from electrodes during stimulation. Therefore,

we did not assess the instantaneous response of the network to

stimulation and the factors of Hebbian synaptic plasticity that
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influence reliable plasticity or learning. We recently reported

plasticity responses to patterned stimulation within 10ms of the

stimulus (Chen et al., 2023). However, we see network activity

changes 67 ± 20min (SD) after stimulation, which indicates

that LTP and LTD have occurred. In vivo inputs are likely to

stimulate more than the three neurons we stimulated in this model.

Defined multicell patterned stimulation through optogenetics is

being developed in our laboratory and others (Barral and Reyes,

2017).

Future study

Now that we have evaluated the spatial spiking dynamics

underpinning hippocampal network architecture, it is important

to look at other computational mechanisms of the network and

what that means for the type of computations the network is

performing. There has been a long-standing debate about what

oscillatory signals mean in the brain in relation to spikes. The

synchronization between spikes and oscillations between 1 and

100Hz needs to be studied on multiple spatiotemporal scales to

determine whether they are independent computational functions

or work in tandem with spikes. Additionally, the network can

be further categorized by its states of computational activity.

Criticality is the idea that the brain has an optimal dynamic

range for computations (Beggs, 2022). To determine what narrow

dynamic ranges are optimal for our cultured networks, criticality

measurements will be applied.

With the emergence of consumer-grade spiking neural network

hardware, it is time to start applying biologically inspired

algorithms where classical artificial neural network algorithms

have provided no advantage. We have the ability to directly

study hippocampal network behavior and can apply those

algorithms and architectures to complement spiking neural

network hardware. Once the oscillatory behavior and optimal

ranges of computation are better understood, neuromorphic

software and hardware architecture can be constructed with better

graph algorithms inherent to hippocampal computation (Davies

et al., 2021).

Conclusion

Overall interregional network activity is controlled by an

abundance of feedback axons between all sub-regions in the context

of the trisynaptic loop beyond the widely appreciated intraregional

inhibitory interneurons. Differential spiking from four sub-regions

of the hippocampal formation and their communicating axons

suggested functional differences in information processing in

response to stimulation. Stimulation specifically altered the log–

log distributions of spike dynamics for inter-spike intervals, inter-

burst intervals, burst duration, intra-burst spike rate, and spikes

per burst. Generally, firing rates decreased proportionally after

stimulation; feedforward and feedback spiking selectively decreased

with stimulation and the dynamics were affected by a small

excess of axonal feedback. Additionally, the number of functional

connection routes decreased (as in Figures 1C, 8C, D), but the

reliability of those connections increased in a phenomenon we call

network sharpening. The sharpening effect was particularly strong

in CA3 feed-forward axons into CA1.
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SUPPLEMENTARY FIGURE 1

Peaks in conduction time histograms allow identification of spike

directionality and corresponding wave forms for axon unit identification.

Red bars are spike pairs at peak above threshold (horizontal line) ± two bins.

Blue bars are spike pairs below threshold. (A) Feed-forward peak (red) and

discarded low activity peak (blue), with corresponding waveforms on each

electrode. (B) Two feed-forward peaks, U1 AND U2. (C) Single feed-forward

peak identified above background noise. (D) Bidirectional axons in a single

tunnel identified.

SUPPLEMENTARY FIGURE 2

ISI slopes comparing activity between subregions within a stimulation series

for wells, feed-forward, and feedback. Comparisons between subregions

show distinct subregional and directional computation meaning the

networks are not homologous in cellular make up or computation. Almost

all slopes were di�erent unless otherwise stated in the figure. (A–C) Well ISI

before and after stimulation. (D–F) Feed-forward axon ISI before and after

stimulation. Feed-forward ISI follows well ISI showing that the whole

network is connected. (G–I) Feedback axon ISI before and after stimulation.

Feedback axon ISI are higher than the feed-forward ISI.

SUPPLEMENTARY FIGURE 3

Normalized fractional slow vs fast bursting (fast-slow)/(fast+slow)∗100

show a decrease from fast bursting (blue bars before stimulus) toward slow

bursting in most soma and axons after stimulus, suggesting network

balancing toward slow bursting after stimulation. (A) shows a shift toward

slow bursting slopes in DG. For feed-forward axons, (B) shows a shift away

from fast bursting in EC-DG, DG-CA3, and CA1-EC. The largest change

again is DG-CA3. There was a shift toward fast bursting in CA3-CA1. For

feedback axons, C shows a shift away from fast bursting in EC-DG and

CA3-CA1. There was no change in DG-CA3 feedback axons, but there was

a shift toward 0 in CA1-EC feedback axons. Feedback axons largely

balanced the network toward zero bursting more than the well and

feed-forward bursting.

SUPPLEMENTARY FIGURE 4

Five HFS and 40 HFS generally shorten the burst duration compared to no

stimulation. Semi-log probability distributions represented as red dashed

lines with a single Gaussian fit, median peak, correlation coe�cient, and fits

over 200 logarithmically spaced bins. The vertical blue line represents the

no stimulation median. (A) Well electrode burst duration decreased from

the no stimulation sequence. (B) Feed-forward axon burst duration medians

decreased 8 of 8 cases after stimulation. (C) Feedback axon burst duration

decreased from no stimulation in 8 of 8 cases after stimulation.

SUPPLEMENTARY FIGURE 5

Intra burst spike rates followed a semi log probability distribution

represented as red dashed lines with a single Gaussian fit. Correlation

coe�cients and medians of the distribution are reported. The vertical line

represents the no stimulation median. (A) Well electrode Intra burst spike

rate fits all showed an increase from the no stimulation sequence. (B)

Feed-forward axon Intra burst spike rate fits increased from no stimulation 8

of 8 times after stimulation. (C) Feedback axon Intra burst spike rate fits

decreases from no stim 7 of 8 times after stimulation.

SUPPLEMENTARY FIGURE 6

Spike frequency (number of spikes/100 ms, average firing rate, AFR, Hz)

regressions in 100 ms bins for 10 s windows categorizing functional

connections between tunnels and axons. Out of 100 possible points (100

0.1 s bins in 10 s), those with spikes are plotted. Many bins had no spikes.

Slopes greater than one are excitatory and slopes less than one are

inhibitory. (A) Edge weights for slopes and R2 are plotted as averages for

windows with unique values. (B–D) Feed-forward (FF) and feedback (FB)

functional connection between well-tunnel and tunnel-well MEA-120

electrodes; directionality between electrode names is denoted

alphanumerically (pin layout). (B) High slopes and high R2 are excitatory

when comparing to the average. (C) Low slopes and high R2 are inhibitory

when comparing to the average. (D) Poor slope and poor R2 are included in

averages if above thresholds and suggest network was not currently routing

through a specific tunnel.

SUPPLEMENTARY FIGURE 7

The importance of nodes to functional connectivity did not change with

stimulation. But the network assigned more importance to feedback

connections than feed-forward connections. (A) Slope centrality is a

weighted degree measurement which represents the importance of the

source node’s connections and evoked spike rate in the target channel.

Slope centrality decreases from no stimulation only in the DG-In, CA3-In,

and CA3-Out cases. Overall e�ect size is toward feedback importance. (B)

R2 centrality increases in feedback EC-In, EC-Out and CA1-In. The

importance of the reliability increased in EC-In, EC-out, and CA1-In

feedback and decreased in DG-In and DG-out feedback and DG out

feed-forward. Overall e�ect size is toward feedback importance for reliable

connections.

SUPPLEMENTARY TABLE 1

Spontaneous recordings and timing.
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