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Do we all synch alike? Brain–
body-environment interactions in 
ASD
Shlomit Beker * and Sophie Molholm 

Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United 
States

Autism Spectrum Disorder (ASD) is characterized by rigidity of routines and restricted 
interests, and atypical social communication and interaction. Recent evidence for 
altered synchronization of neuro-oscillatory brain activity with regularities in the 
environment and of altered peripheral nervous system function in ASD present 
promising novel directions for studying pathophysiology and its relationship to ASD 
clinical phenotype. Human cognition and action are significantly influenced by 
physiological rhythmic processes that are generated by both the central nervous 
system (CNS) and the autonomic nervous system (ANS). Normally, perception occurs 
in a dynamic context, where brain oscillations and autonomic signals synchronize 
with external events to optimally receive temporally predictable rhythmic information, 
leading to improved performance. The recent findings on the time-sensitive coupling 
between the brain and the periphery in effective perception and successful social 
interactions in typically developed highlight studying the interactions within the brain–
body-environment triad as a critical direction in the study of ASD. Here we offer a 
novel perspective of autism as a case where the temporal dynamics of brain–body-
environment coupling is impaired. We present evidence from the literature to support 
the idea that in autism the nervous system fails to operate in an adaptive manner 
to synchronize with temporally predictable events in the environment to optimize 
perception and behavior. This framework could potentially lead to novel biomarkers 
of hallmark deficits in ASD such as cognitive rigidity and altered social interaction.
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Autism and synchronization with the environment

The two major diagnostic criteria of autism spectrum disorder (ASD), impaired social 
communication and restricted interests and/or repetitive behaviors (American Psychiatric 
Association, American Psychiatric Association DSM-5 Task Force, 2013), reflect impaired 
interactions between the individual and their surroundings. Engaging with the external 
environment is crucial to acquiring and updating adaptive behaviors from the earliest stages of 
development (Tordjman et  al., 2015), when mimicry of and reciprocal interaction with a 
caregiver (also termed “parent-infant synchrony”) takes place (Feldman, 2007). Basic behaviors 
involving rhythmic synchronization often characterize such interactions. For example, newborns 
synchronize leg movements with adult speech (Condon and Sander, 1974); mother-infant face-
to-face interactions often involve a repetitive rhythmic organization (Moreno-Núñez et al., 
2021); and infants and young children prefer rhythmic speech and songs, as indicated by 
increased gazing behaviors (Alviar et al., 2022; Lense et al., 2022). Such preferences suggest that 
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during early stages of development, rhythmic, temporally predictable 
events may provide the scaffolding upon which more complex 
learning and interaction with the environment are typically built. 
Whereas typical development involves copious engagement with the 
environment (Zwingmann et al., 2012), studies indicate that this is 
significantly reduced in infants at high risk for autism, who exhibit 
reduced eye contact (McPartland et al., 2011; Jones and Klin, 2013), 
joint attention, and reciprocal imitation (Zwaigenbaum, 2005). 
Although the ASD cognitive and behavioral phenotype is well 
characterized for diagnostic purposes, the physiological processes that 
are involved, and related biomarkers, remain elusive. A better 
understanding of the basis of impaired interaction with the 
environment, which may contribute to the emergence of the canonical 
maladaptive autistic behaviors such as impaired social interaction and 
restricted interests/repetitive behaviors, may reveal sensitive 
biomarkers of the condition that are detectable before the emergence 
of the classic symptoms used to diagnose autism, as well as pointing 
to novel therapeutic approaches.

Here we  lay out a rational for studying the integrity of the 
synchronization of the central and autonomic nervous systems with 
the physical and social environment in autism, as potential readouts 
of impaired interaction with the environment. We consider the role 
that the dynamic interplay between intrinsic bodily rhythmic 
processes and rhythmic or quasi rhythmic temporally predictable 
events in the environment plays in typical perception, cognition, and 
social interaction, and how the impairment of such interactions may 
contribute to autism. To this end, we focus on how human cognition 
and action are influenced by bodily rhythmic processes governed by 
both the central nervous system (CNS) and the autonomic nervous 
system (ANS), and on emerging evidence for disruption of these 
processes in autism. While such rhythmic processes occur at many 
scales (e.g., from circadian rhythms to neuro-oscillations occurring 
on the order of milliseconds), here we focus on those on the second 
to sub-second scale, that are readily related to adaptation to the 
immediate environment and interpersonal social interactions. 
Figure 1 presents a schematic of potential interactions across what 
we term the Brain–Body-Environment triad (1A) and illustrates some 
of the ways in which these processes can be  quantified (1B): (i) 
Electroencephalography (EEG), electrocardiography (ECG) and 
respiration activity for cognitive tasks; (ii) EEG, heart rate variability 
(HRV) and skin conductance for social interaction.

The effect of CNS and ANS rhythmic 
activity on perception and 
performance

Neuro-oscillations reflect rhythmic fluctuations of neuronal 
ensembles between high and low excitability states (Bishop, 1932; 
Buzsáki and Vöröslakos, 2023). The temporal alignment between 
these fluctuations and external events, known as oscillatory 
entrainment or phase locking (Lakatos et al., 2008; Schroeder and 
Lakatos, 2009; Schroeder et  al., 2010), contributes to optimal 
perception and performance (Lakatos et  al., 2008; Schroeder and 
Lakatos, 2009; Schroeder et al., 2010; Vanrullen et al., 2011; Thut et al., 
2012; Mercier et al., 2015) and, as we elaborate below, plays a role in 
the ability to successfully interact with others (Kingsbury et al., 2019; 
Omer et al., 2019). As such, neuro-oscillations have been suggested to 

orchestrate adaptive behaviors and response preparation through 
entrainment (Lakatos et al., 2008; Tal et al., 2017; Ten Oever et al., 
2017; Haegens and Zion Golumbic, 2018) to facilitate the processing 
of stimuli that appear at temporally predictable times (Lakatos et al., 
2008). In our work we have found that when presenting rhythmic 
stimuli to individuals where the timing of stimulus onset is predictable, 
there is reduced phase locking of neuro-oscillations, as well as altered 
neural indices of predictive processing, in children with autism (Beker 
et al., 2021). Taken together with evidence for impaired behavioral 
synchronization (Vishne et al., 2021; Kasten et al., 2023) and slower 
updating of motor and behavioral responses (Lieder et al., 2019) when 
presented with rhythmic sensory stimulation, there is mounting 
evidence for altered neural synchronization with the environment as 
a possible mechanism contributing to autism. The critical role of 
neural entrainment in adaptive behavior and preliminary evidence of 
its impairment highlights the importance of understanding these 
neural functions in individuals with ASD and how they mediate 
interaction with the environment.

Coordinated signaling between the central and autonomic 
nervous systems also contributes to adaptation to ongoing 
environmental demands (Yerkes and Dodson, 1908). The ANS 
regulates involuntary organ functions such as heartbeat, breathing, 
sweat and digestion, and supports the flexible adaptation of the body 
to current circumstances. Acetylcholine (Ach) and norepinephrine 
(NE), the primary neurotransmitters involved in arousal through the 
ANS, play a major role in cognition (Yu and Dayan, 2005). For 
example, neural activity in the Locus-Coeruleus (LC) and basal nuclei, 
rich in NE and cholinergic receptors respectively, has been linked to 
cortical reconfigurations and to changes in states of awareness (Munn 
et al., 2021). Studies on predictive processing indicate that NE and Ach 
modulate with prediction strength (how confident the person is in the 
prediction) when expectations are violated (Posner and Petersen, 
1990; Sarter and Bruno, 1997; Sales et  al., 2019), signifying the 
relevance of arousal in statistical learning and predictive processing 
(Yu and Dayan, 2005). The role of the ANS in cognitive function at a 
macro level is well-known through the Yerkes-Dodson function 
(Yerkes and Dodson, 1908; Faller et al., 2019), which describes the 
influence of level of arousal on performance. But it is also seen for 
rapid timescales. Studies from recent years point out the crucial role 
of phase of brain and body signals in perception and performance. For 
example, specific phases of respiration and heart activity are aligned 
with conscious tactile perception (Grund et al., 2021), spontaneous 
pupil dilation dynamics correlate with neural oscillations (Pfeffer 
et al., 2021), respiration cycles are aligned with perception and with 
neural excitability (Kluger and Gross, 2021); nasal inhalation drives 
increased brain activity in cognitive tasks (Perl et al., 2019); cardiac 
cycle affects somatosensory perception and evoked potentials (Al 
et  al., 2020, 2021); and pupil dilation and cardiac activity are 
synchronized with visual attention (Madsen et al., 2022). Moreover, 
the significance of the temporal dynamics of ANS and CNS has been 
demonstrated for social scenarios, where the synchronization of 
autonomic signals (Behrens et al., 2020; Prochazkova et al., 2021) and 
neural activity (Hasson et  al., 2012; Omer et  al., 2019) between 
individuals has been shown to correlate with successful inter-
personal interactions.

Dysregulation of ANS function in ASD is suggested by studies in 
which pupillometry, heart-rate and skin response measurements are 
made during rest (Schoen et al., 2008; Anderson et al., 2013; Daluwatte 
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et al., 2013; van de Cruys et al., 2014; Bujnakova et al., 2016; Lawson 
et  al., 2017; Billeci et  al., 2018) (i.e., in the absence of a specific 
experimental manipulation or paradigm). In line with altered 
ANS-environment phasic relationships, Lawson and colleagues 
(Lawson et al., 2017) demonstrated reduced modulation of pupil size 
in ASD compared to controls for unpredictable versus predictable 
targets. Nevertheless, the integrity of the interaction of ANS-driven 
processes with temporally predictable events in ASD has received 
relatively little attention so far. Furthermore, the phasic dynamics 
between CNS and ANS and their modulation by social and physical 
events have not yet been systematically studied in ASD (Karjalainen 
et al., 2023).

Predictive processing and the role of 
synchronization

Neuro-oscillatory entrainment to rhythmic events involves 
alignment of the phases of slow oscillations with temporally 
predictable stimuli, such that these stimuli fall within an optimal 
phase of network excitability (Henry and Obleser, 2012; Cannon, 
2021), often leading to improved perception and performance. As 
such, neural (and possibly other types of) oscillatory entrainment can 
be  thought of as an important mechanism for predicting and 
preparing for future events. Impaired entrainment, therefore, would 
clearly have negative implications for perception and behavior (Busch 
et al., 2009; Fiebelkorn et al., 2013; Gray et al., 2015; Wilson and Foxe, 
2020), and could account for some instances of impaired predictive 
processing in autism reported in the literature (Pellicano, 2013; 
Lawson et al., 2014; Sinha et al., 2014; Lawson et al., 2017; Beker et al., 
2021; Cannon et al., 2021). As previously mentioned, in our work 
we found altered oscillatory entrainment and impaired preparation 
for temporally predictable events in autistic children (ages 6–9 years), 

compared to age and cognitively matched controls. We found that 
cortical activity reflecting neural preparation for a temporally 
predictable target, the contingent negative variation (CNV) (Walter 
et al., 1964; Breska and Deouell, 2017), was impaired compared to 
controls (Beker et al., 2021). While in typically developed (TDs) there 
was a build-up of preparatory activity as the target came closer over 
a sequence of 4 rhythmically presented temporal cues, as can be seen 
in Figure 2, in autistic children this build-up of preparatory activity 
appeared temporally smeared (of lower amplitude and visible over 
more of the cue to target interval) and did not significantly differ as 
a function of cue proximity to the target (cue 1 versus cue 4, where 
cue 4 immediately precedes the target). Reduced phase concentration 
and inter-trial phase coherence to the cues in the autistic group 
suggested that impaired neural entrainment contributed to reduced 
temporal precision in the CNV. In a separate EEG study on adults 
with ASD (ages: 16–28 years old), we found that the CNV was less 
modulated by how likely the target was to occur (Reisli et al., 2022), 
and notably here too the CNV appeared to be less temporally locked 
to the onset of the target (e.g., more distributed across the cue-target 
interval; see Figure 2). Collectively these CNV and phase coherence 
data suggest less precision in the alignment of neural activity with 
temporally predictable events. This idea is further bolstered by 
findings that individuals with ASD are impaired in their ability to 
adapt to changes in auditory tempo (Vishne et al., 2021; Kasten et al., 
2023) during cued tapping tasks (but see Cannon et al., 2023). This 
failure to properly entrain to events and its implications for predictive 
processing in ASD supports altered physiological synchronization 
with non-social stimuli in ASD. Altered temporal alignment of 
physiological processes with external events might be  a driving 
mechanism underlying social atypicalities in ASD as well, as 
we describe below, and therefore account for less precise and adaptive 
models of both the social and non-social worlds (Quattrocki and 
Friston, 2014; Cannon et al., 2021).

FIGURE 1

(A): the ANS-CNS-environment triad and possible interactions (in arrows) that are under research in neurotypicals, and still need to be resolved through 
studies on ASD. (B): measures that were used for (i) cognitive tasks; (ii) social interaction. Each interaction in panel (A) can be mapped onto 
measurements in (i) and/or (ii) in panel (B).
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Synchronization and its role in social 
interaction

The relevance to autism of intact synchronization with the 
environment is perhaps most transparent when we  consider 
interacting with others, a process that requires the complex 
coordination of actions, decision making and feedback between 
individuals. Such “social synchronization” is commonly observed in 
social animals, such as bats and rats, as mimicking behaviors (Chen 
and Hong, 2018; Omer et  al., 2019). Remarkably, the degree of 
interaction between animals is correlated with their brain-to-brain 
synchrony (Zhang et  al., 2022), and can predict cooperation and 
dominance relationships (Kingsbury et al., 2019). Thus, behavioral 
and neural synchronization can be  thought of as a shared system 

between multiple individuals, which aids each individual to 
synchronize its internal state with real-time decisions of its social 
partners (Schilbach et al., 2013; Kingsbury et al., 2019). In humans, 
enhanced synchronization of CNS or ANS signals within a dyad is 
correlated with the success of the inter-personal interaction between 
the individuals in that dyad, in different social scenarios such as task 
cooperation (Behrens et  al., 2020), romantic relationships 
(Prochazkova et  al., 2021; Zeevi et  al., 2022), and parent–child 
communication (Miller et  al., 2019). As mentioned earlier, such 
reciprocity, often in the form of parent-infant synchrony, is important 
for intact social development (Feldman, 2007), highlighting the 
significance of imitative exchanges with peers during the first years of 
life (Nadel-Brulfert and Baudonniere, 1982). While there is much to 
be learned yet about physiological synchronizations between autistic 

FIGURE 2

Examples of altered modulation of predictive processing in ASD, using two different prediction paradigms: (A) timing (prediction of “when”); and 
(B) content (prediction of “what.” In both paradigms, EEG of the ASD groups showed reduced modulation by the manipulations than controls [modified 
from Beker et al. (2021) and Reisli et al. (2022)].
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individuals and others during early development and during social 
interactions, infants at high risk for autism exhibit reduced eye contact 
(McPartland et al., 2011; Jones and Klin, 2013), joint attention, and 
reciprocal imitation (Zwaigenbaum, 2005); and in one study 
synchrony of neuronal activity within an parent- ASD child dyad was 
found to be correlated with autism traits (AQ scores) (Baron-Cohen 
et al., 2001; Wang et al., 2020; Kruppa et al., 2021). Furthermore, ASD 
individuals have difficulty using prior information to anticipate goal-
directed actions from others (Ganglmayer et al., 2020) and display 
impaired joint action coordination in motor coordination tasks 
(Fulceri et al., 2018), both of which could be the consequence of an 
inability to synchronize with others in social situations.

Summary and conclusions

As we  present above, various findings in the literature are 
supportive of the concept that perception, cognition and social 
interactions are influenced by a bidirectional time-sensitive interplay 
of the cortex and rhythmic pattern generators of peripheral body 
signals with the environment (Omer et al., 2019; Perl et al., 2019; Al 
et al., 2020; Behrens et al., 2020; Al et al., 2021; Grund et al., 2021; 
Madsen et  al., 2021; Pérez et  al., 2021; Prochazkova et  al., 2021; 
Madsen et al., 2022). Altered synchronization of oscillatory activity in 
ASD has been found across paradigms and has been linked to 
abnormal perception and performance (Murphy et al., 2014; Beker 
et al., 2021). A separate set of evidence points to altered autonomic 
activity, with hypo- and hyper regulation of pupillometry, cardiac and 
electrodermal activity (Arora et al., 2021; Bellato et al., 2021). Despite 
this evidence, autonomic system and brain processes have not been 
considered in unison, or systematically in different environmental 
scenarios, in ASD. We suggest that the comprehensive consideration 
of the CNS-ANS-environment triad in ASD will present an 
illuminating perspective on autism. We  hypothesize that atypical 
behaviors in ASD, especially cognitive and social communication 
rigidity, reflect in part impaired synchronization between the 
individual and their environment.

Several prominent opinions have recently focused on EEG –
measured neuro-oscillatory activity (Perl et al., 2019; Al et al., 2020), 
event-related potentials (ERPs) (Al et al., 2020, 2021), and sensors of 
autonomic function (Al et  al., 2020) as promising biomarkers for 
altered cognitive and social functioning in ASD and other Intellectual 
Disability Disorders (IDD). Such objective biomarkers have the 
potential to serve many purposes. Consideration of synchronization 
across the CNS-ANS-environment triad and its relation to prominent 

characteristics of autism also has clinical potential. ASD diagnosis 
today is based on subjective clinical assessment of behavioral 
characteristics. Identifying altered physiological processes in ASD as 
we suggest here could provide objective indication of the disorder and 
of its severity.
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